1 // SPDX-License-Identifier: GPL-2.0
3 * Functions related to segment and merge handling
5 #include <linux/kernel.h>
6 #include <linux/module.h>
8 #include <linux/blkdev.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/scatterlist.h>
11 #include <linux/part_stat.h>
12 #include <linux/blk-cgroup.h>
14 #include <trace/events/block.h>
17 #include "blk-mq-sched.h"
18 #include "blk-rq-qos.h"
19 #include "blk-throttle.h"
21 static inline void bio_get_first_bvec(struct bio
*bio
, struct bio_vec
*bv
)
23 *bv
= mp_bvec_iter_bvec(bio
->bi_io_vec
, bio
->bi_iter
);
26 static inline void bio_get_last_bvec(struct bio
*bio
, struct bio_vec
*bv
)
28 struct bvec_iter iter
= bio
->bi_iter
;
31 bio_get_first_bvec(bio
, bv
);
32 if (bv
->bv_len
== bio
->bi_iter
.bi_size
)
33 return; /* this bio only has a single bvec */
35 bio_advance_iter(bio
, &iter
, iter
.bi_size
);
37 if (!iter
.bi_bvec_done
)
38 idx
= iter
.bi_idx
- 1;
39 else /* in the middle of bvec */
42 *bv
= bio
->bi_io_vec
[idx
];
45 * iter.bi_bvec_done records actual length of the last bvec
46 * if this bio ends in the middle of one io vector
48 if (iter
.bi_bvec_done
)
49 bv
->bv_len
= iter
.bi_bvec_done
;
52 static inline bool bio_will_gap(struct request_queue
*q
,
53 struct request
*prev_rq
, struct bio
*prev
, struct bio
*next
)
55 struct bio_vec pb
, nb
;
57 if (!bio_has_data(prev
) || !queue_virt_boundary(q
))
61 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
62 * is quite difficult to respect the sg gap limit. We work hard to
63 * merge a huge number of small single bios in case of mkfs.
66 bio_get_first_bvec(prev_rq
->bio
, &pb
);
68 bio_get_first_bvec(prev
, &pb
);
69 if (pb
.bv_offset
& queue_virt_boundary(q
))
73 * We don't need to worry about the situation that the merged segment
74 * ends in unaligned virt boundary:
76 * - if 'pb' ends aligned, the merged segment ends aligned
77 * - if 'pb' ends unaligned, the next bio must include
78 * one single bvec of 'nb', otherwise the 'nb' can't
81 bio_get_last_bvec(prev
, &pb
);
82 bio_get_first_bvec(next
, &nb
);
83 if (biovec_phys_mergeable(q
, &pb
, &nb
))
85 return __bvec_gap_to_prev(&q
->limits
, &pb
, nb
.bv_offset
);
88 static inline bool req_gap_back_merge(struct request
*req
, struct bio
*bio
)
90 return bio_will_gap(req
->q
, req
, req
->biotail
, bio
);
93 static inline bool req_gap_front_merge(struct request
*req
, struct bio
*bio
)
95 return bio_will_gap(req
->q
, NULL
, bio
, req
->bio
);
99 * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size
100 * is defined as 'unsigned int', meantime it has to be aligned to with the
101 * logical block size, which is the minimum accepted unit by hardware.
103 static unsigned int bio_allowed_max_sectors(const struct queue_limits
*lim
)
105 return round_down(UINT_MAX
, lim
->logical_block_size
) >> SECTOR_SHIFT
;
108 static struct bio
*bio_submit_split(struct bio
*bio
, int split_sectors
)
110 if (unlikely(split_sectors
< 0))
116 split
= bio_split(bio
, split_sectors
, GFP_NOIO
,
117 &bio
->bi_bdev
->bd_disk
->bio_split
);
119 split_sectors
= PTR_ERR(split
);
122 split
->bi_opf
|= REQ_NOMERGE
;
123 blkcg_bio_issue_init(split
);
124 bio_chain(split
, bio
);
125 trace_block_split(split
, bio
->bi_iter
.bi_sector
);
126 WARN_ON_ONCE(bio_zone_write_plugging(bio
));
127 submit_bio_noacct(bio
);
133 bio
->bi_status
= errno_to_blk_status(split_sectors
);
138 struct bio
*bio_split_discard(struct bio
*bio
, const struct queue_limits
*lim
,
141 unsigned int max_discard_sectors
, granularity
;
143 unsigned split_sectors
;
147 granularity
= max(lim
->discard_granularity
>> 9, 1U);
149 max_discard_sectors
=
150 min(lim
->max_discard_sectors
, bio_allowed_max_sectors(lim
));
151 max_discard_sectors
-= max_discard_sectors
% granularity
;
152 if (unlikely(!max_discard_sectors
))
155 if (bio_sectors(bio
) <= max_discard_sectors
)
158 split_sectors
= max_discard_sectors
;
161 * If the next starting sector would be misaligned, stop the discard at
162 * the previous aligned sector.
