1 // SPDX-License-Identifier: GPL-2.0-only
2 // Copyright (C) 2014 Broadcom Corporation
4 #include <linux/delay.h>
6 #include <linux/interrupt.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
11 #include <linux/platform_device.h>
12 #include <linux/slab.h>
14 #define IDM_CTRL_DIRECT_OFFSET 0x00
15 #define CFG_OFFSET 0x00
16 #define CFG_RESET_SHIFT 31
17 #define CFG_EN_SHIFT 30
18 #define CFG_SLAVE_ADDR_0_SHIFT 28
19 #define CFG_M_RETRY_CNT_SHIFT 16
20 #define CFG_M_RETRY_CNT_MASK 0x0f
22 #define TIM_CFG_OFFSET 0x04
23 #define TIM_CFG_MODE_400_SHIFT 31
24 #define TIM_RAND_SLAVE_STRETCH_SHIFT 24
25 #define TIM_RAND_SLAVE_STRETCH_MASK 0x7f
26 #define TIM_PERIODIC_SLAVE_STRETCH_SHIFT 16
27 #define TIM_PERIODIC_SLAVE_STRETCH_MASK 0x7f
29 #define S_CFG_SMBUS_ADDR_OFFSET 0x08
30 #define S_CFG_EN_NIC_SMB_ADDR3_SHIFT 31
31 #define S_CFG_NIC_SMB_ADDR3_SHIFT 24
32 #define S_CFG_NIC_SMB_ADDR3_MASK 0x7f
33 #define S_CFG_EN_NIC_SMB_ADDR2_SHIFT 23
34 #define S_CFG_NIC_SMB_ADDR2_SHIFT 16
35 #define S_CFG_NIC_SMB_ADDR2_MASK 0x7f
36 #define S_CFG_EN_NIC_SMB_ADDR1_SHIFT 15
37 #define S_CFG_NIC_SMB_ADDR1_SHIFT 8
38 #define S_CFG_NIC_SMB_ADDR1_MASK 0x7f
39 #define S_CFG_EN_NIC_SMB_ADDR0_SHIFT 7
40 #define S_CFG_NIC_SMB_ADDR0_SHIFT 0
41 #define S_CFG_NIC_SMB_ADDR0_MASK 0x7f
43 #define M_FIFO_CTRL_OFFSET 0x0c
44 #define M_FIFO_RX_FLUSH_SHIFT 31
45 #define M_FIFO_TX_FLUSH_SHIFT 30
46 #define M_FIFO_RX_CNT_SHIFT 16
47 #define M_FIFO_RX_CNT_MASK 0x7f
48 #define M_FIFO_RX_THLD_SHIFT 8
49 #define M_FIFO_RX_THLD_MASK 0x3f
51 #define S_FIFO_CTRL_OFFSET 0x10
52 #define S_FIFO_RX_FLUSH_SHIFT 31
53 #define S_FIFO_TX_FLUSH_SHIFT 30
54 #define S_FIFO_RX_CNT_SHIFT 16
55 #define S_FIFO_RX_CNT_MASK 0x7f
56 #define S_FIFO_RX_THLD_SHIFT 8
57 #define S_FIFO_RX_THLD_MASK 0x3f
59 #define M_CMD_OFFSET 0x30
60 #define M_CMD_START_BUSY_SHIFT 31
61 #define M_CMD_STATUS_SHIFT 25
62 #define M_CMD_STATUS_MASK 0x07
63 #define M_CMD_STATUS_SUCCESS 0x0
64 #define M_CMD_STATUS_LOST_ARB 0x1
65 #define M_CMD_STATUS_NACK_ADDR 0x2
66 #define M_CMD_STATUS_NACK_DATA 0x3
67 #define M_CMD_STATUS_TIMEOUT 0x4
68 #define M_CMD_STATUS_FIFO_UNDERRUN 0x5
69 #define M_CMD_STATUS_RX_FIFO_FULL 0x6
70 #define M_CMD_PROTOCOL_SHIFT 9
71 #define M_CMD_PROTOCOL_MASK 0xf
72 #define M_CMD_PROTOCOL_QUICK 0x0
73 #define M_CMD_PROTOCOL_BLK_WR 0x7
74 #define M_CMD_PROTOCOL_BLK_RD 0x8
75 #define M_CMD_PROTOCOL_PROCESS 0xa
76 #define M_CMD_PEC_SHIFT 8
77 #define M_CMD_RD_CNT_SHIFT 0
78 #define M_CMD_RD_CNT_MASK 0xff
80 #define S_CMD_OFFSET 0x34
81 #define S_CMD_START_BUSY_SHIFT 31
82 #define S_CMD_STATUS_SHIFT 23
83 #define S_CMD_STATUS_MASK 0x07
84 #define S_CMD_STATUS_SUCCESS 0x0
85 #define S_CMD_STATUS_TIMEOUT 0x5
86 #define S_CMD_STATUS_MASTER_ABORT 0x7
88 #define IE_OFFSET 0x38
89 #define IE_M_RX_FIFO_FULL_SHIFT 31
90 #define IE_M_RX_THLD_SHIFT 30
91 #define IE_M_START_BUSY_SHIFT 28
92 #define IE_M_TX_UNDERRUN_SHIFT 27
93 #define IE_S_RX_FIFO_FULL_SHIFT 26
94 #define IE_S_RX_THLD_SHIFT 25
95 #define IE_S_RX_EVENT_SHIFT 24
96 #define IE_S_START_BUSY_SHIFT 23
97 #define IE_S_TX_UNDERRUN_SHIFT 22
98 #define IE_S_RD_EVENT_SHIFT 21
100 #define IS_OFFSET 0x3c
101 #define IS_M_RX_FIFO_FULL_SHIFT 31
102 #define IS_M_RX_THLD_SHIFT 30
103 #define IS_M_START_BUSY_SHIFT 28
104 #define IS_M_TX_UNDERRUN_SHIFT 27
105 #define IS_S_RX_FIFO_FULL_SHIFT 26
106 #define IS_S_RX_THLD_SHIFT 25
107 #define IS_S_RX_EVENT_SHIFT 24
108 #define IS_S_START_BUSY_SHIFT 23
109 #define IS_S_TX_UNDERRUN_SHIFT 22
110 #define IS_S_RD_EVENT_SHIFT 21
112 #define M_TX_OFFSET 0x40
113 #define M_TX_WR_STATUS_SHIFT 31
114 #define M_TX_DATA_SHIFT 0
115 #define M_TX_DATA_MASK 0xff
117 #define M_RX_OFFSET 0x44
118 #define M_RX_STATUS_SHIFT 30
119 #define M_RX_STATUS_MASK 0x03
120 #define M_RX_PEC_ERR_SHIFT 29
121 #define M_RX_DATA_SHIFT 0
122 #define M_RX_DATA_MASK 0xff
124 #define S_TX_OFFSET 0x48
125 #define S_TX_WR_STATUS_SHIFT 31
126 #define S_TX_DATA_SHIFT 0
127 #define S_TX_DATA_MASK 0xff
129 #define S_RX_OFFSET 0x4c
130 #define S_RX_STATUS_SHIFT 30
131 #define S_RX_STATUS_MASK 0x03
132 #define S_RX_PEC_ERR_SHIFT 29
133 #define S_RX_DATA_SHIFT 0
134 #define S_RX_DATA_MASK 0xff
136 #define I2C_TIMEOUT_MSEC 50000
137 #define M_TX_RX_FIFO_SIZE 64
138 #define M_RX_FIFO_MAX_THLD_VALUE (M_TX_RX_FIFO_SIZE - 1)
140 #define M_RX_MAX_READ_LEN 255
141 #define M_RX_FIFO_THLD_VALUE 50
143 #define IE_M_ALL_INTERRUPT_SHIFT 27
144 #define IE_M_ALL_INTERRUPT_MASK 0x1e
146 #define SLAVE_READ_WRITE_BIT_MASK 0x1
147 #define SLAVE_READ_WRITE_BIT_SHIFT 0x1
148 #define SLAVE_MAX_SIZE_TRANSACTION 64
149 #define SLAVE_CLOCK_STRETCH_TIME 25
151 #define IE_S_ALL_INTERRUPT_SHIFT 21
152 #define IE_S_ALL_INTERRUPT_MASK 0x3f
154 * It takes ~18us to reading 10bytes of data, hence to keep tasklet
155 * running for less time, max slave read per tasklet is set to 10 bytes.
