drm/modes: Fix drm_mode_vrefres() docs
[drm/drm-misc.git] / arch / x86 / mm / init.c
blobc6d29f283001aee26d98c0b014f284329b605fe6
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/swapfile.h>
7 #include <linux/swapops.h>
8 #include <linux/kmemleak.h>
9 #include <linux/sched/task.h>
10 #include <linux/execmem.h>
12 #include <asm/set_memory.h>
13 #include <asm/cpu_device_id.h>
14 #include <asm/e820/api.h>
15 #include <asm/init.h>
16 #include <asm/page.h>
17 #include <asm/page_types.h>
18 #include <asm/sections.h>
19 #include <asm/setup.h>
20 #include <asm/tlbflush.h>
21 #include <asm/tlb.h>
22 #include <asm/proto.h>
23 #include <asm/dma.h> /* for MAX_DMA_PFN */
24 #include <asm/kaslr.h>
25 #include <asm/hypervisor.h>
26 #include <asm/cpufeature.h>
27 #include <asm/pti.h>
28 #include <asm/text-patching.h>
29 #include <asm/memtype.h>
30 #include <asm/paravirt.h>
33 * We need to define the tracepoints somewhere, and tlb.c
34 * is only compiled when SMP=y.
36 #include <trace/events/tlb.h>
38 #include "mm_internal.h"
41 * Tables translating between page_cache_type_t and pte encoding.
43 * The default values are defined statically as minimal supported mode;
44 * WC and WT fall back to UC-. pat_init() updates these values to support
45 * more cache modes, WC and WT, when it is safe to do so. See pat_init()
46 * for the details. Note, __early_ioremap() used during early boot-time
47 * takes pgprot_t (pte encoding) and does not use these tables.
49 * Index into __cachemode2pte_tbl[] is the cachemode.
51 * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
52 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
54 static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
55 [_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
56 [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
57 [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
58 [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
59 [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
60 [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
63 unsigned long cachemode2protval(enum page_cache_mode pcm)
65 if (likely(pcm == 0))
66 return 0;
67 return __cachemode2pte_tbl[pcm];
69 EXPORT_SYMBOL(cachemode2protval);
71 static uint8_t __pte2cachemode_tbl[8] = {
72 [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
73 [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
74 [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
75 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
76 [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
77 [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
78 [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
79 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
83 * Check that the write-protect PAT entry is set for write-protect.
84 * To do this without making assumptions how PAT has been set up (Xen has
85 * another layout than the kernel), translate the _PAGE_CACHE_MODE_WP cache
86 * mode via the __cachemode2pte_tbl[] into protection bits (those protection
87 * bits will select a cache mode of WP or better), and then translate the
88 * protection bits back into the cache mode using __pte2cm_idx() and the
89 * __pte2cachemode_tbl[] array. This will return the really used cache mode.
91 bool x86_has_pat_wp(void)
93 uint16_t prot = __cachemode2pte_tbl[_PAGE_CACHE_MODE_WP];
95 return __pte2cachemode_tbl[__pte2cm_idx(prot)] == _PAGE_CACHE_MODE_WP;
98 enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
100 unsigned long masked;
102 masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
103 if (likely(masked == 0))
104 return 0;
105 return __pte2cachemode_tbl[__pte2cm_idx(masked)];
108 static unsigned long __initdata pgt_buf_start;
109 static unsigned long __initdata pgt_buf_end;
110 static unsigned long __initdata pgt_buf_top;
112 static unsigned long min_pfn_mapped;
114 static bool __initdata can_use_brk_pgt = true;
117 * Pages returned are already directly mapped.
119 * Changing that is likely to break Xen, see commit:
121 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
123 * for detailed information.
