drm/modes: Fix drm_mode_vrefres() docs
[drm/drm-misc.git] / arch / x86 / mm / fault.c
blobe6c469b323ccb748de22adc7d9f0a16dd195edad
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1995 Linus Torvalds
4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6 */
7 #include <linux/sched.h> /* test_thread_flag(), ... */
8 #include <linux/sched/task_stack.h> /* task_stack_*(), ... */
9 #include <linux/kdebug.h> /* oops_begin/end, ... */
10 #include <linux/extable.h> /* search_exception_tables */
11 #include <linux/memblock.h> /* max_low_pfn */
12 #include <linux/kfence.h> /* kfence_handle_page_fault */
13 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
14 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
15 #include <linux/perf_event.h> /* perf_sw_event */
16 #include <linux/hugetlb.h> /* hstate_index_to_shift */
17 #include <linux/prefetch.h> /* prefetchw */
18 #include <linux/context_tracking.h> /* exception_enter(), ... */
19 #include <linux/uaccess.h> /* faulthandler_disabled() */
20 #include <linux/efi.h> /* efi_crash_gracefully_on_page_fault()*/
21 #include <linux/mm_types.h>
22 #include <linux/mm.h> /* find_and_lock_vma() */
23 #include <linux/vmalloc.h>
25 #include <asm/cpufeature.h> /* boot_cpu_has, ... */
26 #include <asm/traps.h> /* dotraplinkage, ... */
27 #include <asm/fixmap.h> /* VSYSCALL_ADDR */
28 #include <asm/vsyscall.h> /* emulate_vsyscall */
29 #include <asm/vm86.h> /* struct vm86 */
30 #include <asm/mmu_context.h> /* vma_pkey() */
31 #include <asm/efi.h> /* efi_crash_gracefully_on_page_fault()*/
32 #include <asm/desc.h> /* store_idt(), ... */
33 #include <asm/cpu_entry_area.h> /* exception stack */
34 #include <asm/pgtable_areas.h> /* VMALLOC_START, ... */
35 #include <asm/kvm_para.h> /* kvm_handle_async_pf */
36 #include <asm/vdso.h> /* fixup_vdso_exception() */
37 #include <asm/irq_stack.h>
38 #include <asm/fred.h>
39 #include <asm/sev.h> /* snp_dump_hva_rmpentry() */
41 #define CREATE_TRACE_POINTS
42 #include <asm/trace/exceptions.h>
45 * Returns 0 if mmiotrace is disabled, or if the fault is not
46 * handled by mmiotrace:
48 static nokprobe_inline int
49 kmmio_fault(struct pt_regs *regs, unsigned long addr)
51 if (unlikely(is_kmmio_active()))
52 if (kmmio_handler(regs, addr) == 1)
53 return -1;
54 return 0;
58 * Prefetch quirks:
60 * 32-bit mode:
62 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
63 * Check that here and ignore it. This is AMD erratum #91.
65 * 64-bit mode:
67 * Sometimes the CPU reports invalid exceptions on prefetch.
68 * Check that here and ignore it.
70 * Opcode checker based on code by Richard Brunner.
72 static inline int
73 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
74 unsigned char opcode, int *prefetch)
76 unsigned char instr_hi = opcode & 0xf0;
77 unsigned char instr_lo = opcode & 0x0f;
79 switch (instr_hi) {
80 case 0x20:
81 case 0x30:
83 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
84 * In X86_64 long mode, the CPU will signal invalid
85 * opcode if some of these prefixes are present so
86 * X86_64 will never get here anyway
88 return ((instr_lo & 7) == 0x6);
89 #ifdef CONFIG_X86_64
90 case 0x40:
92 * In 64-bit mode 0x40..0x4F are valid REX prefixes
94 return (!user_mode(regs) || user_64bit_mode(regs));
95 #endif
96 case 0x60:
97 /* 0x64 thru 0x67 are valid prefixes in all modes. */
98 return (instr_lo & 0xC) == 0x4;
99 case 0xF0:
100 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
101 return !instr_lo || (instr_lo>>1) == 1;
102 case 0x00:
103 /* Prefetch instruction is 0x0F0D or 0x0F18 */
104 if (get_kernel_nofault(opcode, instr))
105 return 0;
107 *prefetch = (instr_lo == 0xF) &&
108 (opcode == 0x0D || opcode == 0x18);
109 return 0;
110 default:
111 return 0;
115 static bool is_amd_k8_pre_npt(void)
117 struct cpuinfo_x86 *c = &boot_cpu_data;
119 return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) &&
120 c->x86_vendor == X86_VENDOR_AMD &&
121 c->x86 == 0xf && c->x86_model < 0x40);
124 static int
125 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
127 unsigned char *max_instr;
128 unsigned char *instr;
129 int prefetch = 0;
131 /* Erratum #91 affects AMD K8, pre-NPT CPUs */
132 if (!is_amd_k8_pre_npt())
133 return 0;
136 * If it was a exec (instruction fetch) fault on NX page, then
137 * do not ignore the fault:
139 if (error_code & X86_PF_INSTR)
140 return 0;
142 instr = (void *)convert_ip_to_linear(current, regs);
143 max_instr = instr + 15;
146 * This code has historically always bailed out if IP points to a
147 * not-present page (e.g. due to a race). No one has ever
148 * complained about this.