157 #define MAX_SLAVE_RX_PER_INT 10
159 enum i2c_slave_read_status
{
160 I2C_SLAVE_RX_FIFO_EMPTY
= 0,
166 enum bus_speed_index
{
171 enum bcm_iproc_i2c_type
{
176 struct bcm_iproc_i2c_dev
{
177 struct device
*device
;
178 enum bcm_iproc_i2c_type type
;
182 void __iomem
*idm_base
;
186 /* lock for indirect access through IDM */
189 struct i2c_adapter adapter
;
190 unsigned int bus_speed
;
192 struct completion done
;
197 struct i2c_client
*slave
;
199 /* bytes that have been transferred */
200 unsigned int tx_bytes
;
201 /* bytes that have been read */
202 unsigned int rx_bytes
;
203 unsigned int thld_bytes
;
207 bool slave_read_complete
;
210 struct tasklet_struct slave_rx_tasklet
;
213 /* tasklet to process slave rx data */
214 static void slave_rx_tasklet_fn(unsigned long);
217 * Can be expanded in the future if more interrupt status bits are utilized
219 #define ISR_MASK (BIT(IS_M_START_BUSY_SHIFT) | BIT(IS_M_TX_UNDERRUN_SHIFT)\
220 | BIT(IS_M_RX_THLD_SHIFT))
222 #define ISR_MASK_SLAVE (BIT(IS_S_START_BUSY_SHIFT)\
223 | BIT(IS_S_RX_EVENT_SHIFT) | BIT(IS_S_RD_EVENT_SHIFT)\
224 | BIT(IS_S_TX_UNDERRUN_SHIFT) | BIT(IS_S_RX_FIFO_FULL_SHIFT)\
225 | BIT(IS_S_RX_THLD_SHIFT))
227 static int bcm_iproc_i2c_reg_slave(struct i2c_client
*slave
);
228 static int bcm_iproc_i2c_unreg_slave(struct i2c_client
*slave
);
229 static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev
*iproc_i2c
,
232 static inline u32
iproc_i2c_rd_reg(struct bcm_iproc_i2c_dev
*iproc_i2c
,
238 if (iproc_i2c
->idm_base
) {
239 spin_lock_irqsave(&iproc_i2c
->idm_lock
, flags
);
240 writel(iproc_i2c
->ape_addr_mask
,
241 iproc_i2c
->idm_base
+ IDM_CTRL_DIRECT_OFFSET
);
242 val
= readl(iproc_i2c
->base
+ offset
);
243 spin_unlock_irqrestore(&iproc_i2c
->idm_lock
, flags
);
245 val
= readl(iproc_i2c
->base
+ offset
);
251 static inline void iproc_i2c_wr_reg(struct bcm_iproc_i2c_dev
*iproc_i2c
,
256 if (iproc_i2c
->idm_base
) {
257 spin_lock_irqsave(&iproc_i2c
->idm_lock
, flags
);
258 writel(iproc_i2c
->ape_addr_mask
,
259 iproc_i2c
->idm_base
+ IDM_CTRL_DIRECT_OFFSET
);
260 writel(val
, iproc_i2c
->base
+ offset
);
261 spin_unlock_irqrestore(&iproc_i2c
->idm_lock
, flags
);
263 writel(val
, iproc_i2c
->base
+ offset
);
267 static void bcm_iproc_i2c_slave_init(
268 struct bcm_iproc_i2c_dev
*iproc_i2c
, bool need_reset
)
272 iproc_i2c
->tx_underrun
= 0;
274 /* put controller in reset */
275 val
= iproc_i2c_rd_reg(iproc_i2c
, CFG_OFFSET
);
276 val
|= BIT(CFG_RESET_SHIFT
);
277 iproc_i2c_wr_reg(iproc_i2c
, CFG_OFFSET
, val
);
279 /* wait 100 usec per spec */
282 /* bring controller out of reset */
283 val
&= ~(BIT(CFG_RESET_SHIFT
));
284 iproc_i2c_wr_reg(iproc_i2c
, CFG_OFFSET
, val
);
287 /* flush TX/RX FIFOs */
288 val
= (BIT(S_FIFO_RX_FLUSH_SHIFT
) | BIT(S_FIFO_TX_FLUSH_SHIFT
));
289 iproc_i2c_wr_reg(iproc_i2c
, S_FIFO_CTRL_OFFSET
, val
);
291 /* Maximum slave stretch time */
292 val
= iproc_i2c_rd_reg(iproc_i2c
, TIM_CFG_OFFSET
);
293 val
&= ~(TIM_RAND_SLAVE_STRETCH_MASK
<< TIM_RAND_SLAVE_STRETCH_SHIFT
);
294 val
|= (SLAVE_CLOCK_STRETCH_TIME
<< TIM_RAND_SLAVE_STRETCH_SHIFT
);
295 iproc_i2c_wr_reg(iproc_i2c
, TIM_CFG_OFFSET
, val
);
297 /* Configure the slave address */
298 val
= iproc_i2c_rd_reg(iproc_i2c
, S_CFG_SMBUS_ADDR_OFFSET
);
299 val
|= BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT
);
300 val
&= ~(S_CFG_NIC_SMB_ADDR3_MASK
<< S_CFG_NIC_SMB_ADDR3_SHIFT
);
301 val
|= (iproc_i2c
->slave
->addr
<< S_CFG_NIC_SMB_ADDR3_SHIFT
);
302 iproc_i2c_wr_reg(iproc_i2c
, S_CFG_SMBUS_ADDR_OFFSET
, val
);
304 /* clear all pending slave interrupts */
305 iproc_i2c_wr_reg(iproc_i2c
, IS_OFFSET
