1 // SPDX-License-Identifier: GPL-2.0
2 /* Support for MMIO probes.
3 * Benefit many code from kprobes
4 * (C) 2002 Louis Zhuang <louis.zhuang@intel.com>.
5 * 2007 Alexander Eichner
6 * 2008 Pekka Paalanen <pq@iki.fi>
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/list.h>
12 #include <linux/rculist.h>
13 #include <linux/spinlock.h>
14 #include <linux/hash.h>
15 #include <linux/export.h>
16 #include <linux/kernel.h>
17 #include <linux/uaccess.h>
18 #include <linux/ptrace.h>
19 #include <linux/preempt.h>
20 #include <linux/percpu.h>
21 #include <linux/kdebug.h>
22 #include <linux/mutex.h>
24 #include <linux/slab.h>
25 #include <asm/cacheflush.h>
26 #include <asm/tlbflush.h>
27 #include <linux/errno.h>
28 #include <asm/debugreg.h>
29 #include <linux/mmiotrace.h>
31 #define KMMIO_PAGE_HASH_BITS 4
32 #define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS)
34 struct kmmio_fault_page
{
35 struct list_head list
;
36 struct kmmio_fault_page
*release_next
;
37 unsigned long addr
; /* the requested address */
38 pteval_t old_presence
; /* page presence prior to arming */
42 * Number of times this page has been registered as a part
43 * of a probe. If zero, page is disarmed and this may be freed.
44 * Used only by writers (RCU) and post_kmmio_handler().
45 * Protected by kmmio_lock, when linked into kmmio_page_table.
49 bool scheduled_for_release
;
52 struct kmmio_delayed_release
{
54 struct kmmio_fault_page
*release_list
;
57 struct kmmio_context
{
58 struct kmmio_fault_page
*fpage
;
59 struct kmmio_probe
*probe
;
60 unsigned long saved_flags
;
66 * The kmmio_lock is taken in int3 context, which is treated as NMI context.
67 * This causes lockdep to complain about it bein in both NMI and normal
68 * context. Hide it from lockdep, as it should not have any other locks
69 * taken under it, and this is only enabled for debugging mmio anyway.
71 static arch_spinlock_t kmmio_lock
= __ARCH_SPIN_LOCK_UNLOCKED
;
73 /* Protected by kmmio_lock */
74 unsigned int kmmio_count
;
76 /* Read-protected by RCU, write-protected by kmmio_lock. */
77 static struct list_head kmmio_page_table
[KMMIO_PAGE_TABLE_SIZE
];
78 static LIST_HEAD(kmmio_probes
);
80 static struct list_head
*kmmio_page_list(unsigned long addr
)
83 pte_t
*pte
= lookup_address(addr
, &l
);
87 addr
&= page_level_mask(l
);
89 return &kmmio_page_table
[hash_long(addr
, KMMIO_PAGE_HASH_BITS
)];
92 /* Accessed per-cpu */
93 static DEFINE_PER_CPU(struct kmmio_context
, kmmio_ctx
);
96 * this is basically a dynamic stabbing problem:
97 * Could use the existing prio tree code or
98 * Possible better implementations:
99 * The Interval Skip List: A Data Structure for Finding All Intervals That
100 * Overlap a Point (might be simple)
101 * Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup
103 /* Get the kmmio at this addr (if any). You must be holding RCU read lock. */
104 static struct kmmio_probe
*get_kmmio_probe(unsigned long addr
)
106 struct kmmio_probe
*p
;
107 list_for_each_entry_rcu(p
, &kmmio_probes
, list
) {
108 if (addr
>= p
->addr
&& addr
< (p
->addr
+ p
->len
))
114 /* You must be holding RCU read lock. */
115 static struct kmmio_fault_page
*get_kmmio_fault_page(unsigned long addr
)
117 struct list_head
*head
;
118 struct kmmio_fault_page
*f
;
120 pte_t
*pte
= lookup_address(addr
, &l
);
124 addr
&= page_level_mask(l
);
125 head
= kmmio_page_list(addr
);
126 list_for_each_entry_rcu(f
, head
, list
) {
133 static void clear_pmd_presence(pmd_t
*pmd
, bool clear
, pmdval_t
*old
)
136 pmdval_t v
= pmd_val(*pmd
);
139 new_pmd
= pmd_mkinvalid(*pmd
);
141 /* Presume this has been called with clear==true previously */
142 new_pmd
= __pmd(*old
);
144 set_pmd(pmd
, new_pmd
);
147 static void clear_pte_presence(pte_t
*pte
, bool clear
, pteval_t
*old
)
149 pteval_t v
= pte_val(*pte
);
152 /* Nothing should care about address */
153 pte_clear(&init_mm
, 0, pte
);
155 /* Presume this has been called with clear==true previously */
156 set_pte_atomic(pte
, __pte(*old
));
160 static int clear_page_presence(struct kmmio_fault_page
*f
, bool clear
)
163 pte_t
*pte
= lookup_address(f
->addr
, &level
);
166 pr_err("no pte for addr 0x%08lx\n", f
->addr
);
172 clear_pmd_presence((pmd_t
*)pte
, clear
, &f
->old_presence
);
175 clear_pte_presence(pte
, clear
, &f
->old_presence
);
178 pr_err("unexpected page level 0x%x.\n", level
);
182 flush_tlb_one_kernel(f
->addr
);
187 * Mark the given page as not present. Access to it will trigger a fault.