125 __ref void *alloc_low_pages(unsigned int num)
127 unsigned long pfn;
128 int i;
130 if (after_bootmem) {
131 unsigned int order;
133 order = get_order((unsigned long)num << PAGE_SHIFT);
134 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
137 if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
138 unsigned long ret = 0;
140 if (min_pfn_mapped < max_pfn_mapped) {
141 ret = memblock_phys_alloc_range(
142 PAGE_SIZE * num, PAGE_SIZE,
143 min_pfn_mapped << PAGE_SHIFT,
144 max_pfn_mapped << PAGE_SHIFT);
146 if (!ret && can_use_brk_pgt)
147 ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
149 if (!ret)
150 panic("alloc_low_pages: can not alloc memory");
152 pfn = ret >> PAGE_SHIFT;
153 } else {
154 pfn = pgt_buf_end;
155 pgt_buf_end += num;
158 for (i = 0; i < num; i++) {
159 void *adr;
161 adr = __va((pfn + i) << PAGE_SHIFT);
162 clear_page(adr);
165 return __va(pfn << PAGE_SHIFT);
169 * By default need to be able to allocate page tables below PGD firstly for
170 * the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping.
171 * With KASLR memory randomization, depending on the machine e820 memory and the
172 * PUD alignment, twice that many pages may be needed when KASLR memory
173 * randomization is enabled.
176 #ifndef CONFIG_X86_5LEVEL
177 #define INIT_PGD_PAGE_TABLES 3
178 #else
179 #define INIT_PGD_PAGE_TABLES 4
180 #endif
182 #ifndef CONFIG_RANDOMIZE_MEMORY
183 #define INIT_PGD_PAGE_COUNT (2 * INIT_PGD_PAGE_TABLES)
184 #else
185 #define INIT_PGD_PAGE_COUNT (4 * INIT_PGD_PAGE_TABLES)
186 #endif
188 #define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
189 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
190 void __init early_alloc_pgt_buf(void)
192 unsigned long tables = INIT_PGT_BUF_SIZE;
193 phys_addr_t base;
195 base = __pa(extend_brk(tables, PAGE_SIZE));
197 pgt_buf_start = base >> PAGE_SHIFT;
198 pgt_buf_end = pgt_buf_start;
199 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
202 int after_bootmem;
204 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
206 struct map_range {
207 unsigned long start;
208 unsigned long end;
209 unsigned page_size_mask;
212 static int page_size_mask;
215 * Save some of cr4 feature set we're using (e.g. Pentium 4MB
216 * enable and PPro Global page enable), so that any CPU's that boot
217 * up after us can get the correct flags. Invoked on the boot CPU.
219 static inline void cr4_set_bits_and_update_boot(unsigned long mask)
221 mmu_cr4_features |= mask;
222 if (trampoline_cr4_features)
223 *trampoline_cr4_features = mmu_cr4_features;
224 cr4_set_bits(mask);
227 static void __init probe_page_size_mask(void)
230 * For pagealloc debugging, identity mapping will use small pages.
231 * This will simplify cpa(), which otherwise needs to support splitting
232 * large pages into small in interrupt context, etc.
234 if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
235 page_size_mask |= 1 << PG_LEVEL_2M;
236 else
237 direct_gbpages = 0;
239 /* Enable PSE if available */
240 if (boot_cpu_has(X86_FEATURE_PSE))
241 cr4_set_bits_and_update_boot(X86_CR4_PSE);
243 /* Enable PGE if available */
244 __supported_pte_mask &= ~_PAGE_GLOBAL;
245 if (boot_cpu_has(X86_FEATURE_PGE)) {
246 cr4_set_bits_and_update_boot(X86_CR4_PGE);
247 __supported_pte_mask |= _PAGE_GLOBAL;
250 /* By the default is everything supported: */
251 __default_kernel_pte_mask = __supported_pte_mask;
252 /* Except when with PTI where the kernel is mostly non-Global: */
253 if (cpu_feature_enabled(X86_FEATURE_PTI))
254 __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
256 /* Enable 1 GB linear kernel mappings if available: */
257 if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
258 printk(KERN_INFO "Using GB pages for direct mapping\n");
259 page_size_mask |= 1 << PG_LEVEL_1G;
260 } else {
261 direct_gbpages = 0;
266 * INVLPG may not properly flush Global entries on
267 * these CPUs. New microcode fixes the issue.
