1 // SPDX-License-Identifier: GPL-2.0-only
3 * drivers/i2c/chips/lm8323.c
5 * Copyright (C) 2007-2009 Nokia Corporation
7 * Written by Daniel Stone <daniel.stone@nokia.com>
8 * Timo O. Karjalainen <timo.o.karjalainen@nokia.com>
10 * Updated by Felipe Balbi <felipe.balbi@nokia.com>
13 #include <linux/module.h>
14 #include <linux/i2c.h>
15 #include <linux/interrupt.h>
16 #include <linux/sched.h>
17 #include <linux/mutex.h>
18 #include <linux/delay.h>
19 #include <linux/input.h>
20 #include <linux/leds.h>
21 #include <linux/platform_data/lm8323.h>
23 #include <linux/slab.h>
25 /* Commands to send to the chip. */
26 #define LM8323_CMD_READ_ID 0x80 /* Read chip ID. */
27 #define LM8323_CMD_WRITE_CFG 0x81 /* Set configuration item. */
28 #define LM8323_CMD_READ_INT 0x82 /* Get interrupt status. */
29 #define LM8323_CMD_RESET 0x83 /* Reset, same as external one */
30 #define LM8323_CMD_WRITE_PORT_SEL 0x85 /* Set GPIO in/out. */
31 #define LM8323_CMD_WRITE_PORT_STATE 0x86 /* Set GPIO pullup. */
32 #define LM8323_CMD_READ_PORT_SEL 0x87 /* Get GPIO in/out. */
33 #define LM8323_CMD_READ_PORT_STATE 0x88 /* Get GPIO pullup. */
34 #define LM8323_CMD_READ_FIFO 0x89 /* Read byte from FIFO. */
35 #define LM8323_CMD_RPT_READ_FIFO 0x8a /* Read FIFO (no increment). */
36 #define LM8323_CMD_SET_ACTIVE 0x8b /* Set active time. */
37 #define LM8323_CMD_READ_ERR 0x8c /* Get error status. */
38 #define LM8323_CMD_READ_ROTATOR 0x8e /* Read rotator status. */
39 #define LM8323_CMD_SET_DEBOUNCE 0x8f /* Set debouncing time. */
40 #define LM8323_CMD_SET_KEY_SIZE 0x90 /* Set keypad size. */
41 #define LM8323_CMD_READ_KEY_SIZE 0x91 /* Get keypad size. */
42 #define LM8323_CMD_READ_CFG 0x92 /* Get configuration item. */
43 #define LM8323_CMD_WRITE_CLOCK 0x93 /* Set clock config. */
44 #define LM8323_CMD_READ_CLOCK 0x94 /* Get clock config. */
45 #define LM8323_CMD_PWM_WRITE 0x95 /* Write PWM script. */
46 #define LM8323_CMD_START_PWM 0x96 /* Start PWM engine. */
47 #define LM8323_CMD_STOP_PWM 0x97 /* Stop PWM engine. */
49 /* Interrupt status. */
50 #define INT_KEYPAD 0x01 /* Key event. */
51 #define INT_ROTATOR 0x02 /* Rotator event. */
52 #define INT_ERROR 0x08 /* Error: use CMD_READ_ERR. */
53 #define INT_NOINIT 0x10 /* Lost configuration. */
54 #define INT_PWM1 0x20 /* PWM1 stopped. */
55 #define INT_PWM2 0x40 /* PWM2 stopped. */
56 #define INT_PWM3 0x80 /* PWM3 stopped. */
58 /* Errors (signalled by INT_ERROR, read with CMD_READ_ERR). */
59 #define ERR_BADPAR 0x01 /* Bad parameter. */
60 #define ERR_CMDUNK 0x02 /* Unknown command. */
61 #define ERR_KEYOVR 0x04 /* Too many keys pressed. */
62 #define ERR_FIFOOVER 0x40 /* FIFO overflow. */
64 /* Configuration keys (CMD_{WRITE,READ}_CFG). */
65 #define CFG_MUX1SEL 0x01 /* Select MUX1_OUT input. */
66 #define CFG_MUX1EN 0x02 /* Enable MUX1_OUT. */
67 #define CFG_MUX2SEL 0x04 /* Select MUX2_OUT input. */