189 * Struct kmmio_fault_page is protected by RCU and kmmio_lock, but the
190 * protection is ignored here. RCU read lock is assumed held, so the struct
191 * will not disappear unexpectedly. Furthermore, the caller must guarantee,
192 * that double arming the same virtual address (page) cannot occur.
194 * Double disarming on the other hand is allowed, and may occur when a fault
195 * and mmiotrace shutdown happen simultaneously.
197 static int arm_kmmio_fault_page(struct kmmio_fault_page
*f
)
200 WARN_ONCE(f
->armed
, KERN_ERR
pr_fmt("kmmio page already armed.\n"));
202 pr_warn("double-arm: addr 0x%08lx, ref %d, old %d\n",
203 f
->addr
, f
->count
, !!f
->old_presence
);
205 ret
= clear_page_presence(f
, true);
206 WARN_ONCE(ret
< 0, KERN_ERR
pr_fmt("arming at 0x%08lx failed.\n"),
212 /** Restore the given page to saved presence state. */
213 static void disarm_kmmio_fault_page(struct kmmio_fault_page
*f
)
215 int ret
= clear_page_presence(f
, false);
217 KERN_ERR
"kmmio disarming at 0x%08lx failed.\n", f
->addr
);
222 * This is being called from do_page_fault().
224 * We may be in an interrupt or a critical section. Also prefecthing may
225 * trigger a page fault. We may be in the middle of process switch.
226 * We cannot take any locks, because we could be executing especially
227 * within a kmmio critical section.
229 * Local interrupts are disabled, so preemption cannot happen.
230 * Do not enable interrupts, do not sleep, and watch out for other CPUs.
233 * Interrupts are disabled on entry as trap3 is an interrupt gate
234 * and they remain disabled throughout this function.
236 int kmmio_handler(struct pt_regs
*regs
, unsigned long addr
)
238 struct kmmio_context
*ctx
;
239 struct kmmio_fault_page
*faultpage
;
240 int ret
= 0; /* default to fault not handled */
241 unsigned long page_base
= addr
;
243 pte_t
*pte
= lookup_address(addr
, &l
);
246 page_base
&= page_level_mask(l
);
249 * Hold the RCU read lock over single stepping to avoid looking
250 * up the probe and kmmio_fault_page again. The rcu_read_lock_sched()
251 * also disables preemption and prevents process switch during
252 * the single stepping. We can only handle one active kmmio trace
253 * per cpu, so ensure that we finish it before something else
256 rcu_read_lock_sched_notrace();
258 faultpage
= get_kmmio_fault_page(page_base
);
261 * Either this page fault is not caused by kmmio, or
262 * another CPU just pulled the kmmio probe from under
263 * our feet. The latter case should not be possible.
268 ctx
= this_cpu_ptr(&kmmio_ctx
);
270 if (page_base
== ctx
->addr
) {
272 * A second fault on the same page means some other
273 * condition needs handling by do_page_fault(), the
274 * page really not being present is the most common.
276 pr_debug("secondary hit for 0x%08lx CPU %d.\n",
277 addr
, smp_processor_id());
279 if (!faultpage
->old_presence
)
280 pr_info("unexpected secondary hit for address 0x%08lx on CPU %d.\n",
281 addr
, smp_processor_id());
284 * Prevent overwriting already in-flight context.
285 * This should not happen, let's hope disarming at
286 * least prevents a panic.
288 pr_emerg("recursive probe hit on CPU %d, for address 0x%08lx. Ignoring.\n",
289 smp_processor_id(), addr
);
290 pr_emerg("previous hit was at 0x%08lx.\n", ctx
->addr
);
291 disarm_kmmio_fault_page(faultpage
);
297 ctx
->fpage
= faultpage
;
298 ctx
->probe
= get_kmmio_probe(page_base
);
299 ctx
->saved_flags
= (regs
->flags
& (X86_EFLAGS_TF
| X86_EFLAGS_IF
));
300 ctx
->addr
= page_base
;
302 if (ctx
->probe
&& ctx
->probe
->pre_handler
)
303 ctx
->probe
->pre_handler(ctx
->probe
, regs
, addr
);
306 * Enable single-stepping and disable interrupts for the faulting
307 * context. Local interrupts must not get enabled during stepping.
