1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
5 * Copyright (c) 1995-2000 Advanced System Products, Inc.
6 * Copyright (c) 2000-2001 ConnectCom Solutions, Inc.
7 * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx>
8 * Copyright (c) 2014 Hannes Reinecke <hare@suse.de>
13 * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys)
14 * changed its name to ConnectCom Solutions, Inc.
15 * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/kernel.h>
21 #include <linux/types.h>
22 #include <linux/ioport.h>
23 #include <linux/interrupt.h>
24 #include <linux/delay.h>
25 #include <linux/slab.h>
27 #include <linux/proc_fs.h>
28 #include <linux/init.h>
29 #include <linux/blkdev.h>
30 #include <linux/isa.h>
31 #include <linux/eisa.h>
32 #include <linux/pci.h>
33 #include <linux/spinlock.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/firmware.h>
36 #include <linux/dmapool.h>
41 #include <scsi/scsi_cmnd.h>
42 #include <scsi/scsi_device.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_host.h>
47 #define DRV_NAME "advansys"
48 #define ASC_VERSION "3.5" /* AdvanSys Driver Version */
52 * 1. Use scsi_transport_spi
53 * 2. advansys_info is not safe against multiple simultaneous callers
54 * 3. Add module_param to override ISA/VLB ioport array
57 /* Enable driver /proc statistics. */
58 #define ADVANSYS_STATS
60 /* Enable driver tracing. */
63 typedef unsigned char uchar
;
65 #define isodd_word(val) ((((uint)val) & (uint)0x0001) != 0)
67 #define PCI_VENDOR_ID_ASP 0x10cd
68 #define PCI_DEVICE_ID_ASP_1200A 0x1100
69 #define PCI_DEVICE_ID_ASP_ABP940 0x1200
70 #define PCI_DEVICE_ID_ASP_ABP940U 0x1300
71 #define PCI_DEVICE_ID_ASP_ABP940UW 0x2300
72 #define PCI_DEVICE_ID_38C0800_REV1 0x2500
73 #define PCI_DEVICE_ID_38C1600_REV1 0x2700
75 #define PortAddr unsigned int /* port address size */
76 #define inp(port) inb(port)
77 #define outp(port, byte) outb((byte), (port))
79 #define inpw(port) inw(port)
80 #define outpw(port, word) outw((word), (port))
82 #define ASC_MAX_SG_QUEUE 7
83 #define ASC_MAX_SG_LIST 255
85 #define ASC_CS_TYPE unsigned short
87 #define ASC_IS_EISA (0x0002)
88 #define ASC_IS_PCI (0x0004)
89 #define ASC_IS_PCI_ULTRA (0x0104)
90 #define ASC_IS_PCMCIA (0x0008)
91 #define ASC_IS_MCA (0x0020)
92 #define ASC_IS_VL (0x0040)
93 #define ASC_IS_WIDESCSI_16 (0x0100)
94 #define ASC_IS_WIDESCSI_32 (0x0200)
95 #define ASC_IS_BIG_ENDIAN (0x8000)
97 #define ASC_CHIP_MIN_VER_VL (0x01)
98 #define ASC_CHIP_MAX_VER_VL (0x07)
99 #define ASC_CHIP_MIN_VER_PCI (0x09)
100 #define ASC_CHIP_MAX_VER_PCI (0x0F)
101 #define ASC_CHIP_VER_PCI_BIT (0x08)
102 #define ASC_CHIP_VER_ASYN_BUG (0x21)
103 #define ASC_CHIP_VER_PCI 0x08
104 #define ASC_CHIP_VER_PCI_ULTRA_3150 (ASC_CHIP_VER_PCI | 0x02)
105 #define ASC_CHIP_VER_PCI_ULTRA_3050 (ASC_CHIP_VER_PCI | 0x03)
106 #define ASC_CHIP_MIN_VER_EISA (0x41)
107 #define ASC_CHIP_MAX_VER_EISA (0x47)
108 #define ASC_CHIP_VER_EISA_BIT (0x40)
109 #define ASC_CHIP_LATEST_VER_EISA ((ASC_CHIP_MIN_VER_EISA - 1) + 3)
110 #define ASC_MAX_VL_DMA_COUNT (0x07FFFFFFL)
111 #define ASC_MAX_PCI_DMA_COUNT (0xFFFFFFFFL)
113 #define ASC_SCSI_ID_BITS 3
114 #define ASC_SCSI_TIX_TYPE uchar
115 #define ASC_ALL_DEVICE_BIT_SET 0xFF
116 #define ASC_SCSI_BIT_ID_TYPE uchar
117 #define ASC_MAX_TID 7
118 #define ASC_MAX_LUN 7
119 #define ASC_SCSI_WIDTH_BIT_SET 0xFF
120 #define ASC_MAX_SENSE_LEN 32
121 #define ASC_MIN_SENSE_LEN 14
122 #define ASC_SCSI_RESET_HOLD_TIME_US 60
125 * Narrow boards only support 12-byte commands, while wide boards
126 * extend to 16-byte commands.
128 #define ASC_MAX_CDB_LEN 12
129 #define ADV_MAX_CDB_LEN 16
131 #define MS_SDTR_LEN 0x03
132 #define MS_WDTR_LEN 0x02
134 #define ASC_SG_LIST_PER_Q 7
136 #define QS_READY 0x01
137 #define QS_DISC1 0x02
138 #define QS_DISC2 0x04
140 #define QS_ABORTED 0x40
142 #define QC_NO_CALLBACK 0x01
143 #define QC_SG_SWAP_QUEUE 0x02
144 #define QC_SG_HEAD 0x04
145 #define QC_DATA_IN 0x08
146 #define QC_DATA_OUT 0x10
147 #define QC_URGENT 0x20
148 #define QC_MSG_OUT 0x40
149 #define QC_REQ_SENSE 0x80
150 #define QCSG_SG_XFER_LIST 0x02
151 #define QCSG_SG_XFER_MORE 0x04
152 #define QCSG_SG_XFER_END 0x08
153 #define QD_IN_PROGRESS 0x00
154 #define QD_NO_ERROR 0x01
155 #define QD_ABORTED_BY_HOST 0x02
156 #define QD_WITH_ERROR 0x04
157 #define QD_INVALID_REQUEST 0x80
158 #define QD_INVALID_HOST_NUM 0x81
159 #define QD_INVALID_DEVICE 0x82
160 #define QD_ERR_INTERNAL 0xFF
161 #define QHSTA_NO_ERROR 0x00
162 #define QHSTA_M_SEL_TIMEOUT 0x11
163 #define QHSTA_M_DATA_OVER_RUN 0x12
164 #define QHSTA_M_DATA_UNDER_RUN 0x12
165 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
166 #define QHSTA_M_BAD_BUS_PHASE_SEQ 0x14
167 #define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21
168 #define QHSTA_D_ASC_DVC_ERROR_CODE_SET 0x22
169 #define QHSTA_D_HOST_ABORT_FAILED 0x23
170 #define QHSTA_D_EXE_SCSI_Q_FAILED 0x24
171 #define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25
172 #define QHSTA_D_ASPI_NO_BUF_POOL 0x26
173 #define QHSTA_M_WTM_TIMEOUT 0x41
174 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42
175 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43
176 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
177 #define QHSTA_M_TARGET_STATUS_BUSY 0x45
178 #define QHSTA_M_BAD_TAG_CODE 0x46
179 #define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY 0x47
180 #define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48
181 #define QHSTA_D_LRAM_CMP_ERROR 0x81
182 #define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1
183 #define ASC_FLAG_SCSIQ_REQ 0x01
184 #define ASC_FLAG_BIOS_SCSIQ_REQ 0x02
185 #define ASC_FLAG_BIOS_ASYNC_IO 0x04
186 #define ASC_FLAG_SRB_LINEAR_ADDR 0x08
187 #define ASC_FLAG_WIN16 0x10
188 #define ASC_FLAG_WIN32 0x20
189 #define ASC_FLAG_DOS_VM_CALLBACK 0x80
190 #define ASC_TAG_FLAG_EXTRA_BYTES 0x10
191 #define ASC_TAG_FLAG_DISABLE_DISCONNECT 0x04
192 #define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX 0x08
193 #define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40
194 #define ASC_SCSIQ_CPY_BEG 4
195 #define ASC_SCSIQ_SGHD_CPY_BEG 2
196 #define ASC_SCSIQ_B_FWD 0
197 #define ASC_SCSIQ_B_BWD 1
198 #define ASC_SCSIQ_B_STATUS 2
199 #define ASC_SCSIQ_B_QNO 3
200 #define ASC_SCSIQ_B_CNTL 4
201 #define ASC_SCSIQ_B_SG_QUEUE_CNT 5
202 #define ASC_SCSIQ_D_DATA_ADDR 8
203 #define ASC_SCSIQ_D_DATA_CNT 12
204 #define ASC_SCSIQ_B_SENSE_LEN 20
205 #define ASC_SCSIQ_DONE_INFO_BEG 22
206 #define ASC_SCSIQ_D_SRBPTR 22
207 #define ASC_SCSIQ_B_TARGET_IX 26
208 #define ASC_SCSIQ_B_CDB_LEN 28
209 #define ASC_SCSIQ_B_TAG_CODE 29
210 #define ASC_SCSIQ_W_VM_ID 30
211 #define ASC_SCSIQ_DONE_STATUS 32
212 #define ASC_SCSIQ_HOST_STATUS 33
213 #define ASC_SCSIQ_SCSI_STATUS 34
214 #define ASC_SCSIQ_CDB_BEG 36
215 #define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56
216 #define ASC_SCSIQ_DW_REMAIN_XFER_CNT 60
217 #define ASC_SCSIQ_B_FIRST_SG_WK_QP 48
218 #define ASC_SCSIQ_B_SG_WK_QP 49
219 #define ASC_SCSIQ_B_SG_WK_IX 50
220 #define ASC_SCSIQ_W_ALT_DC1 52
221 #define ASC_SCSIQ_B_LIST_CNT 6
222 #define ASC_SCSIQ_B_CUR_LIST_CNT 7
223 #define ASC_SGQ_B_SG_CNTL 4
224 #define ASC_SGQ_B_SG_HEAD_QP 5
225 #define ASC_SGQ_B_SG_LIST_CNT 6
226 #define ASC_SGQ_B_SG_CUR_LIST_CNT 7
227 #define ASC_SGQ_LIST_BEG 8
228 #define ASC_DEF_SCSI1_QNG 4
229 #define ASC_MAX_SCSI1_QNG 4
230 #define ASC_DEF_SCSI2_QNG 16
231 #define ASC_MAX_SCSI2_QNG 32
232 #define ASC_TAG_CODE_MASK 0x23
233 #define ASC_STOP_REQ_RISC_STOP 0x01
234 #define ASC_STOP_ACK_RISC_STOP 0x03
235 #define ASC_STOP_CLEAN_UP_BUSY_Q 0x10
236 #define ASC_STOP_CLEAN_UP_DISC_Q 0x20
237 #define ASC_STOP_HOST_REQ_RISC_HALT 0x40
238 #define ASC_TIDLUN_TO_IX(tid, lun) (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS))
239 #define ASC_TID_TO_TARGET_ID(tid) (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid))
240 #define ASC_TIX_TO_TARGET_ID(tix) (0x01 << ((tix) & ASC_MAX_TID))
241 #define ASC_TIX_TO_TID(tix) ((tix) & ASC_MAX_TID)
242 #define ASC_TID_TO_TIX(tid) ((tid) & ASC_MAX_TID)
243 #define ASC_TIX_TO_LUN(tix) (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN)
244 #define ASC_QNO_TO_QADDR(q_no) ((ASC_QADR_BEG)+((int)(q_no) << 6))
246 typedef struct asc_scsiq_1
{
260 typedef struct asc_scsiq_2
{
269 typedef struct asc_scsiq_3
{
276 typedef struct asc_scsiq_4
{
277 uchar cdb
[ASC_MAX_CDB_LEN
];
278 uchar y_first_sg_list_qp
;
279 uchar y_working_sg_qp
;
280 uchar y_working_sg_ix
;
283 ushort x_reconnect_rtn
;
284 __le32 x_saved_data_addr
;
285 __le32 x_saved_data_cnt
;
288 typedef struct asc_q_done_info
{
300 typedef struct asc_sg_list
{
305 typedef struct asc_sg_head
{
308 ushort entry_to_copy
;
310 ASC_SG_LIST sg_list
[];
313 typedef struct asc_scsi_q
{
317 ASC_SG_HEAD
*sg_head
;
318 ushort remain_sg_entry_cnt
;
319 ushort next_sg_index
;
322 typedef struct asc_scsi_bios_req_q
{
326 ASC_SG_HEAD
*sg_head
;
329 uchar cdb
[ASC_MAX_CDB_LEN
];
330 uchar sense
[ASC_MIN_SENSE_LEN
];
331 } ASC_SCSI_BIOS_REQ_Q
;
333 typedef struct asc_risc_q
{
342 typedef struct asc_sg_list_q
{
348 uchar sg_cur_list_cnt
;
351 typedef struct asc_risc_sg_list_q
{
355 ASC_SG_LIST sg_list
[7];
356 } ASC_RISC_SG_LIST_Q
;
358 #define ASCQ_ERR_Q_STATUS 0x0D
359 #define ASCQ_ERR_CUR_QNG 0x17
360 #define ASCQ_ERR_SG_Q_LINKS 0x18
361 #define ASCQ_ERR_ISR_RE_ENTRY 0x1A
362 #define ASCQ_ERR_CRITICAL_RE_ENTRY 0x1B
363 #define ASCQ_ERR_ISR_ON_CRITICAL 0x1C
366 * Warning code values are set in ASC_DVC_VAR 'warn_code'.
368 #define ASC_WARN_NO_ERROR 0x0000
369 #define ASC_WARN_IO_PORT_ROTATE 0x0001
370 #define ASC_WARN_EEPROM_CHKSUM 0x0002
371 #define ASC_WARN_IRQ_MODIFIED 0x0004
372 #define ASC_WARN_AUTO_CONFIG 0x0008
373 #define ASC_WARN_CMD_QNG_CONFLICT 0x0010
374 #define ASC_WARN_EEPROM_RECOVER 0x0020
375 #define ASC_WARN_CFG_MSW_RECOVER 0x0040
378 * Error code values are set in {ASC/ADV}_DVC_VAR 'err_code'.
380 #define ASC_IERR_NO_CARRIER 0x0001 /* No more carrier memory */
381 #define ASC_IERR_MCODE_CHKSUM 0x0002 /* micro code check sum error */
382 #define ASC_IERR_SET_PC_ADDR 0x0004
383 #define ASC_IERR_START_STOP_CHIP 0x0008 /* start/stop chip failed */
384 #define ASC_IERR_ILLEGAL_CONNECTION 0x0010 /* Illegal cable connection */
385 #define ASC_IERR_SINGLE_END_DEVICE 0x0020 /* SE device on DIFF bus */
386 #define ASC_IERR_REVERSED_CABLE 0x0040 /* Narrow flat cable reversed */
387 #define ASC_IERR_SET_SCSI_ID 0x0080 /* set SCSI ID failed */
388 #define ASC_IERR_HVD_DEVICE 0x0100 /* HVD device on LVD port */
389 #define ASC_IERR_BAD_SIGNATURE 0x0200 /* signature not found */
390 #define ASC_IERR_NO_BUS_TYPE 0x0400
391 #define ASC_IERR_BIST_PRE_TEST 0x0800 /* BIST pre-test error */
392 #define ASC_IERR_BIST_RAM_TEST 0x1000 /* BIST RAM test error */
393 #define ASC_IERR_BAD_CHIPTYPE 0x2000 /* Invalid chip_type setting */
395 #define ASC_DEF_MAX_TOTAL_QNG (0xF0)
396 #define ASC_MIN_TAG_Q_PER_DVC (0x04)
397 #define ASC_MIN_FREE_Q (0x02)
398 #define ASC_MIN_TOTAL_QNG ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q))
399 #define ASC_MAX_TOTAL_QNG 240
400 #define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16
401 #define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG 8
402 #define ASC_MAX_PCI_INRAM_TOTAL_QNG 20
403 #define ASC_MAX_INRAM_TAG_QNG 16
404 #define ASC_IOADR_GAP 0x10
405 #define ASC_SYN_MAX_OFFSET 0x0F
406 #define ASC_DEF_SDTR_OFFSET 0x0F
407 #define ASC_SDTR_ULTRA_PCI_10MB_INDEX 0x02
408 #define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41
410 /* The narrow chip only supports a limited selection of transfer rates.
411 * These are encoded in the range 0..7 or 0..15 depending whether the chip
412 * is Ultra-capable or not. These tables let us convert from one to the other.