269 static const struct x86_cpu_id invlpg_miss_ids[] = {
270 X86_MATCH_VFM(INTEL_ALDERLAKE, 0x2e),
271 X86_MATCH_VFM(INTEL_ALDERLAKE_L, 0x42c),
272 X86_MATCH_VFM(INTEL_ATOM_GRACEMONT, 0x11),
273 X86_MATCH_VFM(INTEL_RAPTORLAKE, 0x118),
274 X86_MATCH_VFM(INTEL_RAPTORLAKE_P, 0x4117),
275 X86_MATCH_VFM(INTEL_RAPTORLAKE_S, 0x2e),
279 static void setup_pcid(void)
281 const struct x86_cpu_id *invlpg_miss_match;
283 if (!IS_ENABLED(CONFIG_X86_64))
284 return;
286 if (!boot_cpu_has(X86_FEATURE_PCID))
287 return;
289 invlpg_miss_match = x86_match_cpu(invlpg_miss_ids);
291 if (invlpg_miss_match &&
292 boot_cpu_data.microcode < invlpg_miss_match->driver_data) {
293 pr_info("Incomplete global flushes, disabling PCID");
294 setup_clear_cpu_cap(X86_FEATURE_PCID);
295 return;
298 if (boot_cpu_has(X86_FEATURE_PGE)) {
300 * This can't be cr4_set_bits_and_update_boot() -- the
301 * trampoline code can't handle CR4.PCIDE and it wouldn't
302 * do any good anyway. Despite the name,
303 * cr4_set_bits_and_update_boot() doesn't actually cause
304 * the bits in question to remain set all the way through
305 * the secondary boot asm.
307 * Instead, we brute-force it and set CR4.PCIDE manually in
308 * start_secondary().
310 cr4_set_bits(X86_CR4_PCIDE);
311 } else {
313 * flush_tlb_all(), as currently implemented, won't work if
314 * PCID is on but PGE is not. Since that combination
315 * doesn't exist on real hardware, there's no reason to try
316 * to fully support it, but it's polite to avoid corrupting
317 * data if we're on an improperly configured VM.
319 setup_clear_cpu_cap(X86_FEATURE_PCID);
323 #ifdef CONFIG_X86_32
324 #define NR_RANGE_MR 3
325 #else /* CONFIG_X86_64 */
326 #define NR_RANGE_MR 5
327 #endif
329 static int __meminit save_mr(struct map_range *mr, int nr_range,
330 unsigned long start_pfn, unsigned long end_pfn,
331 unsigned long page_size_mask)
333 if (start_pfn < end_pfn) {
334 if (nr_range >= NR_RANGE_MR)
335 panic("run out of range for init_memory_mapping\n");
336 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
337 mr[nr_range].end = end_pfn<<PAGE_SHIFT;
338 mr[nr_range].page_size_mask = page_size_mask;
339 nr_range++;
342 return nr_range;
346 * adjust the page_size_mask for small range to go with
347 * big page size instead small one if nearby are ram too.
349 static void __ref adjust_range_page_size_mask(struct map_range *mr,
350 int nr_range)
352 int i;
354 for (i = 0; i < nr_range; i++) {
355 if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
356 !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
357 unsigned long start = round_down(mr[i].start, PMD_SIZE);
358 unsigned long end = round_up(mr[i].end, PMD_SIZE);
360 #ifdef CONFIG_X86_32
361 if ((end >> PAGE_SHIFT) > max_low_pfn)
362 continue;
363 #endif
365 if (memblock_is_region_memory(start, end - start))
366 mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
368 if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
369 !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
370 unsigned long start = round_down(mr[i].start, PUD_SIZE);
371 unsigned long end = round_up(mr[i].end, PUD_SIZE);
373 if (memblock_is_region_memory(start, end - start))
374 mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
379 static const char *page_size_string(struct map_range *mr)
381 static const char str_1g[] = "1G";
382 static const char str_2m[] = "2M";
383 static const char str_4m[] = "4M";
384 static const char str_4k[] = "4k";
386 if (mr->page_size_mask & (1<<PG_LEVEL_1G))
387 return str_1g;
389 * 32-bit without PAE has a 4M large page size.
390 * PG_LEVEL_2M is misnamed, but we can at least
391 * print out the right size in the string.