309 regs
->flags
|= X86_EFLAGS_TF
;
310 regs
->flags
&= ~X86_EFLAGS_IF
;
312 /* Now we set present bit in PTE and single step. */
313 disarm_kmmio_fault_page(ctx
->fpage
);
316 * If another cpu accesses the same page while we are stepping,
317 * the access will not be caught. It will simply succeed and the
318 * only downside is we lose the event. If this becomes a problem,
319 * the user should drop to single cpu before tracing.
322 return 1; /* fault handled */
325 rcu_read_unlock_sched_notrace();
330 * Interrupts are disabled on entry as trap1 is an interrupt gate
331 * and they remain disabled throughout this function.
332 * This must always get called as the pair to kmmio_handler().
334 static int post_kmmio_handler(unsigned long condition
, struct pt_regs
*regs
)
337 struct kmmio_context
*ctx
= this_cpu_ptr(&kmmio_ctx
);
341 * debug traps without an active context are due to either
342 * something external causing them (f.e. using a debugger while
343 * mmio tracing enabled), or erroneous behaviour
345 pr_warn("unexpected debug trap on CPU %d.\n", smp_processor_id());
349 if (ctx
->probe
&& ctx
->probe
->post_handler
)
350 ctx
->probe
->post_handler(ctx
->probe
, condition
, regs
);
352 /* Prevent racing against release_kmmio_fault_page(). */
353 arch_spin_lock(&kmmio_lock
);
354 if (ctx
->fpage
->count
)
355 arm_kmmio_fault_page(ctx
->fpage
);
356 arch_spin_unlock(&kmmio_lock
);
358 regs
->flags
&= ~X86_EFLAGS_TF
;
359 regs
->flags
|= ctx
->saved_flags
;
361 /* These were acquired in kmmio_handler(). */
364 rcu_read_unlock_sched_notrace();
367 * if somebody else is singlestepping across a probe point, flags
368 * will have TF set, in which case, continue the remaining processing
369 * of do_debug, as if this is not a probe hit.
371 if (!(regs
->flags
& X86_EFLAGS_TF
))
377 /* You must be holding kmmio_lock. */
378 static int add_kmmio_fault_page(unsigned long addr
)
380 struct kmmio_fault_page
*f
;
382 f
= get_kmmio_fault_page(addr
);
385 arm_kmmio_fault_page(f
);
390 f
= kzalloc(sizeof(*f
), GFP_ATOMIC
);
397 if (arm_kmmio_fault_page(f
)) {
402 list_add_rcu(&f
->list
, kmmio_page_list(f
->addr
));
407 /* You must be holding kmmio_lock. */
408 static void release_kmmio_fault_page(unsigned long addr
,
409 struct kmmio_fault_page
**release_list
)
411 struct kmmio_fault_page
*f
;
413 f
= get_kmmio_fault_page(addr
);
418 BUG_ON(f
->count
< 0);
420 disarm_kmmio_fault_page(f
);
421 if (!f
->scheduled_for_release
) {
422 f
->release_next
= *release_list
;
424 f
->scheduled_for_release
= true;
430 * With page-unaligned ioremaps, one or two armed pages may contain
431 * addresses from outside the intended mapping. Events for these addresses
432 * are currently silently dropped. The events may result only from programming
433 * mistakes by accessing addresses before the beginning or past the end of a
436 int register_kmmio_probe(struct kmmio_probe
*p
)
440 unsigned long size
= 0;
441 unsigned long addr
= p
->addr
& PAGE_MASK
;
442 const unsigned long size_lim
= p
->len
+ (p
->addr
& ~PAGE_MASK
);
446 local_irq_save(flags
);
447 arch_spin_lock(&kmmio_lock
);
448 if (get_kmmio_probe(addr
)) {
453 pte
= lookup_address(addr
, &l
);
460 list_add_rcu(&p
->list
, &kmmio_probes
);
461 while (size
< size_lim
) {
462 if (add_kmmio_fault_page(addr
+ size
))
463 pr_err("Unable to set page fault.\n");
464 size
+= page_level_size(l
);
467 arch_spin_unlock(&kmmio_lock
);
468 local_irq_restore(flags
);
471 * XXX: What should I do here?
472 * Here was a call to global_flush_tlb(), but it does not exist
473 * anymore. It seems it's not needed after all.