150 pagefault_disable();
152 while (instr < max_instr) {
153 unsigned char opcode;
155 if (user_mode(regs)) {
156 if (get_user(opcode, (unsigned char __user *) instr))
157 break;
158 } else {
159 if (get_kernel_nofault(opcode, instr))
160 break;
163 instr++;
165 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
166 break;
169 pagefault_enable();
170 return prefetch;
173 DEFINE_SPINLOCK(pgd_lock);
174 LIST_HEAD(pgd_list);
176 #ifdef CONFIG_X86_32
177 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
179 unsigned index = pgd_index(address);
180 pgd_t *pgd_k;
181 p4d_t *p4d, *p4d_k;
182 pud_t *pud, *pud_k;
183 pmd_t *pmd, *pmd_k;
185 pgd += index;
186 pgd_k = init_mm.pgd + index;
188 if (!pgd_present(*pgd_k))
189 return NULL;
192 * set_pgd(pgd, *pgd_k); here would be useless on PAE
193 * and redundant with the set_pmd() on non-PAE. As would
194 * set_p4d/set_pud.
196 p4d = p4d_offset(pgd, address);
197 p4d_k = p4d_offset(pgd_k, address);
198 if (!p4d_present(*p4d_k))
199 return NULL;
201 pud = pud_offset(p4d, address);
202 pud_k = pud_offset(p4d_k, address);
203 if (!pud_present(*pud_k))
204 return NULL;
206 pmd = pmd_offset(pud, address);
207 pmd_k = pmd_offset(pud_k, address);
209 if (pmd_present(*pmd) != pmd_present(*pmd_k))
210 set_pmd(pmd, *pmd_k);
212 if (!pmd_present(*pmd_k))
213 return NULL;
214 else
215 BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
217 return pmd_k;
221 * Handle a fault on the vmalloc or module mapping area
223 * This is needed because there is a race condition between the time
224 * when the vmalloc mapping code updates the PMD to the point in time
225 * where it synchronizes this update with the other page-tables in the
226 * system.
228 * In this race window another thread/CPU can map an area on the same
229 * PMD, finds it already present and does not synchronize it with the
230 * rest of the system yet. As a result v[mz]alloc might return areas
231 * which are not mapped in every page-table in the system, causing an
232 * unhandled page-fault when they are accessed.
234 static noinline int vmalloc_fault(unsigned long address)
236 unsigned long pgd_paddr;
237 pmd_t *pmd_k;
238 pte_t *pte_k;
240 /* Make sure we are in vmalloc area: */
241 if (!(address >= VMALLOC_START && address < VMALLOC_END))
242 return -1;
245 * Synchronize this task's top level page-table
246 * with the 'reference' page table.
248 * Do _not_ use "current" here. We might be inside
249 * an interrupt in the middle of a task switch..
251 pgd_paddr = read_cr3_pa();
252 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
253 if (!pmd_k)
254 return -1;
256 if (pmd_leaf(*pmd_k))
257 return 0;
259 pte_k = pte_offset_kernel(pmd_k, address);
260 if (!pte_present(*pte_k))
261 return -1;
263 return 0;
265 NOKPROBE_SYMBOL(vmalloc_fault);
267 void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
269 unsigned long addr;
271 for (addr = start & PMD_MASK;
272 addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
273 addr += PMD_SIZE) {
274 struct page *page;
276 spin_lock(&pgd_lock);
277 list_for_each_entry(page, &pgd_list, lru) {
278 spinlock_t *pgt_lock;
280 /* the pgt_lock only for Xen */
281 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
283 spin_lock(pgt_lock);
284 vmalloc_sync_one(page_address(page), addr);
285 spin_unlock(pgt_lock);
287 spin_unlock(&pgd_lock);
291 static bool low_pfn(unsigned long pfn)
293 return pfn < max_low_pfn;
296 static void dump_pagetable(unsigned long address)
298 pgd_t *base = __va(read_cr3_pa());
299 pgd_t *pgd = &base[pgd_index(address)];
300 p4d_t *p4d;
301 pud_t *pud;
302 pmd_t *pmd;
303 pte_t *pte;
305 #ifdef CONFIG_X86_PAE
306 pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
307 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
308 goto out;
309 #define pr_pde pr_cont
310 #else
311 #define pr_pde pr_info
312 #endif
313 p4d = p4d_offset(pgd, address);
314 pud = pud_offset(p4d, address);
315 pmd = pmd_offset(pud, address);
316 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
317 #undef pr_pde
320 * We must not directly access the pte in the highpte
321 * case if the page table is located in highmem.
322 * And let's rather not kmap-atomic the pte, just in case
323 * it's allocated already:
325 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_leaf(*pmd))
326 goto out;
328 pte = pte_offset_kernel(pmd, address);
329 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
330 out:
331 pr_cont("\n");
334 #else /* CONFIG_X86_64: */
336 #ifdef CONFIG_CPU_SUP_AMD
337 static const char errata93_warning[] =
338 KERN_ERR
339 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
340 "******* Working around it, but it may cause SEGVs or burn power.\n"
341 "******* Please consider a BIOS update.\n"
342 "******* Disabling USB legacy in the BIOS may also help.\n";
343 #endif
345 static int bad_address(void *p)
347 unsigned long dummy;
349 return get_kernel_nofault(dummy, (unsigned long *)p);
352 static void dump_pagetable(unsigned long address)
354 pgd_t *base = __va(read_cr3_pa());
355 pgd_t *pgd = base + pgd_index(address);
356 p4d_t *p4d;
357 pud_t *pud;
358 pmd_t *pmd;
359 pte_t *pte;
361 if (bad_address(pgd))
362 goto bad;
364 pr_info("PGD %lx ", pgd_val(*pgd));
366 if (!pgd_present(*pgd))
367 goto out;
369 p4d = p4d_offset(pgd, address);
370 if (bad_address(p4d))
371 goto bad;
373 pr_cont("P4D %lx ", p4d_val(*p4d));
374 if (!p4d_present(*p4d) || p4d_leaf(*p4d))
375 goto out;
377 pud = pud_offset(p4d, address);
378 if (bad_address(pud))
379 goto bad;
381 pr_cont("PUD %lx ", pud_val(*pud));
382 if (!pud_present(*pud) || pud_leaf(*pud))
383 goto out;
385 pmd = pmd_offset(pud, address);
386 if (bad_address(pmd))
387 goto bad;
389 pr_cont("PMD %lx ", pmd_val(*pmd));
390 if (!pmd_present(*pmd) || pmd_leaf(*pmd))
391 goto out;
393 pte = pte_offset_kernel(pmd, address);
394 if (bad_address(pte))
395 goto bad;
397 pr_cont("PTE %lx", pte_val(*pte));
398 out:
399 pr_cont("\n");
400 return;
401 bad:
402 pr_info("BAD\n");
405 #endif /* CONFIG_X86_64 */
408 * Workaround for K8 erratum #93 & buggy BIOS.
