drm/modes: Fix drm_mode_vrefres() docs
[drm/drm-misc.git] / arch / x86 / mm / pgtable.c
blob5745a354a241c795105f3638fae128f0516a6598
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/gfp.h>
4 #include <linux/hugetlb.h>
5 #include <asm/pgalloc.h>
6 #include <asm/tlb.h>
7 #include <asm/fixmap.h>
8 #include <asm/mtrr.h>
10 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
11 phys_addr_t physical_mask __ro_after_init = (1ULL << __PHYSICAL_MASK_SHIFT) - 1;
12 EXPORT_SYMBOL(physical_mask);
13 #endif
15 #ifdef CONFIG_HIGHPTE
16 #define PGTABLE_HIGHMEM __GFP_HIGHMEM
17 #else
18 #define PGTABLE_HIGHMEM 0
19 #endif
21 #ifndef CONFIG_PARAVIRT
22 static inline
23 void paravirt_tlb_remove_table(struct mmu_gather *tlb, void *table)
25 tlb_remove_page(tlb, table);
27 #endif
29 gfp_t __userpte_alloc_gfp = GFP_PGTABLE_USER | PGTABLE_HIGHMEM;
31 pgtable_t pte_alloc_one(struct mm_struct *mm)
33 return __pte_alloc_one(mm, __userpte_alloc_gfp);
36 static int __init setup_userpte(char *arg)
38 if (!arg)
39 return -EINVAL;
42 * "userpte=nohigh" disables allocation of user pagetables in
43 * high memory.
45 if (strcmp(arg, "nohigh") == 0)
46 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
47 else
48 return -EINVAL;
49 return 0;
51 early_param("userpte", setup_userpte);
53 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
55 pagetable_pte_dtor(page_ptdesc(pte));
56 paravirt_release_pte(page_to_pfn(pte));
57 paravirt_tlb_remove_table(tlb, pte);
60 #if CONFIG_PGTABLE_LEVELS > 2
61 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
63 struct ptdesc *ptdesc = virt_to_ptdesc(pmd);
64 paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
66 * NOTE! For PAE, any changes to the top page-directory-pointer-table
67 * entries need a full cr3 reload to flush.
69 #ifdef CONFIG_X86_PAE
70 tlb->need_flush_all = 1;
71 #endif
72 pagetable_pmd_dtor(ptdesc);
73 paravirt_tlb_remove_table(tlb, ptdesc_page(ptdesc));
76 #if CONFIG_PGTABLE_LEVELS > 3
77 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
79 struct ptdesc *ptdesc = virt_to_ptdesc(pud);
81 pagetable_pud_dtor(ptdesc);
82 paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
83 paravirt_tlb_remove_table(tlb, virt_to_page(pud));
86 #if CONFIG_PGTABLE_LEVELS > 4
87 void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d)
89 paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT);
90 paravirt_tlb_remove_table(tlb, virt_to_page(p4d));
92 #endif /* CONFIG_PGTABLE_LEVELS > 4 */
93 #endif /* CONFIG_PGTABLE_LEVELS > 3 */
94 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
96 static inline void pgd_list_add(pgd_t *pgd)
98 struct ptdesc *ptdesc = virt_to_ptdesc(pgd);
100 list_add(&ptdesc->pt_list, &pgd_list);
103 static inline void pgd_list_del(pgd_t *pgd)
105 struct ptdesc *ptdesc = virt_to_ptdesc(pgd);
107 list_del(&ptdesc->pt_list);
110 #define UNSHARED_PTRS_PER_PGD \
111 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
112 #define MAX_UNSHARED_PTRS_PER_PGD \
113 MAX_T(size_t, KERNEL_PGD_BOUNDARY, PTRS_PER_PGD)
116 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
118 virt_to_ptdesc(pgd)->pt_mm = mm;
121 struct mm_struct *pgd_page_get_mm(struct page *page)
123 return page_ptdesc(page)->pt_mm;
126 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
128 /* If the pgd points to a shared pagetable level (either the
129 ptes in non-PAE, or shared PMD in PAE), then just copy the
130 references from swapper_pg_dir. */
131 if (CONFIG_PGTABLE_LEVELS == 2 ||
132 (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
133 CONFIG_PGTABLE_LEVELS >= 4) {
134 clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
135 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
136 KERNEL_PGD_PTRS);
139 /* list required to sync kernel mapping updates */
140 if (!SHARED_KERNEL_PMD) {
141 pgd_set_mm(pgd, mm);
142 pgd_list_add(pgd);
146 static void pgd_dtor(pgd_t *pgd)
148 if (SHARED_KERNEL_PMD)
149 return;
151 spin_lock(&pgd_lock);
152 pgd_list_del(pgd);
153 spin_unlock(&pgd_lock);
157 * List of all pgd's needed for non-PAE so it can invalidate entries
158 * in both cached and uncached pgd's; not needed for PAE since the
159 * kernel pmd is shared. If PAE were not to share the pmd a similar
160 * tactic would be needed. This is essentially codepath-based locking
161 * against pageattr.c; it is the unique case in which a valid change
162 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
163 * vmalloc faults work because attached pagetables are never freed.
