drm/modes: Fix drm_mode_vrefres() docs
[drm/drm-misc.git] / arch / x86 / mm / mem_encrypt_amd.c
blob774f9677458f276988fac7323a6b405cfd798024
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * AMD Memory Encryption Support
5 * Copyright (C) 2016-2024 Advanced Micro Devices, Inc.
7 * Author: Tom Lendacky <thomas.lendacky@amd.com>
8 */
10 #define DISABLE_BRANCH_PROFILING
12 #include <linux/linkage.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/dma-direct.h>
16 #include <linux/swiotlb.h>
17 #include <linux/mem_encrypt.h>
18 #include <linux/device.h>
19 #include <linux/kernel.h>
20 #include <linux/bitops.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/cc_platform.h>
24 #include <asm/tlbflush.h>
25 #include <asm/fixmap.h>
26 #include <asm/setup.h>
27 #include <asm/mem_encrypt.h>
28 #include <asm/bootparam.h>
29 #include <asm/set_memory.h>
30 #include <asm/cacheflush.h>
31 #include <asm/processor-flags.h>
32 #include <asm/msr.h>
33 #include <asm/cmdline.h>
34 #include <asm/sev.h>
35 #include <asm/ia32.h>
37 #include "mm_internal.h"
40 * Since SME related variables are set early in the boot process they must
41 * reside in the .data section so as not to be zeroed out when the .bss
42 * section is later cleared.
44 u64 sme_me_mask __section(".data") = 0;
45 u64 sev_status __section(".data") = 0;
46 u64 sev_check_data __section(".data") = 0;
47 EXPORT_SYMBOL(sme_me_mask);
49 /* Buffer used for early in-place encryption by BSP, no locking needed */
50 static char sme_early_buffer[PAGE_SIZE] __initdata __aligned(PAGE_SIZE);
53 * SNP-specific routine which needs to additionally change the page state from
54 * private to shared before copying the data from the source to destination and
55 * restore after the copy.
57 static inline void __init snp_memcpy(void *dst, void *src, size_t sz,
58 unsigned long paddr, bool decrypt)
60 unsigned long npages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
62 if (decrypt) {
64 * @paddr needs to be accessed decrypted, mark the page shared in
65 * the RMP table before copying it.
67 early_snp_set_memory_shared((unsigned long)__va(paddr), paddr, npages);
69 memcpy(dst, src, sz);
71 /* Restore the page state after the memcpy. */
72 early_snp_set_memory_private((unsigned long)__va(paddr), paddr, npages);
73 } else {
75 * @paddr need to be accessed encrypted, no need for the page state
76 * change.
78 memcpy(dst, src, sz);
83 * This routine does not change the underlying encryption setting of the
84 * page(s) that map this memory. It assumes that eventually the memory is
85 * meant to be accessed as either encrypted or decrypted but the contents
86 * are currently not in the desired state.
88 * This routine follows the steps outlined in the AMD64 Architecture
89 * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place.
91 static void __init __sme_early_enc_dec(resource_size_t paddr,
92 unsigned long size, bool enc)
94 void *src, *dst;
95 size_t len;
97 if (!sme_me_mask)
98 return;
100 wbinvd();
103 * There are limited number of early mapping slots, so map (at most)
104 * one page at time.
106 while (size) {
107 len = min_t(size_t, sizeof(sme_early_buffer), size);
110 * Create mappings for the current and desired format of
111 * the memory. Use a write-protected mapping for the source.
113 src = enc ? early_memremap_decrypted_wp(paddr, len) :
114 early_memremap_encrypted_wp(paddr, len);
116 dst = enc ? early_memremap_encrypted(paddr, len) :
117 early_memremap_decrypted(paddr, len);
120 * If a mapping can't be obtained to perform the operation,
121 * then eventual access of that area in the desired mode
122 * will cause a crash.
124 BUG_ON(!src || !dst);
127 * Use a temporary buffer, of cache-line multiple size, to
128 * avoid data corruption as documented in the APM.