410 * BIOS SMM functions are required to use a specific workaround
411 * to avoid corruption of the 64bit RIP register on C stepping K8.
413 * A lot of BIOS that didn't get tested properly miss this.
415 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
416 * Try to work around it here.
418 * Note we only handle faults in kernel here.
419 * Does nothing on 32-bit.
421 static int is_errata93(struct pt_regs *regs, unsigned long address)
423 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
424 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
425 || boot_cpu_data.x86 != 0xf)
426 return 0;
428 if (user_mode(regs))
429 return 0;
431 if (address != regs->ip)
432 return 0;
434 if ((address >> 32) != 0)
435 return 0;
437 address |= 0xffffffffUL << 32;
438 if ((address >= (u64)_stext && address <= (u64)_etext) ||
439 (address >= MODULES_VADDR && address <= MODULES_END)) {
440 printk_once(errata93_warning);
441 regs->ip = address;
442 return 1;
444 #endif
445 return 0;
449 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
450 * to illegal addresses >4GB.
452 * We catch this in the page fault handler because these addresses
453 * are not reachable. Just detect this case and return. Any code
454 * segment in LDT is compatibility mode.
456 static int is_errata100(struct pt_regs *regs, unsigned long address)
458 #ifdef CONFIG_X86_64
459 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
460 return 1;
461 #endif
462 return 0;
465 /* Pentium F0 0F C7 C8 bug workaround: */
466 static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code,
467 unsigned long address)
469 #ifdef CONFIG_X86_F00F_BUG
470 if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) &&
471 idt_is_f00f_address(address)) {
472 handle_invalid_op(regs);
473 return 1;
475 #endif
476 return 0;
479 static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
481 u32 offset = (index >> 3) * sizeof(struct desc_struct);
482 unsigned long addr;
483 struct ldttss_desc desc;
485 if (index == 0) {
486 pr_alert("%s: NULL\n", name);
487 return;
490 if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
491 pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
492 return;
495 if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
496 sizeof(struct ldttss_desc))) {
497 pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
498 name, index);
499 return;
502 addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
503 #ifdef CONFIG_X86_64
504 addr |= ((u64)desc.base3 << 32);
505 #endif
506 pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
507 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
510 static void
511 show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
513 if (!oops_may_print())
514 return;
516 if (error_code & X86_PF_INSTR) {
517 unsigned int level;
518 bool nx, rw;
519 pgd_t *pgd;
520 pte_t *pte;
522 pgd = __va(read_cr3_pa());
523 pgd += pgd_index(address);
525 pte = lookup_address_in_pgd_attr(pgd, address, &level, &nx, &rw);
527 if (pte && pte_present(*pte) && (!pte_exec(*pte) || nx))
528 pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
529 from_kuid(&init_user_ns, current_uid()));
530 if (pte && pte_present(*pte) && pte_exec(*pte) && !nx &&
531 (pgd_flags(*pgd) & _PAGE_USER) &&
532 (__read_cr4() & X86_CR4_SMEP))
533 pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
534 from_kuid(&init_user_ns, current_uid()));
537 if (address < PAGE_SIZE && !user_mode(regs))
538 pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
539 (void *)address);
540 else
541 pr_alert("BUG: unable to handle page fault for address: %px\n",
542 (void *)address);
544 pr_alert("#PF: %s %s in %s mode\n",
545 (error_code & X86_PF_USER) ? "user" : "supervisor",
546 (error_code & X86_PF_INSTR) ? "instruction fetch" :
547 (error_code & X86_PF_WRITE) ? "write access" :
548 "read access",
549 user_mode(regs) ? "user" : "kernel");
550 pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
551 !(error_code & X86_PF_PROT) ? "not-present page" :
552 (error_code & X86_PF_RSVD) ? "reserved bit violation" :
553 (error_code & X86_PF_PK) ? "protection keys violation" :
554 (error_code & X86_PF_RMP) ? "RMP violation" :
555 "permissions violation");
557 if (!(error_code & X86_PF_USER) && user_mode(regs)) {
558 struct desc_ptr idt, gdt;
559 u16 ldtr, tr;
562 * This can happen for quite a few reasons. The more obvious
563 * ones are faults accessing the GDT, or LDT. Perhaps
564 * surprisingly, if the CPU tries to deliver a benign or
565 * contributory exception from user code and gets a page fault
566 * during delivery, the page fault can be delivered as though
567 * it originated directly from user code. This could happen
568 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
569 * kernel or IST stack.