164 tmp
= bio
->bi_iter
.bi_sector
+ split_sectors
-
165 ((lim
->discard_alignment
>> 9) % granularity
);
166 tmp
= sector_div(tmp
, granularity
);
168 if (split_sectors
> tmp
)
169 split_sectors
-= tmp
;
171 return bio_submit_split(bio
, split_sectors
);
174 static inline unsigned int blk_boundary_sectors(const struct queue_limits
*lim
,
178 * chunk_sectors must be a multiple of atomic_write_boundary_sectors if
181 if (is_atomic
&& lim
->atomic_write_boundary_sectors
)
182 return lim
->atomic_write_boundary_sectors
;
184 return lim
->chunk_sectors
;
188 * Return the maximum number of sectors from the start of a bio that may be
189 * submitted as a single request to a block device. If enough sectors remain,
190 * align the end to the physical block size. Otherwise align the end to the
191 * logical block size. This approach minimizes the number of non-aligned
192 * requests that are submitted to a block device if the start of a bio is not
193 * aligned to a physical block boundary.
195 static inline unsigned get_max_io_size(struct bio
*bio
,
196 const struct queue_limits
*lim
)
198 unsigned pbs
= lim
->physical_block_size
>> SECTOR_SHIFT
;
199 unsigned lbs
= lim
->logical_block_size
>> SECTOR_SHIFT
;
200 bool is_atomic
= bio
->bi_opf
& REQ_ATOMIC
;
201 unsigned boundary_sectors
= blk_boundary_sectors(lim
, is_atomic
);
202 unsigned max_sectors
, start
, end
;
205 * We ignore lim->max_sectors for atomic writes because it may less
206 * than the actual bio size, which we cannot tolerate.
208 if (bio_op(bio
) == REQ_OP_WRITE_ZEROES
)
209 max_sectors
= lim
->max_write_zeroes_sectors
;
211 max_sectors
= lim
->atomic_write_max_sectors
;
213 max_sectors
= lim
->max_sectors
;
215 if (boundary_sectors
) {
216 max_sectors
= min(max_sectors
,
217 blk_boundary_sectors_left(bio
->bi_iter
.bi_sector
,
221 start
= bio
->bi_iter
.bi_sector
& (pbs
- 1);
222 end
= (start
+ max_sectors
) & ~(pbs
- 1);
225 return max_sectors
& ~(lbs
- 1);
229 * get_max_segment_size() - maximum number of bytes to add as a single segment
230 * @lim: Request queue limits.
231 * @paddr: address of the range to add
232 * @len: maximum length available to add at @paddr
234 * Returns the maximum number of bytes of the range starting at @paddr that can
235 * be added to a single segment.
237 static inline unsigned get_max_segment_size(const struct queue_limits
*lim
,
238 phys_addr_t paddr
, unsigned int len
)
241 * Prevent an overflow if mask = ULONG_MAX and offset = 0 by adding 1
242 * after having calculated the minimum.
244 return min_t(unsigned long, len
,
245 min(lim
->seg_boundary_mask
- (lim
->seg_boundary_mask
& paddr
),
246 (unsigned long)lim
->max_segment_size
- 1) + 1);
250 * bvec_split_segs - verify whether or not a bvec should be split in the middle
251 * @lim: [in] queue limits to split based on
252 * @bv: [in] bvec to examine
253 * @nsegs: [in,out] Number of segments in the bio being built. Incremented
254 * by the number of segments from @bv that may be appended to that
255 * bio without exceeding @max_segs
256 * @bytes: [in,out] Number of bytes in the bio being built. Incremented
257 * by the number of bytes from @bv that may be appended to that
258 * bio without exceeding @max_bytes
259 * @max_segs: [in] upper bound for *@nsegs
260 * @max_bytes: [in] upper bound for *@bytes
262 * When splitting a bio, it can happen that a bvec is encountered that is too
263 * big to fit in a single segment and hence that it has to be split in the
264 * middle. This function verifies whether or not that should happen. The value
265 * %true is returned if and only if appending the entire @bv to a bio with
266 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
269 static bool bvec_split_segs(const struct queue_limits
*lim
,
270 const struct bio_vec
*bv
, unsigned *nsegs
, unsigned *bytes
,
271 unsigned max_segs
, unsigned max_bytes
)
273 unsigned max_len
= min(max_bytes
, UINT_MAX
) - *bytes
;
274 unsigned len
= min(bv
->bv_len
, max_len
);
275 unsigned total_len
= 0;
276 unsigned seg_size
= 0;
278 while (len
&& *nsegs
< max_segs
) {
279 seg_size
= get_max_segment_size(lim
, bvec_phys(bv
) + total_len
, len
);
282 total_len
+= seg_size
;
285 if ((bv
->bv_offset
+ total_len
) & lim
->virt_boundary_mask
)
291 /* tell the caller to split the bvec if it is too big to fit */
292 return len
> 0 || bv
->bv_len
> max_len
;
295 static unsigned int bio_split_alignment(struct bio
*bio
,
296 const struct queue_limits
*lim
)
298 if (op_is_write(bio_op(bio
)) && lim
->zone_write_granularity
)
299 return lim
->zone_write_granularity
;
300 return lim
->logical_block_size
;
304 * bio_split_rw_at - check if and where to split a read/write bio
305 * @bio: [in] bio to be split
306 * @lim: [in] queue limits to split based on
307 * @segs: [out] number of segments in the bio with the first half of the sectors
308 * @max_bytes: [in] maximum number of bytes per bio
310 * Find out if @bio needs to be split to fit the queue limits in @lim and a
311 * maximum size of @max_bytes. Returns a negative error number if @bio can't be
312 * split, 0 if the bio doesn't have to be split, or a positive sector offset if
313 * @bio needs to be split.