164 * -- nyc
167 #ifdef CONFIG_X86_PAE
169 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
170 * updating the top-level pagetable entries to guarantee the
171 * processor notices the update. Since this is expensive, and
172 * all 4 top-level entries are used almost immediately in a
173 * new process's life, we just pre-populate them here.
175 * Also, if we're in a paravirt environment where the kernel pmd is
176 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
177 * and initialize the kernel pmds here.
179 #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
180 #define MAX_PREALLOCATED_PMDS MAX_UNSHARED_PTRS_PER_PGD
183 * We allocate separate PMDs for the kernel part of the user page-table
184 * when PTI is enabled. We need them to map the per-process LDT into the
185 * user-space page-table.
187 #define PREALLOCATED_USER_PMDS (boot_cpu_has(X86_FEATURE_PTI) ? \
188 KERNEL_PGD_PTRS : 0)
189 #define MAX_PREALLOCATED_USER_PMDS KERNEL_PGD_PTRS
191 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
193 paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
195 /* Note: almost everything apart from _PAGE_PRESENT is
196 reserved at the pmd (PDPT) level. */
197 set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
200 * According to Intel App note "TLBs, Paging-Structure Caches,
201 * and Their Invalidation", April 2007, document 317080-001,
202 * section 8.1: in PAE mode we explicitly have to flush the
203 * TLB via cr3 if the top-level pgd is changed...
205 flush_tlb_mm(mm);
207 #else /* !CONFIG_X86_PAE */
209 /* No need to prepopulate any pagetable entries in non-PAE modes. */
210 #define PREALLOCATED_PMDS 0
211 #define MAX_PREALLOCATED_PMDS 0
212 #define PREALLOCATED_USER_PMDS 0
213 #define MAX_PREALLOCATED_USER_PMDS 0
214 #endif /* CONFIG_X86_PAE */
216 static void free_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
218 int i;
219 struct ptdesc *ptdesc;
221 for (i = 0; i < count; i++)
222 if (pmds[i]) {
223 ptdesc = virt_to_ptdesc(pmds[i]);
225 pagetable_pmd_dtor(ptdesc);
226 pagetable_free(ptdesc);
227 mm_dec_nr_pmds(mm);
231 static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
233 int i;
234 bool failed = false;
235 gfp_t gfp = GFP_PGTABLE_USER;
237 if (mm == &init_mm)
238 gfp &= ~__GFP_ACCOUNT;
239 gfp &= ~__GFP_HIGHMEM;
241 for (i = 0; i < count; i++) {
242 pmd_t *pmd = NULL;
243 struct ptdesc *ptdesc = pagetable_alloc(gfp, 0);
245 if (!ptdesc)
246 failed = true;
247 if (ptdesc && !pagetable_pmd_ctor(ptdesc)) {
248 pagetable_free(ptdesc);
249 ptdesc = NULL;
250 failed = true;
252 if (ptdesc) {
253 mm_inc_nr_pmds(mm);
254 pmd = ptdesc_address(ptdesc);
257 pmds[i] = pmd;
260 if (failed) {
261 free_pmds(mm, pmds, count);
262 return -ENOMEM;
265 return 0;
269 * Mop up any pmd pages which may still be attached to the pgd.
270 * Normally they will be freed by munmap/exit_mmap, but any pmd we
271 * preallocate which never got a corresponding vma will need to be
272 * freed manually.