414 static const unsigned char asc_syn_xfer_period
[8] = {
415 25, 30, 35, 40, 50, 60, 70, 85
418 static const unsigned char asc_syn_ultra_xfer_period
[16] = {
419 12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107
422 typedef struct ext_msg
{
428 uchar sdtr_xfer_period
;
429 uchar sdtr_req_ack_offset
;
444 #define xfer_period u_ext_msg.sdtr.sdtr_xfer_period
445 #define req_ack_offset u_ext_msg.sdtr.sdtr_req_ack_offset
446 #define wdtr_width u_ext_msg.wdtr.wdtr_width
447 #define mdp_b3 u_ext_msg.mdp_b3
448 #define mdp_b2 u_ext_msg.mdp_b2
449 #define mdp_b1 u_ext_msg.mdp_b1
450 #define mdp_b0 u_ext_msg.mdp_b0
452 typedef struct asc_dvc_cfg
{
453 ASC_SCSI_BIT_ID_TYPE can_tagged_qng
;
454 ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled
;
455 ASC_SCSI_BIT_ID_TYPE disc_enable
;
456 ASC_SCSI_BIT_ID_TYPE sdtr_enable
;
460 ushort mcode_version
;
461 uchar max_tag_qng
[ASC_MAX_TID
+ 1];
462 uchar sdtr_period_offset
[ASC_MAX_TID
+ 1];
463 uchar adapter_info
[6];
466 #define ASC_DEF_DVC_CNTL 0xFFFF
467 #define ASC_DEF_CHIP_SCSI_ID 7
468 #define ASC_DEF_ISA_DMA_SPEED 4
469 #define ASC_INIT_STATE_BEG_GET_CFG 0x0001
470 #define ASC_INIT_STATE_END_GET_CFG 0x0002
471 #define ASC_INIT_STATE_BEG_SET_CFG 0x0004
472 #define ASC_INIT_STATE_END_SET_CFG 0x0008
473 #define ASC_INIT_STATE_BEG_LOAD_MC 0x0010
474 #define ASC_INIT_STATE_END_LOAD_MC 0x0020
475 #define ASC_INIT_STATE_BEG_INQUIRY 0x0040
476 #define ASC_INIT_STATE_END_INQUIRY 0x0080
477 #define ASC_INIT_RESET_SCSI_DONE 0x0100
478 #define ASC_INIT_STATE_WITHOUT_EEP 0x8000
479 #define ASC_BUG_FIX_IF_NOT_DWB 0x0001
480 #define ASC_BUG_FIX_ASYN_USE_SYN 0x0002
481 #define ASC_MIN_TAGGED_CMD 7
482 #define ASC_MAX_SCSI_RESET_WAIT 30
483 #define ASC_OVERRUN_BSIZE 64
485 struct asc_dvc_var
; /* Forward Declaration. */
487 typedef struct asc_dvc_var
{
493 ASC_SCSI_BIT_ID_TYPE init_sdtr
;
494 ASC_SCSI_BIT_ID_TYPE sdtr_done
;
495 ASC_SCSI_BIT_ID_TYPE use_tagged_qng
;
496 ASC_SCSI_BIT_ID_TYPE unit_not_ready
;
497 ASC_SCSI_BIT_ID_TYPE queue_full_or_busy
;
498 ASC_SCSI_BIT_ID_TYPE start_motor
;
500 dma_addr_t overrun_dma
;
501 uchar scsi_reset_wait
;
506 uchar in_critical_cnt
;
507 uchar last_q_shortage
;
509 uchar cur_dvc_qng
[ASC_MAX_TID
+ 1];
510 uchar max_dvc_qng
[ASC_MAX_TID
+ 1];
511 ASC_SCSI_Q
*scsiq_busy_head
[ASC_MAX_TID
+ 1];
512 ASC_SCSI_Q
*scsiq_busy_tail
[ASC_MAX_TID
+ 1];
513 const uchar
*sdtr_period_tbl
;
515 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always
;
518 uchar dos_int13_table
[ASC_MAX_TID
+ 1];
519 unsigned int max_dma_count
;
520 ASC_SCSI_BIT_ID_TYPE no_scam
;
521 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer
;
522 uchar min_sdtr_index
;
523 uchar max_sdtr_index
;
524 struct asc_board
*drv_ptr
;
525 unsigned int uc_break
;
528 typedef struct asc_dvc_inq_info
{
529 uchar type
[ASC_MAX_TID
+ 1][ASC_MAX_LUN
+ 1];
532 typedef struct asc_cap_info
{
537 typedef struct asc_cap_info_array
{
538 ASC_CAP_INFO cap_info
[ASC_MAX_TID
+ 1][ASC_MAX_LUN
+ 1];
539 } ASC_CAP_INFO_ARRAY
;
541 #define ASC_MCNTL_NO_SEL_TIMEOUT (ushort)0x0001
542 #define ASC_MCNTL_NULL_TARGET (ushort)0x0002
543 #define ASC_CNTL_INITIATOR (ushort)0x0001
544 #define ASC_CNTL_BIOS_GT_1GB (ushort)0x0002
545 #define ASC_CNTL_BIOS_GT_2_DISK (ushort)0x0004
546 #define ASC_CNTL_BIOS_REMOVABLE (ushort)0x0008
547 #define ASC_CNTL_NO_SCAM (ushort)0x0010
548 #define ASC_CNTL_INT_MULTI_Q (ushort)0x0080
549 #define ASC_CNTL_NO_LUN_SUPPORT (ushort)0x0040
550 #define ASC_CNTL_NO_VERIFY_COPY (ushort)0x0100
551 #define ASC_CNTL_RESET_SCSI (ushort)0x0200
552 #define ASC_CNTL_INIT_INQUIRY (ushort)0x0400
553 #define ASC_CNTL_INIT_VERBOSE (ushort)0x0800
554 #define ASC_CNTL_SCSI_PARITY (ushort)0x1000
555 #define ASC_CNTL_BURST_MODE (ushort)0x2000
556 #define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000
557 #define ASC_EEP_DVC_CFG_BEG_VL 2
558 #define ASC_EEP_MAX_DVC_ADDR_VL 15
559 #define ASC_EEP_DVC_CFG_BEG 32
560 #define ASC_EEP_MAX_DVC_ADDR 45
561 #define ASC_EEP_MAX_RETRY 20
564 * These macros keep the chip SCSI id bitfields in board order. C bitfields
565 * aren't portable between big and little-endian platforms so they are not used.
568 #define ASC_EEP_GET_CHIP_ID(cfg) ((cfg)->id_speed & 0x0f)
569 #define ASC_EEP_GET_DMA_SPD(cfg) (((cfg)->id_speed & 0xf0) >> 4)
570 #define ASC_EEP_SET_CHIP_ID(cfg, sid) \
571 ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID))
572 #define ASC_EEP_SET_DMA_SPD(cfg, spd) \
573 ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4)
575 typedef struct asceep_config
{
587 uchar id_speed
; /* low order 4 bits is chip scsi id */
588 /* high order 4 bits is isa dma speed */
589 uchar dos_int13_table
[ASC_MAX_TID
+ 1];
590 uchar adapter_info
[6];
595 #define ASC_EEP_CMD_READ 0x80
596 #define ASC_EEP_CMD_WRITE 0x40
597 #define ASC_EEP_CMD_WRITE_ABLE 0x30
598 #define ASC_EEP_CMD_WRITE_DISABLE 0x00
599 #define ASCV_MSGOUT_BEG 0x0000
600 #define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3)
601 #define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4)
602 #define ASCV_BREAK_SAVED_CODE (ushort)0x0006
603 #define ASCV_MSGIN_BEG (ASCV_MSGOUT_BEG+8)
604 #define ASCV_MSGIN_SDTR_PERIOD (ASCV_MSGIN_BEG+3)
605 #define ASCV_MSGIN_SDTR_OFFSET (ASCV_MSGIN_BEG+4)
606 #define ASCV_SDTR_DATA_BEG (ASCV_MSGIN_BEG+8)
607 #define ASCV_SDTR_DONE_BEG (ASCV_SDTR_DATA_BEG+8)
608 #define ASCV_MAX_DVC_QNG_BEG (ushort)0x0020
609 #define ASCV_BREAK_ADDR (ushort)0x0028
610 #define ASCV_BREAK_NOTIFY_COUNT (ushort)0x002A
611 #define ASCV_BREAK_CONTROL (ushort)0x002C
612 #define ASCV_BREAK_HIT_COUNT (ushort)0x002E
614 #define ASCV_ASCDVC_ERR_CODE_W (ushort)0x0030
615 #define ASCV_MCODE_CHKSUM_W (ushort)0x0032
616 #define ASCV_MCODE_SIZE_W (ushort)0x0034
617 #define ASCV_STOP_CODE_B (ushort)0x0036
618 #define ASCV_DVC_ERR_CODE_B (ushort)0x0037
619 #define ASCV_OVERRUN_PADDR_D (ushort)0x0038
620 #define ASCV_OVERRUN_BSIZE_D (ushort)0x003C
621 #define ASCV_HALTCODE_W (ushort)0x0040
622 #define ASCV_CHKSUM_W (ushort)0x0042
623 #define ASCV_MC_DATE_W (ushort)0x0044
624 #define ASCV_MC_VER_W (ushort)0x0046
625 #define ASCV_NEXTRDY_B (ushort)0x0048
626 #define ASCV_DONENEXT_B (ushort)0x0049
627 #define ASCV_USE_TAGGED_QNG_B (ushort)0x004A
628 #define ASCV_SCSIBUSY_B (ushort)0x004B
629 #define ASCV_Q_DONE_IN_PROGRESS_B (ushort)0x004C
630 #define ASCV_CURCDB_B (ushort)0x004D
631 #define ASCV_RCLUN_B (ushort)0x004E
632 #define ASCV_BUSY_QHEAD_B (ushort)0x004F
633 #define ASCV_DISC1_QHEAD_B (ushort)0x0050
634 #define ASCV_DISC_ENABLE_B (ushort)0x0052
635 #define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053
636 #define ASCV_HOSTSCSI_ID_B (ushort)0x0055
637 #define ASCV_MCODE_CNTL_B (ushort)0x0056
638 #define ASCV_NULL_TARGET_B (ushort)0x0057
639 #define ASCV_FREE_Q_HEAD_W (ushort)0x0058
640 #define ASCV_DONE_Q_TAIL_W (ushort)0x005A
641 #define ASCV_FREE_Q_HEAD_B (ushort)(ASCV_FREE_Q_HEAD_W+1)
642 #define ASCV_DONE_Q_TAIL_B (ushort)(ASCV_DONE_Q_TAIL_W+1)
643 #define ASCV_HOST_FLAG_B (ushort)0x005D
644 #define ASCV_TOTAL_READY_Q_B (ushort)0x0064
645 #define ASCV_VER_SERIAL_B (ushort)0x0065
646 #define ASCV_HALTCODE_SAVED_W (ushort)0x0066
647 #define ASCV_WTM_FLAG_B (ushort)0x0068
648 #define ASCV_RISC_FLAG_B (ushort)0x006A
649 #define ASCV_REQ_SG_LIST_QP (ushort)0x006B
650 #define ASC_HOST_FLAG_IN_ISR 0x01
651 #define ASC_HOST_FLAG_ACK_INT 0x02
652 #define ASC_RISC_FLAG_GEN_INT 0x01
653 #define ASC_RISC_FLAG_REQ_SG_LIST 0x02
654 #define IOP_CTRL (0x0F)
655 #define IOP_STATUS (0x0E)
656 #define IOP_INT_ACK IOP_STATUS
657 #define IOP_REG_IFC (0x0D)
658 #define IOP_SYN_OFFSET (0x0B)
659 #define IOP_EXTRA_CONTROL (0x0D)
660 #define IOP_REG_PC (0x0C)
661 #define IOP_RAM_ADDR (0x0A)
662 #define IOP_RAM_DATA (0x08)
663 #define IOP_EEP_DATA (0x06)
664 #define IOP_EEP_CMD (0x07)
665 #define IOP_VERSION (0x03)
666 #define IOP_CONFIG_HIGH (0x04)
667 #define IOP_CONFIG_LOW (0x02)
668 #define IOP_SIG_BYTE (0x01)
669 #define IOP_SIG_WORD (0x00)
670 #define IOP_REG_DC1 (0x0E)
671 #define IOP_REG_DC0 (0x0C)
672 #define IOP_REG_SB (0x0B)
673 #define IOP_REG_DA1 (0x0A)
674 #define IOP_REG_DA0 (0x08)
675 #define IOP_REG_SC (0x09)
676 #define IOP_DMA_SPEED (0x07)
677 #define IOP_REG_FLAG (0x07)
678 #define IOP_FIFO_H (0x06)
679 #define IOP_FIFO_L (0x04)
680 #define IOP_REG_ID (0x05)
681 #define IOP_REG_QP (0x03)
682 #define IOP_REG_IH (0x02)
683 #define IOP_REG_IX (0x01)
684 #define IOP_REG_AX (0x00)
685 #define IFC_REG_LOCK (0x00)
686 #define IFC_REG_UNLOCK (0x09)
687 #define IFC_WR_EN_FILTER (0x10)
688 #define IFC_RD_NO_EEPROM (0x10)
689 #define IFC_SLEW_RATE (0x20)
690 #define IFC_ACT_NEG (0x40)
691 #define IFC_INP_FILTER (0x80)
692 #define IFC_INIT_DEFAULT (IFC_ACT_NEG | IFC_REG_UNLOCK)
693 #define SC_SEL (uchar)(0x80)
694 #define SC_BSY (uchar)(0x40)
695 #define SC_ACK (uchar)(0x20)
696 #define SC_REQ (uchar)(0x10)
697 #define SC_ATN (uchar)(0x08)
698 #define SC_IO (uchar)(0x04)
699 #define SC_CD (uchar)(0x02)
700 #define SC_MSG (uchar)(0x01)
701 #define SEC_SCSI_CTL (uchar)(0x80)
702 #define SEC_ACTIVE_NEGATE (uchar)(0x40)
703 #define SEC_SLEW_RATE (uchar)(0x20)
704 #define SEC_ENABLE_FILTER (uchar)(0x10)
705 #define ASC_HALT_EXTMSG_IN (ushort)0x8000
706 #define ASC_HALT_CHK_CONDITION (ushort)0x8100
707 #define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200
708 #define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX (ushort)0x8300
709 #define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX (ushort)0x8400
710 #define ASC_HALT_SDTR_REJECTED (ushort)0x4000
711 #define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000
712 #define ASC_MAX_QNO 0xF8
713 #define ASC_DATA_SEC_BEG (ushort)0x0080
714 #define ASC_DATA_SEC_END (ushort)0x0080
715 #define ASC_CODE_SEC_BEG (ushort)0x0080
716 #define ASC_CODE_SEC_END (ushort)0x0080
717 #define ASC_QADR_BEG (0x4000)
718 #define ASC_QADR_USED (ushort)(ASC_MAX_QNO * 64)
719 #define ASC_QADR_END (ushort)0x7FFF
720 #define ASC_QLAST_ADR (ushort)0x7FC0
721 #define ASC_QBLK_SIZE 0x40
722 #define ASC_BIOS_DATA_QBEG 0xF8
723 #define ASC_MIN_ACTIVE_QNO 0x01
724 #define ASC_QLINK_END 0xFF
725 #define ASC_EEPROM_WORDS 0x10
726 #define ASC_MAX_MGS_LEN 0x10
727 #define ASC_BIOS_ADDR_DEF 0xDC00
728 #define ASC_BIOS_SIZE 0x3800
729 #define ASC_BIOS_RAM_OFF 0x3800
730 #define ASC_BIOS_RAM_SIZE 0x800
731 #define ASC_BIOS_MIN_ADDR 0xC000
732 #define ASC_BIOS_MAX_ADDR 0xEC00
733 #define ASC_BIOS_BANK_SIZE 0x0400
734 #define ASC_MCODE_START_ADDR 0x0080
735 #define ASC_CFG0_HOST_INT_ON 0x0020
736 #define ASC_CFG0_BIOS_ON 0x0040
737 #define ASC_CFG0_VERA_BURST_ON 0x0080
738 #define ASC_CFG0_SCSI_PARITY_ON 0x0800
739 #define ASC_CFG1_SCSI_TARGET_ON 0x0080
740 #define ASC_CFG1_LRAM_8BITS_ON 0x0800
741 #define ASC_CFG_MSW_CLR_MASK 0x3080
742 #define CSW_TEST1 (ASC_CS_TYPE)0x8000
743 #define CSW_AUTO_CONFIG (ASC_CS_TYPE)0x4000
744 #define CSW_RESERVED1 (ASC_CS_TYPE)0x2000
745 #define CSW_IRQ_WRITTEN (ASC_CS_TYPE)0x1000
746 #define CSW_33MHZ_SELECTED (ASC_CS_TYPE)0x0800
747 #define CSW_TEST2 (ASC_CS_TYPE)0x0400
748 #define CSW_TEST3 (ASC_CS_TYPE)0x0200
749 #define CSW_RESERVED2 (ASC_CS_TYPE)0x0100
750 #define CSW_DMA_DONE (ASC_CS_TYPE)0x0080
751 #define CSW_FIFO_RDY (ASC_CS_TYPE)0x0040
752 #define CSW_EEP_READ_DONE (ASC_CS_TYPE)0x0020
753 #define CSW_HALTED (ASC_CS_TYPE)0x0010
754 #define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008
755 #define CSW_PARITY_ERR (ASC_CS_TYPE)0x0004
756 #define CSW_SCSI_RESET_LATCH (ASC_CS_TYPE)0x0002
757 #define CSW_INT_PENDING (ASC_CS_TYPE)0x0001
758 #define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000
759 #define CIW_INT_ACK (ASC_CS_TYPE)0x0100
760 #define CIW_TEST1 (ASC_CS_TYPE)0x0200
761 #define CIW_TEST2 (ASC_CS_TYPE)0x0400
762 #define CIW_SEL_33MHZ (ASC_CS_TYPE)0x0800
763 #define CIW_IRQ_ACT (ASC_CS_TYPE)0x1000
764 #define CC_CHIP_RESET (uchar)0x80
765 #define CC_SCSI_RESET (uchar)0x40
766 #define CC_HALT (uchar)0x20
767 #define CC_SINGLE_STEP (uchar)0x10
768 #define CC_DMA_ABLE (uchar)0x08