315 int bio_split_rw_at(struct bio
*bio
, const struct queue_limits
*lim
,
316 unsigned *segs
, unsigned max_bytes
)
318 struct bio_vec bv
, bvprv
, *bvprvp
= NULL
;
319 struct bvec_iter iter
;
320 unsigned nsegs
= 0, bytes
= 0;
322 bio_for_each_bvec(bv
, bio
, iter
) {
324 * If the queue doesn't support SG gaps and adding this
325 * offset would create a gap, disallow it.
327 if (bvprvp
&& bvec_gap_to_prev(lim
, bvprvp
, bv
.bv_offset
))
330 if (nsegs
< lim
->max_segments
&&
331 bytes
+ bv
.bv_len
<= max_bytes
&&
332 bv
.bv_offset
+ bv
.bv_len
<= PAGE_SIZE
) {
336 if (bvec_split_segs(lim
, &bv
, &nsegs
, &bytes
,
337 lim
->max_segments
, max_bytes
))
348 if (bio
->bi_opf
& REQ_ATOMIC
)
352 * We can't sanely support splitting for a REQ_NOWAIT bio. End it
353 * with EAGAIN if splitting is required and return an error pointer.
355 if (bio
->bi_opf
& REQ_NOWAIT
)
361 * Individual bvecs might not be logical block aligned. Round down the
362 * split size so that each bio is properly block size aligned, even if
363 * we do not use the full hardware limits.
365 bytes
= ALIGN_DOWN(bytes
, bio_split_alignment(bio
, lim
));
368 * Bio splitting may cause subtle trouble such as hang when doing sync
369 * iopoll in direct IO routine. Given performance gain of iopoll for
370 * big IO can be trival, disable iopoll when split needed.
372 bio_clear_polled(bio
);
373 return bytes
>> SECTOR_SHIFT
;
375 EXPORT_SYMBOL_GPL(bio_split_rw_at
);
377 struct bio
*bio_split_rw(struct bio
*bio
, const struct queue_limits
*lim
,
380 return bio_submit_split(bio
,
381 bio_split_rw_at(bio
, lim
, nr_segs
,
382 get_max_io_size(bio
, lim
) << SECTOR_SHIFT
));
386 * REQ_OP_ZONE_APPEND bios must never be split by the block layer.
388 * But we want the nr_segs calculation provided by bio_split_rw_at, and having
389 * a good sanity check that the submitter built the bio correctly is nice to
392 struct bio
*bio_split_zone_append(struct bio
*bio
,
393 const struct queue_limits
*lim
, unsigned *nr_segs
)
397 split_sectors
= bio_split_rw_at(bio
, lim
, nr_segs
,
398 lim
->max_zone_append_sectors
<< SECTOR_SHIFT
);
399 if (WARN_ON_ONCE(split_sectors
> 0))
400 split_sectors
= -EINVAL
;
401 return bio_submit_split(bio
, split_sectors
);
404 struct bio
*bio_split_write_zeroes(struct bio
*bio
,
405 const struct queue_limits
*lim
, unsigned *nsegs
)
407 unsigned int max_sectors
= get_max_io_size(bio
, lim
);
412 * An unset limit should normally not happen, as bio submission is keyed
413 * off having a non-zero limit. But SCSI can clear the limit in the
414 * I/O completion handler, and we can race and see this. Splitting to a
415 * zero limit obviously doesn't make sense, so band-aid it here.
419 if (bio_sectors(bio
) <= max_sectors
)
421 return bio_submit_split(bio
, max_sectors
);
425 * bio_split_to_limits - split a bio to fit the queue limits
426 * @bio: bio to be split
428 * Check if @bio needs splitting based on the queue limits of @bio->bi_bdev, and
429 * if so split off a bio fitting the limits from the beginning of @bio and
430 * return it. @bio is shortened to the remainder and re-submitted.