274 static void mop_up_one_pmd(struct mm_struct *mm, pgd_t *pgdp)
276 pgd_t pgd = *pgdp;
278 if (pgd_val(pgd) != 0) {
279 pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
281 pgd_clear(pgdp);
283 paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
284 pmd_free(mm, pmd);
285 mm_dec_nr_pmds(mm);
289 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
291 int i;
293 for (i = 0; i < PREALLOCATED_PMDS; i++)
294 mop_up_one_pmd(mm, &pgdp[i]);
296 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
298 if (!boot_cpu_has(X86_FEATURE_PTI))
299 return;
301 pgdp = kernel_to_user_pgdp(pgdp);
303 for (i = 0; i < PREALLOCATED_USER_PMDS; i++)
304 mop_up_one_pmd(mm, &pgdp[i + KERNEL_PGD_BOUNDARY]);
305 #endif
308 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
310 p4d_t *p4d;
311 pud_t *pud;
312 int i;
314 p4d = p4d_offset(pgd, 0);
315 pud = pud_offset(p4d, 0);
317 for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
318 pmd_t *pmd = pmds[i];
320 if (i >= KERNEL_PGD_BOUNDARY)
321 memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
322 sizeof(pmd_t) * PTRS_PER_PMD);
324 pud_populate(mm, pud, pmd);
328 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
329 static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
330 pgd_t *k_pgd, pmd_t *pmds[])
332 pgd_t *s_pgd = kernel_to_user_pgdp(swapper_pg_dir);
333 pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
334 p4d_t *u_p4d;
335 pud_t *u_pud;
336 int i;
338 u_p4d = p4d_offset(u_pgd, 0);
339 u_pud = pud_offset(u_p4d, 0);
341 s_pgd += KERNEL_PGD_BOUNDARY;
342 u_pud += KERNEL_PGD_BOUNDARY;
344 for (i = 0; i < PREALLOCATED_USER_PMDS; i++, u_pud++, s_pgd++) {
345 pmd_t *pmd = pmds[i];
347 memcpy(pmd, (pmd_t *)pgd_page_vaddr(*s_pgd),
348 sizeof(pmd_t) * PTRS_PER_PMD);
350 pud_populate(mm, u_pud, pmd);
354 #else
355 static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
356 pgd_t *k_pgd, pmd_t *pmds[])
359 #endif
361 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
362 * assumes that pgd should be in one page.
364 * But kernel with PAE paging that is not running as a Xen domain
365 * only needs to allocate 32 bytes for pgd instead of one page.
367 #ifdef CONFIG_X86_PAE
369 #include <linux/slab.h>
371 #define PGD_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
372 #define PGD_ALIGN 32
374 static struct kmem_cache *pgd_cache;
376 void __init pgtable_cache_init(void)
379 * When PAE kernel is running as a Xen domain, it does not use
380 * shared kernel pmd. And this requires a whole page for pgd.
382 if (!SHARED_KERNEL_PMD)
383 return;
386 * when PAE kernel is not running as a Xen domain, it uses
387 * shared kernel pmd. Shared kernel pmd does not require a whole
388 * page for pgd. We are able to just allocate a 32-byte for pgd.
389 * During boot time, we create a 32-byte slab for pgd table allocation.
391 pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
392 SLAB_PANIC, NULL);
395 static inline pgd_t *_pgd_alloc(void)
398 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
399 * We allocate one page for pgd.
401 if (!SHARED_KERNEL_PMD)
402 return (pgd_t *)__get_free_pages(GFP_PGTABLE_USER,
403 PGD_ALLOCATION_ORDER);
406 * Now PAE kernel is not running as a Xen domain. We can allocate
407 * a 32-byte slab for pgd to save memory space.
409 return kmem_cache_alloc(pgd_cache, GFP_PGTABLE_USER);
412 static inline void _pgd_free(pgd_t *pgd)
414 if (!SHARED_KERNEL_PMD)
415 free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
416 else
417 kmem_cache_free(pgd_cache, pgd);
419 #else
421 static inline pgd_t *_pgd_alloc(void)
423 return (pgd_t *)__get_free_pages(GFP_PGTABLE_USER,
424 PGD_ALLOCATION_ORDER);
427 static inline void _pgd_free(pgd_t *pgd)
429 free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
431 #endif /* CONFIG_X86_PAE */
433 pgd_t *pgd_alloc(struct mm_struct *mm)
435 pgd_t *pgd;
436 pmd_t *u_pmds[MAX_PREALLOCATED_USER_PMDS];
437 pmd_t *pmds[MAX_PREALLOCATED_PMDS];
439 pgd = _pgd_alloc();
441 if (pgd == NULL)
442 goto out;
444 mm->pgd = pgd;
446 if (sizeof(pmds) != 0 &&
447 preallocate_pmds(mm, pmds, PREALLOCATED_PMDS) != 0)
448 goto out_free_pgd;
450 if (sizeof(u_pmds) != 0 &&
451 preallocate_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS) != 0)
452 goto out_free_pmds;
454 if (paravirt_pgd_alloc(mm) != 0)
455 goto out_free_user_pmds;
458 * Make sure that pre-populating the pmds is atomic with
459 * respect to anything walking the pgd_list, so that they
460 * never see a partially populated pgd.