769 #define CC_TEST (uchar)0x04
770 #define CC_BANK_ONE (uchar)0x02
771 #define CC_DIAG (uchar)0x01
772 #define ASC_1000_ID0W 0x04C1
773 #define ASC_1000_ID0W_FIX 0x00C1
774 #define ASC_1000_ID1B 0x25
775 #define ASC_EISA_REV_IOP_MASK (0x0C83)
776 #define ASC_EISA_CFG_IOP_MASK (0x0C86)
777 #define ASC_GET_EISA_SLOT(iop) (PortAddr)((iop) & 0xF000)
778 #define INS_HALTINT (ushort)0x6281
779 #define INS_HALT (ushort)0x6280
780 #define INS_SINT (ushort)0x6200
781 #define INS_RFLAG_WTM (ushort)0x7380
782 #define ASC_MC_SAVE_CODE_WSIZE 0x500
783 #define ASC_MC_SAVE_DATA_WSIZE 0x40
785 typedef struct asc_mc_saved
{
786 ushort data
[ASC_MC_SAVE_DATA_WSIZE
];
787 ushort code
[ASC_MC_SAVE_CODE_WSIZE
];
790 #define AscGetQDoneInProgress(port) AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B)
791 #define AscPutQDoneInProgress(port, val) AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val)
792 #define AscGetVarFreeQHead(port) AscReadLramWord((port), ASCV_FREE_Q_HEAD_W)
793 #define AscGetVarDoneQTail(port) AscReadLramWord((port), ASCV_DONE_Q_TAIL_W)
794 #define AscPutVarFreeQHead(port, val) AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val)
795 #define AscPutVarDoneQTail(port, val) AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val)
796 #define AscGetRiscVarFreeQHead(port) AscReadLramByte((port), ASCV_NEXTRDY_B)
797 #define AscGetRiscVarDoneQTail(port) AscReadLramByte((port), ASCV_DONENEXT_B)
798 #define AscPutRiscVarFreeQHead(port, val) AscWriteLramByte((port), ASCV_NEXTRDY_B, val)
799 #define AscPutRiscVarDoneQTail(port, val) AscWriteLramByte((port), ASCV_DONENEXT_B, val)
800 #define AscPutMCodeSDTRDoneAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data))
801 #define AscGetMCodeSDTRDoneAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id))
802 #define AscPutMCodeInitSDTRAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data)
803 #define AscGetMCodeInitSDTRAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id))
804 #define AscGetChipSignatureByte(port) (uchar)inp((port)+IOP_SIG_BYTE)
805 #define AscGetChipSignatureWord(port) (ushort)inpw((port)+IOP_SIG_WORD)
806 #define AscGetChipVerNo(port) (uchar)inp((port)+IOP_VERSION)
807 #define AscGetChipCfgLsw(port) (ushort)inpw((port)+IOP_CONFIG_LOW)
808 #define AscGetChipCfgMsw(port) (ushort)inpw((port)+IOP_CONFIG_HIGH)
809 #define AscSetChipCfgLsw(port, data) outpw((port)+IOP_CONFIG_LOW, data)
810 #define AscSetChipCfgMsw(port, data) outpw((port)+IOP_CONFIG_HIGH, data)
811 #define AscGetChipEEPCmd(port) (uchar)inp((port)+IOP_EEP_CMD)
812 #define AscSetChipEEPCmd(port, data) outp((port)+IOP_EEP_CMD, data)
813 #define AscGetChipEEPData(port) (ushort)inpw((port)+IOP_EEP_DATA)
814 #define AscSetChipEEPData(port, data) outpw((port)+IOP_EEP_DATA, data)
815 #define AscGetChipLramAddr(port) (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR))
816 #define AscSetChipLramAddr(port, addr) outpw((PortAddr)((port)+IOP_RAM_ADDR), addr)
817 #define AscGetChipLramData(port) (ushort)inpw((port)+IOP_RAM_DATA)
818 #define AscSetChipLramData(port, data) outpw((port)+IOP_RAM_DATA, data)
819 #define AscGetChipIFC(port) (uchar)inp((port)+IOP_REG_IFC)
820 #define AscSetChipIFC(port, data) outp((port)+IOP_REG_IFC, data)
821 #define AscGetChipStatus(port) (ASC_CS_TYPE)inpw((port)+IOP_STATUS)
822 #define AscSetChipStatus(port, cs_val) outpw((port)+IOP_STATUS, cs_val)
823 #define AscGetChipControl(port) (uchar)inp((port)+IOP_CTRL)
824 #define AscSetChipControl(port, cc_val) outp((port)+IOP_CTRL, cc_val)
825 #define AscGetChipSyn(port) (uchar)inp((port)+IOP_SYN_OFFSET)
826 #define AscSetChipSyn(port, data) outp((port)+IOP_SYN_OFFSET, data)
827 #define AscSetPCAddr(port, data) outpw((port)+IOP_REG_PC, data)
828 #define AscGetPCAddr(port) (ushort)inpw((port)+IOP_REG_PC)
829 #define AscIsIntPending(port) (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH))
830 #define AscGetChipScsiID(port) ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID)
831 #define AscGetExtraControl(port) (uchar)inp((port)+IOP_EXTRA_CONTROL)
832 #define AscSetExtraControl(port, data) outp((port)+IOP_EXTRA_CONTROL, data)
833 #define AscReadChipAX(port) (ushort)inpw((port)+IOP_REG_AX)
834 #define AscWriteChipAX(port, data) outpw((port)+IOP_REG_AX, data)
835 #define AscReadChipIX(port) (uchar)inp((port)+IOP_REG_IX)
836 #define AscWriteChipIX(port, data) outp((port)+IOP_REG_IX, data)
837 #define AscReadChipIH(port) (ushort)inpw((port)+IOP_REG_IH)
838 #define AscWriteChipIH(port, data) outpw((port)+IOP_REG_IH, data)
839 #define AscReadChipQP(port) (uchar)inp((port)+IOP_REG_QP)
840 #define AscWriteChipQP(port, data) outp((port)+IOP_REG_QP, data)
841 #define AscReadChipFIFO_L(port) (ushort)inpw((port)+IOP_REG_FIFO_L)
842 #define AscWriteChipFIFO_L(port, data) outpw((port)+IOP_REG_FIFO_L, data)
843 #define AscReadChipFIFO_H(port) (ushort)inpw((port)+IOP_REG_FIFO_H)
844 #define AscWriteChipFIFO_H(port, data) outpw((port)+IOP_REG_FIFO_H, data)
845 #define AscReadChipDmaSpeed(port) (uchar)inp((port)+IOP_DMA_SPEED)
846 #define AscWriteChipDmaSpeed(port, data) outp((port)+IOP_DMA_SPEED, data)
847 #define AscReadChipDA0(port) (ushort)inpw((port)+IOP_REG_DA0)
848 #define AscWriteChipDA0(port) outpw((port)+IOP_REG_DA0, data)
849 #define AscReadChipDA1(port) (ushort)inpw((port)+IOP_REG_DA1)
850 #define AscWriteChipDA1(port) outpw((port)+IOP_REG_DA1, data)
851 #define AscReadChipDC0(port) (ushort)inpw((port)+IOP_REG_DC0)
852 #define AscWriteChipDC0(port) outpw((port)+IOP_REG_DC0, data)
853 #define AscReadChipDC1(port) (ushort)inpw((port)+IOP_REG_DC1)
854 #define AscWriteChipDC1(port) outpw((port)+IOP_REG_DC1, data)
855 #define AscReadChipDvcID(port) (uchar)inp((port)+IOP_REG_ID)
856 #define AscWriteChipDvcID(port, data) outp((port)+IOP_REG_ID, data)
858 #define AdvPortAddr void __iomem * /* Virtual memory address size */
861 * Define Adv Library required memory access macros.
863 #define ADV_MEM_READB(addr) readb(addr)
864 #define ADV_MEM_READW(addr) readw(addr)
865 #define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr)
866 #define ADV_MEM_WRITEW(addr, word) writew(word, addr)
867 #define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr)
870 * Define total number of simultaneous maximum element scatter-gather
871 * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the
872 * maximum number of outstanding commands per wide host adapter. Each
873 * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather
874 * elements. Allow each command to have at least one ADV_SG_BLOCK structure.
875 * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK
876 * structures or 255 scatter-gather elements.
878 #define ADV_TOT_SG_BLOCK ASC_DEF_MAX_HOST_QNG
881 * Define maximum number of scatter-gather elements per request.
883 #define ADV_MAX_SG_LIST 255
884 #define NO_OF_SG_PER_BLOCK 15
886 #define ADV_EEP_DVC_CFG_BEGIN (0x00)
887 #define ADV_EEP_DVC_CFG_END (0x15)
888 #define ADV_EEP_DVC_CTL_BEGIN (0x16) /* location of OEM name */
889 #define ADV_EEP_MAX_WORD_ADDR (0x1E)
891 #define ADV_EEP_DELAY_MS 100
893 #define ADV_EEPROM_BIG_ENDIAN 0x8000 /* EEPROM Bit 15 */
894 #define ADV_EEPROM_BIOS_ENABLE 0x4000 /* EEPROM Bit 14 */
896 * For the ASC3550 Bit 13 is Termination Polarity control bit.
897 * For later ICs Bit 13 controls whether the CIS (Card Information
898 * Service Section) is loaded from EEPROM.
900 #define ADV_EEPROM_TERM_POL 0x2000 /* EEPROM Bit 13 */
901 #define ADV_EEPROM_CIS_LD 0x2000 /* EEPROM Bit 13 */
905 * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify
906 * INT A in the PCI Configuration Space Int Pin field. If it is 1, then
907 * Function 0 will specify INT B.
909 * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify
910 * INT B in the PCI Configuration Space Int Pin field. If it is 1, then
911 * Function 1 will specify INT A.
913 #define ADV_EEPROM_INTAB 0x0800 /* EEPROM Bit 11 */
915 typedef struct adveep_3550_config
{
916 /* Word Offset, Description */
918 ushort cfg_lsw
; /* 00 power up initialization */
919 /* bit 13 set - Term Polarity Control */
920 /* bit 14 set - BIOS Enable */
921 /* bit 15 set - Big Endian Mode */
922 ushort cfg_msw
; /* 01 unused */
923 ushort disc_enable
; /* 02 disconnect enable */
924 ushort wdtr_able
; /* 03 Wide DTR able */
925 ushort sdtr_able
; /* 04 Synchronous DTR able */
926 ushort start_motor
; /* 05 send start up motor */
927 ushort tagqng_able
; /* 06 tag queuing able */
928 ushort bios_scan
; /* 07 BIOS device control */
929 ushort scam_tolerant
; /* 08 no scam */
931 uchar adapter_scsi_id
; /* 09 Host Adapter ID */
932 uchar bios_boot_delay
; /* power up wait */
934 uchar scsi_reset_delay
; /* 10 reset delay */
935 uchar bios_id_lun
; /* first boot device scsi id & lun */
936 /* high nibble is lun */
937 /* low nibble is scsi id */
939 uchar termination
; /* 11 0 - automatic */
940 /* 1 - low off / high off */
941 /* 2 - low off / high on */
942 /* 3 - low on / high on */
943 /* There is no low on / high off */
945 uchar reserved1
; /* reserved byte (not used) */
947 ushort bios_ctrl
; /* 12 BIOS control bits */
948 /* bit 0 BIOS don't act as initiator. */
949 /* bit 1 BIOS > 1 GB support */
950 /* bit 2 BIOS > 2 Disk Support */
951 /* bit 3 BIOS don't support removables */
952 /* bit 4 BIOS support bootable CD */
953 /* bit 5 BIOS scan enabled */
954 /* bit 6 BIOS support multiple LUNs */
955 /* bit 7 BIOS display of message */
956 /* bit 8 SCAM disabled */
957 /* bit 9 Reset SCSI bus during init. */
959 /* bit 11 No verbose initialization. */
960 /* bit 12 SCSI parity enabled */
964 ushort ultra_able
; /* 13 ULTRA speed able */
965 ushort reserved2
; /* 14 reserved */
966 uchar max_host_qng
; /* 15 maximum host queuing */
967 uchar max_dvc_qng
; /* maximum per device queuing */
968 ushort dvc_cntl
; /* 16 control bit for driver */
969 ushort bug_fix
; /* 17 control bit for bug fix */
970 ushort serial_number_word1
; /* 18 Board serial number word 1 */
971 ushort serial_number_word2
; /* 19 Board serial number word 2 */
972 ushort serial_number_word3
; /* 20 Board serial number word 3 */
973 ushort check_sum
; /* 21 EEP check sum */
974 uchar oem_name
[16]; /* 22 OEM name */
975 ushort dvc_err_code
; /* 30 last device driver error code */
976 ushort adv_err_code
; /* 31 last uc and Adv Lib error code */
977 ushort adv_err_addr
; /* 32 last uc error address */
978 ushort saved_dvc_err_code
; /* 33 saved last dev. driver error code */
979 ushort saved_adv_err_code
; /* 34 saved last uc and Adv Lib error code */
980 ushort saved_adv_err_addr
; /* 35 saved last uc error address */
981 ushort num_of_err
; /* 36 number of error */
982 } ADVEEP_3550_CONFIG
;
984 typedef struct adveep_38C0800_config
{
985 /* Word Offset, Description */
987 ushort cfg_lsw
; /* 00 power up initialization */
988 /* bit 13 set - Load CIS */
989 /* bit 14 set - BIOS Enable */
990 /* bit 15 set - Big Endian Mode */
991 ushort cfg_msw
; /* 01 unused */
992 ushort disc_enable
; /* 02 disconnect enable */
993 ushort wdtr_able
; /* 03 Wide DTR able */
994 ushort sdtr_speed1
; /* 04 SDTR Speed TID 0-3 */
995 ushort start_motor
; /* 05 send start up motor */
996 ushort tagqng_able
; /* 06 tag queuing able */
997 ushort bios_scan
; /* 07 BIOS device control */
998 ushort scam_tolerant
; /* 08 no scam */
1000 uchar adapter_scsi_id
; /* 09 Host Adapter ID */
1001 uchar bios_boot_delay
; /* power up wait */
1003 uchar scsi_reset_delay
; /* 10 reset delay */
1004 uchar bios_id_lun
; /* first boot device scsi id & lun */
1005 /* high nibble is lun */
1006 /* low nibble is scsi id */
1008 uchar termination_se
; /* 11 0 - automatic */
1009 /* 1 - low off / high off */
1010 /* 2 - low off / high on */
1011 /* 3 - low on / high on */
1012 /* There is no low on / high off */
1014 uchar termination_lvd
; /* 11 0 - automatic */
1015 /* 1 - low off / high off */
1016 /* 2 - low off / high on */
1017 /* 3 - low on / high on */