432 * The split bio is allocated from @q->bio_split, which is provided by the
435 struct bio
*bio_split_to_limits(struct bio
*bio
)
437 unsigned int nr_segs
;
439 return __bio_split_to_limits(bio
, bdev_limits(bio
->bi_bdev
), &nr_segs
);
441 EXPORT_SYMBOL(bio_split_to_limits
);
443 unsigned int blk_recalc_rq_segments(struct request
*rq
)
445 unsigned int nr_phys_segs
= 0;
446 unsigned int bytes
= 0;
447 struct req_iterator iter
;
453 switch (bio_op(rq
->bio
)) {
455 case REQ_OP_SECURE_ERASE
:
456 if (queue_max_discard_segments(rq
->q
) > 1) {
457 struct bio
*bio
= rq
->bio
;
464 case REQ_OP_WRITE_ZEROES
:
470 rq_for_each_bvec(bv
, rq
, iter
)
471 bvec_split_segs(&rq
->q
->limits
, &bv
, &nr_phys_segs
, &bytes
,
476 static inline struct scatterlist
*blk_next_sg(struct scatterlist
**sg
,
477 struct scatterlist
*sglist
)
483 * If the driver previously mapped a shorter list, we could see a
484 * termination bit prematurely unless it fully inits the sg table
485 * on each mapping. We KNOW that there must be more entries here
486 * or the driver would be buggy, so force clear the termination bit
487 * to avoid doing a full sg_init_table() in drivers for each command.
493 static unsigned blk_bvec_map_sg(struct request_queue
*q
,
494 struct bio_vec
*bvec
, struct scatterlist
*sglist
,
495 struct scatterlist
**sg
)
497 unsigned nbytes
= bvec
->bv_len
;
498 unsigned nsegs
= 0, total
= 0;
501 unsigned offset
= bvec
->bv_offset
+ total
;
502 unsigned len
= get_max_segment_size(&q
->limits
,
503 bvec_phys(bvec
) + total
, nbytes
);
504 struct page
*page
= bvec
->bv_page
;
507 * Unfortunately a fair number of drivers barf on scatterlists
508 * that have an offset larger than PAGE_SIZE, despite other
509 * subsystems dealing with that invariant just fine. For now
510 * stick to the legacy format where we never present those from
511 * the block layer, but the code below should be removed once
512 * these offenders (mostly MMC/SD drivers) are fixed.
514 page
+= (offset
>> PAGE_SHIFT
);
515 offset
&= ~PAGE_MASK
;
517 *sg
= blk_next_sg(sg
, sglist
);
518 sg_set_page(*sg
, page
, len
, offset
);
528 static inline int __blk_bvec_map_sg(struct bio_vec bv
,
529 struct scatterlist
*sglist
, struct scatterlist
**sg
)
531 *sg
= blk_next_sg(sg
, sglist
);
532 sg_set_page(*sg
, bv
.bv_page
, bv
.bv_len
, bv
.bv_offset
);
536 /* only try to merge bvecs into one sg if they are from two bios */
538 __blk_segment_map_sg_merge(struct request_queue
*q
, struct bio_vec
*bvec
,
539 struct bio_vec
*bvprv
, struct scatterlist
**sg
)
542 int nbytes
= bvec
->bv_len
;
547 if ((*sg
)->length
+ nbytes
> queue_max_segment_size(q
))
550 if (!biovec_phys_mergeable(q
, bvprv
, bvec
))
553 (*sg
)->length
+= nbytes
;
558 static int __blk_bios_map_sg(struct request_queue
*q
, struct bio
*bio
,
559 struct scatterlist
*sglist
,
560 struct scatterlist
**sg
)
562 struct bio_vec bvec
, bvprv
= { NULL
};
563 struct bvec_iter iter
;
565 bool new_bio
= false;
568 bio_for_each_bvec(bvec
, bio
, iter
) {
570 * Only try to merge bvecs from two bios given we
571 * have done bio internal merge when adding pages
575 __blk_segment_map_sg_merge(q
, &bvec
, &bvprv
, sg
))
578 if (bvec
.bv_offset
+ bvec
.bv_len
<= PAGE_SIZE
)
579 nsegs
+= __blk_bvec_map_sg(bvec
, sglist
, sg
);
581 nsegs
+= blk_bvec_map_sg(q
, &bvec
, sglist
, sg
);
585 if (likely(bio
->bi_iter
.bi_size
)) {
595 * map a request to scatterlist, return number of sg entries setup. Caller
596 * must make sure sg can hold rq->nr_phys_segments entries
598 int __blk_rq_map_sg(struct request_queue
*q
, struct request
*rq
,
599 struct scatterlist
*sglist
, struct scatterlist
**last_sg
)
603 if (rq
->rq_flags
& RQF_SPECIAL_PAYLOAD
)
604 nsegs
= __blk_bvec_map_sg(rq
->special_vec
, sglist
, last_sg
);
606 nsegs
= __blk_bios_map_sg(q
, rq
->bio
, sglist
, last_sg
);
609 sg_mark_end(*last_sg
);
612 * Something must have been wrong if the figured number of
613 * segment is bigger than number of req's physical segments
615 WARN_ON(nsegs