462 spin_lock(&pgd_lock);
464 pgd_ctor(mm, pgd);
465 if (sizeof(pmds) != 0)
466 pgd_prepopulate_pmd(mm, pgd, pmds);
468 if (sizeof(u_pmds) != 0)
469 pgd_prepopulate_user_pmd(mm, pgd, u_pmds);
471 spin_unlock(&pgd_lock);
473 return pgd;
475 out_free_user_pmds:
476 if (sizeof(u_pmds) != 0)
477 free_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS);
478 out_free_pmds:
479 if (sizeof(pmds) != 0)
480 free_pmds(mm, pmds, PREALLOCATED_PMDS);
481 out_free_pgd:
482 _pgd_free(pgd);
483 out:
484 return NULL;
487 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
489 pgd_mop_up_pmds(mm, pgd);
490 pgd_dtor(pgd);
491 paravirt_pgd_free(mm, pgd);
492 _pgd_free(pgd);
496 * Used to set accessed or dirty bits in the page table entries
497 * on other architectures. On x86, the accessed and dirty bits
498 * are tracked by hardware. However, do_wp_page calls this function
499 * to also make the pte writeable at the same time the dirty bit is
500 * set. In that case we do actually need to write the PTE.
502 int ptep_set_access_flags(struct vm_area_struct *vma,
503 unsigned long address, pte_t *ptep,
504 pte_t entry, int dirty)
506 int changed = !pte_same(*ptep, entry);
508 if (changed && dirty)
509 set_pte(ptep, entry);
511 return changed;
514 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
515 int pmdp_set_access_flags(struct vm_area_struct *vma,
516 unsigned long address, pmd_t *pmdp,
517 pmd_t entry, int dirty)
519 int changed = !pmd_same(*pmdp, entry);
521 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
523 if (changed && dirty) {
524 set_pmd(pmdp, entry);
526 * We had a write-protection fault here and changed the pmd
527 * to to more permissive. No need to flush the TLB for that,
528 * #PF is architecturally guaranteed to do that and in the
529 * worst-case we'll generate a spurious fault.
533 return changed;
536 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
537 pud_t *pudp, pud_t entry, int dirty)
539 int changed = !pud_same(*pudp, entry);
541 VM_BUG_ON(address & ~HPAGE_PUD_MASK);
543 if (changed && dirty) {
544 set_pud(pudp, entry);
546 * We had a write-protection fault here and changed the pud
547 * to to more permissive. No need to flush the TLB for that,
548 * #PF is architecturally guaranteed to do that and in the
549 * worst-case we'll generate a spurious fault.
553 return changed;
555 #endif
557 int ptep_test_and_clear_young(struct vm_area_struct *vma,
558 unsigned long addr, pte_t *ptep)
560 int ret = 0;
562 if (pte_young(*ptep))
563 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
564 (unsigned long *) &ptep->pte);
566 return ret;
569 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
570 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
571 unsigned long addr, pmd_t *pmdp)
573 int ret = 0;
575 if (pmd_young(*pmdp))
576 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
577 (unsigned long *)pmdp);
579 return ret;
581 #endif
583 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
584 int pudp_test_and_clear_young(struct vm_area_struct *vma,
585 unsigned long addr, pud_t *pudp)
587 int ret = 0;
589 if (pud_young(*pudp))
590 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
591 (unsigned long *)pudp);
593 return ret;
595 #endif
597 int ptep_clear_flush_young(struct vm_area_struct *vma,
598 unsigned long address, pte_t *ptep)
601 * On x86 CPUs, clearing the accessed bit without a TLB flush
602 * doesn't cause data corruption. [ It could cause incorrect
603 * page aging and the (mistaken) reclaim of hot pages, but the
604 * chance of that should be relatively low. ]
606 * So as a performance optimization don't flush the TLB when
607 * clearing the accessed bit, it will eventually be flushed by
608 * a context switch or a VM operation anyway. [ In the rare
609 * event of it not getting flushed for a long time the delay
610 * shouldn't really matter because there's no real memory
611 * pressure for swapout to react to. ]
613 return ptep_test_and_clear_young(vma, address, ptep);
616 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
617 int pmdp_clear_flush_young(struct vm_area_struct *vma,
618 unsigned long address, pmd_t *pmdp)
620 int young;
622 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
624 young = pmdp_test_and_clear_young(vma, address, pmdp);
625 if (young)
626 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
628 return young;
631 pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma, unsigned long address,
632 pmd_t *pmdp)
634 VM_WARN_ON_ONCE(!pmd_present(*pmdp));
637 * No flush is necessary. Once an invalid PTE is established, the PTE's
638 * access and dirty bits cannot be updated.