68 #define CFG_MUX2EN 0x08 /* Enable MUX2_OUT. */
69 #define CFG_PSIZE 0x20 /* Package size (must be 0). */
70 #define CFG_ROTEN 0x40 /* Enable rotator. */
72 /* Clock settings (CMD_{WRITE,READ}_CLOCK). */
73 #define CLK_RCPWM_INTERNAL 0x00
74 #define CLK_RCPWM_EXTERNAL 0x03
75 #define CLK_SLOWCLKEN 0x08 /* Enable 32.768kHz clock. */
76 #define CLK_SLOWCLKOUT 0x40 /* Enable slow pulse output. */
78 /* The possible addresses corresponding to CONFIG1 and CONFIG2 pin wirings. */
79 #define LM8323_I2C_ADDR00 (0x84 >> 1) /* 1000 010x */
80 #define LM8323_I2C_ADDR01 (0x86 >> 1) /* 1000 011x */
81 #define LM8323_I2C_ADDR10 (0x88 >> 1) /* 1000 100x */
82 #define LM8323_I2C_ADDR11 (0x8A >> 1) /* 1000 101x */
84 /* Key event fifo length */
85 #define LM8323_FIFO_LEN 15
87 /* Commands for PWM engine; feed in with PWM_WRITE. */
88 /* Load ramp counter from duty cycle field (range 0 - 0xff). */
89 #define PWM_SET(v) (0x4000 | ((v) & 0xff))
90 /* Go to start of script. */
91 #define PWM_GOTOSTART 0x0000
93 * Stop engine (generates interrupt). If reset is 1, clear the program
94 * counter, else leave it.
96 #define PWM_END(reset) (0xc000 | (!!(reset) << 11))
98 * Ramp. If s is 1, divide clock by 512, else divide clock by 16.
99 * Take t clock scales (up to 63) per step, for n steps (up to 126).
100 * If u is set, ramp up, else ramp down.
102 #define PWM_RAMP(s, t, n, u) ((!!(s) << 14) | ((t) & 0x3f) << 8 | \
103 ((n) & 0x7f) | ((u) ? 0 : 0x80))
105 * Loop (i.e. jump back to pos) for a given number of iterations (up to 63).
106 * If cnt is zero, execute until PWM_END is encountered.
108 #define PWM_LOOP(cnt, pos) (0xa000 | (((cnt) & 0x3f) << 7) | \
111 * Wait for trigger. Argument is a mask of channels, shifted by the channel
112 * number, e.g. 0xa for channels 3 and 1. Note that channels are numbered
115 #define PWM_WAIT_TRIG(chans) (0xe000 | (((chans) & 0x7) << 6))
116 /* Send trigger. Argument is same as PWM_WAIT_TRIG. */
117 #define PWM_SEND_TRIG(chans) (0xe000 | ((chans) & 0x7))
123 int desired_brightness
;
128 struct work_struct work
;
129 struct led_classdev cdev
;
130 struct lm8323_chip
*chip
;
136 struct i2c_client
*client
;
137 struct input_dev
*idev
;
142 unsigned short keymap
[LM8323_KEYMAP_SIZE
];
147 struct lm8323_pwm pwm
[LM8323_NUM_PWMS
];
150 #define client_to_lm8323(c) container_of(c, struct lm8323_chip, client)
151 #define dev_to_lm8323(d) container_of(d, struct lm8323_chip, client->dev)
152 #define cdev_to_pwm(c) container_of(c, struct lm8323_pwm, cdev)
153 #define work_to_pwm(w) container_of(w, struct lm8323_pwm, work)
155 #define LM8323_MAX_DATA 8
158 * To write, we just access the chip's address in write mode, and dump the
159 * command and data out on the bus. The command byte and data are taken as
160 * sequential u8s out of varargs, to a maximum of LM8323_MAX_DATA.