> blk_rq_nr_phys_segments(rq
));
619 EXPORT_SYMBOL(__blk_rq_map_sg
);
621 static inline unsigned int blk_rq_get_max_sectors(struct request
*rq
,
624 struct request_queue
*q
= rq
->q
;
625 struct queue_limits
*lim
= &q
->limits
;
626 unsigned int max_sectors
, boundary_sectors
;
627 bool is_atomic
= rq
->cmd_flags
& REQ_ATOMIC
;
629 if (blk_rq_is_passthrough(rq
))
630 return q
->limits
.max_hw_sectors
;
632 boundary_sectors
= blk_boundary_sectors(lim
, is_atomic
);
633 max_sectors
= blk_queue_get_max_sectors(rq
);
635 if (!boundary_sectors
||
636 req_op(rq
) == REQ_OP_DISCARD
||
637 req_op(rq
) == REQ_OP_SECURE_ERASE
)
639 return min(max_sectors
,
640 blk_boundary_sectors_left(offset
, boundary_sectors
));
643 static inline int ll_new_hw_segment(struct request
*req
, struct bio
*bio
,
644 unsigned int nr_phys_segs
)
646 if (!blk_cgroup_mergeable(req
, bio
))
649 if (blk_integrity_merge_bio(req
->q
, req
, bio
) == false)
652 /* discard request merge won't add new segment */
653 if (req_op(req
) == REQ_OP_DISCARD
)
656 if (req
->nr_phys_segments
+ nr_phys_segs
> blk_rq_get_max_segments(req
))
660 * This will form the start of a new hw segment. Bump both
663 req
->nr_phys_segments
+= nr_phys_segs
;
664 if (bio_integrity(bio
))
665 req
->nr_integrity_segments
+= blk_rq_count_integrity_sg(req
->q
,
670 req_set_nomerge(req
->q
, req
);
674 int ll_back_merge_fn(struct request
*req
, struct bio
*bio
, unsigned int nr_segs
)
676 if (req_gap_back_merge(req
, bio
))
678 if (blk_integrity_rq(req
) &&
679 integrity_req_gap_back_merge(req
, bio
))
681 if (!bio_crypt_ctx_back_mergeable(req
, bio
))
683 if (blk_rq_sectors(req
) + bio_sectors(bio
) >
684 blk_rq_get_max_sectors(req
, blk_rq_pos(req
))) {
685 req_set_nomerge(req
->q
, req
);
689 return ll_new_hw_segment(req
, bio
, nr_segs
);
692 static int ll_front_merge_fn(struct request
*req
, struct bio
*bio
,
693 unsigned int nr_segs
)
695 if (req_gap_front_merge(req
, bio
))
697 if (blk_integrity_rq(req
) &&
698 integrity_req_gap_front_merge(req
, bio
))
700 if (!bio_crypt_ctx_front_mergeable(req
, bio
))
702 if (blk_rq_sectors(req
) + bio_sectors(bio
) >
703 blk_rq_get_max_sectors(req
, bio
->bi_iter
.bi_sector
)) {
704 req_set_nomerge(req
->q
, req
);
708 return ll_new_hw_segment(req
, bio
, nr_segs
);
711 static bool req_attempt_discard_merge(struct request_queue
*q
, struct request
*req
,
712 struct request
*next
)
714 unsigned short segments
= blk_rq_nr_discard_segments(req
);
716 if (segments
>= queue_max_discard_segments(q
))
718 if (blk_rq_sectors(req
) + bio_sectors(next
->bio
) >
719 blk_rq_get_max_sectors(req
, blk_rq_pos(req
)))
722 req
->nr_phys_segments
= segments
+ blk_rq_nr_discard_segments(next
);
725 req_set_nomerge(q
, req
);
729 static int ll_merge_requests_fn(struct request_queue
*q
, struct request
*req
,
730 struct request
*next
)
732 int total_phys_segments
;
734 if (req_gap_back_merge(req
, next
->bio
))
738 * Will it become too large?
740 if ((blk_rq_sectors(req
) + blk_rq_sectors(next
)) >
741 blk_rq_get_max_sectors(req
, blk_rq_pos(req
)))
744 total_phys_segments
= req
->nr_phys_segments
+ next
->nr_phys_segments
;
745 if (total_phys_segments
> blk_rq_get_max_segments(req
))
748 if (!blk_cgroup_mergeable(req
, next
->bio
))
751 if (blk_integrity_merge_rq(q
, req
, next
) == false)
754 if (!bio_crypt_ctx_merge_rq(req
, next
))
758 req
->nr_phys_segments
= total_phys_segments
;
759 req
->nr_integrity_segments
+= next
->nr_integrity_segments
;
764 * blk_rq_set_mixed_merge - mark a request as mixed merge
765 * @rq: request to mark as mixed merge
768 * @rq is about to be mixed merged. Make sure the attributes
769 * which can be mixed are set in each bio and mark @rq as mixed
772 static void blk_rq_set_mixed_merge(struct request
*rq
)
774 blk_opf_t ff
= rq
->cmd_flags
& REQ_FAILFAST_MASK
;
777 if (rq
->rq_flags
& RQF_MIXED_MERGE
)
781 * @rq will no longer represent mixable attributes for all the
782 * contained bios. It will just track those of the first one.