640 return pmdp_establish(vma, address, pmdp, pmd_mkinvalid(*pmdp));
642 #endif
644 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
645 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
646 pud_t pudp_invalidate(struct vm_area_struct *vma, unsigned long address,
647 pud_t *pudp)
649 VM_WARN_ON_ONCE(!pud_present(*pudp));
650 pud_t old = pudp_establish(vma, address, pudp, pud_mkinvalid(*pudp));
651 flush_pud_tlb_range(vma, address, address + HPAGE_PUD_SIZE);
652 return old;
654 #endif
657 * reserve_top_address - reserves a hole in the top of kernel address space
658 * @reserve - size of hole to reserve
660 * Can be used to relocate the fixmap area and poke a hole in the top
661 * of kernel address space to make room for a hypervisor.
663 void __init reserve_top_address(unsigned long reserve)
665 #ifdef CONFIG_X86_32
666 BUG_ON(fixmaps_set > 0);
667 __FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
668 printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
669 -reserve, __FIXADDR_TOP + PAGE_SIZE);
670 #endif
673 int fixmaps_set;
675 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
677 unsigned long address = __fix_to_virt(idx);
679 #ifdef CONFIG_X86_64
681 * Ensure that the static initial page tables are covering the
682 * fixmap completely.
684 BUILD_BUG_ON(__end_of_permanent_fixed_addresses >
685 (FIXMAP_PMD_NUM * PTRS_PER_PTE));
686 #endif
688 if (idx >= __end_of_fixed_addresses) {
689 BUG();
690 return;
692 set_pte_vaddr(address, pte);
693 fixmaps_set++;
696 void native_set_fixmap(unsigned /* enum fixed_addresses */ idx,
697 phys_addr_t phys, pgprot_t flags)
699 /* Sanitize 'prot' against any unsupported bits: */
700 pgprot_val(flags) &= __default_kernel_pte_mask;
702 __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
705 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
706 #ifdef CONFIG_X86_5LEVEL
708 * p4d_set_huge - setup kernel P4D mapping
710 * No 512GB pages yet -- always return 0
712 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
714 return 0;
718 * p4d_clear_huge - clear kernel P4D mapping when it is set
720 * No 512GB pages yet -- always return 0
722 void p4d_clear_huge(p4d_t *p4d)
725 #endif
728 * pud_set_huge - setup kernel PUD mapping
730 * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
731 * function sets up a huge page only if the complete range has the same MTRR
732 * caching mode.
734 * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
735 * page mapping attempt fails.
737 * Returns 1 on success and 0 on failure.
739 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
741 u8 uniform;
743 mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
744 if (!uniform)
745 return 0;
747 /* Bail out if we are we on a populated non-leaf entry: */
748 if (pud_present(*pud) && !pud_leaf(*pud))
749 return 0;
751 set_pte((pte_t *)pud, pfn_pte(
752 (u64)addr >> PAGE_SHIFT,
753 __pgprot(protval_4k_2_large(pgprot_val(prot)) | _PAGE_PSE)));
755 return 1;
759 * pmd_set_huge - setup kernel PMD mapping
761 * See text over pud_set_huge() above.
763 * Returns 1 on success and 0 on failure.
765 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
767 u8 uniform;
769 mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
770 if (!uniform) {
771 pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
772 __func__, addr, addr + PMD_SIZE);
773 return 0;
776 /* Bail out if we are we on a populated non-leaf entry: */
777 if (pmd_present(*pmd) && !pmd_leaf(*pmd))
778 return 0;
780 set_pte((pte_t *)pmd, pfn_pte(
781 (u64)addr >> PAGE_SHIFT,
782 __pgprot(protval_4k_2_large(pgprot_val(prot)) | _PAGE_PSE)));
784 return 1;
788 * pud_clear_huge - clear kernel PUD mapping when it is set
790 * Returns 1 on success and 0 on failure (no PUD map is found).