571 store_idt(&idt);
573 /* Usable even on Xen PV -- it's just slow. */
574 native_store_gdt(&gdt);
576 pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
577 idt.address, idt.size, gdt.address, gdt.size);
579 store_ldt(ldtr);
580 show_ldttss(&gdt, "LDTR", ldtr);
582 store_tr(tr);
583 show_ldttss(&gdt, "TR", tr);
586 dump_pagetable(address);
588 if (error_code & X86_PF_RMP)
589 snp_dump_hva_rmpentry(address);
592 static noinline void
593 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
594 unsigned long address)
596 struct task_struct *tsk;
597 unsigned long flags;
598 int sig;
600 flags = oops_begin();
601 tsk = current;
602 sig = SIGKILL;
604 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
605 tsk->comm, address);
606 dump_pagetable(address);
608 if (__die("Bad pagetable", regs, error_code))
609 sig = 0;
611 oops_end(flags, regs, sig);
614 static void sanitize_error_code(unsigned long address,
615 unsigned long *error_code)
618 * To avoid leaking information about the kernel page
619 * table layout, pretend that user-mode accesses to
620 * kernel addresses are always protection faults.
622 * NB: This means that failed vsyscalls with vsyscall=none
623 * will have the PROT bit. This doesn't leak any
624 * information and does not appear to cause any problems.
626 if (address >= TASK_SIZE_MAX)
627 *error_code |= X86_PF_PROT;
630 static void set_signal_archinfo(unsigned long address,
631 unsigned long error_code)
633 struct task_struct *tsk = current;
635 tsk->thread.trap_nr = X86_TRAP_PF;
636 tsk->thread.error_code = error_code | X86_PF_USER;
637 tsk->thread.cr2 = address;
640 static noinline void
641 page_fault_oops(struct pt_regs *regs, unsigned long error_code,
642 unsigned long address)
644 #ifdef CONFIG_VMAP_STACK
645 struct stack_info info;
646 #endif
647 unsigned long flags;
648 int sig;
650 if (user_mode(regs)) {
652 * Implicit kernel access from user mode? Skip the stack
653 * overflow and EFI special cases.
655 goto oops;
658 #ifdef CONFIG_VMAP_STACK
660 * Stack overflow? During boot, we can fault near the initial
661 * stack in the direct map, but that's not an overflow -- check
662 * that we're in vmalloc space to avoid this.
664 if (is_vmalloc_addr((void *)address) &&
665 get_stack_guard_info((void *)address, &info)) {
667 * We're likely to be running with very little stack space
668 * left. It's plausible that we'd hit this condition but
669 * double-fault even before we get this far, in which case
670 * we're fine: the double-fault handler will deal with it.
672 * We don't want to make it all the way into the oops code
673 * and then double-fault, though, because we're likely to
674 * break the console driver and lose most of the stack dump.
676 call_on_stack(__this_cpu_ist_top_va(DF) - sizeof(void*),
677 handle_stack_overflow,
678 ASM_CALL_ARG3,
679 , [arg1] "r" (regs), [arg2] "r" (address), [arg3] "r" (&info));
681 unreachable();
683 #endif
686 * Buggy firmware could access regions which might page fault. If
687 * this happens, EFI has a special OOPS path that will try to
688 * avoid hanging the system.
690 if (IS_ENABLED(CONFIG_EFI))
691 efi_crash_gracefully_on_page_fault(address);
693 /* Only not-present faults should be handled by KFENCE. */
694 if (!(error_code & X86_PF_PROT) &&
695 kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs))
696 return;
698 oops:
700 * Oops. The kernel tried to access some bad page. We'll have to
701 * terminate things with extreme prejudice:
703 flags = oops_begin();
705 show_fault_oops(regs, error_code, address);
707 if (task_stack_end_corrupted(current))
708 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
710 sig = SIGKILL;
711 if (__die("Oops", regs, error_code))
712 sig = 0;
714 /* Executive summary in case the body of the oops scrolled away */
715 printk(KERN_DEFAULT "CR2: %016lx\n", address);
717 oops_end(flags, regs, sig);
720 static noinline void
721 kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code,
722 unsigned long address, int signal, int si_code,
723 u32 pkey)
725 WARN_ON_ONCE(user_mode(regs));
727 /* Are we prepared to handle this kernel fault? */
728 if (fixup_exception(regs, X86_TRAP_PF, error_code, address))
729 return;
732 * AMD erratum #91 manifests as a spurious page fault on a PREFETCH
733 * instruction.
735 if (is_prefetch(regs, error_code, address))
736 return;
738 page_fault_oops(regs, error_code, address);
742 * Print out info about fatal segfaults, if the show_unhandled_signals
743 * sysctl is set:
745 static inline void
746 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
747 unsigned long address, struct task_struct *tsk)
749 const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
750 /* This is a racy snapshot, but it's better than nothing. */
751 int cpu = raw_smp_processor_id();
753 if (!unhandled_signal(tsk, SIGSEGV))
754 return;
756 if (!printk_ratelimit())
757 return;
759 printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
760 loglvl, tsk->comm, task_pid_nr(tsk), address,
761 (void *)regs->ip, (void *)regs->sp, error_code);
763 print_vma_addr(KERN_CONT " in ", regs->ip);
766 * Dump the likely CPU where the fatal segfault happened.
767 * This can help identify faulty hardware.