162 static int lm8323_write(struct lm8323_chip
*lm
, int len
, ...)
166 u8 data
[LM8323_MAX_DATA
];
170 if (unlikely(len
> LM8323_MAX_DATA
)) {
171 dev_err(&lm
->client
->dev
, "tried to send %d bytes\n", len
);
176 for (i
= 0; i
< len
; i
++)
177 data
[i
] = va_arg(ap
, int);
182 * If the host is asleep while we send the data, we can get a NACK
183 * back while it wakes up, so try again, once.
185 ret
= i2c_master_send(lm
->client
, data
, len
);
186 if (unlikely(ret
== -EREMOTEIO
))
187 ret
= i2c_master_send(lm
->client
, data
, len
);
188 if (unlikely(ret
!= len
))
189 dev_err(&lm
->client
->dev
, "sent %d bytes of %d total\n",
196 * To read, we first send the command byte to the chip and end the transaction,
197 * then access the chip in read mode, at which point it will send the data.
199 static int lm8323_read(struct lm8323_chip
*lm
, u8 cmd
, u8
*buf
, int len
)
204 * If the host is asleep while we send the byte, we can get a NACK
205 * back while it wakes up, so try again, once.
207 ret
= i2c_master_send(lm
->client
, &cmd
, 1);
208 if (unlikely(ret
== -EREMOTEIO
))
209 ret
= i2c_master_send(lm
->client
, &cmd
, 1);
210 if (unlikely(ret
!= 1)) {
211 dev_err(&lm
->client
->dev
, "sending read cmd 0x%02x failed\n",
216 ret
= i2c_master_recv(lm
->client
, buf
, len
);
217 if (unlikely(ret
!= len
))
218 dev_err(&lm
->client
->dev
, "wanted %d bytes, got %d\n",
225 * Set the chip active time (idle time before it enters halt).
227 static void lm8323_set_active_time(struct lm8323_chip
*lm
, int time
)
229 lm8323_write(lm
, 2, LM8323_CMD_SET_ACTIVE
, time
>> 2);
233 * The signals are AT-style: the low 7 bits are the keycode, and the top
234 * bit indicates the state (1 for down, 0 for up).
236 static inline u8
lm8323_whichkey(u8 event
)
241 static inline int lm8323_ispress(u8 event
)
243 return (event
& 0x80) ? 1 : 0;
246 static void process_keys(struct lm8323_chip
*lm
)
249 u8 key_fifo
[LM8323_FIFO_LEN
+ 1];
250 int old_keys_down
= lm
->keys_down
;
255 * Read all key events from the FIFO at once. Next READ_FIFO clears the
256 * FIFO even if we didn't read all events previously.
258 ret
= lm8323_read(lm
, LM8323_CMD_READ_FIFO
, key_fifo
, LM8323_FIFO_LEN
);
261 dev_err(&lm
->client
->dev
, "Failed reading fifo \n");
266 while ((event
= key_fifo
[i
++])) {
267 u8 key
= lm8323_whichkey(event
);
268 int isdown
= lm8323_ispress(event
);
269 unsigned short keycode
= lm
->keymap
[key
];
271 dev_vdbg(&lm
->client
->dev
, "key 0x%02x %s\n",
272 key
, isdown
? "down" : "up");
274 if (lm
->kp_enabled
) {
275 input_event(lm
->idev
, EV_MSC
, MSC_SCAN
, key
);
276 input_report_key(lm
->idev
, keycode
, isdown
);
277 input_sync(lm
->idev
);
287 * Errata: We need to ensure that the chip never enters halt mode
288 * during a keypress, so set active time to 0. When it's released,
289 * we can enter halt again, so set the active time back to normal.