792 int pud_clear_huge(pud_t *pud)
794 if (pud_leaf(*pud)) {
795 pud_clear(pud);
796 return 1;
799 return 0;
803 * pmd_clear_huge - clear kernel PMD mapping when it is set
805 * Returns 1 on success and 0 on failure (no PMD map is found).
807 int pmd_clear_huge(pmd_t *pmd)
809 if (pmd_leaf(*pmd)) {
810 pmd_clear(pmd);
811 return 1;
814 return 0;
817 #ifdef CONFIG_X86_64
819 * pud_free_pmd_page - Clear pud entry and free pmd page.
820 * @pud: Pointer to a PUD.
821 * @addr: Virtual address associated with pud.
823 * Context: The pud range has been unmapped and TLB purged.
824 * Return: 1 if clearing the entry succeeded. 0 otherwise.
826 * NOTE: Callers must allow a single page allocation.
828 int pud_free_pmd_page(pud_t *pud, unsigned long addr)
830 pmd_t *pmd, *pmd_sv;
831 pte_t *pte;
832 int i;
834 pmd = pud_pgtable(*pud);
835 pmd_sv = (pmd_t *)__get_free_page(GFP_KERNEL);
836 if (!pmd_sv)
837 return 0;
839 for (i = 0; i < PTRS_PER_PMD; i++) {
840 pmd_sv[i] = pmd[i];
841 if (!pmd_none(pmd[i]))
842 pmd_clear(&pmd[i]);
845 pud_clear(pud);
847 /* INVLPG to clear all paging-structure caches */
848 flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
850 for (i = 0; i < PTRS_PER_PMD; i++) {
851 if (!pmd_none(pmd_sv[i])) {
852 pte = (pte_t *)pmd_page_vaddr(pmd_sv[i]);
853 free_page((unsigned long)pte);
857 free_page((unsigned long)pmd_sv);
859 pagetable_pmd_dtor(virt_to_ptdesc(pmd));
860 free_page((unsigned long)pmd);
862 return 1;
866 * pmd_free_pte_page - Clear pmd entry and free pte page.
867 * @pmd: Pointer to a PMD.
868 * @addr: Virtual address associated with pmd.
870 * Context: The pmd range has been unmapped and TLB purged.
871 * Return: 1 if clearing the entry succeeded. 0 otherwise.
873 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
875 pte_t *pte;
877 pte = (pte_t *)pmd_page_vaddr(*pmd);
878 pmd_clear(pmd);
880 /* INVLPG to clear all paging-structure caches */
881 flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
883 free_page((unsigned long)pte);
885 return 1;
888 #else /* !CONFIG_X86_64 */
891 * Disable free page handling on x86-PAE. This assures that ioremap()
892 * does not update sync'd pmd entries. See vmalloc_sync_one().
894 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
896 return pmd_none(*pmd);
899 #endif /* CONFIG_X86_64 */
900 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
902 pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma)
904 if (vma->vm_flags & VM_SHADOW_STACK)
905 return pte_mkwrite_shstk(pte);
907 pte = pte_mkwrite_novma(pte);
909 return pte_clear_saveddirty(pte);
912 pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
914 if (vma->vm_flags & VM_SHADOW_STACK)
915 return pmd_mkwrite_shstk(pmd);
917 pmd = pmd_mkwrite_novma(pmd);
919 return pmd_clear_saveddirty(pmd);
922 void arch_check_zapped_pte(struct vm_area_struct *vma, pte_t pte)
925 * Hardware before shadow stack can (rarely) set Dirty=1
926 * on a Write=0 PTE. So the below condition
927 * only indicates a software bug when shadow stack is
928 * supported by the HW. This checking is covered in
929 * pte_shstk().
931 VM_WARN_ON_ONCE(!(vma->vm_flags & VM_SHADOW_STACK) &&
932 pte_shstk(pte));
935 void arch_check_zapped_pmd(struct vm_area_struct *vma, pmd_t pmd)
937 /* See note in arch_check_zapped_pte() */
938 VM_WARN_ON_ONCE(!(vma->vm_flags & VM_SHADOW_STACK) &&
939 pmd_shstk(pmd));
942 void arch_check_zapped_pud(struct vm_area_struct *vma, pud_t pud)
944 /* See note in arch_check_zapped_pte() */
945 VM_WARN_ON_ONCE(!(vma->vm_flags & VM_SHADOW_STACK) && pud_shstk(pud));