1018 /* There is no low on / high off */
1020 ushort bios_ctrl
; /* 12 BIOS control bits */
1021 /* bit 0 BIOS don't act as initiator. */
1022 /* bit 1 BIOS > 1 GB support */
1023 /* bit 2 BIOS > 2 Disk Support */
1024 /* bit 3 BIOS don't support removables */
1025 /* bit 4 BIOS support bootable CD */
1026 /* bit 5 BIOS scan enabled */
1027 /* bit 6 BIOS support multiple LUNs */
1028 /* bit 7 BIOS display of message */
1029 /* bit 8 SCAM disabled */
1030 /* bit 9 Reset SCSI bus during init. */
1032 /* bit 11 No verbose initialization. */
1033 /* bit 12 SCSI parity enabled */
1037 ushort sdtr_speed2
; /* 13 SDTR speed TID 4-7 */
1038 ushort sdtr_speed3
; /* 14 SDTR speed TID 8-11 */
1039 uchar max_host_qng
; /* 15 maximum host queueing */
1040 uchar max_dvc_qng
; /* maximum per device queuing */
1041 ushort dvc_cntl
; /* 16 control bit for driver */
1042 ushort sdtr_speed4
; /* 17 SDTR speed 4 TID 12-15 */
1043 ushort serial_number_word1
; /* 18 Board serial number word 1 */
1044 ushort serial_number_word2
; /* 19 Board serial number word 2 */
1045 ushort serial_number_word3
; /* 20 Board serial number word 3 */
1046 ushort check_sum
; /* 21 EEP check sum */
1047 uchar oem_name
[16]; /* 22 OEM name */
1048 ushort dvc_err_code
; /* 30 last device driver error code */
1049 ushort adv_err_code
; /* 31 last uc and Adv Lib error code */
1050 ushort adv_err_addr
; /* 32 last uc error address */
1051 ushort saved_dvc_err_code
; /* 33 saved last dev. driver error code */
1052 ushort saved_adv_err_code
; /* 34 saved last uc and Adv Lib error code */
1053 ushort saved_adv_err_addr
; /* 35 saved last uc error address */
1054 ushort reserved36
; /* 36 reserved */
1055 ushort reserved37
; /* 37 reserved */
1056 ushort reserved38
; /* 38 reserved */
1057 ushort reserved39
; /* 39 reserved */
1058 ushort reserved40
; /* 40 reserved */
1059 ushort reserved41
; /* 41 reserved */
1060 ushort reserved42
; /* 42 reserved */
1061 ushort reserved43
; /* 43 reserved */
1062 ushort reserved44
; /* 44 reserved */
1063 ushort reserved45
; /* 45 reserved */
1064 ushort reserved46
; /* 46 reserved */
1065 ushort reserved47
; /* 47 reserved */
1066 ushort reserved48
; /* 48 reserved */
1067 ushort reserved49
; /* 49 reserved */
1068 ushort reserved50
; /* 50 reserved */
1069 ushort reserved51
; /* 51 reserved */
1070 ushort reserved52
; /* 52 reserved */
1071 ushort reserved53
; /* 53 reserved */
1072 ushort reserved54
; /* 54 reserved */
1073 ushort reserved55
; /* 55 reserved */
1074 ushort cisptr_lsw
; /* 56 CIS PTR LSW */
1075 ushort cisprt_msw
; /* 57 CIS PTR MSW */
1076 ushort subsysvid
; /* 58 SubSystem Vendor ID */
1077 ushort subsysid
; /* 59 SubSystem ID */
1078 ushort reserved60
; /* 60 reserved */
1079 ushort reserved61
; /* 61 reserved */
1080 ushort reserved62
; /* 62 reserved */
1081 ushort reserved63
; /* 63 reserved */
1082 } ADVEEP_38C0800_CONFIG
;
1084 typedef struct adveep_38C1600_config
{
1085 /* Word Offset, Description */
1087 ushort cfg_lsw
; /* 00 power up initialization */
1088 /* bit 11 set - Func. 0 INTB, Func. 1 INTA */
1089 /* clear - Func. 0 INTA, Func. 1 INTB */
1090 /* bit 13 set - Load CIS */
1091 /* bit 14 set - BIOS Enable */
1092 /* bit 15 set - Big Endian Mode */
1093 ushort cfg_msw
; /* 01 unused */
1094 ushort disc_enable
; /* 02 disconnect enable */
1095 ushort wdtr_able
; /* 03 Wide DTR able */
1096 ushort sdtr_speed1
; /* 04 SDTR Speed TID 0-3 */
1097 ushort start_motor
; /* 05 send start up motor */
1098 ushort tagqng_able
; /* 06 tag queuing able */
1099 ushort bios_scan
; /* 07 BIOS device control */
1100 ushort scam_tolerant
; /* 08 no scam */
1102 uchar adapter_scsi_id
; /* 09 Host Adapter ID */
1103 uchar bios_boot_delay
; /* power up wait */
1105 uchar scsi_reset_delay
; /* 10 reset delay */
1106 uchar bios_id_lun
; /* first boot device scsi id & lun */
1107 /* high nibble is lun */
1108 /* low nibble is scsi id */
1110 uchar termination_se
; /* 11 0 - automatic */
1111 /* 1 - low off / high off */
1112 /* 2 - low off / high on */
1113 /* 3 - low on / high on */
1114 /* There is no low on / high off */
1116 uchar termination_lvd
; /* 11 0 - automatic */
1117 /* 1 - low off / high off */
1118 /* 2 - low off / high on */
1119 /* 3 - low on / high on */
1120 /* There is no low on / high off */
1122 ushort bios_ctrl
; /* 12 BIOS control bits */
1123 /* bit 0 BIOS don't act as initiator. */
1124 /* bit 1 BIOS > 1 GB support */
1125 /* bit 2 BIOS > 2 Disk Support */
1126 /* bit 3 BIOS don't support removables */
1127 /* bit 4 BIOS support bootable CD */
1128 /* bit 5 BIOS scan enabled */
1129 /* bit 6 BIOS support multiple LUNs */
1130 /* bit 7 BIOS display of message */
1131 /* bit 8 SCAM disabled */
1132 /* bit 9 Reset SCSI bus during init. */
1133 /* bit 10 Basic Integrity Checking disabled */
1134 /* bit 11 No verbose initialization. */
1135 /* bit 12 SCSI parity enabled */
1136 /* bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */
1139 ushort sdtr_speed2
; /* 13 SDTR speed TID 4-7 */
1140 ushort sdtr_speed3
; /* 14 SDTR speed TID 8-11 */
1141 uchar max_host_qng
; /* 15 maximum host queueing */
1142 uchar max_dvc_qng
; /* maximum per device queuing */
1143 ushort dvc_cntl
; /* 16 control bit for driver */
1144 ushort sdtr_speed4
; /* 17 SDTR speed 4 TID 12-15 */
1145 ushort serial_number_word1
; /* 18 Board serial number word 1 */
1146 ushort serial_number_word2
; /* 19 Board serial number word 2 */
1147 ushort serial_number_word3
; /* 20 Board serial number word 3 */
1148 ushort check_sum
; /* 21 EEP check sum */
1149 uchar oem_name
[16]; /* 22 OEM name */
1150 ushort dvc_err_code
; /* 30 last device driver error code */
1151 ushort adv_err_code
; /* 31 last uc and Adv Lib error code */
1152 ushort adv_err_addr
; /* 32 last uc error address */
1153 ushort saved_dvc_err_code
; /* 33 saved last dev. driver error code */
1154 ushort saved_adv_err_code
; /* 34 saved last uc and Adv Lib error code */
1155 ushort saved_adv_err_addr
; /* 35 saved last uc error address */
1156 ushort reserved36
; /* 36 reserved */
1157 ushort reserved37
; /* 37 reserved */
1158 ushort reserved38
; /* 38 reserved */
1159 ushort reserved39
; /* 39 reserved */
1160 ushort reserved40
; /* 40 reserved */
1161 ushort reserved41
; /* 41 reserved */
1162 ushort reserved42
; /* 42 reserved */
1163 ushort reserved43
; /* 43 reserved */
1164 ushort reserved44
; /* 44 reserved */
1165 ushort reserved45
; /* 45 reserved */
1166 ushort reserved46
; /* 46 reserved */
1167 ushort reserved47
; /* 47 reserved */
1168 ushort reserved48
; /* 48 reserved */
1169 ushort reserved49
; /* 49 reserved */
1170 ushort reserved50
; /* 50 reserved */
1171 ushort reserved51
; /* 51 reserved */
1172 ushort reserved52
; /* 52 reserved */
1173 ushort reserved53
; /* 53 reserved */
1174 ushort reserved54
; /* 54 reserved */
1175 ushort reserved55
; /* 55 reserved */
1176 ushort cisptr_lsw
; /* 56 CIS PTR LSW */
1177 ushort cisprt_msw
; /* 57 CIS PTR MSW */
1178 ushort subsysvid
; /* 58 SubSystem Vendor ID */
1179 ushort subsysid
; /* 59 SubSystem ID */
1180 ushort reserved60
; /* 60 reserved */
1181 ushort reserved61
; /* 61 reserved */
1182 ushort reserved62
; /* 62 reserved */
1183 ushort reserved63
; /* 63 reserved */
1184 } ADVEEP_38C1600_CONFIG
;
1189 #define ASC_EEP_CMD_DONE 0x0200
1192 #define BIOS_CTRL_BIOS 0x0001
1193 #define BIOS_CTRL_EXTENDED_XLAT 0x0002
1194 #define BIOS_CTRL_GT_2_DISK 0x0004
1195 #define BIOS_CTRL_BIOS_REMOVABLE 0x0008
1196 #define BIOS_CTRL_BOOTABLE_CD 0x0010
1197 #define BIOS_CTRL_MULTIPLE_LUN 0x0040
1198 #define BIOS_CTRL_DISPLAY_MSG 0x0080
1199 #define BIOS_CTRL_NO_SCAM 0x0100
1200 #define BIOS_CTRL_RESET_SCSI_BUS 0x0200
1201 #define BIOS_CTRL_INIT_VERBOSE 0x0800
1202 #define BIOS_CTRL_SCSI_PARITY 0x1000
1203 #define BIOS_CTRL_AIPP_DIS 0x2000
1205 #define ADV_3550_MEMSIZE 0x2000 /* 8 KB Internal Memory */
1207 #define ADV_38C0800_MEMSIZE 0x4000 /* 16 KB Internal Memory */
1210 * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is
1211 * a special 16K Adv Library and Microcode version. After the issue is
1212 * resolved, should restore 32K support.
1214 * #define ADV_38C1600_MEMSIZE 0x8000L * 32 KB Internal Memory *
1216 #define ADV_38C1600_MEMSIZE 0x4000 /* 16 KB Internal Memory */
1219 * Byte I/O register address from base of 'iop_base'.
1221 #define IOPB_INTR_STATUS_REG 0x00
1222 #define IOPB_CHIP_ID_1 0x01
1223 #define IOPB_INTR_ENABLES 0x02
1224 #define IOPB_CHIP_TYPE_REV 0x03
1225 #define IOPB_RES_ADDR_4 0x04
1226 #define IOPB_RES_ADDR_5 0x05
1227 #define IOPB_RAM_DATA 0x06
1228 #define IOPB_RES_ADDR_7 0x07
1229 #define IOPB_FLAG_REG 0x08
1230 #define IOPB_RES_ADDR_9 0x09
1231 #define IOPB_RISC_CSR 0x0A
1232 #define IOPB_RES_ADDR_B 0x0B
1233 #define IOPB_RES_ADDR_C 0x0C
1234 #define IOPB_RES_ADDR_D 0x0D
1235 #define IOPB_SOFT_OVER_WR 0x0E
1236 #define IOPB_RES_ADDR_F 0x0F
1237 #define IOPB_MEM_CFG 0x10
1238 #define IOPB_RES_ADDR_11 0x11
1239 #define IOPB_GPIO_DATA 0x12
1240 #define IOPB_RES_ADDR_13 0x13
1241 #define IOPB_FLASH_PAGE 0x14
1242 #define IOPB_RES_ADDR_15 0x15
1243 #define IOPB_GPIO_CNTL 0x16
1244 #define IOPB_RES_ADDR_17 0x17
1245 #define IOPB_FLASH_DATA 0x18
1246 #define IOPB_RES_ADDR_19 0x19
1247 #define IOPB_RES_ADDR_1A 0x1A
1248 #define IOPB_RES_ADDR_1B 0x1B
1249 #define IOPB_RES_ADDR_1C 0x1C
1250 #define IOPB_RES_ADDR_1D 0x1D
1251 #define IOPB_RES_ADDR_1E 0x1E
1252 #define IOPB_RES_ADDR_1F 0x1F
1253 #define IOPB_DMA_CFG0 0x20
1254 #define IOPB_DMA_CFG1 0x21
1255 #define IOPB_TICKLE 0x22
1256 #define IOPB_DMA_REG_WR 0x23
1257 #define IOPB_SDMA_STATUS 0x24
1258 #define IOPB_SCSI_BYTE_CNT 0x25
1259 #define IOPB_HOST_BYTE_CNT 0x26
1260 #define IOPB_BYTE_LEFT_TO_XFER 0x27
1261 #define IOPB_BYTE_TO_XFER_0 0x28
1262 #define IOPB_BYTE_TO_XFER_1 0x29
1263 #define IOPB_BYTE_TO_XFER_2 0x2A
1264 #define IOPB_BYTE_TO_XFER_3 0x2B
1265 #define IOPB_ACC_GRP 0x2C
1266 #define IOPB_RES_ADDR_2D 0x2D
1267 #define IOPB_DEV_ID 0x2E
1268 #define IOPB_RES_ADDR_2F 0x2F
1269 #define IOPB_SCSI_DATA 0x30
1270 #define IOPB_RES_ADDR_31 0x31
1271 #define IOPB_RES_ADDR_32 0x32
1272 #define IOPB_SCSI_DATA_HSHK 0x33
1273 #define IOPB_SCSI_CTRL 0x34
1274 #define IOPB_RES_ADDR_35 0x35
1275 #define IOPB_RES_ADDR_36 0x36
1276 #define IOPB_RES_ADDR_37 0x37
1277 #define IOPB_RAM_BIST 0x38
1278 #define IOPB_PLL_TEST 0x39
1279 #define IOPB_PCI_INT_CFG 0x3A
1280 #define IOPB_RES_ADDR_3B 0x3B
1281 #define IOPB_RFIFO_CNT 0x3C
1282 #define IOPB_RES_ADDR_3D 0x3D
1283 #define IOPB_RES_ADDR_3E 0x3E
1284 #define IOPB_RES_ADDR_3F 0x3F
1287 * Word I/O register address from base of 'iop_base'.
1289 #define IOPW_CHIP_ID_0 0x00 /* CID0 */
1290 #define IOPW_CTRL_REG 0x02 /* CC */
1291 #define IOPW_RAM_ADDR 0x04 /* LA */
1292 #define IOPW_RAM_DATA 0x06 /* LD */
1293 #define IOPW_RES_ADDR_08 0x08
1294 #define IOPW_RISC_CSR 0x0A /* CSR */
1295 #define IOPW_SCSI_CFG0 0x0C /* CFG0 */
1296 #define IOPW_SCSI_CFG1 0x0E /* CFG1 */
1297 #define IOPW_RES_ADDR_10 0x10
1298 #define IOPW_SEL_MASK 0x12 /* SM */
1299 #define IOPW_RES_ADDR_14 0x14
1300 #define IOPW_FLASH_ADDR 0x16 /* FA */
1301 #define IOPW_RES_ADDR_18 0x18
1302 #define IOPW_EE_CMD 0x1A /* EC */
1303 #define IOPW_EE_DATA 0x1C /* ED */
1304 #define IOPW_SFIFO_CNT 0x1E /* SFC */
1305 #define IOPW_RES_ADDR_20 0x20
1306 #define IOPW_Q_BASE 0x22 /* QB */
1307 #define IOPW_QP 0x24 /* QP */
1308 #define IOPW_IX 0x26 /* IX */
1309 #define IOPW_SP 0x28 /* SP */
1310 #define IOPW_PC 0x2A /* PC */
1311 #define IOPW_RES_ADDR_2C 0x2C
1312 #define IOPW_RES_ADDR_2E 0x2E
1313 #define IOPW_SCSI_DATA 0x30 /* SD */
1314 #define IOPW_SCSI_DATA_HSHK 0x32 /* SDH */
1315 #define IOPW_SCSI_CTRL 0x34 /* SC */
1316 #define IOPW_HSHK_CFG 0x36 /* HCFG */
1317 #define IOPW_SXFR_STATUS 0x36 /* SXS */
1318 #define IOPW_SXFR_CNTL 0x38 /* SXL */
1319 #define IOPW_SXFR_CNTH 0x3A /* SXH */
1320 #define IOPW_RES_ADDR_3C 0x3C
1321 #define IOPW_RFIFO_DATA 0x3E /* RFD */
1324 * Doubleword I/O register address from base of 'iop_base'.