, ISR_MASK_SLAVE
);
307 /* Enable interrupt register to indicate a valid byte in receive fifo */
308 val
= BIT(IE_S_RX_EVENT_SHIFT
);
309 /* Enable interrupt register to indicate Slave Rx FIFO Full */
310 val
|= BIT(IE_S_RX_FIFO_FULL_SHIFT
);
311 /* Enable interrupt register to indicate a Master read transaction */
312 val
|= BIT(IE_S_RD_EVENT_SHIFT
);
313 /* Enable interrupt register for the Slave BUSY command */
314 val
|= BIT(IE_S_START_BUSY_SHIFT
);
315 iproc_i2c
->slave_int_mask
= val
;
316 iproc_i2c_wr_reg(iproc_i2c
, IE_OFFSET
, val
);
319 static bool bcm_iproc_i2c_check_slave_status
320 (struct bcm_iproc_i2c_dev
*iproc_i2c
, u32 status
)
323 bool recover
= false;
325 /* check slave transmit status only if slave is transmitting */
326 if (!iproc_i2c
->slave_rx_only
) {
327 val
= iproc_i2c_rd_reg(iproc_i2c
, S_CMD_OFFSET
);
328 /* status is valid only when START_BUSY is cleared */
329 if (!(val
& BIT(S_CMD_START_BUSY_SHIFT
))) {
330 val
= (val
>> S_CMD_STATUS_SHIFT
) & S_CMD_STATUS_MASK
;
331 if (val
== S_CMD_STATUS_TIMEOUT
||
332 val
== S_CMD_STATUS_MASTER_ABORT
) {
333 dev_warn(iproc_i2c
->device
,
334 (val
== S_CMD_STATUS_TIMEOUT
) ?
335 "slave random stretch time timeout\n" :
336 "Master aborted read transaction\n");
342 /* RX_EVENT is not valid when START_BUSY is set */
343 if ((status
& BIT(IS_S_RX_EVENT_SHIFT
)) &&
344 (status
& BIT(IS_S_START_BUSY_SHIFT
))) {
345 dev_warn(iproc_i2c
->device
, "Slave aborted read transaction\n");
350 /* re-initialize i2c for recovery */
351 bcm_iproc_i2c_enable_disable(iproc_i2c
, false);
352 bcm_iproc_i2c_slave_init(iproc_i2c
, true);
353 bcm_iproc_i2c_enable_disable(iproc_i2c
, true);
359 static void bcm_iproc_i2c_slave_read(struct bcm_iproc_i2c_dev
*iproc_i2c
)
361 u8 rx_data
, rx_status
;
365 while (rx_bytes
< MAX_SLAVE_RX_PER_INT
) {
366 val
= iproc_i2c_rd_reg(iproc_i2c
, S_RX_OFFSET
);
367 rx_status
= (val
>> S_RX_STATUS_SHIFT
) & S_RX_STATUS_MASK
;
368 rx_data
= ((val
>> S_RX_DATA_SHIFT
) & S_RX_DATA_MASK
);
370 if (rx_status
== I2C_SLAVE_RX_START
) {
371 /* Start of SMBUS Master write */
372 i2c_slave_event(iproc_i2c
->slave
,
373 I2C_SLAVE_WRITE_REQUESTED
, &rx_data
);
374 iproc_i2c
->rx_start_rcvd
= true;
375 iproc_i2c
->slave_read_complete
= false;
376 } else if (rx_status
== I2C_SLAVE_RX_DATA
&&
377 iproc_i2c
->rx_start_rcvd
) {
378 /* Middle of SMBUS Master write */
379 i2c_slave_event(iproc_i2c
->slave
,
380 I2C_SLAVE_WRITE_RECEIVED
, &rx_data
);
381 } else if (rx_status
== I2C_SLAVE_RX_END
&&
382 iproc_i2c
->rx_start_rcvd
) {
383 /* End of SMBUS Master write */
384 if (iproc_i2c
->slave_rx_only
)
385 i2c_slave_event(iproc_i2c
->slave
,
386 I2C_SLAVE_WRITE_RECEIVED
,
389 i2c_slave_event(iproc_i2c
->slave
, I2C_SLAVE_STOP
,
391 } else if (rx_status
== I2C_SLAVE_RX_FIFO_EMPTY
) {
392 iproc_i2c
->rx_start_rcvd
= false;
393 iproc_i2c
->slave_read_complete
= true;
401 static void slave_rx_tasklet_fn(unsigned long data
)
403 struct bcm_iproc_i2c_dev
*iproc_i2c
= (struct bcm_iproc_i2c_dev
*)data
;
406 bcm_iproc_i2c_slave_read(iproc_i2c
);
408 /* clear pending IS_S_RX_EVENT_SHIFT interrupt */
409 int_clr
= BIT(IS_S_RX_EVENT_SHIFT
);
411 if (!iproc_i2c
->slave_rx_only
&& iproc_i2c
->slave_read_complete
) {
413 * In case of single byte master-read request,
414 * IS_S_TX_UNDERRUN_SHIFT event is generated before
415 * IS_S_START_BUSY_SHIFT event. Hence start slave data send
416 * from first IS_S_TX_UNDERRUN_SHIFT event.
418 * This means don't send any data from slave when
419 * IS_S_RD_EVENT_SHIFT event is generated else it will increment
420 * eeprom or other backend slave driver read pointer twice.