130 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) {
131 snp_memcpy(sme_early_buffer, src, len, paddr, enc);
132 snp_memcpy(dst, sme_early_buffer, len, paddr, !enc);
133 } else {
134 memcpy(sme_early_buffer, src, len);
135 memcpy(dst, sme_early_buffer, len);
138 early_memunmap(dst, len);
139 early_memunmap(src, len);
141 paddr += len;
142 size -= len;
146 void __init sme_early_encrypt(resource_size_t paddr, unsigned long size)
148 __sme_early_enc_dec(paddr, size, true);
151 void __init sme_early_decrypt(resource_size_t paddr, unsigned long size)
153 __sme_early_enc_dec(paddr, size, false);
156 static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size,
157 bool map)
159 unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET;
160 pmdval_t pmd_flags, pmd;
162 /* Use early_pmd_flags but remove the encryption mask */
163 pmd_flags = __sme_clr(early_pmd_flags);
165 do {
166 pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0;
167 __early_make_pgtable((unsigned long)vaddr, pmd);
169 vaddr += PMD_SIZE;
170 paddr += PMD_SIZE;
171 size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE;
172 } while (size);
174 flush_tlb_local();
177 void __init sme_unmap_bootdata(char *real_mode_data)
179 struct boot_params *boot_data;
180 unsigned long cmdline_paddr;
182 if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
183 return;
185 /* Get the command line address before unmapping the real_mode_data */
186 boot_data = (struct boot_params *)real_mode_data;
187 cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
189 __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false);
191 if (!cmdline_paddr)
192 return;
194 __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false);
197 void __init sme_map_bootdata(char *real_mode_data)
199 struct boot_params *boot_data;
200 unsigned long cmdline_paddr;
202 if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
203 return;
205 __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true);
207 /* Get the command line address after mapping the real_mode_data */
208 boot_data = (struct boot_params *)real_mode_data;
209 cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
211 if (!cmdline_paddr)
212 return;
214 __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true);
217 static unsigned long pg_level_to_pfn(int level, pte_t *kpte, pgprot_t *ret_prot)
219 unsigned long pfn = 0;
220 pgprot_t prot;
222 switch (level) {
223 case PG_LEVEL_4K:
224 pfn = pte_pfn(*kpte);
225 prot = pte_pgprot(*kpte);
226 break;
227 case PG_LEVEL_2M:
228 pfn = pmd_pfn(*(pmd_t *)kpte);
229 prot = pmd_pgprot(*(pmd_t *)kpte);
230 break;
231 case PG_LEVEL_1G:
232 pfn = pud_pfn(*(pud_t *)kpte);
233 prot = pud_pgprot(*(pud_t *)kpte);
234 break;
235 default:
236 WARN_ONCE(1, "Invalid level for kpte\n");
237 return 0;
240 if (ret_prot)
241 *ret_prot = prot;
243 return pfn;
246 static bool amd_enc_tlb_flush_required(bool enc)
248 return true;
251 static bool amd_enc_cache_flush_required(void)
253 return !cpu_feature_enabled(X86_FEATURE_SME_COHERENT);
256 static void enc_dec_hypercall(unsigned long vaddr, unsigned long size, bool enc)
258 #ifdef CONFIG_PARAVIRT
259 unsigned long vaddr_end = vaddr + size;
261 while (vaddr < vaddr_end) {
262 int psize, pmask, level;
263 unsigned long pfn;
264 pte_t *kpte;
266 kpte = lookup_address(vaddr, &level);
267 if (!kpte || pte_none(*kpte)) {
268 WARN_ONCE(1, "kpte lookup for vaddr\n");
269 return;
272 pfn = pg_level_to_pfn(level, kpte, NULL);
273 if (!pfn)
274 continue;
276 psize = page_level_size(level);
277 pmask = page_level_mask(level);
279 notify_page_enc_status_changed(pfn, psize >> PAGE_SHIFT, enc);
281 vaddr = (vaddr & pmask) + psize;
283 #endif
286 static int amd_enc_status_change_prepare(unsigned long vaddr, int npages, bool enc)
289 * To maintain the security guarantees of SEV-SNP guests, make sure
290 * to invalidate the memory before encryption attribute is cleared.
292 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP) && !enc)
293 snp_set_memory_shared(vaddr, npages);
295 return 0;
298 /* Return true unconditionally: return value doesn't matter for the SEV side */
299 static int amd_enc_status_change_finish(unsigned long vaddr, int npages, bool enc)
302 * After memory is mapped encrypted in the page table, validate it
303 * so that it is consistent with the page table updates.