1326 #define IOPDW_RES_ADDR_0 0x00
1327 #define IOPDW_RAM_DATA 0x04
1328 #define IOPDW_RES_ADDR_8 0x08
1329 #define IOPDW_RES_ADDR_C 0x0C
1330 #define IOPDW_RES_ADDR_10 0x10
1331 #define IOPDW_COMMA 0x14
1332 #define IOPDW_COMMB 0x18
1333 #define IOPDW_RES_ADDR_1C 0x1C
1334 #define IOPDW_SDMA_ADDR0 0x20
1335 #define IOPDW_SDMA_ADDR1 0x24
1336 #define IOPDW_SDMA_COUNT 0x28
1337 #define IOPDW_SDMA_ERROR 0x2C
1338 #define IOPDW_RDMA_ADDR0 0x30
1339 #define IOPDW_RDMA_ADDR1 0x34
1340 #define IOPDW_RDMA_COUNT 0x38
1341 #define IOPDW_RDMA_ERROR 0x3C
1343 #define ADV_CHIP_ID_BYTE 0x25
1344 #define ADV_CHIP_ID_WORD 0x04C1
1346 #define ADV_INTR_ENABLE_HOST_INTR 0x01
1347 #define ADV_INTR_ENABLE_SEL_INTR 0x02
1348 #define ADV_INTR_ENABLE_DPR_INTR 0x04
1349 #define ADV_INTR_ENABLE_RTA_INTR 0x08
1350 #define ADV_INTR_ENABLE_RMA_INTR 0x10
1351 #define ADV_INTR_ENABLE_RST_INTR 0x20
1352 #define ADV_INTR_ENABLE_DPE_INTR 0x40
1353 #define ADV_INTR_ENABLE_GLOBAL_INTR 0x80
1355 #define ADV_INTR_STATUS_INTRA 0x01
1356 #define ADV_INTR_STATUS_INTRB 0x02
1357 #define ADV_INTR_STATUS_INTRC 0x04
1359 #define ADV_RISC_CSR_STOP (0x0000)
1360 #define ADV_RISC_TEST_COND (0x2000)
1361 #define ADV_RISC_CSR_RUN (0x4000)
1362 #define ADV_RISC_CSR_SINGLE_STEP (0x8000)
1364 #define ADV_CTRL_REG_HOST_INTR 0x0100
1365 #define ADV_CTRL_REG_SEL_INTR 0x0200
1366 #define ADV_CTRL_REG_DPR_INTR 0x0400
1367 #define ADV_CTRL_REG_RTA_INTR 0x0800
1368 #define ADV_CTRL_REG_RMA_INTR 0x1000
1369 #define ADV_CTRL_REG_RES_BIT14 0x2000
1370 #define ADV_CTRL_REG_DPE_INTR 0x4000
1371 #define ADV_CTRL_REG_POWER_DONE 0x8000
1372 #define ADV_CTRL_REG_ANY_INTR 0xFF00
1374 #define ADV_CTRL_REG_CMD_RESET 0x00C6
1375 #define ADV_CTRL_REG_CMD_WR_IO_REG 0x00C5
1376 #define ADV_CTRL_REG_CMD_RD_IO_REG 0x00C4
1377 #define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE 0x00C3
1378 #define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE 0x00C2
1380 #define ADV_TICKLE_NOP 0x00
1381 #define ADV_TICKLE_A 0x01
1382 #define ADV_TICKLE_B 0x02
1383 #define ADV_TICKLE_C 0x03
1385 #define AdvIsIntPending(port) \
1386 (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR)
1389 * SCSI_CFG0 Register bit definitions
1391 #define TIMER_MODEAB 0xC000 /* Watchdog, Second, and Select. Timer Ctrl. */
1392 #define PARITY_EN 0x2000 /* Enable SCSI Parity Error detection */
1393 #define EVEN_PARITY 0x1000 /* Select Even Parity */
1394 #define WD_LONG 0x0800 /* Watchdog Interval, 1: 57 min, 0: 13 sec */
1395 #define QUEUE_128 0x0400 /* Queue Size, 1: 128 byte, 0: 64 byte */
1396 #define PRIM_MODE 0x0100 /* Primitive SCSI mode */
1397 #define SCAM_EN 0x0080 /* Enable SCAM selection */
1398 #define SEL_TMO_LONG 0x0040 /* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */
1399 #define CFRM_ID 0x0020 /* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */
1400 #define OUR_ID_EN 0x0010 /* Enable OUR_ID bits */
1401 #define OUR_ID 0x000F /* SCSI ID */
1404 * SCSI_CFG1 Register bit definitions
1406 #define BIG_ENDIAN 0x8000 /* Enable Big Endian Mode MIO:15, EEP:15 */
1407 #define TERM_POL 0x2000 /* Terminator Polarity Ctrl. MIO:13, EEP:13 */
1408 #define SLEW_RATE 0x1000 /* SCSI output buffer slew rate */
1409 #define FILTER_SEL 0x0C00 /* Filter Period Selection */
1410 #define FLTR_DISABLE 0x0000 /* Input Filtering Disabled */
1411 #define FLTR_11_TO_20NS 0x0800 /* Input Filtering 11ns to 20ns */
1412 #define FLTR_21_TO_39NS 0x0C00 /* Input Filtering 21ns to 39ns */
1413 #define ACTIVE_DBL 0x0200 /* Disable Active Negation */
1414 #define DIFF_MODE 0x0100 /* SCSI differential Mode (Read-Only) */
1415 #define DIFF_SENSE 0x0080 /* 1: No SE cables, 0: SE cable (Read-Only) */
1416 #define TERM_CTL_SEL 0x0040 /* Enable TERM_CTL_H and TERM_CTL_L */
1417 #define TERM_CTL 0x0030 /* External SCSI Termination Bits */
1418 #define TERM_CTL_H 0x0020 /* Enable External SCSI Upper Termination */
1419 #define TERM_CTL_L 0x0010 /* Enable External SCSI Lower Termination */
1420 #define CABLE_DETECT 0x000F /* External SCSI Cable Connection Status */
1423 * Addendum for ASC-38C0800 Chip
1425 * The ASC-38C1600 Chip uses the same definitions except that the
1426 * bus mode override bits [12:10] have been moved to byte register
1427 * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in
1428 * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV)
1429 * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only.
1430 * Also each ASC-38C1600 function or channel uses only cable bits [5:4]
1431 * and [1:0]. Bits [14], [7:6], [3:2] are unused.
1433 #define DIS_TERM_DRV 0x4000 /* 1: Read c_det[3:0], 0: cannot read */
1434 #define HVD_LVD_SE 0x1C00 /* Device Detect Bits */
1435 #define HVD 0x1000 /* HVD Device Detect */
1436 #define LVD 0x0800 /* LVD Device Detect */
1437 #define SE 0x0400 /* SE Device Detect */
1438 #define TERM_LVD 0x00C0 /* LVD Termination Bits */
1439 #define TERM_LVD_HI 0x0080 /* Enable LVD Upper Termination */
1440 #define TERM_LVD_LO 0x0040 /* Enable LVD Lower Termination */
1441 #define TERM_SE 0x0030 /* SE Termination Bits */
1442 #define TERM_SE_HI 0x0020 /* Enable SE Upper Termination */
1443 #define TERM_SE_LO 0x0010 /* Enable SE Lower Termination */
1444 #define C_DET_LVD 0x000C /* LVD Cable Detect Bits */
1445 #define C_DET3 0x0008 /* Cable Detect for LVD External Wide */
1446 #define C_DET2 0x0004 /* Cable Detect for LVD Internal Wide */
1447 #define C_DET_SE 0x0003 /* SE Cable Detect Bits */
1448 #define C_DET1 0x0002 /* Cable Detect for SE Internal Wide */
1449 #define C_DET0 0x0001 /* Cable Detect for SE Internal Narrow */
1451 #define CABLE_ILLEGAL_A 0x7
1452 /* x 0 0 0 | on on | Illegal (all 3 connectors are used) */
1454 #define CABLE_ILLEGAL_B 0xB
1455 /* 0 x 0 0 | on on | Illegal (all 3 connectors are used) */
1458 * MEM_CFG Register bit definitions
1460 #define BIOS_EN 0x40 /* BIOS Enable MIO:14,EEP:14 */
1461 #define FAST_EE_CLK 0x20 /* Diagnostic Bit */
1462 #define RAM_SZ 0x1C /* Specify size of RAM to RISC */
1463 #define RAM_SZ_2KB 0x00 /* 2 KB */
1464 #define RAM_SZ_4KB 0x04 /* 4 KB */
1465 #define RAM_SZ_8KB 0x08 /* 8 KB */
1466 #define RAM_SZ_16KB 0x0C /* 16 KB */
1467 #define RAM_SZ_32KB 0x10 /* 32 KB */
1468 #define RAM_SZ_64KB 0x14 /* 64 KB */
1471 * DMA_CFG0 Register bit definitions
1473 * This register is only accessible to the host.
1475 #define BC_THRESH_ENB 0x80 /* PCI DMA Start Conditions */
1476 #define FIFO_THRESH 0x70 /* PCI DMA FIFO Threshold */
1477 #define FIFO_THRESH_16B 0x00 /* 16 bytes */
1478 #define FIFO_THRESH_32B 0x20 /* 32 bytes */
1479 #define FIFO_THRESH_48B 0x30 /* 48 bytes */
1480 #define FIFO_THRESH_64B 0x40 /* 64 bytes */
1481 #define FIFO_THRESH_80B 0x50 /* 80 bytes (default) */
1482 #define FIFO_THRESH_96B 0x60 /* 96 bytes */
1483 #define FIFO_THRESH_112B 0x70 /* 112 bytes */
1484 #define START_CTL 0x0C /* DMA start conditions */
1485 #define START_CTL_TH 0x00 /* Wait threshold level (default) */
1486 #define START_CTL_ID 0x04 /* Wait SDMA/SBUS idle */
1487 #define START_CTL_THID 0x08 /* Wait threshold and SDMA/SBUS idle */
1488 #define START_CTL_EMFU 0x0C /* Wait SDMA FIFO empty/full */
1489 #define READ_CMD 0x03 /* Memory Read Method */
1490 #define READ_CMD_MR 0x00 /* Memory Read */
1491 #define READ_CMD_MRL 0x02 /* Memory Read Long */
1492 #define READ_CMD_MRM 0x03 /* Memory Read Multiple (default) */
1495 * ASC-38C0800 RAM BIST Register bit definitions
1497 #define RAM_TEST_MODE 0x80
1498 #define PRE_TEST_MODE 0x40
1499 #define NORMAL_MODE 0x00
1500 #define RAM_TEST_DONE 0x10
1501 #define RAM_TEST_STATUS 0x0F
1502 #define RAM_TEST_HOST_ERROR 0x08
1503 #define RAM_TEST_INTRAM_ERROR 0x04
1504 #define RAM_TEST_RISC_ERROR 0x02
1505 #define RAM_TEST_SCSI_ERROR 0x01
1506 #define RAM_TEST_SUCCESS 0x00
1507 #define PRE_TEST_VALUE 0x05
1508 #define NORMAL_VALUE 0x00
1511 * ASC38C1600 Definitions
1513 * IOPB_PCI_INT_CFG Bit Field Definitions
1516 #define INTAB_LD 0x80 /* Value loaded from EEPROM Bit 11. */
1519 * Bit 1 can be set to change the interrupt for the Function to operate in
1520 * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in
1521 * Open Drain mode. Both functions of the ASC38C1600 must be set to the same
1522 * mode, otherwise the operating mode is undefined.
1524 #define TOTEMPOLE 0x02
1527 * Bit 0 can be used to change the Int Pin for the Function. The value is
1528 * 0 by default for both Functions with Function 0 using INT A and Function
1529 * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set,
1532 * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin
1533 * value specified in the PCI Configuration Space.
1538 * Adv Library Status Definitions
1542 #define ADV_SUCCESS 1
1544 #define ADV_ERROR (-1)
1547 * ADV_DVC_VAR 'warn_code' values
1549 #define ASC_WARN_BUSRESET_ERROR 0x0001 /* SCSI Bus Reset error */
1550 #define ASC_WARN_EEPROM_CHKSUM 0x0002 /* EEP check sum error */
1551 #define ASC_WARN_EEPROM_TERMINATION 0x0004 /* EEP termination bad field */
1552 #define ASC_WARN_ERROR 0xFFFF /* ADV_ERROR return */
1554 #define ADV_MAX_TID 15 /* max. target identifier */
1555 #define ADV_MAX_LUN 7 /* max. logical unit number */
1558 * Fixed locations of microcode operating variables.
1560 #define ASC_MC_CODE_BEGIN_ADDR 0x0028 /* microcode start address */
1561 #define ASC_MC_CODE_END_ADDR 0x002A /* microcode end address */
1562 #define ASC_MC_CODE_CHK_SUM 0x002C /* microcode code checksum */
1563 #define ASC_MC_VERSION_DATE 0x0038 /* microcode version */
1564 #define ASC_MC_VERSION_NUM 0x003A /* microcode number */
1565 #define ASC_MC_BIOSMEM 0x0040 /* BIOS RISC Memory Start */
1566 #define ASC_MC_BIOSLEN 0x0050 /* BIOS RISC Memory Length */
1567 #define ASC_MC_BIOS_SIGNATURE 0x0058 /* BIOS Signature 0x55AA */
1568 #define ASC_MC_BIOS_VERSION 0x005A /* BIOS Version (2 bytes) */
1569 #define ASC_MC_SDTR_SPEED1 0x0090 /* SDTR Speed for TID 0-3 */
1570 #define ASC_MC_SDTR_SPEED2 0x0092 /* SDTR Speed for TID 4-7 */
1571 #define ASC_MC_SDTR_SPEED3 0x0094 /* SDTR Speed for TID 8-11 */
1572 #define ASC_MC_SDTR_SPEED4 0x0096 /* SDTR Speed for TID 12-15 */
1573 #define ASC_MC_CHIP_TYPE 0x009A
1574 #define ASC_MC_INTRB_CODE 0x009B
1575 #define ASC_MC_WDTR_ABLE 0x009C
1576 #define ASC_MC_SDTR_ABLE 0x009E
1577 #define ASC_MC_TAGQNG_ABLE 0x00A0
1578 #define ASC_MC_DISC_ENABLE 0x00A2
1579 #define ASC_MC_IDLE_CMD_STATUS 0x00A4
1580 #define ASC_MC_IDLE_CMD 0x00A6
1581 #define ASC_MC_IDLE_CMD_PARAMETER 0x00A8
1582 #define ASC_MC_DEFAULT_SCSI_CFG0 0x00AC
1583 #define ASC_MC_DEFAULT_SCSI_CFG1 0x00AE
1584 #define ASC_MC_DEFAULT_MEM_CFG 0x00B0
1585 #define ASC_MC_DEFAULT_SEL_MASK 0x00B2
1586 #define ASC_MC_SDTR_DONE 0x00B6
1587 #define ASC_MC_NUMBER_OF_QUEUED_CMD 0x00C0
1588 #define ASC_MC_NUMBER_OF_MAX_CMD 0x00D0
1589 #define ASC_MC_DEVICE_HSHK_CFG_TABLE 0x0100
1590 #define ASC_MC_CONTROL_FLAG 0x0122 /* Microcode control flag. */
1591 #define ASC_MC_WDTR_DONE 0x0124
1592 #define ASC_MC_CAM_MODE_MASK 0x015E /* CAM mode TID bitmask. */
1593 #define ASC_MC_ICQ 0x0160
1594 #define ASC_MC_IRQ 0x0164
1595 #define ASC_MC_PPR_ABLE 0x017A
1598 * BIOS LRAM variable absolute offsets.
1600 #define BIOS_CODESEG 0x54
1601 #define BIOS_CODELEN 0x56
1602 #define BIOS_SIGNATURE 0x58
1603 #define BIOS_VERSION 0x5A
1606 * Microcode Control Flags
1608 * Flags set by the Adv Library in RISC variable 'control_flag' (0x122)
1609 * and handled by the microcode.
1611 #define CONTROL_FLAG_IGNORE_PERR 0x0001 /* Ignore DMA Parity Errors */
1612 #define CONTROL_FLAG_ENABLE_AIPP 0x0002 /* Enabled AIPP checking. */
1615 * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format
1617 #define HSHK_CFG_WIDE_XFR 0x8000
1618 #define HSHK_CFG_RATE 0x0F00
1619 #define HSHK_CFG_OFFSET 0x001F
1621 #define ASC_DEF_MAX_HOST_QNG 0xFD /* Max. number of host commands (253) */
1622 #define ASC_DEF_MIN_HOST_QNG 0x10 /* Min. number of host commands (16) */
1623 #define ASC_DEF_MAX_DVC_QNG 0x3F /* Max. number commands per device (63) */
1624 #define ASC_DEF_MIN_DVC_QNG 0x04 /* Min. number commands per device (4) */
1626 #define ASC_QC_DATA_CHECK 0x01 /* Require ASC_QC_DATA_OUT set or clear. */
1627 #define ASC_QC_DATA_OUT 0x02 /* Data out DMA transfer. */
1628 #define ASC_QC_START_MOTOR 0x04 /* Send auto-start motor before request. */
1629 #define ASC_QC_NO_OVERRUN 0x08 /* Don't report overrun. */
1630 #define ASC_QC_FREEZE_TIDQ 0x10 /* Freeze TID queue after request. XXX TBD */
1632 #define ASC_QSC_NO_DISC 0x01 /* Don't allow disconnect for request. */
1633 #define ASC_QSC_NO_TAGMSG 0x02 /* Don't allow tag queuing for request. */
1634 #define ASC_QSC_NO_SYNC 0x04 /* Don't use Synch. transfer on request. */
1635 #define ASC_QSC_NO_WIDE 0x08 /* Don't use Wide transfer on request. */
1636 #define ASC_QSC_REDO_DTR 0x10 /* Renegotiate WDTR/SDTR before request. */
1638 * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or
1639 * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used.
1641 #define ASC_QSC_HEAD_TAG 0x40 /* Use Head Tag Message (0x21). */
1642 #define ASC_QSC_ORDERED_TAG 0x80 /* Use Ordered Tag Message (0x22). */
1645 * All fields here are accessed by the board microcode and need to be
1648 typedef struct adv_carr_t
{
1649 __le32 carr_va
; /* Carrier Virtual Address */
1650 __le32 carr_pa
; /* Carrier Physical Address */
1651 __le32 areq_vpa
; /* ADV_SCSI_REQ_Q Virtual or Physical Address */
1653 * next_vpa [31:4] Carrier Virtual or Physical Next Pointer
1655 * next_vpa [3:1] Reserved Bits
1656 * next_vpa [0] Done Flag set in Response Queue.