291 if (!old_keys_down
&& lm
->keys_down
)
292 lm8323_set_active_time(lm
, 0);
293 if (old_keys_down
&& !lm
->keys_down
)
294 lm8323_set_active_time(lm
, lm
->active_time
);
297 static void lm8323_process_error(struct lm8323_chip
*lm
)
301 if (lm8323_read(lm
, LM8323_CMD_READ_ERR
, &error
, 1) == 1) {
302 if (error
& ERR_FIFOOVER
)
303 dev_vdbg(&lm
->client
->dev
, "fifo overflow!\n");
304 if (error
& ERR_KEYOVR
)
305 dev_vdbg(&lm
->client
->dev
,
306 "more than two keys pressed\n");
307 if (error
& ERR_CMDUNK
)
308 dev_vdbg(&lm
->client
->dev
,
309 "unknown command submitted\n");
310 if (error
& ERR_BADPAR
)
311 dev_vdbg(&lm
->client
->dev
, "bad command parameter\n");
315 static void lm8323_reset(struct lm8323_chip
*lm
)
317 /* The docs say we must pass 0xAA as the data byte. */
318 lm8323_write(lm
, 2, LM8323_CMD_RESET
, 0xAA);
321 static int lm8323_configure(struct lm8323_chip
*lm
)
323 int keysize
= (lm
->size_x
<< 4) | lm
->size_y
;
324 int clock
= (CLK_SLOWCLKEN
| CLK_RCPWM_EXTERNAL
);
325 int debounce
= lm
->debounce_time
>> 2;
326 int active
= lm
->active_time
>> 2;
329 * Active time must be greater than the debounce time: if it's
330 * a close-run thing, give ourselves a 12ms buffer.
332 if (debounce
>= active
)
333 active
= debounce
+ 3;
335 lm8323_write(lm
, 2, LM8323_CMD_WRITE_CFG
, 0);
336 lm8323_write(lm
, 2, LM8323_CMD_WRITE_CLOCK
, clock
);
337 lm8323_write(lm
, 2, LM8323_CMD_SET_KEY_SIZE
, keysize
);
338 lm8323_set_active_time(lm
, lm
->active_time
);
339 lm8323_write(lm
, 2, LM8323_CMD_SET_DEBOUNCE
, debounce
);
340 lm8323_write(lm
, 3, LM8323_CMD_WRITE_PORT_STATE
, 0xff, 0xff);
341 lm8323_write(lm
, 3, LM8323_CMD_WRITE_PORT_SEL
, 0, 0);
344 * Not much we can do about errors at this point, so just hope
351 static void pwm_done(struct lm8323_pwm
*pwm
)
353 guard(mutex
)(&pwm
->lock
);
355 pwm
->running
= false;
356 if (pwm
->desired_brightness
!= pwm
->brightness
)
357 schedule_work(&pwm
->work
);
361 * Bottom half: handle the interrupt by posting key events, or dealing with
362 * errors appropriately.
364 static irqreturn_t
lm8323_irq(int irq
, void *_lm
)
366 struct lm8323_chip
*lm
= _lm
;
370 guard(mutex
)(&lm
->lock
);
372 while ((lm8323_read(lm
, LM8323_CMD_READ_INT
, &ints
, 1) == 1) && ints
) {
373 if (likely(ints
& INT_KEYPAD
))
375 if (ints
& INT_ROTATOR
) {
376 /* We don't currently support the rotator. */
377 dev_vdbg(&lm
->client
->dev
, "rotator fired\n");
379 if (ints
& INT_ERROR
) {
380 dev_vdbg(&lm
->client
->dev
, "error!\n");
381 lm8323_process_error(lm
);
383 if (ints
& INT_NOINIT
) {
384 dev_err(&lm
->client
->dev
, "chip lost config; "
386 lm8323_configure(lm
);
388 for (i
= 0; i
< LM8323_NUM_PWMS
; i
++) {
389 if (ints
& (INT_PWM1
<< i
)) {
390 dev_vdbg(&lm
->client
->dev
,
391 "pwm%d engine completed\n", i
);
392 pwm_done(&lm
->pwm
[i
]);
403 static int lm8323_read_id(struct lm8323_chip
*lm
, u8
*buf
)
407 bytes
= lm8323_read(lm
, LM8323_CMD_READ_ID
, buf
, 2);
408 if (unlikely(bytes
!= 2))
414 static void lm8323_write_pwm_one(struct lm8323_pwm
*pwm
, int pos
, u16 cmd
)
416 lm8323_write(pwm
->chip
, 4, LM8323_CMD_PWM_WRITE
, (pos
<< 2) | pwm
->id
,
417 (cmd
& 0xff00) >> 8, cmd
& 0x00ff);
421 * Write a script into a given PWM engine, concluding with PWM_END.