393 if (IS_ENABLED(CONFIG_X86_32) &&
394 !IS_ENABLED(CONFIG_X86_PAE) &&
395 mr->page_size_mask & (1<<PG_LEVEL_2M))
396 return str_4m;
398 if (mr->page_size_mask & (1<<PG_LEVEL_2M))
399 return str_2m;
401 return str_4k;
404 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
405 unsigned long start,
406 unsigned long end)
408 unsigned long start_pfn, end_pfn, limit_pfn;
409 unsigned long pfn;
410 int i;
412 limit_pfn = PFN_DOWN(end);
414 /* head if not big page alignment ? */
415 pfn = start_pfn = PFN_DOWN(start);
416 #ifdef CONFIG_X86_32
418 * Don't use a large page for the first 2/4MB of memory
419 * because there are often fixed size MTRRs in there
420 * and overlapping MTRRs into large pages can cause
421 * slowdowns.
423 if (pfn == 0)
424 end_pfn = PFN_DOWN(PMD_SIZE);
425 else
426 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
427 #else /* CONFIG_X86_64 */
428 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
429 #endif
430 if (end_pfn > limit_pfn)
431 end_pfn = limit_pfn;
432 if (start_pfn < end_pfn) {
433 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
434 pfn = end_pfn;
437 /* big page (2M) range */
438 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
439 #ifdef CONFIG_X86_32
440 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
441 #else /* CONFIG_X86_64 */
442 end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
443 if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
444 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
445 #endif
447 if (start_pfn < end_pfn) {
448 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
449 page_size_mask & (1<<PG_LEVEL_2M));
450 pfn = end_pfn;
453 #ifdef CONFIG_X86_64
454 /* big page (1G) range */
455 start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
456 end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
457 if (start_pfn < end_pfn) {
458 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
459 page_size_mask &
460 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
461 pfn = end_pfn;
464 /* tail is not big page (1G) alignment */
465 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
466 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
467 if (start_pfn < end_pfn) {
468 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
469 page_size_mask & (1<<PG_LEVEL_2M));
470 pfn = end_pfn;
472 #endif
474 /* tail is not big page (2M) alignment */
475 start_pfn = pfn;
476 end_pfn = limit_pfn;
477 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
479 if (!after_bootmem)
480 adjust_range_page_size_mask(mr, nr_range);
482 /* try to merge same page size and continuous */
483 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
484 unsigned long old_start;
485 if (mr[i].end != mr[i+1].start ||
486 mr[i].page_size_mask != mr[i+1].page_size_mask)
487 continue;
488 /* move it */
489 old_start = mr[i].start;
490 memmove(&mr[i], &mr[i+1],
491 (nr_range - 1 - i) * sizeof(struct map_range));
492 mr[i--].start = old_start;
493 nr_range--;
496 for (i = 0; i < nr_range; i++)
497 pr_debug(" [mem %#010lx-%#010lx] page %s\n",
498 mr[i].start, mr[i].end - 1,
499 page_size_string(&mr[i]));
501 return nr_range;
504 struct range pfn_mapped[E820_MAX_ENTRIES];
505 int nr_pfn_mapped;
507 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
509 nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
510 nr_pfn_mapped, start_pfn, end_pfn);
511 nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
513 max_pfn_mapped = max(max_pfn_mapped, end_pfn);
515 if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
516 max_low_pfn_mapped = max(max_low_pfn_mapped,
517 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
520 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
522 int i;
524 for (i = 0; i < nr_pfn_mapped; i++)
525 if ((start_pfn >= pfn_mapped[i].start) &&
526 (end_pfn <= pfn_mapped[i].end))
527 return true;
529 return false;
533 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
534 * This runs before bootmem is initialized and gets pages directly from
535 * the physical memory. To access them they are temporarily mapped.
537 unsigned long __ref init_memory_mapping(unsigned long start,
538 unsigned long end, pgprot_t prot)
540 struct map_range mr[NR_RANGE_MR];
541 unsigned long ret = 0;
542 int nr_range, i;
544 pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
545 start, end - 1);
547 memset(mr, 0, sizeof(mr));
548 nr_range = split_mem_range(mr, 0, start, end);
550 for (i = 0; i < nr_range; i++)
551 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
552 mr[i].page_size_mask,
553 prot);
555 add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
557 return ret >> PAGE_SHIFT;
561 * We need to iterate through the E820 memory map and create direct mappings
562 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
563 * create direct mappings for all pfns from [0 to max_low_pfn) and
564 * [4GB to max_pfn) because of possible memory holes in high addresses
565 * that cannot be marked as UC by fixed/variable range MTRRs.