305 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP) && enc)
306 snp_set_memory_private(vaddr, npages);
308 if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
309 enc_dec_hypercall(vaddr, npages << PAGE_SHIFT, enc);
311 return 0;
314 int prepare_pte_enc(struct pte_enc_desc *d)
316 pgprot_t old_prot;
318 d->pfn = pg_level_to_pfn(d->pte_level, d->kpte, &old_prot);
319 if (!d->pfn)
320 return 1;
322 d->new_pgprot = old_prot;
323 if (d->encrypt)
324 pgprot_val(d->new_pgprot) |= _PAGE_ENC;
325 else
326 pgprot_val(d->new_pgprot) &= ~_PAGE_ENC;
328 /* If prot is same then do nothing. */
329 if (pgprot_val(old_prot) == pgprot_val(d->new_pgprot))
330 return 1;
332 d->pa = d->pfn << PAGE_SHIFT;
333 d->size = page_level_size(d->pte_level);
336 * In-place en-/decryption and physical page attribute change
337 * from C=1 to C=0 or vice versa will be performed. Flush the
338 * caches to ensure that data gets accessed with the correct
339 * C-bit.
341 if (d->va)
342 clflush_cache_range(d->va, d->size);
343 else
344 clflush_cache_range(__va(d->pa), d->size);
346 return 0;
349 void set_pte_enc_mask(pte_t *kpte, unsigned long pfn, pgprot_t new_prot)
351 pte_t new_pte;
353 /* Change the page encryption mask. */
354 new_pte = pfn_pte(pfn, new_prot);
355 set_pte_atomic(kpte, new_pte);
358 static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc)
360 struct pte_enc_desc d = {
361 .kpte = kpte,
362 .pte_level = level,
363 .encrypt = enc
366 if (prepare_pte_enc(&d))
367 return;
369 /* Encrypt/decrypt the contents in-place */
370 if (enc) {
371 sme_early_encrypt(d.pa, d.size);
372 } else {
373 sme_early_decrypt(d.pa, d.size);
376 * ON SNP, the page state in the RMP table must happen
377 * before the page table updates.
379 early_snp_set_memory_shared((unsigned long)__va(d.pa), d.pa, 1);
382 set_pte_enc_mask(kpte, d.pfn, d.new_pgprot);
385 * If page is set encrypted in the page table, then update the RMP table to
386 * add this page as private.
388 if (enc)
389 early_snp_set_memory_private((unsigned long)__va(d.pa), d.pa, 1);
392 static int __init early_set_memory_enc_dec(unsigned long vaddr,
393 unsigned long size, bool enc)
395 unsigned long vaddr_end, vaddr_next, start;
396 unsigned long psize, pmask;
397 int split_page_size_mask;
398 int level, ret;
399 pte_t *kpte;
401 start = vaddr;
402 vaddr_next = vaddr;
403 vaddr_end = vaddr + size;
405 for (; vaddr < vaddr_end; vaddr = vaddr_next) {
406 kpte = lookup_address(vaddr, &level);
407 if (!kpte || pte_none(*kpte)) {
408 ret = 1;
409 goto out;
412 if (level == PG_LEVEL_4K) {
413 __set_clr_pte_enc(kpte, level, enc);
414 vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE;
415 continue;
418 psize = page_level_size(level);
419 pmask = page_level_mask(level);
422 * Check whether we can change the large page in one go.
423 * We request a split when the address is not aligned and
424 * the number of pages to set/clear encryption bit is smaller
425 * than the number of pages in the large page.
427 if (vaddr == (vaddr & pmask) &&
428 ((vaddr_end - vaddr) >= psize)) {
429 __set_clr_pte_enc(kpte, level, enc);
430 vaddr_next = (vaddr & pmask) + psize;
431 continue;
435 * The virtual address is part of a larger page, create the next
436 * level page table mapping (4K or 2M). If it is part of a 2M
437 * page then we request a split of the large page into 4K
438 * chunks. A 1GB large page is split into 2M pages, resp.
440 if (level == PG_LEVEL_2M)
441 split_page_size_mask = 0;
442 else
443 split_page_size_mask = 1 << PG_LEVEL_2M;
446 * kernel_physical_mapping_change() does not flush the TLBs, so
447 * a TLB flush is required after we exit from the for loop.