422 * If 'kill' is nonzero, the engine will be shut down at the end
423 * of the script, producing a zero output. Otherwise the engine
424 * will be kept running at the final PWM level indefinitely.
426 static void lm8323_write_pwm(struct lm8323_pwm
*pwm
, int kill
,
427 int len
, const u16
*cmds
)
431 for (i
= 0; i
< len
; i
++)
432 lm8323_write_pwm_one(pwm
, i
, cmds
[i
]);
434 lm8323_write_pwm_one(pwm
, i
++, PWM_END(kill
));
435 lm8323_write(pwm
->chip
, 2, LM8323_CMD_START_PWM
, pwm
->id
);
439 static void lm8323_pwm_work(struct work_struct
*work
)
441 struct lm8323_pwm
*pwm
= work_to_pwm(work
);
442 int div512
, perstep
, steps
, hz
, up
, kill
;
446 guard(mutex
)(&pwm
->lock
);
449 * Do nothing if we're already at the requested level,
450 * or previous setting is not yet complete. In the latter
451 * case we will be called again when the previous PWM script
454 if (pwm
->running
|| pwm
->desired_brightness
== pwm
->brightness
)
457 kill
= (pwm
->desired_brightness
== 0);
458 up
= (pwm
->desired_brightness
> pwm
->brightness
);
459 steps
= abs(pwm
->desired_brightness
- pwm
->brightness
);
462 * Convert time (in ms) into a divisor (512 or 16 on a refclk of
463 * 32768Hz), and number of ticks per step.
465 if ((pwm
->fade_time
/ steps
) > (32768 / 512)) {
473 perstep
= (hz
* pwm
->fade_time
) / (steps
* 1000);
477 else if (perstep
> 63)
484 pwm_cmds
[num_cmds
++] = PWM_RAMP(div512
, perstep
, s
, up
);
488 lm8323_write_pwm(pwm
, kill
, num_cmds
, pwm_cmds
);
489 pwm
->brightness
= pwm
->desired_brightness
;
492 static void lm8323_pwm_set_brightness(struct led_classdev
*led_cdev
,
493 enum led_brightness brightness
)
495 struct lm8323_pwm
*pwm
= cdev_to_pwm(led_cdev
);
496 struct lm8323_chip
*lm
= pwm
->chip
;
498 scoped_guard(mutex
, &pwm
->lock
) {
499 pwm
->desired_brightness
= brightness
;
502 if (in_interrupt()) {
503 schedule_work(&pwm
->work
);
506 * Schedule PWM work as usual unless we are going into suspend
508 scoped_guard(mutex
, &lm
->lock
) {
509 if (likely(!lm
->pm_suspend
))
510 schedule_work(&pwm
->work
);
512 lm8323_pwm_work(&pwm
->work
);
517 static ssize_t
lm8323_pwm_show_time(struct device
*dev
,
518 struct device_attribute
*attr
, char *buf
)
520 struct led_classdev
*led_cdev
= dev_get_drvdata(dev
);
521 struct lm8323_pwm
*pwm
= cdev_to_pwm(led_cdev
);
523 return sprintf(buf
, "%d\n", pwm
->fade_time
);
526 static ssize_t
lm8323_pwm_store_time(struct device
*dev
,
527 struct device_attribute
*attr
, const char *buf
, size_t len
)
529 struct led_classdev
*led_cdev
= dev_get_drvdata(dev