566 * Depending on the alignment of E820 ranges, this may possibly result
567 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
569 * init_mem_mapping() calls init_range_memory_mapping() with big range.
570 * That range would have hole in the middle or ends, and only ram parts
571 * will be mapped in init_range_memory_mapping().
573 static unsigned long __init init_range_memory_mapping(
574 unsigned long r_start,
575 unsigned long r_end)
577 unsigned long start_pfn, end_pfn;
578 unsigned long mapped_ram_size = 0;
579 int i;
581 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
582 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
583 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
584 if (start >= end)
585 continue;
588 * if it is overlapping with brk pgt, we need to
589 * alloc pgt buf from memblock instead.
591 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
592 min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
593 init_memory_mapping(start, end, PAGE_KERNEL);
594 mapped_ram_size += end - start;
595 can_use_brk_pgt = true;
598 return mapped_ram_size;
601 static unsigned long __init get_new_step_size(unsigned long step_size)
604 * Initial mapped size is PMD_SIZE (2M).
605 * We can not set step_size to be PUD_SIZE (1G) yet.
606 * In worse case, when we cross the 1G boundary, and
607 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
608 * to map 1G range with PTE. Hence we use one less than the
609 * difference of page table level shifts.
611 * Don't need to worry about overflow in the top-down case, on 32bit,
612 * when step_size is 0, round_down() returns 0 for start, and that
613 * turns it into 0x100000000ULL.
614 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
615 * needs to be taken into consideration by the code below.
617 return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
621 * memory_map_top_down - Map [map_start, map_end) top down
622 * @map_start: start address of the target memory range
623 * @map_end: end address of the target memory range
625 * This function will setup direct mapping for memory range
626 * [map_start, map_end) in top-down. That said, the page tables
627 * will be allocated at the end of the memory, and we map the
628 * memory in top-down.
630 static void __init memory_map_top_down(unsigned long map_start,
631 unsigned long map_end)
633 unsigned long real_end, last_start;
634 unsigned long step_size;
635 unsigned long addr;
636 unsigned long mapped_ram_size = 0;
639 * Systems that have many reserved areas near top of the memory,
640 * e.g. QEMU with less than 1G RAM and EFI enabled, or Xen, will
641 * require lots of 4K mappings which may exhaust pgt_buf.
642 * Start with top-most PMD_SIZE range aligned at PMD_SIZE to ensure
643 * there is enough mapped memory that can be allocated from
644 * memblock.
646 addr = memblock_phys_alloc_range(PMD_SIZE, PMD_SIZE, map_start,
647 map_end);
648 memblock_phys_free(addr, PMD_SIZE);
649 real_end = addr + PMD_SIZE;
651 /* step_size need to be small so pgt_buf from BRK could cover it */
652 step_size = PMD_SIZE;
653 max_pfn_mapped = 0; /* will get exact value next */
654 min_pfn_mapped = real_end >> PAGE_SHIFT;
655 last_start = real_end;
658 * We start from the top (end of memory) and go to the bottom.
659 * The memblock_find_in_range() gets us a block of RAM from the
660 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
661 * for page table.
663 while (last_start > map_start) {
664 unsigned long start;
666 if (last_start > step_size) {
667 start = round_down(last_start - 1, step_size);
668 if (start < map_start)
669 start = map_start;
670 } else
671 start = map_start;
672 mapped_ram_size += init_range_memory_mapping(start,
673 last_start);
674 last_start = start;
675 min_pfn_mapped = last_start >> PAGE_SHIFT;
676 if (mapped_ram_size >= step_size)
677 step_size = get_new_step_size(step_size);
680 if (real_end < map_end)
681 init_range_memory_mapping(real_end, map_end);
685 * memory_map_bottom_up - Map [map_start, map_end) bottom up
686 * @map_start: start address of the target memory range
687 * @map_end: end address of the target memory range
689 * This function will setup direct mapping for memory range
690 * [map_start, map_end) in bottom-up. Since we have limited the
691 * bottom-up allocation above the kernel, the page tables will
692 * be allocated just above the kernel and we map the memory
693 * in [map_start, map_end) in bottom-up.