783 * Distributes the attributs to each bio.
785 for (bio
= rq
->bio
; bio
; bio
= bio
->bi_next
) {
786 WARN_ON_ONCE((bio
->bi_opf
& REQ_FAILFAST_MASK
) &&
787 (bio
->bi_opf
& REQ_FAILFAST_MASK
) != ff
);
790 rq
->rq_flags
|= RQF_MIXED_MERGE
;
793 static inline blk_opf_t
bio_failfast(const struct bio
*bio
)
795 if (bio
->bi_opf
& REQ_RAHEAD
)
796 return REQ_FAILFAST_MASK
;
798 return bio
->bi_opf
& REQ_FAILFAST_MASK
;
802 * After we are marked as MIXED_MERGE, any new RA bio has to be updated
803 * as failfast, and request's failfast has to be updated in case of
806 static inline void blk_update_mixed_merge(struct request
*req
,
807 struct bio
*bio
, bool front_merge
)
809 if (req
->rq_flags
& RQF_MIXED_MERGE
) {
810 if (bio
->bi_opf
& REQ_RAHEAD
)
811 bio
->bi_opf
|= REQ_FAILFAST_MASK
;
814 req
->cmd_flags
&= ~REQ_FAILFAST_MASK
;
815 req
->cmd_flags
|= bio
->bi_opf
& REQ_FAILFAST_MASK
;
820 static void blk_account_io_merge_request(struct request
*req
)
822 if (req
->rq_flags
& RQF_IO_STAT
) {
824 part_stat_inc(req
->part
, merges
[op_stat_group(req_op(req
))]);
825 part_stat_local_dec(req
->part
,
826 in_flight
[op_is_write(req_op(req
))]);
831 static enum elv_merge
blk_try_req_merge(struct request
*req
,
832 struct request
*next
)
834 if (blk_discard_mergable(req
))
835 return ELEVATOR_DISCARD_MERGE
;
836 else if (blk_rq_pos(req
) + blk_rq_sectors(req
) == blk_rq_pos(next
))
837 return ELEVATOR_BACK_MERGE
;
839 return ELEVATOR_NO_MERGE
;
842 static bool blk_atomic_write_mergeable_rq_bio(struct request
*rq
,
845 return (rq
->cmd_flags
& REQ_ATOMIC
) == (bio
->bi_opf
& REQ_ATOMIC
);
848 static bool blk_atomic_write_mergeable_rqs(struct request
*rq
,
849 struct request
*next
)
851 return (rq
->cmd_flags
& REQ_ATOMIC
) == (next
->cmd_flags
& REQ_ATOMIC
);
855 * For non-mq, this has to be called with the request spinlock acquired.
856 * For mq with scheduling, the appropriate queue wide lock should be held.
858 static struct request
*attempt_merge(struct request_queue
*q
,
859 struct request
*req
, struct request
*next
)
861 if (!rq_mergeable(req
) || !rq_mergeable(next
))
864 if (req_op(req
) != req_op(next
))
867 if (req
->bio
->bi_write_hint
!= next
->bio
->bi_write_hint
)
869 if (req
->bio
->bi_ioprio
!= next
->bio
->bi_ioprio
)
871 if (!blk_atomic_write_mergeable_rqs(req
, next
))
875 * If we are allowed to merge, then append bio list
876 * from next to rq and release next. merge_requests_fn
877 * will have updated segment counts, update sector
878 * counts here. Handle DISCARDs separately, as they
879 * have separate settings.
882 switch (blk_try_req_merge(req
, next
)) {
883 case ELEVATOR_DISCARD_MERGE
:
884 if (!req_attempt_discard_merge(q
, req
, next
))
887 case ELEVATOR_BACK_MERGE
:
888 if (!ll_merge_requests_fn(q
, req
, next
))
896 * If failfast settings disagree or any of the two is already
897 * a mixed merge, mark both as mixed before proceeding. This
898 * makes sure that all involved bios have mixable attributes
901 if (((req
->rq_flags
| next
->rq_flags
) & RQF_MIXED_MERGE
) ||
902 (req
->cmd_flags
& REQ_FAILFAST_MASK
) !=
903 (next
->cmd_flags
& REQ_FAILFAST_MASK
)) {
904 blk_rq_set_mixed_merge(req
);
905 blk_rq_set_mixed_merge(next
);
909 * At this point we have either done a back merge or front merge. We
910 * need the smaller start_time_ns of the merged requests to be the
911 * current request for accounting purposes.