);
530 struct lm8323_pwm
*pwm
= cdev_to_pwm(led_cdev
);
533 ret
= kstrtoint(buf
, 10, &time
);
534 /* Numbers only, please. */
538 pwm
->fade_time
= time
;
542 static DEVICE_ATTR(time
, 0644, lm8323_pwm_show_time
, lm8323_pwm_store_time
);
544 static struct attribute
*lm8323_pwm_attrs
[] = {
548 ATTRIBUTE_GROUPS(lm8323_pwm
);
550 static int init_pwm(struct lm8323_chip
*lm
, int id
, struct device
*dev
,
553 struct lm8323_pwm
*pwm
;
558 pwm
= &lm
->pwm
[id
- 1];
563 pwm
->desired_brightness
= 0;
564 pwm
->running
= false;
565 pwm
->enabled
= false;
566 INIT_WORK(&pwm
->work
, lm8323_pwm_work
);
567 mutex_init(&pwm
->lock
);
571 pwm
->cdev
.name
= name
;
572 pwm
->cdev
.brightness_set
= lm8323_pwm_set_brightness
;
573 pwm
->cdev
.groups
= lm8323_pwm_groups
;
575 err
= devm_led_classdev_register(dev
, &pwm
->cdev
);
577 dev_err(dev
, "couldn't register PWM %d: %d\n", id
, err
);
586 static ssize_t
lm8323_show_disable(struct device
*dev
,
587 struct device_attribute
*attr
, char *buf
)
589 struct lm8323_chip
*lm
= dev_get_drvdata(dev
);
591 return sprintf(buf
, "%u\n", !lm
->kp_enabled
);
594 static ssize_t
lm8323_set_disable(struct device
*dev
,
595 struct device_attribute
*attr
,
596 const char *buf
, size_t count
)
598 struct lm8323_chip
*lm
= dev_get_drvdata(dev
);
602 ret
= kstrtouint(buf
, 10, &i
);
606 guard(mutex
)(&lm
->lock
);
612 static DEVICE_ATTR(disable_kp
, 0644, lm8323_show_disable
, lm8323_set_disable
);
614 static struct attribute
*lm8323_attrs
[] = {
615 &dev_attr_disable_kp
.attr
,
618 ATTRIBUTE_GROUPS(lm8323
);
620 static int lm8323_probe(struct i2c_client
*client
)
622 struct lm8323_platform_data
*pdata
= dev_get_platdata(&client
->dev
);
623 struct input_dev
*idev
;
624 struct lm8323_chip
*lm
;
630 if (!pdata
|| !pdata
->size_x
|| !pdata
->size_y
) {
631 dev_err(&client
->dev
, "missing platform_data\n");
635 if (pdata
->size_x
> 8) {
636 dev_err(&client
->dev
, "invalid x size %d specified\n",
641 if (pdata
->size_y
> 12) {
642 dev_err(&client
->dev
, "invalid y size %d specified\n",
647 lm
= devm_kzalloc(&client
->dev
, sizeof(*lm
), GFP_KERNEL
);
651 idev
= devm_input_allocate_device(&client
->dev
);
657 mutex_init(&lm
->lock
);
659 lm
->size_x
= pdata
->size_x
;
660 lm
->size_y
= pdata
->size_y
;
661 dev_vdbg(&client
->dev
, "Keypad size: %d x %d\n",
662 lm
->size_x
, lm
->size_y
);
664 lm
->debounce_time
= pdata
->debounce_time
;
665 lm
->active_time
= pdata
->active_time
;
670 * Nothing's set up to service the IRQ yet, so just spin for max.
671 * 100ms until we can configure.