769 printk(KERN_CONT " likely on CPU %d (core %d, socket %d)", cpu,
770 topology_core_id(cpu), topology_physical_package_id(cpu));
773 printk(KERN_CONT "\n");
775 show_opcodes(regs, loglvl);
778 static void
779 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
780 unsigned long address, u32 pkey, int si_code)
782 struct task_struct *tsk = current;
784 if (!user_mode(regs)) {
785 kernelmode_fixup_or_oops(regs, error_code, address,
786 SIGSEGV, si_code, pkey);
787 return;
790 if (!(error_code & X86_PF_USER)) {
791 /* Implicit user access to kernel memory -- just oops */
792 page_fault_oops(regs, error_code, address);
793 return;
797 * User mode accesses just cause a SIGSEGV.
798 * It's possible to have interrupts off here:
800 local_irq_enable();
803 * Valid to do another page fault here because this one came
804 * from user space:
806 if (is_prefetch(regs, error_code, address))
807 return;
809 if (is_errata100(regs, address))
810 return;
812 sanitize_error_code(address, &error_code);
814 if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
815 return;
817 if (likely(show_unhandled_signals))
818 show_signal_msg(regs, error_code, address, tsk);
820 set_signal_archinfo(address, error_code);
822 if (si_code == SEGV_PKUERR)
823 force_sig_pkuerr((void __user *)address, pkey);
824 else
825 force_sig_fault(SIGSEGV, si_code, (void __user *)address);
827 local_irq_disable();
830 static noinline void
831 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
832 unsigned long address)
834 __bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
837 static void
838 __bad_area(struct pt_regs *regs, unsigned long error_code,
839 unsigned long address, struct mm_struct *mm,
840 struct vm_area_struct *vma, u32 pkey, int si_code)
843 * Something tried to access memory that isn't in our memory map..
844 * Fix it, but check if it's kernel or user first..
846 if (mm)
847 mmap_read_unlock(mm);
848 else
849 vma_end_read(vma);
851 __bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
854 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
855 struct vm_area_struct *vma)
857 /* This code is always called on the current mm */
858 bool foreign = false;
860 if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
861 return false;
862 if (error_code & X86_PF_PK)
863 return true;
864 /* this checks permission keys on the VMA: */
865 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
866 (error_code & X86_PF_INSTR), foreign))
867 return true;
868 return false;
871 static noinline void
872 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
873 unsigned long address, struct mm_struct *mm,
874 struct vm_area_struct *vma)
877 * This OSPKE check is not strictly necessary at runtime.
878 * But, doing it this way allows compiler optimizations
879 * if pkeys are compiled out.
881 if (bad_area_access_from_pkeys(error_code, vma)) {
883 * A protection key fault means that the PKRU value did not allow
884 * access to some PTE. Userspace can figure out what PKRU was
885 * from the XSAVE state. This function captures the pkey from
886 * the vma and passes it to userspace so userspace can discover
887 * which protection key was set on the PTE.
889 * If we get here, we know that the hardware signaled a X86_PF_PK
890 * fault and that there was a VMA once we got in the fault
891 * handler. It does *not* guarantee that the VMA we find here
892 * was the one that we faulted on.
894 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
895 * 2. T1 : set PKRU to deny access to pkey=4, touches page
896 * 3. T1 : faults...
897 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
898 * 5. T1 : enters fault handler, takes mmap_lock, etc...
899 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
900 * faulted on a pte with its pkey=4.
902 u32 pkey = vma_pkey(vma);
904 __bad_area(regs, error_code, address, mm, vma, pkey, SEGV_PKUERR);
905 } else {
906 __bad_area(regs, error_code, address, mm, vma, 0, SEGV_ACCERR);
910 static void
911 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
912 vm_fault_t fault)
914 /* Kernel mode? Handle exceptions or die: */
915 if (!user_mode(regs)) {
916 kernelmode_fixup_or_oops(regs, error_code, address,
917 SIGBUS, BUS_ADRERR, ARCH_DEFAULT_PKEY);
918 return;
921 /* User-space => ok to do another page fault: */
922 if (is_prefetch(regs, error_code, address))
923 return;
925 sanitize_error_code(address, &error_code);
927 if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
928 return;
930 set_signal_archinfo(address, error_code);
932 #ifdef CONFIG_MEMORY_FAILURE
933 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
934 struct task_struct *tsk = current;
935 unsigned lsb = 0;
937 pr_err(
938 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
939 tsk->comm, tsk->pid, address);
940 if (fault & VM_FAULT_HWPOISON_LARGE)
941 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
942 if (fault & VM_FAULT_HWPOISON)
943 lsb = PAGE_SHIFT;
944 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
945 return;
947 #endif
948 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
951 static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
953 if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
954 return 0;
956 if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
957 return 0;
959 return 1;
963 * Handle a spurious fault caused by a stale TLB entry.
965 * This allows us to lazily refresh the TLB when increasing the
966 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
967 * eagerly is very expensive since that implies doing a full
968 * cross-processor TLB flush, even if no stale TLB entries exist
969 * on other processors.
971 * Spurious faults may only occur if the TLB contains an entry with
972 * fewer permission than the page table entry. Non-present (P = 0)
973 * and reserved bit (R = 1) faults are never spurious.
975 * There are no security implications to leaving a stale TLB when
976 * increasing the permissions on a page.
978 * Returns non-zero if a spurious fault was handled, zero otherwise.
980 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
981 * (Optional Invalidation).
983 static noinline int
984 spurious_kernel_fault(unsigned long error_code, unsigned long address)
986 pgd_t *pgd;
987 p4d_t *p4d;
988 pud_t *pud;
989 pmd_t *pmd;
990 pte_t *pte;
991 int ret;
994 * Only writes to RO or instruction fetches from NX may cause
995 * spurious faults.
997 * These could be from user or supervisor accesses but the TLB
998 * is only lazily flushed after a kernel mapping protection
999 * change, so user accesses are not expected to cause spurious
1000 * faults.