477 EXPORT_SYMBOL(register_kmmio_probe
);
479 static void rcu_free_kmmio_fault_pages(struct rcu_head
*head
)
481 struct kmmio_delayed_release
*dr
= container_of(
483 struct kmmio_delayed_release
,
485 struct kmmio_fault_page
*f
= dr
->release_list
;
487 struct kmmio_fault_page
*next
= f
->release_next
;
495 static void remove_kmmio_fault_pages(struct rcu_head
*head
)
497 struct kmmio_delayed_release
*dr
=
498 container_of(head
, struct kmmio_delayed_release
, rcu
);
499 struct kmmio_fault_page
*f
= dr
->release_list
;
500 struct kmmio_fault_page
**prevp
= &dr
->release_list
;
503 local_irq_save(flags
);
504 arch_spin_lock(&kmmio_lock
);
507 list_del_rcu(&f
->list
);
508 prevp
= &f
->release_next
;
510 *prevp
= f
->release_next
;
511 f
->release_next
= NULL
;
512 f
->scheduled_for_release
= false;
516 arch_spin_unlock(&kmmio_lock
);
517 local_irq_restore(flags
);
519 /* This is the real RCU destroy call. */
520 call_rcu(&dr
->rcu
, rcu_free_kmmio_fault_pages
);
524 * Remove a kmmio probe. You have to synchronize_rcu() before you can be
525 * sure that the callbacks will not be called anymore. Only after that
526 * you may actually release your struct kmmio_probe.
528 * Unregistering a kmmio fault page has three steps:
529 * 1. release_kmmio_fault_page()
530 * Disarm the page, wait a grace period to let all faults finish.
531 * 2. remove_kmmio_fault_pages()
532 * Remove the pages from kmmio_page_table.
533 * 3. rcu_free_kmmio_fault_pages()
534 * Actually free the kmmio_fault_page structs as with RCU.
536 void unregister_kmmio_probe(struct kmmio_probe
*p
)
539 unsigned long size
= 0;
540 unsigned long addr
= p
->addr
& PAGE_MASK
;
541 const unsigned long size_lim
= p
->len
+ (p
->addr
& ~PAGE_MASK
);
542 struct kmmio_fault_page
*release_list
= NULL
;
543 struct kmmio_delayed_release
*drelease
;
547 pte
= lookup_address(addr
, &l
);
551 local_irq_save(flags
);
552 arch_spin_lock(&kmmio_lock
);
553 while (size
< size_lim
) {
554 release_kmmio_fault_page(addr
+ size
, &release_list
);
555 size
+= page_level_size(l
);
557 list_del_rcu(&p
->list
);
559 arch_spin_unlock(&kmmio_lock
);
560 local_irq_restore(flags
);
565 drelease
= kmalloc(sizeof(*drelease
), GFP_ATOMIC
);
567 pr_crit("leaking kmmio_fault_page objects.\n");
570 drelease
->release_list
= release_list
;
573 * This is not really RCU here. We have just disarmed a set of
574 * pages so that they cannot trigger page faults anymore. However,
575 * we cannot remove the pages from kmmio_page_table,
576 * because a probe hit might be in flight on another CPU. The
577 * pages are collected into a list, and they will be removed from
578 * kmmio_page_table when it is certain that no probe hit related to
579 * these pages can be in flight. RCU grace period sounds like a
582 * If we removed the pages too early, kmmio page fault handler might
583 * not find the respective kmmio_fault_page and determine it's not
584 * a kmmio fault, when it actually is. This would lead to madness.
586 call_rcu(&drelease
->rcu
, remove_kmmio_fault_pages
);
588 EXPORT_SYMBOL(unregister_kmmio_probe
);
591 kmmio_die_notifier(struct notifier_block
*nb
, unsigned long val
, void *args
)
593 struct die_args
*arg
= args
;
594 unsigned long* dr6_p
= (unsigned long *)ERR_PTR(arg
->err
);
596 if (val
== DIE_DEBUG
&& (*dr6_p
& DR_STEP
))
597 if (post_kmmio_handler(*dr6_p
, arg
->regs
) == 1) {
599 * Reset the BS bit in dr6 (pointed by args->err) to
600 * denote completion of processing
609 static struct notifier_block nb_die
= {
610 .notifier_call
= kmmio_die_notifier
617 for (i
= 0; i
< KMMIO_PAGE_TABLE_SIZE
; i
++)
618 INIT_LIST_HEAD(&kmmio_page_table
[i
]);
620 return register_die_notifier(&nb_die
);
623 void kmmio_cleanup(void)
627 unregister_die_notifier(&nb_die
);
628 for (i
= 0; i
< KMMIO_PAGE_TABLE_SIZE
; i
++) {
629 WARN_ONCE(!list_empty(&kmmio_page_table
[i
]),
630 KERN_ERR
"kmmio_page_table not empty at cleanup, any further tracing will leak memory.\n");