695 static void __init memory_map_bottom_up(unsigned long map_start,
696 unsigned long map_end)
698 unsigned long next, start;
699 unsigned long mapped_ram_size = 0;
700 /* step_size need to be small so pgt_buf from BRK could cover it */
701 unsigned long step_size = PMD_SIZE;
703 start = map_start;
704 min_pfn_mapped = start >> PAGE_SHIFT;
707 * We start from the bottom (@map_start) and go to the top (@map_end).
708 * The memblock_find_in_range() gets us a block of RAM from the
709 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
710 * for page table.
712 while (start < map_end) {
713 if (step_size && map_end - start > step_size) {
714 next = round_up(start + 1, step_size);
715 if (next > map_end)
716 next = map_end;
717 } else {
718 next = map_end;
721 mapped_ram_size += init_range_memory_mapping(start, next);
722 start = next;
724 if (mapped_ram_size >= step_size)
725 step_size = get_new_step_size(step_size);
730 * The real mode trampoline, which is required for bootstrapping CPUs
731 * occupies only a small area under the low 1MB. See reserve_real_mode()
732 * for details.
734 * If KASLR is disabled the first PGD entry of the direct mapping is copied
735 * to map the real mode trampoline.
737 * If KASLR is enabled, copy only the PUD which covers the low 1MB
738 * area. This limits the randomization granularity to 1GB for both 4-level
739 * and 5-level paging.
741 static void __init init_trampoline(void)
743 #ifdef CONFIG_X86_64
745 * The code below will alias kernel page-tables in the user-range of the
746 * address space, including the Global bit. So global TLB entries will
747 * be created when using the trampoline page-table.
749 if (!kaslr_memory_enabled())
750 trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
751 else
752 init_trampoline_kaslr();
753 #endif
756 void __init init_mem_mapping(void)
758 unsigned long end;
760 pti_check_boottime_disable();
761 probe_page_size_mask();
762 setup_pcid();
764 #ifdef CONFIG_X86_64
765 end = max_pfn << PAGE_SHIFT;
766 #else
767 end = max_low_pfn << PAGE_SHIFT;
768 #endif
770 /* the ISA range is always mapped regardless of memory holes */
771 init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
773 /* Init the trampoline, possibly with KASLR memory offset */
774 init_trampoline();
777 * If the allocation is in bottom-up direction, we setup direct mapping
778 * in bottom-up, otherwise we setup direct mapping in top-down.
780 if (memblock_bottom_up()) {
781 unsigned long kernel_end = __pa_symbol(_end);
784 * we need two separate calls here. This is because we want to
785 * allocate page tables above the kernel. So we first map
786 * [kernel_end, end) to make memory above the kernel be mapped
787 * as soon as possible. And then use page tables allocated above
788 * the kernel to map [ISA_END_ADDRESS, kernel_end).
790 memory_map_bottom_up(kernel_end, end);
791 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
792 } else {
793 memory_map_top_down(ISA_END_ADDRESS, end);
796 #ifdef CONFIG_X86_64
797 if (max_pfn > max_low_pfn) {
798 /* can we preserve max_low_pfn ?*/
799 max_low_pfn = max_pfn;
801 #else
802 early_ioremap_page_table_range_init();
803 #endif
805 load_cr3(swapper_pg_dir);
806 __flush_tlb_all();
808 x86_init.hyper.init_mem_mapping();
810 early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
814 * Initialize an mm_struct to be used during poking and a pointer to be used
815 * during patching.
817 void __init poking_init(void)
819 spinlock_t *ptl;
820 pte_t *ptep;
822 poking_mm = mm_alloc();
823 BUG_ON(!poking_mm);
825 /* Xen PV guests need the PGD to be pinned. */
826 paravirt_enter_mmap(poking_mm);
829 * Randomize the poking address, but make sure that the following page
830 * will be mapped at the same PMD. We need 2 pages, so find space for 3,
831 * and adjust the address if the PMD ends after the first one.