1002 if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1003 error_code != (X86_PF_INSTR | X86_PF_PROT))
1004 return 0;
1006 pgd = init_mm.pgd + pgd_index(address);
1007 if (!pgd_present(*pgd))
1008 return 0;
1010 p4d = p4d_offset(pgd, address);
1011 if (!p4d_present(*p4d))
1012 return 0;
1014 if (p4d_leaf(*p4d))
1015 return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1017 pud = pud_offset(p4d, address);
1018 if (!pud_present(*pud))
1019 return 0;
1021 if (pud_leaf(*pud))
1022 return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1024 pmd = pmd_offset(pud, address);
1025 if (!pmd_present(*pmd))
1026 return 0;
1028 if (pmd_leaf(*pmd))
1029 return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1031 pte = pte_offset_kernel(pmd, address);
1032 if (!pte_present(*pte))
1033 return 0;
1035 ret = spurious_kernel_fault_check(error_code, pte);
1036 if (!ret)
1037 return 0;
1040 * Make sure we have permissions in PMD.
1041 * If not, then there's a bug in the page tables:
1043 ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1044 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1046 return ret;
1048 NOKPROBE_SYMBOL(spurious_kernel_fault);
1050 int show_unhandled_signals = 1;
1052 static inline int
1053 access_error(unsigned long error_code, struct vm_area_struct *vma)
1055 /* This is only called for the current mm, so: */
1056 bool foreign = false;
1059 * Read or write was blocked by protection keys. This is
1060 * always an unconditional error and can never result in
1061 * a follow-up action to resolve the fault, like a COW.
1063 if (error_code & X86_PF_PK)
1064 return 1;
1067 * SGX hardware blocked the access. This usually happens
1068 * when the enclave memory contents have been destroyed, like
1069 * after a suspend/resume cycle. In any case, the kernel can't
1070 * fix the cause of the fault. Handle the fault as an access
1071 * error even in cases where no actual access violation
1072 * occurred. This allows userspace to rebuild the enclave in
1073 * response to the signal.
1075 if (unlikely(error_code & X86_PF_SGX))
1076 return 1;
1079 * Make sure to check the VMA so that we do not perform
1080 * faults just to hit a X86_PF_PK as soon as we fill in a
1081 * page.
1083 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1084 (error_code & X86_PF_INSTR), foreign))
1085 return 1;
1088 * Shadow stack accesses (PF_SHSTK=1) are only permitted to
1089 * shadow stack VMAs. All other accesses result in an error.
1091 if (error_code & X86_PF_SHSTK) {
1092 if (unlikely(!(vma->vm_flags & VM_SHADOW_STACK)))
1093 return 1;
1094 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1095 return 1;
1096 return 0;
1099 if (error_code & X86_PF_WRITE) {
1100 /* write, present and write, not present: */
1101 if (unlikely(vma->vm_flags & VM_SHADOW_STACK))
1102 return 1;
1103 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1104 return 1;
1105 return 0;
1108 /* read, present: */
1109 if (unlikely(error_code & X86_PF_PROT))
1110 return 1;
1112 /* read, not present: */
1113 if (unlikely(!vma_is_accessible(vma)))
1114 return 1;
1116 return 0;
1119 bool fault_in_kernel_space(unsigned long address)
1122 * On 64-bit systems, the vsyscall page is at an address above
1123 * TASK_SIZE_MAX, but is not considered part of the kernel
1124 * address space.
1126 if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1127 return false;
1129 return address >= TASK_SIZE_MAX;
1133 * Called for all faults where 'address' is part of the kernel address
1134 * space. Might get called for faults that originate from *code* that
1135 * ran in userspace or the kernel.
1137 static void
1138 do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1139 unsigned long address)
1142 * Protection keys exceptions only happen on user pages. We
1143 * have no user pages in the kernel portion of the address
1144 * space, so do not expect them here.
1146 WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1148 #ifdef CONFIG_X86_32
1150 * We can fault-in kernel-space virtual memory on-demand. The
1151 * 'reference' page table is init_mm.pgd.
1153 * NOTE! We MUST NOT take any locks for this case. We may
1154 * be in an interrupt or a critical region, and should
1155 * only copy the information from the master page table,
1156 * nothing more.
1158 * Before doing this on-demand faulting, ensure that the
1159 * fault is not any of the following:
1160 * 1. A fault on a PTE with a reserved bit set.
1161 * 2. A fault caused by a user-mode access. (Do not demand-
1162 * fault kernel memory due to user-mode accesses).
1163 * 3. A fault caused by a page-level protection violation.
1164 * (A demand fault would be on a non-present page which
1165 * would have X86_PF_PROT==0).
1167 * This is only needed to close a race condition on x86-32 in
1168 * the vmalloc mapping/unmapping code. See the comment above
1169 * vmalloc_fault() for details. On x86-64 the race does not
1170 * exist as the vmalloc mappings don't need to be synchronized
1171 * there.
1173 if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1174 if (vmalloc_fault(address) >= 0)
1175 return;
1177 #endif
1179 if (is_f00f_bug(regs, hw_error_code, address))
1180 return;
1182 /* Was the fault spurious, caused by lazy TLB invalidation? */
1183 if (spurious_kernel_fault(hw_error_code, address))
1184 return;
1186 /* kprobes don't want to hook the spurious faults: */
1187 if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1188 return;
1191 * Note, despite being a "bad area", there are quite a few
1192 * acceptable reasons to get here, such as erratum fixups
1193 * and handling kernel code that can fault, like get_user().