1662 * Mask used to eliminate low 4 bits of carrier 'next_vpa' field.
1664 #define ADV_NEXT_VPA_MASK 0xFFFFFFF0
1666 #define ADV_RQ_DONE 0x00000001
1667 #define ADV_RQ_GOOD 0x00000002
1668 #define ADV_CQ_STOPPER 0x00000000
1670 #define ADV_GET_CARRP(carrp) ((carrp) & ADV_NEXT_VPA_MASK)
1673 * Each carrier is 64 bytes, and we need three additional
1674 * carrier for icq, irq, and the termination carrier.
1676 #define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 3)
1678 #define ADV_CARRIER_BUFSIZE \
1679 (ADV_CARRIER_COUNT * sizeof(ADV_CARR_T))
1681 #define ADV_CHIP_ASC3550 0x01 /* Ultra-Wide IC */
1682 #define ADV_CHIP_ASC38C0800 0x02 /* Ultra2-Wide/LVD IC */
1683 #define ADV_CHIP_ASC38C1600 0x03 /* Ultra3-Wide/LVD2 IC */
1686 * Adapter temporary configuration structure
1688 * This structure can be discarded after initialization. Don't add
1689 * fields here needed after initialization.
1691 * Field naming convention:
1693 * *_enable indicates the field enables or disables a feature. The
1694 * value of the field is never reset.
1696 typedef struct adv_dvc_cfg
{
1697 ushort disc_enable
; /* enable disconnection */
1698 uchar chip_version
; /* chip version */
1699 uchar termination
; /* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */
1700 ushort control_flag
; /* Microcode Control Flag */
1701 ushort mcode_date
; /* Microcode date */
1702 ushort mcode_version
; /* Microcode version */
1703 ushort serial1
; /* EEPROM serial number word 1 */
1704 ushort serial2
; /* EEPROM serial number word 2 */
1705 ushort serial3
; /* EEPROM serial number word 3 */
1709 struct adv_scsi_req_q
;
1711 typedef struct adv_sg_block
{
1715 uchar sg_cnt
; /* Valid entries in block. */
1716 __le32 sg_ptr
; /* Pointer to next sg block. */
1718 __le32 sg_addr
; /* SG element address. */
1719 __le32 sg_count
; /* SG element count. */
1720 } sg_list
[NO_OF_SG_PER_BLOCK
];
1724 * ADV_SCSI_REQ_Q - microcode request structure
1726 * All fields in this structure up to byte 60 are used by the microcode.
1727 * The microcode makes assumptions about the size and ordering of fields
1728 * in this structure. Do not change the structure definition here without
1729 * coordinating the change with the microcode.
1731 * All fields accessed by microcode must be maintained in little_endian
1734 typedef struct adv_scsi_req_q
{
1735 uchar cntl
; /* Ucode flags and state (ASC_MC_QC_*). */
1737 uchar target_id
; /* Device target identifier. */
1738 uchar target_lun
; /* Device target logical unit number. */
1739 __le32 data_addr
; /* Data buffer physical address. */
1740 __le32 data_cnt
; /* Data count. Ucode sets to residual. */
1745 uchar cdb_len
; /* SCSI CDB length. Must <= 16 bytes. */
1747 uchar done_status
; /* Completion status. */
1748 uchar scsi_status
; /* SCSI status byte. */
1749 uchar host_status
; /* Ucode host status. */
1750 uchar sg_working_ix
;
1751 uchar cdb
[12]; /* SCSI CDB bytes 0-11. */
1752 __le32 sg_real_addr
; /* SG list physical address. */
1754 uchar cdb16
[4]; /* SCSI CDB bytes 12-15. */
1758 * End of microcode structure - 60 bytes. The rest of the structure
1759 * is used by the Adv Library and ignored by the microcode.
1762 ADV_SG_BLOCK
*sg_list_ptr
; /* SG list virtual address. */
1766 * The following two structures are used to process Wide Board requests.
1768 * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library
1769 * and microcode with the ADV_SCSI_REQ_Q field 'srb_tag' set to the
1770 * SCSI request tag. The adv_req_t structure 'cmndp' field in turn points
1771 * to the Mid-Level SCSI request structure.
1773 * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each
1774 * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux
1775 * up to 255 scatter-gather elements may be used per request or
1778 * Both structures must be 32 byte aligned.
1780 typedef struct adv_sgblk
{
1781 ADV_SG_BLOCK sg_block
; /* Sgblock structure. */
1782 dma_addr_t sg_addr
; /* Physical address */
1783 struct adv_sgblk
*next_sgblkp
; /* Next scatter-gather structure. */
1786 typedef struct adv_req
{
1787 ADV_SCSI_REQ_Q scsi_req_q
; /* Adv Library request structure. */
1788 uchar align
[24]; /* Request structure padding. */
1789 struct scsi_cmnd
*cmndp
; /* Mid-Level SCSI command pointer. */
1790 dma_addr_t req_addr
;
1791 adv_sgblk_t
*sgblkp
; /* Adv Library scatter-gather pointer. */
1792 } adv_req_t
__aligned(32);
1795 * Adapter operation variable structure.
1797 * One structure is required per host adapter.
1799 * Field naming convention:
1801 * *_able indicates both whether a feature should be enabled or disabled
1802 * and whether a device is capable of the feature. At initialization
1803 * this field may be set, but later if a device is found to be incapable
1804 * of the feature, the field is cleared.
1806 typedef struct adv_dvc_var
{
1807 AdvPortAddr iop_base
; /* I/O port address */
1808 ushort err_code
; /* fatal error code */
1809 ushort bios_ctrl
; /* BIOS control word, EEPROM word 12 */
1810 ushort wdtr_able
; /* try WDTR for a device */
1811 ushort sdtr_able
; /* try SDTR for a device */
1812 ushort ultra_able
; /* try SDTR Ultra speed for a device */
1813 ushort sdtr_speed1
; /* EEPROM SDTR Speed for TID 0-3 */
1814 ushort sdtr_speed2
; /* EEPROM SDTR Speed for TID 4-7 */
1815 ushort sdtr_speed3
; /* EEPROM SDTR Speed for TID 8-11 */
1816 ushort sdtr_speed4
; /* EEPROM SDTR Speed for TID 12-15 */
1817 ushort tagqng_able
; /* try tagged queuing with a device */
1818 ushort ppr_able
; /* PPR message capable per TID bitmask. */
1819 uchar max_dvc_qng
; /* maximum number of tagged commands per device */
1820 ushort start_motor
; /* start motor command allowed */
1821 uchar scsi_reset_wait
; /* delay in seconds after scsi bus reset */
1822 uchar chip_no
; /* should be assigned by caller */
1823 uchar max_host_qng
; /* maximum number of Q'ed command allowed */
1824 ushort no_scam
; /* scam_tolerant of EEPROM */
1825 struct asc_board
*drv_ptr
; /* driver pointer to private structure */
1826 uchar chip_scsi_id
; /* chip SCSI target ID */
1828 uchar bist_err_code
;
1829 ADV_CARR_T
*carrier
;
1830 ADV_CARR_T
*carr_freelist
; /* Carrier free list. */
1831 dma_addr_t carrier_addr
;
1832 ADV_CARR_T
*icq_sp
; /* Initiator command queue stopper pointer. */
1833 ADV_CARR_T
*irq_sp
; /* Initiator response queue stopper pointer. */
1834 ushort carr_pending_cnt
; /* Count of pending carriers. */
1836 * Note: The following fields will not be used after initialization. The
1837 * driver may discard the buffer after initialization is done.
1839 ADV_DVC_CFG
*cfg
; /* temporary configuration structure */
1843 * Microcode idle loop commands
1845 #define IDLE_CMD_COMPLETED 0
1846 #define IDLE_CMD_STOP_CHIP 0x0001
1847 #define IDLE_CMD_STOP_CHIP_SEND_INT 0x0002
1848 #define IDLE_CMD_SEND_INT 0x0004
1849 #define IDLE_CMD_ABORT 0x0008
1850 #define IDLE_CMD_DEVICE_RESET 0x0010
1851 #define IDLE_CMD_SCSI_RESET_START 0x0020 /* Assert SCSI Bus Reset */
1852 #define IDLE_CMD_SCSI_RESET_END 0x0040 /* Deassert SCSI Bus Reset */
1853 #define IDLE_CMD_SCSIREQ 0x0080
1855 #define IDLE_CMD_STATUS_SUCCESS 0x0001
1856 #define IDLE_CMD_STATUS_FAILURE 0x0002
1859 * AdvSendIdleCmd() flag definitions.
1861 #define ADV_NOWAIT 0x01
1864 * Wait loop time out values.
1866 #define SCSI_WAIT_100_MSEC 100UL /* 100 milliseconds */
1867 #define SCSI_US_PER_MSEC 1000 /* microseconds per millisecond */
1868 #define SCSI_MAX_RETRY 10 /* retry count */
1870 #define ADV_ASYNC_RDMA_FAILURE 0x01 /* Fatal RDMA failure. */
1871 #define ADV_ASYNC_SCSI_BUS_RESET_DET 0x02 /* Detected SCSI Bus Reset. */
1872 #define ADV_ASYNC_CARRIER_READY_FAILURE 0x03 /* Carrier Ready failure. */
1873 #define ADV_RDMA_IN_CARR_AND_Q_INVALID 0x04 /* RDMAed-in data invalid. */
1875 #define ADV_HOST_SCSI_BUS_RESET 0x80 /* Host Initiated SCSI Bus Reset. */
1877 /* Read byte from a register. */
1878 #define AdvReadByteRegister(iop_base, reg_off) \
1879 (ADV_MEM_READB((iop_base) + (reg_off)))
1881 /* Write byte to a register. */
1882 #define AdvWriteByteRegister(iop_base, reg_off, byte) \
1883 (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte)))
1885 /* Read word (2 bytes) from a register. */
1886 #define AdvReadWordRegister(iop_base, reg_off) \
1887 (ADV_MEM_READW((iop_base) + (reg_off)))
1889 /* Write word (2 bytes) to a register. */
1890 #define AdvWriteWordRegister(iop_base, reg_off, word) \
1891 (ADV_MEM_WRITEW((iop_base) + (reg_off), (word)))
1893 /* Write dword (4 bytes) to a register. */
1894 #define AdvWriteDWordRegister(iop_base, reg_off, dword) \
1895 (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword)))
1897 /* Read byte from LRAM. */
1898 #define AdvReadByteLram(iop_base, addr, byte) \
1900 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
1901 (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \
1904 /* Write byte to LRAM. */
1905 #define AdvWriteByteLram(iop_base, addr, byte) \
1906 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1907 ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte)))
1909 /* Read word (2 bytes) from LRAM. */
1910 #define AdvReadWordLram(iop_base, addr, word) \
1912 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
1913 (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \
1916 /* Write word (2 bytes) to LRAM. */
1917 #define AdvWriteWordLram(iop_base, addr, word) \
1918 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1919 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
1921 /* Write little-endian double word (4 bytes) to LRAM */
1922 /* Because of unspecified C language ordering don't use auto-increment. */
1923 #define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \
1924 ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1925 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
1926 cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \
1927 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \
1928 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
1929 cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF)))))
1931 /* Read word (2 bytes) from LRAM assuming that the address is already set. */
1932 #define AdvReadWordAutoIncLram(iop_base) \
1933 (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA))
1935 /* Write word (2 bytes) to LRAM assuming that the address is already set. */
1936 #define AdvWriteWordAutoIncLram(iop_base, word) \
1937 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
1940 * Define macro to check for Condor signature.
1942 * Evaluate to ADV_TRUE if a Condor chip is found the specified port
1943 * address 'iop_base'. Otherwise evalue to ADV_FALSE.
1945 #define AdvFindSignature(iop_base) \
1946 (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \
1947 ADV_CHIP_ID_BYTE) && \
1948 (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \
1949 ADV_CHIP_ID_WORD)) ? ADV_TRUE : ADV_FALSE)
1952 * Define macro to Return the version number of the chip at 'iop_base'.
1954 * The second parameter 'bus_type' is currently unused.
1956 #define AdvGetChipVersion(iop_base, bus_type) \
1957 AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV)
1960 * Abort an SRB in the chip's RISC Memory. The 'srb_tag' argument must
1961 * match the ADV_SCSI_REQ_Q 'srb_tag' field.
1963 * If the request has not yet been sent to the device it will simply be
1964 * aborted from RISC memory. If the request is disconnected it will be
1965 * aborted on reselection by sending an Abort Message to the target ID.
1968 * ADV_TRUE(1) - Queue was successfully aborted.
1969 * ADV_FALSE(0) - Queue was not found on the active queue list.
1971 #define AdvAbortQueue(asc_dvc, srb_tag) \
1972 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \
1973 (ADV_DCNT) (srb_tag))
1976 * Send a Bus Device Reset Message to the specified target ID.
1978 * All outstanding commands will be purged if sending the
1979 * Bus Device Reset Message is successful.
1982 * ADV_TRUE(1) - All requests on the target are purged.
1983 * ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests
1986 #define AdvResetDevice(asc_dvc, target_id) \
1987 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET, \
1988 (ADV_DCNT) (target_id))
1991 * SCSI Wide Type definition.
1993 #define ADV_SCSI_BIT_ID_TYPE ushort
1996 * AdvInitScsiTarget() 'cntl_flag' options.
1998 #define ADV_SCAN_LUN 0x01
1999 #define ADV_CAPINFO_NOLUN 0x02
2002 * Convert target id to target id bit mask.
2004 #define ADV_TID_TO_TIDMASK(tid) (0x01 << ((tid) & ADV_MAX_TID))
2007 * ADV_SCSI_REQ_Q 'done_status' and 'host_status' return values.
2010 #define QD_NO_STATUS 0x00 /* Request not completed yet. */
2011 #define QD_NO_ERROR 0x01
2012 #define QD_ABORTED_BY_HOST 0x02
2013 #define QD_WITH_ERROR 0x04
2015 #define QHSTA_NO_ERROR 0x00
2016 #define QHSTA_M_SEL_TIMEOUT 0x11
2017 #define QHSTA_M_DATA_OVER_RUN 0x12
2018 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
2019 #define QHSTA_M_QUEUE_ABORTED 0x15
2020 #define QHSTA_M_SXFR_SDMA_ERR 0x16 /* SXFR_STATUS SCSI DMA Error */
2021 #define QHSTA_M_SXFR_SXFR_PERR 0x17 /* SXFR_STATUS SCSI Bus Parity Error */
2022 #define QHSTA_M_RDMA_PERR 0x18 /* RISC PCI DMA parity error */
2023 #define QHSTA_M_SXFR_OFF_UFLW 0x19 /* SXFR_STATUS Offset Underflow */
2024 #define QHSTA_M_SXFR_OFF_OFLW 0x20 /* SXFR_STATUS Offset Overflow */
2025 #define QHSTA_M_SXFR_WD_TMO 0x21 /* SXFR_STATUS Watchdog Timeout */
2026 #define QHSTA_M_SXFR_DESELECTED 0x22 /* SXFR_STATUS Deselected */
2027 /* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */
2028 #define QHSTA_M_SXFR_XFR_OFLW 0x12 /* SXFR_STATUS Transfer Overflow */
2029 #define QHSTA_M_SXFR_XFR_PH_ERR 0x24 /* SXFR_STATUS Transfer Phase Error */
2030 #define QHSTA_M_SXFR_UNKNOWN_ERROR 0x25 /* SXFR_STATUS Unknown Error */
2031 #define QHSTA_M_SCSI_BUS_RESET 0x30 /* Request aborted from SBR */
2032 #define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31 /* Request aborted from unsol. SBR */
2033 #define QHSTA_M_BUS_DEVICE_RESET 0x32 /* Request aborted from BDR */
2034 #define QHSTA_M_DIRECTION_ERR 0x35 /* Data Phase mismatch */
2035 #define QHSTA_M_DIRECTION_ERR_HUNG 0x36 /* Data Phase mismatch and bus hang */
2036 #define QHSTA_M_WTM_TIMEOUT 0x41
2037 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42
2038 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43
2039 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
2040 #define QHSTA_M_INVALID_DEVICE 0x45 /* Bad target ID */
2041 #define QHSTA_M_FROZEN_TIDQ 0x46 /* TID Queue frozen. */
2042 #define QHSTA_M_SGBACKUP_ERROR 0x47 /* Scatter-Gather backup error */
2044 /* Return the address that is aligned at the next doubleword >= to 'addr'. */
2045 #define ADV_32BALIGN(addr) (((ulong) (addr) + 0x1F) & ~0x1F)
2048 * Total contiguous memory needed for driver SG blocks.