833 poking_addr = TASK_UNMAPPED_BASE;
834 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
835 poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
836 (TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
838 if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
839 poking_addr += PAGE_SIZE;
842 * We need to trigger the allocation of the page-tables that will be
843 * needed for poking now. Later, poking may be performed in an atomic
844 * section, which might cause allocation to fail.
846 ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
847 BUG_ON(!ptep);
848 pte_unmap_unlock(ptep, ptl);
852 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
853 * is valid. The argument is a physical page number.
855 * On x86, access has to be given to the first megabyte of RAM because that
856 * area traditionally contains BIOS code and data regions used by X, dosemu,
857 * and similar apps. Since they map the entire memory range, the whole range
858 * must be allowed (for mapping), but any areas that would otherwise be
859 * disallowed are flagged as being "zero filled" instead of rejected.
860 * Access has to be given to non-kernel-ram areas as well, these contain the
861 * PCI mmio resources as well as potential bios/acpi data regions.
863 int devmem_is_allowed(unsigned long pagenr)
865 if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
866 IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
867 != REGION_DISJOINT) {
869 * For disallowed memory regions in the low 1MB range,
870 * request that the page be shown as all zeros.
872 if (pagenr < 256)
873 return 2;
875 return 0;
879 * This must follow RAM test, since System RAM is considered a
880 * restricted resource under CONFIG_STRICT_DEVMEM.
882 if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
883 /* Low 1MB bypasses iomem restrictions. */
884 if (pagenr < 256)
885 return 1;
887 return 0;
890 return 1;
893 void free_init_pages(const char *what, unsigned long begin, unsigned long end)
895 unsigned long begin_aligned, end_aligned;
897 /* Make sure boundaries are page aligned */
898 begin_aligned = PAGE_ALIGN(begin);
899 end_aligned = end & PAGE_MASK;
901 if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
902 begin = begin_aligned;
903 end = end_aligned;
906 if (begin >= end)
907 return;
910 * If debugging page accesses then do not free this memory but
911 * mark them not present - any buggy init-section access will
912 * create a kernel page fault:
914 if (debug_pagealloc_enabled()) {
915 pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
916 begin, end - 1);
918 * Inform kmemleak about the hole in the memory since the
919 * corresponding pages will be unmapped.
921 kmemleak_free_part((void *)begin, end - begin);
922 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
923 } else {
925 * We just marked the kernel text read only above, now that
926 * we are going to free part of that, we need to make that
927 * writeable and non-executable first.
929 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
930 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
932 free_reserved_area((void *)begin, (void *)end,
933 POISON_FREE_INITMEM, what);
938 * begin/end can be in the direct map or the "high kernel mapping"
939 * used for the kernel image only. free_init_pages() will do the
940 * right thing for either kind of address.
942 void free_kernel_image_pages(const char *what, void *begin, void *end)
944 unsigned long begin_ul = (unsigned long)begin;
945 unsigned long end_ul = (unsigned long)end;
946 unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
948 free_init_pages(what, begin_ul, end_ul);
951 * PTI maps some of the kernel into userspace. For performance,
952 * this includes some kernel areas that do not contain secrets.
953 * Those areas might be adjacent to the parts of the kernel image
954 * being freed, which may contain secrets. Remove the "high kernel
955 * image mapping" for these freed areas, ensuring they are not even
956 * potentially vulnerable to Meltdown regardless of the specific
957 * optimizations PTI is currently using.
959 * The "noalias" prevents unmapping the direct map alias which is
960 * needed to access the freed pages.
962 * This is only valid for 64bit kernels. 32bit has only one mapping
963 * which can't be treated in this way for obvious reasons.