1195 * Don't take the mm semaphore here. If we fixup a prefetch
1196 * fault we could otherwise deadlock:
1198 bad_area_nosemaphore(regs, hw_error_code, address);
1200 NOKPROBE_SYMBOL(do_kern_addr_fault);
1203 * Handle faults in the user portion of the address space. Nothing in here
1204 * should check X86_PF_USER without a specific justification: for almost
1205 * all purposes, we should treat a normal kernel access to user memory
1206 * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction.
1207 * The one exception is AC flag handling, which is, per the x86
1208 * architecture, special for WRUSS.
1210 static inline
1211 void do_user_addr_fault(struct pt_regs *regs,
1212 unsigned long error_code,
1213 unsigned long address)
1215 struct vm_area_struct *vma;
1216 struct task_struct *tsk;
1217 struct mm_struct *mm;
1218 vm_fault_t fault;
1219 unsigned int flags = FAULT_FLAG_DEFAULT;
1221 tsk = current;
1222 mm = tsk->mm;
1224 if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) {
1226 * Whoops, this is kernel mode code trying to execute from
1227 * user memory. Unless this is AMD erratum #93, which
1228 * corrupts RIP such that it looks like a user address,
1229 * this is unrecoverable. Don't even try to look up the
1230 * VMA or look for extable entries.
1232 if (is_errata93(regs, address))
1233 return;
1235 page_fault_oops(regs, error_code, address);
1236 return;
1239 /* kprobes don't want to hook the spurious faults: */
1240 if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1241 return;
1244 * Reserved bits are never expected to be set on
1245 * entries in the user portion of the page tables.
1247 if (unlikely(error_code & X86_PF_RSVD))
1248 pgtable_bad(regs, error_code, address);
1251 * If SMAP is on, check for invalid kernel (supervisor) access to user
1252 * pages in the user address space. The odd case here is WRUSS,
1253 * which, according to the preliminary documentation, does not respect
1254 * SMAP and will have the USER bit set so, in all cases, SMAP
1255 * enforcement appears to be consistent with the USER bit.
1257 if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1258 !(error_code & X86_PF_USER) &&
1259 !(regs->flags & X86_EFLAGS_AC))) {
1261 * No extable entry here. This was a kernel access to an
1262 * invalid pointer. get_kernel_nofault() will not get here.
1264 page_fault_oops(regs, error_code, address);
1265 return;
1269 * If we're in an interrupt, have no user context or are running
1270 * in a region with pagefaults disabled then we must not take the fault
1272 if (unlikely(faulthandler_disabled() || !mm)) {
1273 bad_area_nosemaphore(regs, error_code, address);
1274 return;
1277 /* Legacy check - remove this after verifying that it doesn't trigger */
1278 if (WARN_ON_ONCE(!(regs->flags & X86_EFLAGS_IF))) {
1279 bad_area_nosemaphore(regs, error_code, address);
1280 return;
1283 local_irq_enable();
1285 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1288 * Read-only permissions can not be expressed in shadow stack PTEs.
1289 * Treat all shadow stack accesses as WRITE faults. This ensures
1290 * that the MM will prepare everything (e.g., break COW) such that
1291 * maybe_mkwrite() can create a proper shadow stack PTE.
1293 if (error_code & X86_PF_SHSTK)
1294 flags |= FAULT_FLAG_WRITE;
1295 if (error_code & X86_PF_WRITE)
1296 flags |= FAULT_FLAG_WRITE;
1297 if (error_code & X86_PF_INSTR)
1298 flags |= FAULT_FLAG_INSTRUCTION;
1301 * We set FAULT_FLAG_USER based on the register state, not
1302 * based on X86_PF_USER. User space accesses that cause
1303 * system page faults are still user accesses.
1305 if (user_mode(regs))
1306 flags |= FAULT_FLAG_USER;
1308 #ifdef CONFIG_X86_64
1310 * Faults in the vsyscall page might need emulation. The
1311 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1312 * considered to be part of the user address space.
1314 * The vsyscall page does not have a "real" VMA, so do this
1315 * emulation before we go searching for VMAs.
1317 * PKRU never rejects instruction fetches, so we don't need
1318 * to consider the PF_PK bit.
1320 if (is_vsyscall_vaddr(address)) {
1321 if (emulate_vsyscall(error_code, regs, address))
1322 return;
1324 #endif
1326 if (!(flags & FAULT_FLAG_USER))
1327 goto lock_mmap;
1329 vma = lock_vma_under_rcu(mm, address);
1330 if (!vma)
1331 goto lock_mmap;
1333 if (unlikely(access_error(error_code, vma))) {
1334 bad_area_access_error(regs, error_code, address, NULL, vma);
1335 count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
1336 return;
1338 fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
1339 if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
1340 vma_end_read(vma);
1342 if (!(fault & VM_FAULT_RETRY)) {
1343 count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
1344 goto done;
1346 count_vm_vma_lock_event(VMA_LOCK_RETRY);
1347 if (fault & VM_FAULT_MAJOR)
1348 flags |= FAULT_FLAG_TRIED;
1350 /* Quick path to respond to signals */
1351 if (fault_signal_pending(fault, regs)) {
1352 if (!user_mode(regs))
1353 kernelmode_fixup_or_oops(regs, error_code, address,
1354 SIGBUS, BUS_ADRERR,
1355 ARCH_DEFAULT_PKEY);
1356 return;
1358 lock_mmap:
1360 retry:
1361 vma = lock_mm_and_find_vma(mm, address, regs);
1362 if (unlikely(!vma)) {
1363 bad_area_nosemaphore(regs, error_code, address);
1364 return;
1368 * Ok, we have a good vm_area for this memory access, so
1369 * we can handle it..