422 iproc_i2c
->tx_underrun
= 0;
423 iproc_i2c
->slave_int_mask
|= BIT(IE_S_TX_UNDERRUN_SHIFT
);
425 /* clear IS_S_RD_EVENT_SHIFT interrupt */
426 int_clr
|= BIT(IS_S_RD_EVENT_SHIFT
);
429 /* clear slave interrupt */
430 iproc_i2c_wr_reg(iproc_i2c
, IS_OFFSET
, int_clr
);
431 /* enable slave interrupts */
432 iproc_i2c_wr_reg(iproc_i2c
, IE_OFFSET
, iproc_i2c
->slave_int_mask
);
435 static bool bcm_iproc_i2c_slave_isr(struct bcm_iproc_i2c_dev
*iproc_i2c
,
442 if (status
& BIT(IS_S_TX_UNDERRUN_SHIFT
)) {
443 iproc_i2c
->tx_underrun
++;
444 if (iproc_i2c
->tx_underrun
== 1)
445 /* Start of SMBUS for Master Read */
446 i2c_slave_event(iproc_i2c
->slave
,
447 I2C_SLAVE_READ_REQUESTED
,
450 /* Master read other than start */
451 i2c_slave_event(iproc_i2c
->slave
,
452 I2C_SLAVE_READ_PROCESSED
,
455 iproc_i2c_wr_reg(iproc_i2c
, S_TX_OFFSET
, value
);
457 val
= BIT(S_CMD_START_BUSY_SHIFT
);
458 iproc_i2c_wr_reg(iproc_i2c
, S_CMD_OFFSET
, val
);
460 /* clear interrupt */
461 iproc_i2c_wr_reg(iproc_i2c
, IS_OFFSET
,
462 BIT(IS_S_TX_UNDERRUN_SHIFT
));
465 /* Stop received from master in case of master read transaction */
466 if (status
& BIT(IS_S_START_BUSY_SHIFT
)) {
468 * Disable interrupt for TX FIFO becomes empty and
469 * less than PKT_LENGTH bytes were output on the SMBUS
471 iproc_i2c
->slave_int_mask
&= ~BIT(IE_S_TX_UNDERRUN_SHIFT
);
472 val
= iproc_i2c_rd_reg(iproc_i2c
, IE_OFFSET
);
473 val
&= ~BIT(IE_S_TX_UNDERRUN_SHIFT
);
474 iproc_i2c_wr_reg(iproc_i2c
, IE_OFFSET
, val
);
476 /* End of SMBUS for Master Read */
477 val
= BIT(S_TX_WR_STATUS_SHIFT
);
478 iproc_i2c_wr_reg(iproc_i2c
, S_TX_OFFSET
, val
);
480 val
= BIT(S_CMD_START_BUSY_SHIFT
);
481 iproc_i2c_wr_reg(iproc_i2c
, S_CMD_OFFSET
, val
);
484 val
= iproc_i2c_rd_reg(iproc_i2c
, S_FIFO_CTRL_OFFSET
);
485 val
|= (BIT(S_FIFO_TX_FLUSH_SHIFT
));
486 iproc_i2c_wr_reg(iproc_i2c
, S_FIFO_CTRL_OFFSET
, val
);
488 i2c_slave_event(iproc_i2c
->slave
, I2C_SLAVE_STOP
, &value
);
490 /* clear interrupt */
491 iproc_i2c_wr_reg(iproc_i2c
, IS_OFFSET
,
492 BIT(IS_S_START_BUSY_SHIFT
));
495 /* if the controller has been reset, immediately return from the ISR */
496 if (bcm_iproc_i2c_check_slave_status(iproc_i2c
, status
))
500 * Slave events in case of master-write, master-write-read and,
503 * Master-write : only IS_S_RX_EVENT_SHIFT event
504 * Master-write-read: both IS_S_RX_EVENT_SHIFT and IS_S_RD_EVENT_SHIFT
506 * Master-read : both IS_S_RX_EVENT_SHIFT and IS_S_RD_EVENT_SHIFT
507 * events or only IS_S_RD_EVENT_SHIFT
509 * iproc has a slave rx fifo size of 64 bytes. Rx fifo full interrupt
510 * (IS_S_RX_FIFO_FULL_SHIFT) will be generated when RX fifo becomes
511 * full. This can happen if Master issues write requests of more than
514 if (status
& BIT(IS_S_RX_EVENT_SHIFT
) ||
515 status
& BIT(IS_S_RD_EVENT_SHIFT
) ||
516 status
& BIT(IS_S_RX_FIFO_FULL_SHIFT
)) {
517 /* disable slave interrupts */
518 val
= iproc_i2c_rd_reg(iproc_i2c
, IE_OFFSET
);
519 val
&= ~iproc_i2c
->slave_int_mask
;
520 iproc_i2c_wr_reg(iproc_i2c
, IE_OFFSET
, val
);
522 if (status
& BIT(IS_S_RD_EVENT_SHIFT
))
523 /* Master-write-read request */
524 iproc_i2c
->slave_rx_only
= false;
526 /* Master-write request only */
527 iproc_i2c
->slave_rx_only
= true;
529 /* schedule tasklet to read data later */
530 tasklet_schedule(&iproc_i2c
->slave_rx_tasklet
);
532 /* clear IS_S_RX_FIFO_FULL_SHIFT interrupt */
533 if (status
& BIT(IS_S_RX_FIFO_FULL_SHIFT
)) {
534 val
= BIT(IS_S_RX_FIFO_FULL_SHIFT
);
535 iproc_i2c_wr_reg(iproc_i2c
, IS_OFFSET
, val
);
542 static void bcm_iproc_i2c_read_valid_bytes(struct bcm_iproc_i2c_dev
*iproc_i2c
)
544 struct i2c_msg
*msg
= iproc_i2c
->msg
;
547 /* Read valid data from RX FIFO */
548 while (iproc_i2c
->rx_bytes
< msg
->len
) {
549 val
= iproc_i2c_rd_reg(iproc_i2c
, M_RX_OFFSET
);
552 if (!((val
>> M_RX_STATUS_SHIFT
) & M_RX_STATUS_MASK
))
555 msg
->buf
[iproc_i2c
->rx_bytes
] =
556 (val
>> M_RX_DATA_SHIFT
) & M_RX_DATA_MASK
;
557 iproc_i2c
->rx_bytes
++;
561 static void bcm_iproc_i2c_send(struct bcm_iproc_i2c_dev
*iproc_i2c
)
563 struct i2c_msg
*msg
= iproc_i2c
->msg
;
564 unsigned int tx_bytes
= msg
->len
- iproc_i2c
->tx_bytes
;
568 /* can only fill up to the FIFO size */
569 tx_bytes
= min_t(unsigned int, tx_bytes
, M_TX_RX_FIFO_SIZE
);
570 for (i
= 0; i
< tx_bytes
; i
++) {
571 /* start from where we left over */
572 unsigned int idx
= iproc_i2c
->tx_bytes
+ i
;
576 /* mark the last byte */
577 if (idx
== msg
->len
- 1) {
578 val
|= BIT(M_TX_WR_STATUS_SHIFT
);
580 if (iproc_i2c
->irq
) {
584 * Since this is the last byte, we should now
585 * disable TX FIFO underrun interrupt
587 tmp
= iproc_i2c_rd_reg(iproc_i2c
, IE_OFFSET
);
588 tmp
&= ~BIT(IE_M_TX_UNDERRUN_SHIFT
);
589 iproc_i2c_wr_reg(iproc_i2c
, IE_OFFSET
,
594 /* load data into TX FIFO */
595 iproc_i2c_wr_reg(iproc_i2c
, M_TX_OFFSET
, val
);
598 /* update number of transferred bytes */
599 iproc_i2c
->tx_bytes
+= tx_bytes
;
602 static void bcm_iproc_i2c_read(struct bcm_iproc_i2c_dev
*iproc_i2c
)
604 struct i2c_msg
*msg
= iproc_i2c
->msg
;
607 bcm_iproc_i2c_read_valid_bytes(iproc_i2c
);
608 bytes_left
= msg
->len
- iproc_i2c
->rx_bytes
;
609 if (bytes_left
== 0) {
610 if (iproc_i2c
->irq
) {
611 /* finished reading all data, disable rx thld event */
612 val
= iproc_i2c_rd_reg(iproc_i2c
, IE_OFFSET
);
613 val
&= ~BIT(IS_M_RX_THLD_SHIFT
);
614 iproc_i2c_wr_reg(iproc_i2c
, IE_OFFSET
, val
);
616 } else if (bytes_left
< iproc_i2c
->thld_bytes
) {
617 /* set bytes left as threshold */
618 val
= iproc_i2c_rd_reg(iproc_i2c
, M_FIFO_CTRL_OFFSET
);
619 val
&= ~(M_FIFO_RX_THLD_MASK
<< M_FIFO_RX_THLD_SHIFT
);
620 val
|= (bytes_left
<< M_FIFO_RX_THLD_SHIFT
);
621 iproc_i2c_wr_reg(iproc_i2c
, M_FIFO_CTRL_OFFSET
, val
);
622 iproc_i2c
->thld_bytes
= bytes_left
;
625 * bytes_left >= iproc_i2c->thld_bytes,
626 * hence no need to change the THRESHOLD SET.