2050 * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum
2051 * number of scatter-gather elements the driver supports in a
2055 #define ADV_SG_LIST_MAX_BYTE_SIZE \
2056 (sizeof(ADV_SG_BLOCK) * \
2057 ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK))
2059 /* struct asc_board flags */
2060 #define ASC_IS_WIDE_BOARD 0x04 /* AdvanSys Wide Board */
2062 #define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0)
2064 #define NO_ISA_DMA 0xff /* No ISA DMA Channel Used */
2066 #define ASC_INFO_SIZE 128 /* advansys_info() line size */
2068 /* Asc Library return codes */
2071 #define ASC_NOERROR 1
2073 #define ASC_ERROR (-1)
2075 #define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1)
2076 #ifndef ADVANSYS_STATS
2077 #define ASC_STATS_ADD(shost, counter, count)
2078 #else /* ADVANSYS_STATS */
2079 #define ASC_STATS_ADD(shost, counter, count) \
2080 (((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count))
2081 #endif /* ADVANSYS_STATS */
2083 /* If the result wraps when calculating tenths, return 0. */
2084 #define ASC_TENTHS(num, den) \
2085 (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \
2086 0 : ((((num) * 10)/(den)) - (10 * ((num)/(den)))))
2089 * Display a message to the console.
2091 #define ASC_PRINT(s) \
2093 printk("advansys: "); \
2097 #define ASC_PRINT1(s, a1) \
2099 printk("advansys: "); \
2100 printk((s), (a1)); \
2103 #define ASC_PRINT2(s, a1, a2) \
2105 printk("advansys: "); \
2106 printk((s), (a1), (a2)); \
2109 #define ASC_PRINT3(s, a1, a2, a3) \
2111 printk("advansys: "); \
2112 printk((s), (a1), (a2), (a3)); \
2115 #define ASC_PRINT4(s, a1, a2, a3, a4) \
2117 printk("advansys: "); \
2118 printk((s), (a1), (a2), (a3), (a4)); \
2121 #ifndef ADVANSYS_DEBUG
2123 #define ASC_DBG(lvl, s...)
2124 #define ASC_DBG_PRT_SCSI_HOST(lvl, s)
2125 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp)
2126 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2127 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone)
2128 #define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2129 #define ASC_DBG_PRT_HEX(lvl, name, start, length)
2130 #define ASC_DBG_PRT_CDB(lvl, cdb, len)
2131 #define ASC_DBG_PRT_SENSE(lvl, sense, len)
2132 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len)
2134 #else /* ADVANSYS_DEBUG */
2137 * Debugging Message Levels:
2139 * 1: High-Level Tracing
2140 * 2-N: Verbose Tracing
2143 #define ASC_DBG(lvl, format, arg...) { \
2144 if (asc_dbglvl >= (lvl)) \
2145 printk(KERN_DEBUG "%s: %s: " format, DRV_NAME, \
2146 __func__ , ## arg); \
2149 #define ASC_DBG_PRT_SCSI_HOST(lvl, s) \
2151 if (asc_dbglvl >= (lvl)) { \
2152 asc_prt_scsi_host(s); \
2156 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \
2158 if (asc_dbglvl >= (lvl)) { \
2159 asc_prt_asc_scsi_q(scsiqp); \
2163 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \
2165 if (asc_dbglvl >= (lvl)) { \
2166 asc_prt_asc_qdone_info(qdone); \
2170 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \
2172 if (asc_dbglvl >= (lvl)) { \
2173 asc_prt_adv_scsi_req_q(scsiqp); \
2177 #define ASC_DBG_PRT_HEX(lvl, name, start, length) \
2179 if (asc_dbglvl >= (lvl)) { \
2180 asc_prt_hex((name), (start), (length)); \
2184 #define ASC_DBG_PRT_CDB(lvl, cdb, len) \
2185 ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len));
2187 #define ASC_DBG_PRT_SENSE(lvl, sense, len) \
2188 ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len));
2190 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \
2191 ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len));
2192 #endif /* ADVANSYS_DEBUG */
2194 #ifdef ADVANSYS_STATS
2196 /* Per board statistics structure */
2198 /* Driver Entrypoint Statistics */
2199 unsigned int queuecommand
; /* # calls to advansys_queuecommand() */
2200 unsigned int reset
; /* # calls to advansys_eh_bus_reset() */
2201 unsigned int biosparam
; /* # calls to advansys_biosparam() */
2202 unsigned int interrupt
; /* # advansys_interrupt() calls */
2203 unsigned int callback
; /* # calls to asc/adv_isr_callback() */
2204 unsigned int done
; /* # calls to request's scsi_done function */
2205 unsigned int build_error
; /* # asc/adv_build_req() ASC_ERROR returns. */
2206 unsigned int adv_build_noreq
; /* # adv_build_req() adv_req_t alloc. fail. */
2207 unsigned int adv_build_nosg
; /* # adv_build_req() adv_sgblk_t alloc. fail. */
2208 /* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */
2209 unsigned int exe_noerror
; /* # ASC_NOERROR returns. */
2210 unsigned int exe_busy
; /* # ASC_BUSY returns. */
2211 unsigned int exe_error
; /* # ASC_ERROR returns. */
2212 unsigned int exe_unknown
; /* # unknown returns. */
2213 /* Data Transfer Statistics */
2214 unsigned int xfer_cnt
; /* # I/O requests received */
2215 unsigned int xfer_elem
; /* # scatter-gather elements */
2216 unsigned int xfer_sect
; /* # 512-byte blocks */
2218 #endif /* ADVANSYS_STATS */
2221 * Structure allocated for each board.
2223 * This structure is allocated by scsi_host_alloc() at the end
2224 * of the 'Scsi_Host' structure starting at the 'hostdata'
2225 * field. It is guaranteed to be allocated from DMA-able memory.
2229 struct Scsi_Host
*shost
;
2230 uint flags
; /* Board flags */
2233 ASC_DVC_VAR asc_dvc_var
; /* Narrow board */
2234 ADV_DVC_VAR adv_dvc_var
; /* Wide board */
2237 ASC_DVC_CFG asc_dvc_cfg
; /* Narrow board */
2238 ADV_DVC_CFG adv_dvc_cfg
; /* Wide board */
2240 ushort asc_n_io_port
; /* Number I/O ports. */
2241 ADV_SCSI_BIT_ID_TYPE init_tidmask
; /* Target init./valid mask */
2242 ushort reqcnt
[ADV_MAX_TID
+ 1]; /* Starvation request count */
2243 ADV_SCSI_BIT_ID_TYPE queue_full
; /* Queue full mask */
2244 ushort queue_full_cnt
[ADV_MAX_TID
+ 1]; /* Queue full count */
2246 ASCEEP_CONFIG asc_eep
; /* Narrow EEPROM config. */
2247 ADVEEP_3550_CONFIG adv_3550_eep
; /* 3550 EEPROM config. */
2248 ADVEEP_38C0800_CONFIG adv_38C0800_eep
; /* 38C0800 EEPROM config. */
2249 ADVEEP_38C1600_CONFIG adv_38C1600_eep
; /* 38C1600 EEPROM config. */
2251 /* /proc/scsi/advansys/[0...] */
2252 #ifdef ADVANSYS_STATS
2253 struct asc_stats asc_stats
; /* Board statistics */
2254 #endif /* ADVANSYS_STATS */
2256 * The following fields are used only for Narrow Boards.
2258 uchar sdtr_data
[ASC_MAX_TID
+ 1]; /* SDTR information */
2260 * The following fields are used only for Wide Boards.
2262 void __iomem
*ioremap_addr
; /* I/O Memory remap address. */
2263 ushort ioport
; /* I/O Port address. */
2264 adv_req_t
*adv_reqp
; /* Request structures. */
2265 dma_addr_t adv_reqp_addr
;
2266 size_t adv_reqp_size
;
2267 struct dma_pool
*adv_sgblk_pool
; /* Scatter-gather structures. */
2268 ushort bios_signature
; /* BIOS Signature. */
2269 ushort bios_version
; /* BIOS Version. */
2270 ushort bios_codeseg
; /* BIOS Code Segment. */
2271 ushort bios_codelen
; /* BIOS Code Segment Length. */
2274 #define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \
2275 dvc_var.asc_dvc_var)
2276 #define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \
2277 dvc_var.adv_dvc_var)
2278 #define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev)
2280 struct advansys_cmd
{
2281 dma_addr_t dma_handle
;
2284 static struct advansys_cmd
*advansys_cmd(struct scsi_cmnd
*cmd
)
2286 return scsi_cmd_priv(cmd
);
2289 #ifdef ADVANSYS_DEBUG
2290 static int asc_dbglvl
= 3;
2293 * asc_prt_asc_dvc_var()
2295 static void asc_prt_asc_dvc_var(ASC_DVC_VAR
*h
)
2297 printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong
)h
);
2299 printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl "
2300 "%d,\n", h
->iop_base
, h
->err_code
, h
->dvc_cntl
, h
->bug_fix_cntl
);
2302 printk(" bus_type %d, init_sdtr 0x%x,\n", h
->bus_type
,
2303 (unsigned)h
->init_sdtr
);
2305 printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, "
2306 "chip_no 0x%x,\n", (unsigned)h
->sdtr_done
,
2307 (unsigned)h
->use_tagged_qng
, (unsigned)h
->unit_not_ready
,
2308 (unsigned)h
->chip_no
);
2310 printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait "
2311 "%u,\n", (unsigned)h
->queue_full_or_busy
,
2312 (unsigned)h
->start_motor
, (unsigned)h
->scsi_reset_wait
);
2314 printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, "
2315 "in_critical_cnt %u,\n", (unsigned)h
->is_in_int
,
2316 (unsigned)h
->max_total_qng
, (unsigned)h
->cur_total_qng
,
2317 (unsigned)h
->in_critical_cnt
);
2319 printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, "
2320 "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h
->last_q_shortage
,
2321 (unsigned)h
->init_state
, (unsigned)h
->no_scam
,
2322 (unsigned)h
->pci_fix_asyn_xfer
);
2324 printk(" cfg 0x%lx\n", (ulong
)h
->cfg
);
2328 * asc_prt_asc_dvc_cfg()
2330 static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG
*h
)
2332 printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong
)h
);
2334 printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n",
2335 h
->can_tagged_qng
, h
->cmd_qng_enabled
);
2336 printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n",
2337 h
->disc_enable
, h
->sdtr_enable
);
2339 printk(" chip_scsi_id %d, chip_version %d,\n",
2340 h
->chip_scsi_id
, h
->chip_version
);
2342 printk(" mcode_date 0x%x, mcode_version %d\n",
2343 h
->mcode_date
, h
->mcode_version
);
2347 * asc_prt_adv_dvc_var()
2349 * Display an ADV_DVC_VAR structure.
2351 static void asc_prt_adv_dvc_var(ADV_DVC_VAR
*h
)
2353 printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong
)h
);
2355 printk(" iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n",
2356 (ulong
)h
->iop_base
, h
->err_code
, (unsigned)h
->ultra_able
);
2358 printk(" sdtr_able 0x%x, wdtr_able 0x%x\n",
2359 (unsigned)h
->sdtr_able
, (unsigned)h
->wdtr_able
);
2361 printk(" start_motor 0x%x, scsi_reset_wait 0x%x\n",
2362 (unsigned)h
->start_motor
, (unsigned)h
->scsi_reset_wait
);
2364 printk(" max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%p\n",
2365 (unsigned)h
->max_host_qng
, (unsigned)h
->max_dvc_qng
,
2368 printk(" icq_sp 0x%p, irq_sp 0x%p\n", h
->icq_sp
, h
->irq_sp
);
2370 printk(" no_scam 0x%x, tagqng_able 0x%x\n",
2371 (unsigned)h
->no_scam
, (unsigned)h
->tagqng_able
);
2373 printk(" chip_scsi_id 0x%x, cfg 0x%lx\n",
2374 (unsigned)h
->chip_scsi_id
, (ulong
)h
->cfg
);
2378 * asc_prt_adv_dvc_cfg()
2380 * Display an ADV_DVC_CFG structure.
2382 static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG
*h
)
2384 printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong
)h
);
2386 printk(" disc_enable 0x%x, termination 0x%x\n",
2387 h
->disc_enable
, h
->termination
);
2389 printk(" chip_version 0x%x, mcode_date 0x%x\n",
2390 h
->chip_version
, h
->mcode_date
);
2392 printk(" mcode_version 0x%x, control_flag 0x%x\n",
2393 h
->mcode_version
, h
->control_flag
);
2397 * asc_prt_scsi_host()
2399 static void asc_prt_scsi_host(struct Scsi_Host
*s
)
2401 struct asc_board
*boardp
= shost_priv(s
);
2403 printk("Scsi_Host at addr 0x%p, device %s\n", s
, dev_name(boardp
->dev
));
2404 printk(" host_busy %d, host_no %d,\n",
2405 scsi_host_busy(s
), s
->host_no
);
2407 printk(" base 0x%lx, io_port 0x%lx, irq %d,\n",
2408 (ulong
)s
->base
, (ulong
)s
->io_port
, boardp
->irq
);
2410 printk(" dma_channel %d, this_id %d, can_queue %d,\n",
2411 s
->dma_channel
, s
->this_id
, s
->can_queue
);
2413 printk(" cmd_per_lun %d, sg_tablesize %d\n",
2414 s
->cmd_per_lun
, s
->sg_tablesize
);
2416 if (ASC_NARROW_BOARD(boardp
)) {
2417 asc_prt_asc_dvc_var(&boardp
->dvc_var
.asc_dvc_var
);
2418 asc_prt_asc_dvc_cfg(&boardp
->dvc_cfg
.asc_dvc_cfg
);
2420 asc_prt_adv_dvc_var(&boardp
->dvc_var
.adv_dvc_var
);
2421 asc_prt_adv_dvc_cfg(&boardp
->dvc_cfg
.adv_dvc_cfg
);
2428 * Print hexadecimal output in 4 byte groupings 32 bytes
2429 * or 8 double-words per line.
2431 static void asc_prt_hex(char *f
, uchar
*s
, int l
)
2438 printk("%s: (%d bytes)\n", f
, l
);
2440 for (i
= 0; i
< l
; i
+= 32) {
2442 /* Display a maximum of 8 double-words per line. */
2443 if ((k
= (l
- i
) / 4) >= 8) {
2450 for (j
= 0; j
< k
; j
++) {
2451 printk(" %2.2X%2.2X%2.2X%2.2X",
2452 (unsigned)s
[i
+ (j
* 4)],
2453 (unsigned)s
[i
+ (j
* 4) + 1],
2454 (unsigned)s
[i
+ (j
* 4) + 2],
2455 (unsigned)s
[i
+ (j
* 4) + 3]);
2463 printk(" %2.2X", (unsigned)s
[i
+ (j
* 4)]);
2466 printk(" %2.2X%2.2X",
2467 (unsigned)s
[i
+ (j
* 4)],
2468 (unsigned)s
[i
+ (j
* 4) + 1]);
2471 printk(" %2.2X%2.2X%2.2X",
2472 (unsigned)s
[i
+ (j
* 4) + 1],
2473 (unsigned)s
[i
+ (j
* 4) + 2],
2474 (unsigned)s
[i
+ (j
* 4) + 3]);
2483 * asc_prt_asc_scsi_q()
2485 static void asc_prt_asc_scsi_q(ASC_SCSI_Q
*q
)
2490 printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong
)q
);
2493 (" target_ix 0x%x, target_lun %u, srb_tag 0x%x, tag_code 0x%x,\n",
2494 q
->q2
.target_ix
, q
->q1
.target_lun
, q
->q2
.srb_tag
,
2498 (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2499 (ulong
)le32_to_cpu(q
->q1
.data_addr
),
2500 (ulong
)le32_to_cpu(q
->q1
.data_cnt
),
2501 (ulong
)le32_to_cpu(q
->q1
.sense_addr
), q
->q1
.sense_len
);
2503 printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n",
2504 (ulong
)q
->cdbptr
, q
->q2
.cdb_len
,
2505 (ulong
)q
->sg_head
, q
->q1
.sg_queue_cnt
);
2509 printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong
)sgp
);
2510 printk(" entry_cnt %u, queue_cnt %u\n", sgp
->entry_cnt
,
2512 for (i
= 0; i
< sgp
->entry_cnt
; i
++) {
2513 printk(" [%u]: addr 0x%lx, bytes %lu\n",
2514 i
, (ulong
)le32_to_cpu(sgp
->sg_list
[i
].addr
),
2515 (ulong
)le32_to_cpu(sgp
->sg_list
[i
].bytes
));
2522 * asc_prt_asc_qdone_info()
2524 static void asc_prt_asc_qdone_info(ASC_QDONE_INFO
*q
)
2526 printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong
)q
);
2527 printk(" srb_tag 0x%x, target_ix %u, cdb_len %u, tag_code %u,\n",
2528 q
->d2
.srb_tag
, q
->d2
.target_ix
, q
->d2
.cdb_len
,
2531 (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n",
2532 q
->d3
.done_stat
, q
->d3
.host_stat
, q
->d3
.scsi_stat
, q
->d3
.scsi_msg
);
2536 * asc_prt_adv_sgblock()
2538 * Display an ADV_SG_BLOCK structure.