673 tmo
= jiffies
+ msecs_to_jiffies(100);
674 while (lm8323_read(lm
, LM8323_CMD_READ_INT
, data
, 1) == 1) {
675 if (data
[0] & INT_NOINIT
)
678 if (time_after(jiffies
, tmo
)) {
679 dev_err(&client
->dev
,
680 "timeout waiting for initialisation\n");
687 lm8323_configure(lm
);
689 /* If a true probe check the device */
690 if (lm8323_read_id(lm
, data
) != 0) {
691 dev_err(&client
->dev
, "device not found\n");
695 for (pwm
= 0; pwm
< LM8323_NUM_PWMS
; pwm
++) {
696 err
= init_pwm(lm
, pwm
+ 1, &client
->dev
,
697 pdata
->pwm_names
[pwm
]);
702 lm
->kp_enabled
= true;
704 idev
->name
= pdata
->name
? : "LM8323 keypad";
705 snprintf(lm
->phys
, sizeof(lm
->phys
),
706 "%s/input-kp", dev_name(&client
->dev
));
707 idev
->phys
= lm
->phys
;
709 idev
->evbit
[0] = BIT(EV_KEY
) | BIT(EV_MSC
);
710 __set_bit(MSC_SCAN
, idev
->mscbit
);
711 for (i
= 0; i
< LM8323_KEYMAP_SIZE
; i
++) {
712 __set_bit(pdata
->keymap
[i
], idev
->keybit
);
713 lm
->keymap
[i
] = pdata
->keymap
[i
];
715 __clear_bit(KEY_RESERVED
, idev
->keybit
);
718 __set_bit(EV_REP
, idev
->evbit
);
720 err
= input_register_device(idev
);
722 dev_dbg(&client
->dev
, "error registering input device\n");
726 err
= devm_request_threaded_irq(&client
->dev
, client
->irq
,
728 IRQF_TRIGGER_LOW
| IRQF_ONESHOT
,
731 dev_err(&client
->dev
, "could not get IRQ %d\n", client
->irq
);
735 i2c_set_clientdata(client
, lm
);
737 device_init_wakeup(&client
->dev
, 1);
738 enable_irq_wake(client
->irq
);
744 * We don't need to explicitly suspend the chip, as it already switches off
745 * when there's no activity.
747 static int lm8323_suspend(struct device
*dev
)
749 struct i2c_client
*client
= to_i2c_client(dev
);
750 struct lm8323_chip
*lm
= i2c_get_clientdata(client
);
753 irq_set_irq_wake(client
->irq
, 0);
754 disable_irq(client
->irq
);
756 scoped_guard(mutex
, &lm
->lock
) {
757 lm
->pm_suspend
= true;
760 for (i
= 0; i
< 3; i
++)
761 if (lm
->pwm
[i
].enabled
)
762 led_classdev_suspend(&lm
->pwm
[i
].cdev
);
767 static int lm8323_resume(struct device
*dev
)
769 struct i2c_client
*client
= to_i2c_client(dev
);
770 struct lm8323_chip
*lm
= i2c_get_clientdata(client
);
773 scoped_guard(mutex
, &lm
->lock
) {
774 lm
->pm_suspend
= false;
777 for (i
= 0; i
< 3; i
++)
778 if (lm
->pwm
[i
].enabled
)
779 led_classdev_resume(&lm
->pwm
[i
].cdev
);
781 enable_irq(client
->irq
);
782 irq_set_irq_wake(client
->irq
, 1);
787 static DEFINE_SIMPLE_DEV_PM_OPS(lm8323_pm_ops
, lm8323_suspend
, lm8323_resume
);
789 static const struct i2c_device_id lm8323_id
[] = {
794 static struct i2c_driver lm8323_i2c_driver
= {
797 .pm
= pm_sleep_ptr(&lm8323_pm_ops
),
798 .dev_groups
= lm8323_groups
,
800 .probe
= lm8323_probe
,
801 .id_table
= lm8323_id
,
803 MODULE_DEVICE_TABLE(i2c
, lm8323_id
);
805 module_i2c_driver(lm8323_i2c_driver
);
807 MODULE_AUTHOR("Timo O. Karjalainen <timo.o.karjalainen@nokia.com>");
808 MODULE_AUTHOR("Daniel Stone");
809 MODULE_AUTHOR("Felipe Balbi <felipe.balbi@nokia.com>");
810 MODULE_DESCRIPTION("LM8323 keypad driver");
811 MODULE_LICENSE("GPL");