627 * It will remain as iproc_i2c->thld_bytes itself
631 static void bcm_iproc_i2c_process_m_event(struct bcm_iproc_i2c_dev
*iproc_i2c
,
634 /* TX FIFO is empty and we have more data to send */
635 if (status
& BIT(IS_M_TX_UNDERRUN_SHIFT
))
636 bcm_iproc_i2c_send(iproc_i2c
);
638 /* RX FIFO threshold is reached and data needs to be read out */
639 if (status
& BIT(IS_M_RX_THLD_SHIFT
))
640 bcm_iproc_i2c_read(iproc_i2c
);
642 /* transfer is done */
643 if (status
& BIT(IS_M_START_BUSY_SHIFT
)) {
644 iproc_i2c
->xfer_is_done
= 1;
646 complete(&iproc_i2c
->done
);
650 static irqreturn_t
bcm_iproc_i2c_isr(int irq
, void *data
)
652 struct bcm_iproc_i2c_dev
*iproc_i2c
= data
;
657 status
= iproc_i2c_rd_reg(iproc_i2c
, IS_OFFSET
);
658 /* process only slave interrupt which are enabled */
659 slave_status
= status
& iproc_i2c_rd_reg(iproc_i2c
, IE_OFFSET
) &
663 ret
= bcm_iproc_i2c_slave_isr(iproc_i2c
, slave_status
);
674 /* process all master based events */
675 bcm_iproc_i2c_process_m_event(iproc_i2c
, status
);
676 iproc_i2c_wr_reg(iproc_i2c
, IS_OFFSET
, status
);
681 static int bcm_iproc_i2c_init(struct bcm_iproc_i2c_dev
*iproc_i2c
)
685 /* put controller in reset */
686 val
= iproc_i2c_rd_reg(iproc_i2c
, CFG_OFFSET
);
687 val
|= BIT(CFG_RESET_SHIFT
);
688 val
&= ~(BIT(CFG_EN_SHIFT
));
689 iproc_i2c_wr_reg(iproc_i2c
, CFG_OFFSET
, val
);
691 /* wait 100 usec per spec */
694 /* bring controller out of reset */
695 val
&= ~(BIT(CFG_RESET_SHIFT
));
696 iproc_i2c_wr_reg(iproc_i2c
, CFG_OFFSET
, val
);
698 /* flush TX/RX FIFOs and set RX FIFO threshold to zero */
699 val
= (BIT(M_FIFO_RX_FLUSH_SHIFT
) | BIT(M_FIFO_TX_FLUSH_SHIFT
));
700 iproc_i2c_wr_reg(iproc_i2c
, M_FIFO_CTRL_OFFSET
, val
);
701 /* disable all interrupts */
702 val
= iproc_i2c_rd_reg(iproc_i2c
, IE_OFFSET
);
703 val
&= ~(IE_M_ALL_INTERRUPT_MASK
<<
704 IE_M_ALL_INTERRUPT_SHIFT
);
705 iproc_i2c_wr_reg(iproc_i2c
, IE_OFFSET
, val
);
707 /* clear all pending interrupts */
708 iproc_i2c_wr_reg(iproc_i2c
, IS_OFFSET
, 0xffffffff);
713 static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev
*iproc_i2c
,
718 val
= iproc_i2c_rd_reg(iproc_i2c
, CFG_OFFSET
);
720 val
|= BIT(CFG_EN_SHIFT
);
722 val
&= ~BIT(CFG_EN_SHIFT
);
723 iproc_i2c_wr_reg(iproc_i2c
, CFG_OFFSET
, val
);
726 static int bcm_iproc_i2c_check_status(struct bcm_iproc_i2c_dev
*iproc_i2c
,
731 val
= iproc_i2c_rd_reg(iproc_i2c
, M_CMD_OFFSET
);
732 val
= (val
>> M_CMD_STATUS_SHIFT
) & M_CMD_STATUS_MASK
;
735 case M_CMD_STATUS_SUCCESS
:
738 case M_CMD_STATUS_LOST_ARB
:
739 dev_dbg(iproc_i2c
->device
, "lost bus arbitration\n");
742 case M_CMD_STATUS_NACK_ADDR
:
743 dev_dbg(iproc_i2c
->device
, "NAK addr:0x%02x\n", msg
->addr
);
746 case M_CMD_STATUS_NACK_DATA
:
747 dev_dbg(iproc_i2c
->device
, "NAK data\n");
750 case M_CMD_STATUS_TIMEOUT
:
751 dev_dbg(iproc_i2c
->device
, "bus timeout\n");
754 case M_CMD_STATUS_FIFO_UNDERRUN
:
755 dev_dbg(iproc_i2c
->device
, "FIFO under-run\n");
758 case M_CMD_STATUS_RX_FIFO_FULL
:
759 dev_dbg(iproc_i2c
->device
, "RX FIFO full\n");
763 dev_dbg(iproc_i2c
->device
, "unknown error code=%d\n", val
);
765 /* re-initialize i2c for recovery */
766 bcm_iproc_i2c_enable_disable(iproc_i2c
, false);
767 bcm_iproc_i2c_init(iproc_i2c
);
768 bcm_iproc_i2c_enable_disable(iproc_i2c
, true);
774 static int bcm_iproc_i2c_xfer_wait(struct bcm_iproc_i2c_dev
*iproc_i2c
,
778 unsigned long time_left
= msecs_to_jiffies(I2C_TIMEOUT_MSEC
);
782 iproc_i2c_wr_reg(iproc_i2c
, M_CMD_OFFSET
, cmd
);
784 if (iproc_i2c
->irq
) {
785 time_left
= wait_for_completion_timeout(&iproc_i2c
->done
,
787 /* disable all interrupts */
788 iproc_i2c_wr_reg(iproc_i2c
, IE_OFFSET
, 0);
789 /* read it back to flush the write */
790 iproc_i2c_rd_reg(iproc_i2c
, IE_OFFSET
);
791 /* make sure the interrupt handler isn't running */
792 synchronize_irq(iproc_i2c
->irq
);
794 } else { /* polling mode */
795 unsigned long timeout
= jiffies
+ time_left
;
798 status
= iproc_i2c_rd_reg(iproc_i2c