449 kernel_physical_mapping_change(__pa(vaddr & pmask),
450 __pa((vaddr_end & pmask) + psize),
451 split_page_size_mask);
454 ret = 0;
456 early_set_mem_enc_dec_hypercall(start, size, enc);
457 out:
458 __flush_tlb_all();
459 return ret;
462 int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size)
464 return early_set_memory_enc_dec(vaddr, size, false);
467 int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size)
469 return early_set_memory_enc_dec(vaddr, size, true);
472 void __init early_set_mem_enc_dec_hypercall(unsigned long vaddr, unsigned long size, bool enc)
474 enc_dec_hypercall(vaddr, size, enc);
477 void __init sme_early_init(void)
479 if (!sme_me_mask)
480 return;
482 early_pmd_flags = __sme_set(early_pmd_flags);
484 __supported_pte_mask = __sme_set(__supported_pte_mask);
486 /* Update the protection map with memory encryption mask */
487 add_encrypt_protection_map();
489 x86_platform.guest.enc_status_change_prepare = amd_enc_status_change_prepare;
490 x86_platform.guest.enc_status_change_finish = amd_enc_status_change_finish;
491 x86_platform.guest.enc_tlb_flush_required = amd_enc_tlb_flush_required;
492 x86_platform.guest.enc_cache_flush_required = amd_enc_cache_flush_required;
493 x86_platform.guest.enc_kexec_begin = snp_kexec_begin;
494 x86_platform.guest.enc_kexec_finish = snp_kexec_finish;
497 * AMD-SEV-ES intercepts the RDMSR to read the X2APIC ID in the
498 * parallel bringup low level code. That raises #VC which cannot be
499 * handled there.
500 * It does not provide a RDMSR GHCB protocol so the early startup
501 * code cannot directly communicate with the secure firmware. The
502 * alternative solution to retrieve the APIC ID via CPUID(0xb),
503 * which is covered by the GHCB protocol, is not viable either
504 * because there is no enforcement of the CPUID(0xb) provided
505 * "initial" APIC ID to be the same as the real APIC ID.
506 * Disable parallel bootup.
508 if (sev_status & MSR_AMD64_SEV_ES_ENABLED)
509 x86_cpuinit.parallel_bringup = false;
512 * The VMM is capable of injecting interrupt 0x80 and triggering the
513 * compatibility syscall path.
515 * By default, the 32-bit emulation is disabled in order to ensure
516 * the safety of the VM.
518 if (sev_status & MSR_AMD64_SEV_ENABLED)
519 ia32_disable();
522 * Override init functions that scan the ROM region in SEV-SNP guests,
523 * as this memory is not pre-validated and would thus cause a crash.
525 if (sev_status & MSR_AMD64_SEV_SNP_ENABLED) {
526 x86_init.mpparse.find_mptable = x86_init_noop;
527 x86_init.pci.init_irq = x86_init_noop;
528 x86_init.resources.probe_roms = x86_init_noop;
531 * DMI setup behavior for SEV-SNP guests depends on
532 * efi_enabled(EFI_CONFIG_TABLES), which hasn't been
533 * parsed yet. snp_dmi_setup() will run after that
534 * parsing has happened.
536 x86_init.resources.dmi_setup = snp_dmi_setup;
540 * Switch the SVSM CA mapping (if active) from identity mapped to
541 * kernel mapped.
543 snp_update_svsm_ca();
546 void __init mem_encrypt_free_decrypted_mem(void)
548 unsigned long vaddr, vaddr_end, npages;
549 int r;
551 vaddr = (unsigned long)__start_bss_decrypted_unused;
552 vaddr_end = (unsigned long)__end_bss_decrypted;
553 npages = (vaddr_end - vaddr) >> PAGE_SHIFT;
556 * If the unused memory range was mapped decrypted, change the encryption
557 * attribute from decrypted to encrypted before freeing it. Base the
558 * re-encryption on the same condition used for the decryption in
559 * sme_postprocess_startup(). Higher level abstractions, such as
560 * CC_ATTR_MEM_ENCRYPT, aren't necessarily equivalent in a Hyper-V VM
561 * using vTOM, where sme_me_mask is always zero.
563 if (sme_me_mask) {
564 r = set_memory_encrypted(vaddr, npages);
565 if (r) {
566 pr_warn("failed to free unused decrypted pages\n");
567 return;
571 free_init_pages("unused decrypted", vaddr, vaddr_end);