1371 if (unlikely(access_error(error_code, vma))) {
1372 bad_area_access_error(regs, error_code, address, mm, vma);
1373 return;
1377 * If for any reason at all we couldn't handle the fault,
1378 * make sure we exit gracefully rather than endlessly redo
1379 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1380 * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
1382 * Note that handle_userfault() may also release and reacquire mmap_lock
1383 * (and not return with VM_FAULT_RETRY), when returning to userland to
1384 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1385 * (potentially after handling any pending signal during the return to
1386 * userland). The return to userland is identified whenever
1387 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1389 fault = handle_mm_fault(vma, address, flags, regs);
1391 if (fault_signal_pending(fault, regs)) {
1393 * Quick path to respond to signals. The core mm code
1394 * has unlocked the mm for us if we get here.
1396 if (!user_mode(regs))
1397 kernelmode_fixup_or_oops(regs, error_code, address,
1398 SIGBUS, BUS_ADRERR,
1399 ARCH_DEFAULT_PKEY);
1400 return;
1403 /* The fault is fully completed (including releasing mmap lock) */
1404 if (fault & VM_FAULT_COMPLETED)
1405 return;
1408 * If we need to retry the mmap_lock has already been released,
1409 * and if there is a fatal signal pending there is no guarantee
1410 * that we made any progress. Handle this case first.
1412 if (unlikely(fault & VM_FAULT_RETRY)) {
1413 flags |= FAULT_FLAG_TRIED;
1414 goto retry;
1417 mmap_read_unlock(mm);
1418 done:
1419 if (likely(!(fault & VM_FAULT_ERROR)))
1420 return;
1422 if (fatal_signal_pending(current) && !user_mode(regs)) {
1423 kernelmode_fixup_or_oops(regs, error_code, address,
1424 0, 0, ARCH_DEFAULT_PKEY);
1425 return;
1428 if (fault & VM_FAULT_OOM) {
1429 /* Kernel mode? Handle exceptions or die: */
1430 if (!user_mode(regs)) {
1431 kernelmode_fixup_or_oops(regs, error_code, address,
1432 SIGSEGV, SEGV_MAPERR,
1433 ARCH_DEFAULT_PKEY);
1434 return;
1438 * We ran out of memory, call the OOM killer, and return the
1439 * userspace (which will retry the fault, or kill us if we got
1440 * oom-killed):
1442 pagefault_out_of_memory();
1443 } else {
1444 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1445 VM_FAULT_HWPOISON_LARGE))
1446 do_sigbus(regs, error_code, address, fault);
1447 else if (fault & VM_FAULT_SIGSEGV)
1448 bad_area_nosemaphore(regs, error_code, address);
1449 else
1450 BUG();
1453 NOKPROBE_SYMBOL(do_user_addr_fault);
1455 static __always_inline void
1456 trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1457 unsigned long address)
1459 if (!trace_pagefault_enabled())
1460 return;
1462 if (user_mode(regs))
1463 trace_page_fault_user(address, regs, error_code);
1464 else
1465 trace_page_fault_kernel(address, regs, error_code);
1468 static __always_inline void
1469 handle_page_fault(struct pt_regs *regs, unsigned long error_code,
1470 unsigned long address)
1472 trace_page_fault_entries(regs, error_code, address);
1474 if (unlikely(kmmio_fault(regs, address)))
1475 return;
1477 /* Was the fault on kernel-controlled part of the address space? */
1478 if (unlikely(fault_in_kernel_space(address))) {
1479 do_kern_addr_fault(regs, error_code, address);
1480 } else {
1481 do_user_addr_fault(regs, error_code, address);
1483 * User address page fault handling might have reenabled
1484 * interrupts. Fixing up all potential exit points of
1485 * do_user_addr_fault() and its leaf functions is just not
1486 * doable w/o creating an unholy mess or turning the code
1487 * upside down.
1489 local_irq_disable();
1493 DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
1495 irqentry_state_t state;
1496 unsigned long address;
1498 address = cpu_feature_enabled(X86_FEATURE_FRED) ? fred_event_data(regs) : read_cr2();
1500 prefetchw(&current->mm->mmap_lock);
1503 * KVM uses #PF vector to deliver 'page not present' events to guests
1504 * (asynchronous page fault mechanism). The event happens when a
1505 * userspace task is trying to access some valid (from guest's point of
1506 * view) memory which is not currently mapped by the host (e.g. the
1507 * memory is swapped out). Note, the corresponding "page ready" event
1508 * which is injected when the memory becomes available, is delivered via
1509 * an interrupt mechanism and not a #PF exception
1510 * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
1512 * We are relying on the interrupted context being sane (valid RSP,
1513 * relevant locks not held, etc.), which is fine as long as the
1514 * interrupted context had IF=1. We are also relying on the KVM
1515 * async pf type field and CR2 being read consistently instead of
1516 * getting values from real and async page faults mixed up.
1518 * Fingers crossed.
1520 * The async #PF handling code takes care of idtentry handling
1521 * itself.
1523 if (kvm_handle_async_pf(regs, (u32)address))
1524 return;
1527 * Entry handling for valid #PF from kernel mode is slightly
1528 * different: RCU is already watching and ct_irq_enter() must not
1529 * be invoked because a kernel fault on a user space address might
1530 * sleep.
1532 * In case the fault hit a RCU idle region the conditional entry
1533 * code reenabled RCU to avoid subsequent wreckage which helps
1534 * debuggability.
1536 state = irqentry_enter(regs);
1538 instrumentation_begin();
1539 handle_page_fault(regs, error_code, address);
1540 instrumentation_end();
1542 irqentry_exit(regs, state);