,
799 IS_OFFSET
) & ISR_MASK
;
800 bcm_iproc_i2c_process_m_event(iproc_i2c
, status
);
801 iproc_i2c_wr_reg(iproc_i2c
, IS_OFFSET
, status
);
803 if (time_after(jiffies
, timeout
)) {
810 } while (!iproc_i2c
->xfer_is_done
);
813 if (!time_left
&& !iproc_i2c
->xfer_is_done
) {
814 /* flush both TX/RX FIFOs */
815 val
= BIT(M_FIFO_RX_FLUSH_SHIFT
) | BIT(M_FIFO_TX_FLUSH_SHIFT
);
816 iproc_i2c_wr_reg(iproc_i2c
, M_FIFO_CTRL_OFFSET
, val
);
820 ret
= bcm_iproc_i2c_check_status(iproc_i2c
, msg
);
822 /* flush both TX/RX FIFOs */
823 val
= BIT(M_FIFO_RX_FLUSH_SHIFT
) | BIT(M_FIFO_TX_FLUSH_SHIFT
);
824 iproc_i2c_wr_reg(iproc_i2c
, M_FIFO_CTRL_OFFSET
, val
);
832 * If 'process_call' is true, then this is a multi-msg transfer that requires
833 * a repeated start between the messages.
834 * More specifically, it must be a write (reg) followed by a read (data).
835 * The i2c quirks are set to enforce this rule.
837 static int bcm_iproc_i2c_xfer_internal(struct bcm_iproc_i2c_dev
*iproc_i2c
,
838 struct i2c_msg
*msgs
, bool process_call
)
842 u32 val
, tmp
, val_intr_en
;
843 unsigned int tx_bytes
;
844 struct i2c_msg
*msg
= &msgs
[0];
846 /* check if bus is busy */
847 if (!!(iproc_i2c_rd_reg(iproc_i2c
,
848 M_CMD_OFFSET
) & BIT(M_CMD_START_BUSY_SHIFT
))) {
849 dev_warn(iproc_i2c
->device
, "bus is busy\n");
853 iproc_i2c
->msg
= msg
;
855 /* format and load slave address into the TX FIFO */
856 addr
= i2c_8bit_addr_from_msg(msg
);
857 iproc_i2c_wr_reg(iproc_i2c
, M_TX_OFFSET
, addr
);
860 * For a write transaction, load data into the TX FIFO. Only allow
861 * loading up to TX FIFO size - 1 bytes of data since the first byte
862 * has been used up by the slave address
864 tx_bytes
= min_t(unsigned int, msg
->len
, M_TX_RX_FIFO_SIZE
- 1);
865 if (!(msg
->flags
& I2C_M_RD
)) {
866 for (i
= 0; i
< tx_bytes
; i
++) {
869 /* mark the last byte */
870 if (!process_call
&& (i
== msg
->len
- 1))
871 val
|= BIT(M_TX_WR_STATUS_SHIFT
);
873 iproc_i2c_wr_reg(iproc_i2c
, M_TX_OFFSET
, val
);
875 iproc_i2c
->tx_bytes
= tx_bytes
;
878 /* Process the read message if this is process call */
881 iproc_i2c
->msg
= msg
; /* point to second msg */
884 * The last byte to be sent out should be a slave
885 * address with read operation
887 addr
= i2c_8bit_addr_from_msg(msg
);
888 /* mark it the last byte out */
889 val
= addr
| BIT(M_TX_WR_STATUS_SHIFT
);
890 iproc_i2c_wr_reg(iproc_i2c
, M_TX_OFFSET
, val
);
893 /* mark as incomplete before starting the transaction */
895 reinit_completion(&iproc_i2c
->done
);
897 iproc_i2c
->xfer_is_done
= 0;
900 * Enable the "start busy" interrupt, which will be triggered after the
901 * transaction is done, i.e., the internal start_busy bit, transitions
904 val_intr_en
= BIT(IE_M_START_BUSY_SHIFT
);
907 * If TX data size is larger than the TX FIFO, need to enable TX
908 * underrun interrupt, which will be triggerred when the TX FIFO is
909 * empty. When that happens we can then pump more data into the FIFO
911 if (!process_call
&& !(msg
->flags
& I2C_M_RD
) &&
912 msg
->len
> iproc_i2c
->tx_bytes
)
913 val_intr_en
|= BIT(IE_M_TX_UNDERRUN_SHIFT
);
916 * Now we can activate the transfer. For a read operation, specify the
917 * number of bytes to read
919 val
= BIT(M_CMD_START_BUSY_SHIFT
);
922 /* SMBUS QUICK Command (Read/Write) */
923 val
|= (M_CMD_PROTOCOL_QUICK
<< M_CMD_PROTOCOL_SHIFT
);
924 } else if (msg
->flags
& I2C_M_RD
) {
927 iproc_i2c
->rx_bytes
= 0;
928 if (msg
->len
> M_RX_FIFO_MAX_THLD_VALUE
)
929 iproc_i2c
->thld_bytes
= M_RX_FIFO_THLD_VALUE
;
931 iproc_i2c
->thld_bytes
= msg
->len
;
933 /* set threshold value */
934 tmp
= iproc_i2c_rd_reg(iproc_i2c
, M_FIFO_CTRL_OFFSET
);
935 tmp
&= ~(M_FIFO_RX_THLD_MASK
<< M_FIFO_RX_THLD_SHIFT
);
936 tmp
|= iproc_i2c
->thld_bytes
<< M_FIFO_RX_THLD_SHIFT
;
937 iproc_i2c_wr_reg(iproc_i2c
, M_FIFO_CTRL_OFFSET
, tmp
);
939 /* enable the RX threshold interrupt */
940 val_intr_en
|= BIT(IE_M_RX_THLD_SHIFT
);
942 protocol
= process_call
?