913 if (next
->start_time_ns
< req
->start_time_ns
)
914 req
->start_time_ns
= next
->start_time_ns
;
916 req
->biotail
->bi_next
= next
->bio
;
917 req
->biotail
= next
->biotail
;
919 req
->__data_len
+= blk_rq_bytes(next
);
921 if (!blk_discard_mergable(req
))
922 elv_merge_requests(q
, req
, next
);
924 blk_crypto_rq_put_keyslot(next
);
927 * 'next' is going away, so update stats accordingly
929 blk_account_io_merge_request(next
);
931 trace_block_rq_merge(next
);
934 * ownership of bio passed from next to req, return 'next' for
941 static struct request
*attempt_back_merge(struct request_queue
*q
,
944 struct request
*next
= elv_latter_request(q
, rq
);
947 return attempt_merge(q
, rq
, next
);
952 static struct request
*attempt_front_merge(struct request_queue
*q
,
955 struct request
*prev
= elv_former_request(q
, rq
);
958 return attempt_merge(q
, prev
, rq
);
964 * Try to merge 'next' into 'rq'. Return true if the merge happened, false
965 * otherwise. The caller is responsible for freeing 'next' if the merge
968 bool blk_attempt_req_merge(struct request_queue
*q
, struct request
*rq
,
969 struct request
*next
)
971 return attempt_merge(q
, rq
, next
);
974 bool blk_rq_merge_ok(struct request
*rq
, struct bio
*bio
)
976 if (!rq_mergeable(rq
) || !bio_mergeable(bio
))
979 if (req_op(rq
) != bio_op(bio
))
982 if (!blk_cgroup_mergeable(rq
, bio
))
984 if (blk_integrity_merge_bio(rq
->q
, rq
, bio
) == false)
986 if (!bio_crypt_rq_ctx_compatible(rq
, bio
))
988 if (rq
->bio
->bi_write_hint
!= bio
->bi_write_hint
)
990 if (rq
->bio
->bi_ioprio
!= bio
->bi_ioprio
)
992 if (blk_atomic_write_mergeable_rq_bio(rq
, bio
) == false)
998 enum elv_merge
blk_try_merge(struct request
*rq
, struct bio
*bio
)
1000 if (blk_discard_mergable(rq
))
1001 return ELEVATOR_DISCARD_MERGE
;
1002 else if (blk_rq_pos(rq
) + blk_rq_sectors(rq
) == bio
->bi_iter
.bi_sector
)
1003 return ELEVATOR_BACK_MERGE
;
1004 else if (blk_rq_pos(rq
) - bio_sectors(bio
) == bio
->bi_iter
.bi_sector
)
1005 return ELEVATOR_FRONT_MERGE
;
1006 return ELEVATOR_NO_MERGE
;
1009 static void blk_account_io_merge_bio(struct request
*req
)
1011 if (req
->rq_flags
& RQF_IO_STAT
) {
1013 part_stat_inc(req
->part
, merges
[op_stat_group(req_op(req
))]);
1018 enum bio_merge_status
bio_attempt_back_merge(struct request
*req
,
1019 struct bio
*bio
, unsigned int nr_segs
)
1021 const blk_opf_t ff
= bio_failfast(bio
);
1023 if (!ll_back_merge_fn(req
, bio
, nr_segs
))
1024 return BIO_MERGE_FAILED
;
1026 trace_block_bio_backmerge(bio
);
1027 rq_qos_merge(req
->q
, req
, bio
);
1029 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1030 blk_rq_set_mixed_merge(req
);
1032 blk_update_mixed_merge(req
, bio
, false);
1034 if (req
->rq_flags
& RQF_ZONE_WRITE_PLUGGING
)
1035 blk_zone_write_plug_bio_merged(bio
);
1037 req
->biotail
->bi_next
= bio
;
1039 req
->__data_len
+= bio
->bi_iter
.bi_size
;
1041 bio_crypt_free_ctx(bio
);
1043 blk_account_io_merge_bio(req
);
1044 return BIO_MERGE_OK
;
1047 static enum bio_merge_status
bio_attempt_front_merge(struct request
*req
,
1048 struct bio
*bio
, unsigned int nr_segs
)
1050 const blk_opf_t ff
= bio_failfast(bio
);
1053 * A front merge for writes to sequential zones of a zoned block device
1054 * can happen only if the user submitted writes out of order. Do not
1055 * merge such write to let it fail.