965 if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
966 set_memory_np_noalias(begin_ul, len_pages);
969 void __ref free_initmem(void)
971 e820__reallocate_tables();
973 mem_encrypt_free_decrypted_mem();
975 free_kernel_image_pages("unused kernel image (initmem)",
976 &__init_begin, &__init_end);
979 #ifdef CONFIG_BLK_DEV_INITRD
980 void __init free_initrd_mem(unsigned long start, unsigned long end)
983 * end could be not aligned, and We can not align that,
984 * decompressor could be confused by aligned initrd_end
985 * We already reserve the end partial page before in
986 * - i386_start_kernel()
987 * - x86_64_start_kernel()
988 * - relocate_initrd()
989 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
991 free_init_pages("initrd", start, PAGE_ALIGN(end));
993 #endif
995 void __init zone_sizes_init(void)
997 unsigned long max_zone_pfns[MAX_NR_ZONES];
999 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1001 #ifdef CONFIG_ZONE_DMA
1002 max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
1003 #endif
1004 #ifdef CONFIG_ZONE_DMA32
1005 max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
1006 #endif
1007 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
1008 #ifdef CONFIG_HIGHMEM
1009 max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
1010 #endif
1012 free_area_init(max_zone_pfns);
1015 __visible DEFINE_PER_CPU_ALIGNED(struct tlb_state, cpu_tlbstate) = {
1016 .loaded_mm = &init_mm,
1017 .next_asid = 1,
1018 .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
1021 #ifdef CONFIG_ADDRESS_MASKING
1022 DEFINE_PER_CPU(u64, tlbstate_untag_mask);
1023 EXPORT_PER_CPU_SYMBOL(tlbstate_untag_mask);
1024 #endif
1026 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
1028 /* entry 0 MUST be WB (hardwired to speed up translations) */
1029 BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
1031 __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
1032 __pte2cachemode_tbl[entry] = cache;
1035 #ifdef CONFIG_SWAP
1036 unsigned long arch_max_swapfile_size(void)
1038 unsigned long pages;
1040 pages = generic_max_swapfile_size();
1042 if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
1043 /* Limit the swap file size to MAX_PA/2 for L1TF workaround */
1044 unsigned long long l1tf_limit = l1tf_pfn_limit();
1046 * We encode swap offsets also with 3 bits below those for pfn
1047 * which makes the usable limit higher.
1049 #if CONFIG_PGTABLE_LEVELS > 2
1050 l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
1051 #endif
1052 pages = min_t(unsigned long long, l1tf_limit, pages);
1054 return pages;
1056 #endif
1058 #ifdef CONFIG_EXECMEM
1059 static struct execmem_info execmem_info __ro_after_init;
1061 #ifdef CONFIG_ARCH_HAS_EXECMEM_ROX
1062 void execmem_fill_trapping_insns(void *ptr, size_t size, bool writeable)
1064 /* fill memory with INT3 instructions */
1065 if (writeable)
1066 memset(ptr, INT3_INSN_OPCODE, size);
1067 else
1068 text_poke_set(ptr, INT3_INSN_OPCODE, size);
1070 #endif
1072 struct execmem_info __init *execmem_arch_setup(void)
1074 unsigned long start, offset = 0;
1075 enum execmem_range_flags flags;
1076 pgprot_t pgprot;
1078 if (kaslr_enabled())
1079 offset = get_random_u32_inclusive(1, 1024) * PAGE_SIZE;
1081 start = MODULES_VADDR + offset;
1083 if (IS_ENABLED(CONFIG_ARCH_HAS_EXECMEM_ROX)) {
1084 pgprot = PAGE_KERNEL_ROX;
1085 flags = EXECMEM_KASAN_SHADOW | EXECMEM_ROX_CACHE;
1086 } else {
1087 pgprot = PAGE_KERNEL;
1088 flags = EXECMEM_KASAN_SHADOW;
1091 execmem_info = (struct execmem_info){
1092 .ranges = {
1093 [EXECMEM_MODULE_TEXT] = {
1094 .flags = flags,
1095 .start = start,
1096 .end = MODULES_END,
1097 .pgprot = pgprot,
1098 .alignment = MODULE_ALIGN,
1100 [EXECMEM_KPROBES ... EXECMEM_BPF] = {
1101 .flags = EXECMEM_KASAN_SHADOW,
1102 .start = start,
1103 .end = MODULES_END,
1104 .pgprot = PAGE_KERNEL,
1105 .alignment = MODULE_ALIGN,
1107 [EXECMEM_MODULE_DATA] = {
1108 .flags = EXECMEM_KASAN_SHADOW,
1109 .start = start,
1110 .end = MODULES_END,
1111 .pgprot = PAGE_KERNEL,
1112 .alignment = MODULE_ALIGN,
1117 return &execmem_info;
1119 #endif /* CONFIG_EXECMEM */