943 M_CMD_PROTOCOL_PROCESS
: M_CMD_PROTOCOL_BLK_RD
;
945 val
|= (protocol
<< M_CMD_PROTOCOL_SHIFT
) |
946 (msg
->len
<< M_CMD_RD_CNT_SHIFT
);
948 val
|= (M_CMD_PROTOCOL_BLK_WR
<< M_CMD_PROTOCOL_SHIFT
);
952 iproc_i2c_wr_reg(iproc_i2c
, IE_OFFSET
, val_intr_en
);
954 return bcm_iproc_i2c_xfer_wait(iproc_i2c
, msg
, val
);
957 static int bcm_iproc_i2c_xfer(struct i2c_adapter
*adapter
,
958 struct i2c_msg msgs
[], int num
)
960 struct bcm_iproc_i2c_dev
*iproc_i2c
= i2c_get_adapdata(adapter
);
961 bool process_call
= false;
965 /* Repeated start, use process call */
967 if (msgs
[1].flags
& I2C_M_NOSTART
) {
968 dev_err(iproc_i2c
->device
, "Invalid repeated start\n");
973 ret
= bcm_iproc_i2c_xfer_internal(iproc_i2c
, msgs
, process_call
);
975 dev_dbg(iproc_i2c
->device
, "xfer failed\n");
982 static uint32_t bcm_iproc_i2c_functionality(struct i2c_adapter
*adap
)
986 val
= I2C_FUNC_I2C
| I2C_FUNC_SMBUS_EMUL
;
988 if (adap
->algo
->reg_slave
)
989 val
|= I2C_FUNC_SLAVE
;
994 static struct i2c_algorithm bcm_iproc_algo
= {
995 .master_xfer
= bcm_iproc_i2c_xfer
,
996 .functionality
= bcm_iproc_i2c_functionality
,
997 .reg_slave
= bcm_iproc_i2c_reg_slave
,
998 .unreg_slave
= bcm_iproc_i2c_unreg_slave
,
1001 static const struct i2c_adapter_quirks bcm_iproc_i2c_quirks
= {
1002 .flags
= I2C_AQ_COMB_WRITE_THEN_READ
,
1003 .max_comb_1st_msg_len
= M_TX_RX_FIFO_SIZE
,
1004 .max_read_len
= M_RX_MAX_READ_LEN
,
1007 static int bcm_iproc_i2c_cfg_speed(struct bcm_iproc_i2c_dev
*iproc_i2c
)
1009 unsigned int bus_speed
;
1011 int ret
= of_property_read_u32(iproc_i2c
->device
->of_node
,
1012 "clock-frequency", &bus_speed
);
1014 dev_info(iproc_i2c
->device
,
1015 "unable to interpret clock-frequency DT property\n");
1016 bus_speed
= I2C_MAX_STANDARD_MODE_FREQ
;
1019 if (bus_speed
< I2C_MAX_STANDARD_MODE_FREQ
) {
1020 dev_err(iproc_i2c
->device
, "%d Hz bus speed not supported\n",
1022 dev_err(iproc_i2c
->device
,
1023 "valid speeds are 100khz and 400khz\n");
1025 } else if (bus_speed
< I2C_MAX_FAST_MODE_FREQ
) {
1026 bus_speed
= I2C_MAX_STANDARD_MODE_FREQ
;
1028 bus_speed
= I2C_MAX_FAST_MODE_FREQ
;
1031 iproc_i2c
->bus_speed
= bus_speed
;
1032 val
= iproc_i2c_rd_reg(iproc_i2c
, TIM_CFG_OFFSET
);
1033 val
&= ~BIT(TIM_CFG_MODE_400_SHIFT
);
1034 val
|= (bus_speed
== I2C_MAX_FAST_MODE_FREQ
) << TIM_CFG_MODE_400_SHIFT
;
1035 iproc_i2c_wr_reg(iproc_i2c
, TIM_CFG_OFFSET
, val
);
1037 dev_info(iproc_i2c
->device
, "bus set to %u Hz\n", bus_speed
);
1042 static int bcm_iproc_i2c_probe(struct platform_device
*pdev
)
1045 struct bcm_iproc_i2c_dev
*iproc_i2c
;
1046 struct i2c_adapter
*adap
;
1048 iproc_i2c
= devm_kzalloc(&pdev
->dev
, sizeof(*iproc_i2c
),
1053 platform_set_drvdata(pdev
, iproc_i2c
);
1054 iproc_i2c
->device
= &pdev
->dev
;
1056 (enum bcm_iproc_i2c_type
)of_device_get_match_data(&pdev
->dev
);
1057 init_completion(&iproc_i2c
->done
);
1059 iproc_i2c
->base
= devm_platform_ioremap_resource(pdev
, 0);
1060 if (IS_ERR(iproc_i2c
->base
))
1061 return PTR_ERR(iproc_i2c
->base
);
1063 if (iproc_i2c
->type
== IPROC_I2C_NIC
) {
1064 iproc_i2c
->idm_base
= devm_platform_ioremap_resource(pdev
, 1);
1065 if (IS_ERR(iproc_i2c
->idm_base
))
1066 return PTR_ERR(iproc_i2c
->idm_base
);
1068 ret
= of_property_read_u32(iproc_i2c
->device
->of_node
,
1069 "brcm,ape-hsls-addr-mask",
1070 &iproc_i2c
->ape_addr_mask
);
1072 dev_err(iproc_i2c
->device
,
1073 "'brcm,ape-hsls-addr-mask' missing\n");
1077 spin_lock_init(&iproc_i2c
->idm_lock
);
1079 /* no slave support */
1080 bcm_iproc_algo
.reg_slave
= NULL
;
1081 bcm_iproc_algo
.unreg_slave
= NULL
;
1084 ret
= bcm_iproc_i2c_init(iproc_i2c
);
1088 ret
= bcm_iproc_i2c_cfg_speed(iproc_i2c
);
1092 irq
= platform_get_irq(pdev
, 0);
1094 ret
= devm_request_irq(iproc_i2c
->device
, irq
,
1095 bcm_iproc_i2c_isr
, 0, pdev
->name
,
1098 dev_err(iproc_i2c
->device
,
1099 "unable to request irq %i\n", irq
);
1103 iproc_i2c
->irq
= irq
;
1105 dev_warn(iproc_i2c
->device
,
1106 "no irq resource, falling back to poll mode\n");
1109 bcm_iproc_i2c_enable_disable(iproc_i2c
, true);
1111 adap
= &iproc_i2c
->adapter
;
1112 i2c_set_adapdata(adap
, iproc_i2c
);
1113 snprintf(adap
->name
, sizeof(adap
->name
),
1114 "Broadcom iProc (%s)",