1057 if (req
->rq_flags
& RQF_ZONE_WRITE_PLUGGING
)
1058 return BIO_MERGE_FAILED
;
1060 if (!ll_front_merge_fn(req
, bio
, nr_segs
))
1061 return BIO_MERGE_FAILED
;
1063 trace_block_bio_frontmerge(bio
);
1064 rq_qos_merge(req
->q
, req
, bio
);
1066 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1067 blk_rq_set_mixed_merge(req
);
1069 blk_update_mixed_merge(req
, bio
, true);
1071 bio
->bi_next
= req
->bio
;
1074 req
->__sector
= bio
->bi_iter
.bi_sector
;
1075 req
->__data_len
+= bio
->bi_iter
.bi_size
;
1077 bio_crypt_do_front_merge(req
, bio
);
1079 blk_account_io_merge_bio(req
);
1080 return BIO_MERGE_OK
;
1083 static enum bio_merge_status
bio_attempt_discard_merge(struct request_queue
*q
,
1084 struct request
*req
, struct bio
*bio
)
1086 unsigned short segments
= blk_rq_nr_discard_segments(req
);
1088 if (segments
>= queue_max_discard_segments(q
))
1090 if (blk_rq_sectors(req
) + bio_sectors(bio
) >
1091 blk_rq_get_max_sectors(req
, blk_rq_pos(req
)))
1094 rq_qos_merge(q
, req
, bio
);
1096 req
->biotail
->bi_next
= bio
;
1098 req
->__data_len
+= bio
->bi_iter
.bi_size
;
1099 req
->nr_phys_segments
= segments
+ 1;
1101 blk_account_io_merge_bio(req
);
1102 return BIO_MERGE_OK
;
1104 req_set_nomerge(q
, req
);
1105 return BIO_MERGE_FAILED
;
1108 static enum bio_merge_status
blk_attempt_bio_merge(struct request_queue
*q
,
1111 unsigned int nr_segs
,
1112 bool sched_allow_merge
)
1114 if (!blk_rq_merge_ok(rq
, bio
))
1115 return BIO_MERGE_NONE
;
1117 switch (blk_try_merge(rq
, bio
)) {
1118 case ELEVATOR_BACK_MERGE
:
1119 if (!sched_allow_merge
|| blk_mq_sched_allow_merge(q
, rq
, bio
))
1120 return bio_attempt_back_merge(rq
, bio
, nr_segs
);
1122 case ELEVATOR_FRONT_MERGE
:
1123 if (!sched_allow_merge
|| blk_mq_sched_allow_merge(q
, rq
, bio
))
1124 return bio_attempt_front_merge(rq
, bio
, nr_segs
);
1126 case ELEVATOR_DISCARD_MERGE
:
1127 return bio_attempt_discard_merge(q
, rq
, bio
);
1129 return BIO_MERGE_NONE
;
1132 return BIO_MERGE_FAILED
;
1136 * blk_attempt_plug_merge - try to merge with %current's plugged list
1137 * @q: request_queue new bio is being queued at
1138 * @bio: new bio being queued
1139 * @nr_segs: number of segments in @bio
1140 * from the passed in @q already in the plug list
1142 * Determine whether @bio being queued on @q can be merged with the previous
1143 * request on %current's plugged list. Returns %true if merge was successful,
1146 * Plugging coalesces IOs from the same issuer for the same purpose without
1147 * going through @q->queue_lock. As such it's more of an issuing mechanism
1148 * than scheduling, and the request, while may have elvpriv data, is not
1149 * added on the elevator at this point. In addition, we don't have
1150 * reliable access to the elevator outside queue lock. Only check basic
1151 * merging parameters without querying the elevator.
1153 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1155 bool blk_attempt_plug_merge(struct request_queue
*q
, struct bio
*bio
,
1156 unsigned int nr_segs
)
1158 struct blk_plug
*plug
= current
->plug
;
1161 if (!plug
|| rq_list_empty(&plug
->mq_list
))
1164 rq_list_for_each(&plug
->mq_list
, rq
) {
1166 if (blk_attempt_bio_merge(q
, rq
, bio
, nr_segs
, false) ==
1173 * Only keep iterating plug list for merges if we have multiple
1176 if (!plug
->multiple_queues
)
1183 * Iterate list of requests and see if we can merge this bio with any
1186 bool blk_bio_list_merge(struct request_queue
*q
, struct list_head
*list
,
1187 struct bio
*bio
, unsigned int nr_segs
)
1192 list_for_each_entry_reverse(rq
, list
, queuelist
) {
1196 switch (blk_attempt_bio_merge(q
, rq
, bio
, nr_segs
, true)) {
1197 case BIO_MERGE_NONE
:
1201 case BIO_MERGE_FAILED
:
1209 EXPORT_SYMBOL_GPL(blk_bio_list_merge
);
1211 bool blk_mq_sched_try_merge(struct request_queue
*q
, struct bio
*bio
,
1212 unsigned int nr_segs
, struct request
**merged_request
)
1216 switch (elv_merge(q
, &rq
, bio
)) {
1217 case ELEVATOR_BACK_MERGE
:
1218 if (!blk_mq_sched_allow_merge(q
, rq
, bio
))
1220 if (bio_attempt_back_merge(rq
, bio
, nr_segs
) != BIO_MERGE_OK
)
1222 *merged_request
= attempt_back_merge(q
, rq
);
1223 if (!*merged_request
)
1224 elv_merged_request(q
, rq
, ELEVATOR_BACK_MERGE
);
1226 case ELEVATOR_FRONT_MERGE
:
1227 if (!blk_mq_sched_allow_merge(q
, rq
, bio
))
1229 if (bio_attempt_front_merge(rq
, bio
, nr_segs
) != BIO_MERGE_OK
)
1231 *merged_request
= attempt_front_merge(q
, rq
);
1232 if (!*merged_request
)
1233 elv_merged_request(q
, rq
, ELEVATOR_FRONT_MERGE
);
1235 case ELEVATOR_DISCARD_MERGE
:
1236 return bio_attempt_discard_merge(q
, rq
, bio
) == BIO_MERGE_OK
;
1241 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge
);