1115 of_node_full_name(iproc_i2c
->device
->of_node
));
1116 adap
->algo
= &bcm_iproc_algo
;
1117 adap
->quirks
= &bcm_iproc_i2c_quirks
;
1118 adap
->dev
.parent
= &pdev
->dev
;
1119 adap
->dev
.of_node
= pdev
->dev
.of_node
;
1121 return i2c_add_adapter(adap
);
1124 static void bcm_iproc_i2c_remove(struct platform_device
*pdev
)
1126 struct bcm_iproc_i2c_dev
*iproc_i2c
= platform_get_drvdata(pdev
);
1128 if (iproc_i2c
->irq
) {
1130 * Make sure there's no pending interrupt when we remove the
1133 iproc_i2c_wr_reg(iproc_i2c
, IE_OFFSET
, 0);
1134 iproc_i2c_rd_reg(iproc_i2c
, IE_OFFSET
);
1135 synchronize_irq(iproc_i2c
->irq
);
1138 i2c_del_adapter(&iproc_i2c
->adapter
);
1139 bcm_iproc_i2c_enable_disable(iproc_i2c
, false);
1142 static int bcm_iproc_i2c_suspend(struct device
*dev
)
1144 struct bcm_iproc_i2c_dev
*iproc_i2c
= dev_get_drvdata(dev
);
1146 if (iproc_i2c
->irq
) {
1148 * Make sure there's no pending interrupt when we go into
1151 iproc_i2c_wr_reg(iproc_i2c
, IE_OFFSET
, 0);
1152 iproc_i2c_rd_reg(iproc_i2c
, IE_OFFSET
);
1153 synchronize_irq(iproc_i2c
->irq
);
1156 /* now disable the controller */
1157 bcm_iproc_i2c_enable_disable(iproc_i2c
, false);
1162 static int bcm_iproc_i2c_resume(struct device
*dev
)
1164 struct bcm_iproc_i2c_dev
*iproc_i2c
= dev_get_drvdata(dev
);
1169 * Power domain could have been shut off completely in system deep
1170 * sleep, so re-initialize the block here
1172 ret
= bcm_iproc_i2c_init(iproc_i2c
);
1176 /* configure to the desired bus speed */
1177 val
= iproc_i2c_rd_reg(iproc_i2c
, TIM_CFG_OFFSET
);
1178 val
&= ~BIT(TIM_CFG_MODE_400_SHIFT
);
1179 val
|= (iproc_i2c
->bus_speed
== I2C_MAX_FAST_MODE_FREQ
) << TIM_CFG_MODE_400_SHIFT
;
1180 iproc_i2c_wr_reg(iproc_i2c
, TIM_CFG_OFFSET
, val
);
1182 bcm_iproc_i2c_enable_disable(iproc_i2c
, true);
1187 static const struct dev_pm_ops bcm_iproc_i2c_pm_ops
= {
1188 .suspend_late
= &bcm_iproc_i2c_suspend
,
1189 .resume_early
= &bcm_iproc_i2c_resume
1192 static int bcm_iproc_i2c_reg_slave(struct i2c_client
*slave
)
1194 struct bcm_iproc_i2c_dev
*iproc_i2c
= i2c_get_adapdata(slave
->adapter
);
1196 if (iproc_i2c
->slave
)
1199 if (slave
->flags
& I2C_CLIENT_TEN
)
1200 return -EAFNOSUPPORT
;
1202 iproc_i2c
->slave
= slave
;
1204 tasklet_init(&iproc_i2c
->slave_rx_tasklet
, slave_rx_tasklet_fn
,
1205 (unsigned long)iproc_i2c
);
1207 bcm_iproc_i2c_slave_init(iproc_i2c
, false);
1211 static int bcm_iproc_i2c_unreg_slave(struct i2c_client
*slave
)
1214 struct bcm_iproc_i2c_dev
*iproc_i2c
= i2c_get_adapdata(slave
->adapter
);
1216 if (!iproc_i2c
->slave
)
1219 disable_irq(iproc_i2c
->irq
);
1221 tasklet_kill(&iproc_i2c
->slave_rx_tasklet
);
1223 /* disable all slave interrupts */
1224 tmp
= iproc_i2c_rd_reg(iproc_i2c
, IE_OFFSET
);
1225 tmp
&= ~(IE_S_ALL_INTERRUPT_MASK
<<
1226 IE_S_ALL_INTERRUPT_SHIFT
);
1227 iproc_i2c_wr_reg(iproc_i2c
, IE_OFFSET
, tmp
);
1229 /* Erase the slave address programmed */
1230 tmp
= iproc_i2c_rd_reg(iproc_i2c
, S_CFG_SMBUS_ADDR_OFFSET
);
1231 tmp
&= ~BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT
);
1232 iproc_i2c_wr_reg(iproc_i2c
, S_CFG_SMBUS_ADDR_OFFSET
, tmp
);
1234 /* flush TX/RX FIFOs */
1235 tmp
= (BIT(S_FIFO_RX_FLUSH_SHIFT
) | BIT(S_FIFO_TX_FLUSH_SHIFT
));
1236 iproc_i2c_wr_reg(iproc_i2c
, S_FIFO_CTRL_OFFSET
, tmp
);
1238 /* clear all pending slave interrupts */
1239 iproc_i2c_wr_reg(iproc_i2c
, IS_OFFSET
, ISR_MASK_SLAVE
);
1241 iproc_i2c
->slave
= NULL
;
1243 enable_irq(iproc_i2c
->irq
);
1248 static const struct of_device_id bcm_iproc_i2c_of_match
[] = {
1250 .compatible
= "brcm,iproc-i2c",
1251 .data
= (int *)IPROC_I2C
,
1253 .compatible
= "brcm,iproc-nic-i2c",
1254 .data
= (int *)IPROC_I2C_NIC
,
1258 MODULE_DEVICE_TABLE(of
, bcm_iproc_i2c_of_match
);
1260 static struct platform_driver bcm_iproc_i2c_driver
= {
1262 .name
= "bcm-iproc-i2c",
1263 .of_match_table
= bcm_iproc_i2c_of_match
,
1264 .pm
= pm_sleep_ptr(&bcm_iproc_i2c_pm_ops
),
1266 .probe
= bcm_iproc_i2c_probe
,
1267 .remove
= bcm_iproc_i2c_remove
,
1269 module_platform_driver(bcm_iproc_i2c_driver
);
1271 MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>");
1272 MODULE_DESCRIPTION("Broadcom iProc I2C Driver");
1273 MODULE_LICENSE("GPL v2");