2540 static void asc_prt_adv_sgblock(int sgblockno
, ADV_SG_BLOCK
*b
)
2544 printk(" ADV_SG_BLOCK at addr 0x%lx (sgblockno %d)\n",
2545 (ulong
)b
, sgblockno
);
2546 printk(" sg_cnt %u, sg_ptr 0x%x\n",
2547 b
->sg_cnt
, (u32
)le32_to_cpu(b
->sg_ptr
));
2548 BUG_ON(b
->sg_cnt
> NO_OF_SG_PER_BLOCK
);
2550 BUG_ON(b
->sg_cnt
!= NO_OF_SG_PER_BLOCK
);
2551 for (i
= 0; i
< b
->sg_cnt
; i
++) {
2552 printk(" [%u]: sg_addr 0x%x, sg_count 0x%x\n",
2553 i
, (u32
)le32_to_cpu(b
->sg_list
[i
].sg_addr
),
2554 (u32
)le32_to_cpu(b
->sg_list
[i
].sg_count
));
2559 * asc_prt_adv_scsi_req_q()
2561 * Display an ADV_SCSI_REQ_Q structure.
2563 static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q
*q
)
2566 struct adv_sg_block
*sg_ptr
;
2567 adv_sgblk_t
*sgblkp
;
2569 printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong
)q
);
2571 printk(" target_id %u, target_lun %u, srb_tag 0x%x\n",
2572 q
->target_id
, q
->target_lun
, q
->srb_tag
);
2574 printk(" cntl 0x%x, data_addr 0x%lx\n",
2575 q
->cntl
, (ulong
)le32_to_cpu(q
->data_addr
));
2577 printk(" data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2578 (ulong
)le32_to_cpu(q
->data_cnt
),
2579 (ulong
)le32_to_cpu(q
->sense_addr
), q
->sense_len
);
2582 (" cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n",
2583 q
->cdb_len
, q
->done_status
, q
->host_status
, q
->scsi_status
);
2585 printk(" sg_working_ix 0x%x, target_cmd %u\n",
2586 q
->sg_working_ix
, q
->target_cmd
);
2588 printk(" scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n",
2589 (ulong
)le32_to_cpu(q
->scsiq_rptr
),
2590 (ulong
)le32_to_cpu(q
->sg_real_addr
), (ulong
)q
->sg_list_ptr
);
2592 /* Display the request's ADV_SG_BLOCK structures. */
2593 if (q
->sg_list_ptr
!= NULL
) {
2594 sgblkp
= container_of(q
->sg_list_ptr
, adv_sgblk_t
, sg_block
);
2597 sg_ptr
= &sgblkp
->sg_block
;
2598 asc_prt_adv_sgblock(sg_blk_cnt
, sg_ptr
);
2599 if (sg_ptr
->sg_ptr
== 0) {
2602 sgblkp
= sgblkp
->next_sgblkp
;
2607 #endif /* ADVANSYS_DEBUG */
2612 * Return suitable for printing on the console with the argument
2613 * adapter's configuration information.
2615 * Note: The information line should not exceed ASC_INFO_SIZE bytes,
2616 * otherwise the static 'info' array will be overrun.
2618 static const char *advansys_info(struct Scsi_Host
*shost
)
2620 static char info
[ASC_INFO_SIZE
];
2621 struct asc_board
*boardp
= shost_priv(shost
);
2622 ASC_DVC_VAR
*asc_dvc_varp
;
2623 ADV_DVC_VAR
*adv_dvc_varp
;
2625 char *widename
= NULL
;
2627 if (ASC_NARROW_BOARD(boardp
)) {
2628 asc_dvc_varp
= &boardp
->dvc_var
.asc_dvc_var
;
2629 ASC_DBG(1, "begin\n");
2631 if (asc_dvc_varp
->bus_type
& ASC_IS_VL
) {
2633 } else if (asc_dvc_varp
->bus_type
& ASC_IS_EISA
) {
2635 } else if (asc_dvc_varp
->bus_type
& ASC_IS_PCI
) {
2636 if ((asc_dvc_varp
->bus_type
& ASC_IS_PCI_ULTRA
)
2637 == ASC_IS_PCI_ULTRA
) {
2638 busname
= "PCI Ultra";
2644 shost_printk(KERN_ERR
, shost
, "unknown bus "
2645 "type %d\n", asc_dvc_varp
->bus_type
);
2648 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X",
2649 ASC_VERSION
, busname
, (ulong
)shost
->io_port
,
2650 (ulong
)shost
->io_port
+ ASC_IOADR_GAP
- 1,
2654 * Wide Adapter Information
2656 * Memory-mapped I/O is used instead of I/O space to access
2657 * the adapter, but display the I/O Port range. The Memory
2658 * I/O address is displayed through the driver /proc file.
2660 adv_dvc_varp
= &boardp
->dvc_var
.adv_dvc_var
;
2661 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
2662 widename
= "Ultra-Wide";
2663 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
2664 widename
= "Ultra2-Wide";
2666 widename
= "Ultra3-Wide";
2669 "AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X",
2670 ASC_VERSION
, widename
, (ulong
)adv_dvc_varp
->iop_base
,
2671 (ulong
)adv_dvc_varp
->iop_base
+ boardp
->asc_n_io_port
- 1, boardp
->irq
);
2673 BUG_ON(strlen(info
) >= ASC_INFO_SIZE
);
2674 ASC_DBG(1, "end\n");
2678 #ifdef CONFIG_PROC_FS
2681 * asc_prt_board_devices()
2683 * Print driver information for devices attached to the board.
2685 static void asc_prt_board_devices(struct seq_file
*m
, struct Scsi_Host
*shost
)
2687 struct asc_board
*boardp
= shost_priv(shost
);
2692 "\nDevice Information for AdvanSys SCSI Host %d:\n",
2695 if (ASC_NARROW_BOARD(boardp
)) {
2696 chip_scsi_id
= boardp
->dvc_cfg
.asc_dvc_cfg
.chip_scsi_id
;
2698 chip_scsi_id
= boardp
->dvc_var
.adv_dvc_var
.chip_scsi_id
;
2701 seq_puts(m
, "Target IDs Detected:");
2702 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
2703 if (boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
))
2704 seq_printf(m
, " %X,", i
);
2706 seq_printf(m
, " (%X=Host Adapter)\n", chip_scsi_id
);
2710 * Display Wide Board BIOS Information.
2712 static void asc_prt_adv_bios(struct seq_file
*m
, struct Scsi_Host
*shost
)
2714 struct asc_board
*boardp
= shost_priv(shost
);
2715 ushort major
, minor
, letter
;
2717 seq_puts(m
, "\nROM BIOS Version: ");
2720 * If the BIOS saved a valid signature, then fill in
2721 * the BIOS code segment base address.
2723 if (boardp
->bios_signature
!= 0x55AA) {
2724 seq_puts(m
, "Disabled or Pre-3.1\n"
2725 "BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n"
2726 "can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n");
2728 major
= (boardp
->bios_version
>> 12) & 0xF;
2729 minor
= (boardp
->bios_version
>> 8) & 0xF;
2730 letter
= (boardp
->bios_version
& 0xFF);
2732 seq_printf(m
, "%d.%d%c\n",
2734 letter
>= 26 ? '?' : letter
+ 'A');
2736 * Current available ROM BIOS release is 3.1I for UW
2737 * and 3.2I for U2W. This code doesn't differentiate
2738 * UW and U2W boards.
2740 if (major
< 3 || (major
<= 3 && minor
< 1) ||
2741 (major
<= 3 && minor
<= 1 && letter
< ('I' - 'A'))) {
2742 seq_puts(m
, "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n"
2743 "ftp://ftp.connectcom.net/pub\n");
2749 * Add serial number to information bar if signature AAh
2750 * is found in at bit 15-9 (7 bits) of word 1.
2752 * Serial Number consists fo 12 alpha-numeric digits.
2754 * 1 - Product type (A,B,C,D..) Word0: 15-13 (3 bits)
2755 * 2 - MFG Location (A,B,C,D..) Word0: 12-10 (3 bits)
2756 * 3-4 - Product ID (0-99) Word0: 9-0 (10 bits)
2757 * 5 - Product revision (A-J) Word0: " "
2759 * Signature Word1: 15-9 (7 bits)
2760 * 6 - Year (0-9) Word1: 8-6 (3 bits) & Word2: 15 (1 bit)
2761 * 7-8 - Week of the year (1-52) Word1: 5-0 (6 bits)
2763 * 9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits)
2765 * Note 1: Only production cards will have a serial number.
2767 * Note 2: Signature is most significant 7 bits (0xFE).
2769 * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE.
2771 static int asc_get_eeprom_string(ushort
*serialnum
, uchar
*cp
)
2775 if ((serialnum
[1] & 0xFE00) != ((ushort
)0xAA << 8)) {
2779 * First word - 6 digits.
2783 /* Product type - 1st digit. */
2784 if ((*cp
= 'A' + ((w
& 0xE000) >> 13)) == 'H') {
2785 /* Product type is P=Prototype */
2790 /* Manufacturing location - 2nd digit. */
2791 *cp
++ = 'A' + ((w
& 0x1C00) >> 10);
2793 /* Product ID - 3rd, 4th digits. */
2795 *cp
++ = '0' + (num
/ 100);
2797 *cp
++ = '0' + (num
/ 10);
2799 /* Product revision - 5th digit. */
2800 *cp
++ = 'A' + (num
% 10);
2810 * If bit 15 of third word is set, then the
2811 * last digit of the year is greater than 7.
2813 if (serialnum
[2] & 0x8000) {
2814 *cp
++ = '8' + ((w
& 0x1C0) >> 6);
2816 *cp
++ = '0' + ((w
& 0x1C0) >> 6);
2819 /* Week of year - 7th, 8th digits. */
2821 *cp
++ = '0' + num
/ 10;
2828 w
= serialnum
[2] & 0x7FFF;
2830 /* Serial number - 9th digit. */
2831 *cp
++ = 'A' + (w
/ 1000);
2833 /* 10th, 11th, 12th digits. */
2835 *cp
++ = '0' + num
/ 100;
2837 *cp
++ = '0' + num
/ 10;
2841 *cp
= '\0'; /* Null Terminate the string. */
2847 * asc_prt_asc_board_eeprom()
2849 * Print board EEPROM configuration.
2851 static void asc_prt_asc_board_eeprom(struct seq_file
*m
, struct Scsi_Host
*shost
)
2853 struct asc_board
*boardp
= shost_priv(shost
);
2856 uchar serialstr
[13];
2858 ep
= &boardp
->eep_config
.asc_eep
;
2861 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
2864 if (asc_get_eeprom_string((ushort
*)&ep
->adapter_info
[0], serialstr
)
2866 seq_printf(m
, " Serial Number: %s\n", serialstr
);
2867 else if (ep
->adapter_info
[5] == 0xBB)
2869 " Default Settings Used for EEPROM-less Adapter.\n");
2871 seq_puts(m
, " Serial Number Signature Not Present.\n");
2874 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2875 ASC_EEP_GET_CHIP_ID(ep
), ep
->max_total_qng
,
2879 " cntl 0x%x, no_scam 0x%x\n", ep
->cntl
, ep
->no_scam
);
2881 seq_puts(m
, " Target ID: ");
2882 for (i
= 0; i
<= ASC_MAX_TID
; i
++)
2883 seq_printf(m
, " %d", i
);
2885 seq_puts(m
, "\n Disconnects: ");
2886 for (i
= 0; i
<= ASC_MAX_TID
; i
++)
2887 seq_printf(m
, " %c",
2888 (ep
->disc_enable
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
2890 seq_puts(m
, "\n Command Queuing: ");
2891 for (i
= 0; i
<= ASC_MAX_TID
; i
++)
2892 seq_printf(m
, " %c",
2893 (ep
->use_cmd_qng
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
2895 seq_puts(m
, "\n Start Motor: ");
2896 for (i
= 0; i
<= ASC_MAX_TID
; i
++)
2897 seq_printf(m
, " %c",
2898 (ep
->start_motor
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
2900 seq_puts(m
, "\n Synchronous Transfer:");
2901 for (i
= 0; i
<= ASC_MAX_TID
; i
++)
2902 seq_printf(m
, " %c",
2903 (ep
->init_sdtr
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
2908 * asc_prt_adv_board_eeprom()
2910 * Print board EEPROM configuration.
2912 static void asc_prt_adv_board_eeprom(struct seq_file
*m
, struct Scsi_Host
*shost
)
2914 struct asc_board
*boardp
= shost_priv(shost
);
2915 ADV_DVC_VAR
*adv_dvc_varp
;
2918 uchar serialstr
[13];
2919 ADVEEP_3550_CONFIG
*ep_3550
= NULL
;
2920 ADVEEP_38C0800_CONFIG
*ep_38C0800
= NULL
;
2921 ADVEEP_38C1600_CONFIG
*ep_38C1600
= NULL
;
2924 ushort sdtr_speed
= 0;
2926 adv_dvc_varp
= &boardp
->dvc_var
.adv_dvc_var
;
2927 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
2928 ep_3550
= &boardp
->eep_config
.adv_3550_eep
;
2929 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
2930 ep_38C0800
= &boardp
->eep_config
.adv_38C0800_eep
;
2932 ep_38C1600
= &boardp
->eep_config
.adv_38C1600_eep
;
2936 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
2939 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
2940 wordp
= &ep_3550
->serial_number_word1
;
2941 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
2942 wordp
= &ep_38C0800
->serial_number_word1
;
2944 wordp
= &ep_38C1600
->serial_number_word1
;
2947 if (asc_get_eeprom_string(wordp
, serialstr
) == ASC_TRUE
)
2948 seq_printf(m
, " Serial Number: %s\n", serialstr
);
2950 seq_puts(m
, " Serial Number Signature Not Present.\n");
2952 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
)
2954 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2955 ep_3550
->adapter_scsi_id
,
2956 ep_3550
->max_host_qng
, ep_3550
->max_dvc_qng
);
2957 else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
)
2959 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2960 ep_38C0800
->adapter_scsi_id
,
2961 ep_38C0800
->max_host_qng
,
2962 ep_38C0800
->max_dvc_qng
);
2965 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2966 ep_38C1600
->adapter_scsi_id
,
2967 ep_38C1600
->max_host_qng
,
2968 ep_38C1600
->max_dvc_qng
);
2969 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
2970 word
= ep_3550
->termination
;
2971 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
2972 word
= ep_38C0800
->termination_lvd
;
2974 word
= ep_38C1600
->termination_lvd
;
2978 termstr
= "Low Off/High Off";
2981 termstr
= "Low Off/High On";
2984 termstr
= "Low On/High On";
2988 termstr
= "Automatic";
2992 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
)
2994 " termination: %u (%s), bios_ctrl: 0x%x\n",
2995 ep_3550
->termination
, termstr
,
2996 ep_3550
->bios_ctrl
);
2997 else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
)
2999 " termination: %u (%s), bios_ctrl: 0x%x\n",
3000 ep_38C0800
->termination_lvd
, termstr
,
3001 ep_38C0800
->bios_ctrl
);
3004 " termination: %u (%s), bios_ctrl: 0x%x\n",
3005 ep_38C1600
->termination_lvd
, termstr
,
3006 ep_38C1600
->bios_ctrl
);
3008 seq_puts(m
, " Target ID: ");
3009 for (i
= 0; i
<= ADV_MAX_TID
; i
++)
3010 seq_printf(m
, " %X", i
);
3013 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3014 word
= ep_3550
->disc_enable
;
3015 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3016 word
= ep_38C0800
->disc_enable
;
3018 word
= ep_38C1600
->disc_enable
;
3020 seq_puts(m
, " Disconnects: ");
3021 for (i
= 0; i
<= ADV_MAX_TID
; i
++)
3022 seq_printf(m
, " %c",
3023 (word
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3026 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3027 word
= ep_3550
->tagqng_able
;
3028 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3029 word
= ep_38C0800
->tagqng_able
;
3031 word
= ep_38C1600
->tagqng_able
;
3033 seq_puts(m
, " Command Queuing: ");
3034 for (i
= 0; i
<= ADV_MAX_TID
; i
++)
3035 seq_printf(m
, " %c",
3036 (word
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3039 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3040 word
= ep_3550
->start_motor
;
3041 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3042 word
= ep_38C0800
->start_motor
;
3044 word
= ep_38C1600
->start_motor
;
3046 seq_puts(m
, " Start Motor: ");
3047 for (i
= 0; i
<= ADV_MAX_TID
; i
++)
3048 seq_printf(m
, " %c",
3049 (word
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3052 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3053 seq_puts(m
, " Synchronous Transfer:");
3054 for (i
= 0; i
<= ADV_MAX_TID
; i
++)
3055 seq_printf(m
, " %c",
3056 (ep_3550
->sdtr_able
& ADV_TID_TO_TIDMASK(i
)) ?
3061 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3062 seq_puts(m
, " Ultra Transfer: ");
3063 for (i
= 0; i
<= ADV_MAX_TID
; i
++)
3064 seq_printf(m
, " %c",
3065 (ep_3550
->ultra_able
& ADV_TID_TO_TIDMASK(i
))
3070 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
3071 word
= ep_3550
->wdtr_able
;
3072 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
3073 word
= ep_38C0800
->wdtr_able
;
3075 word
= ep_38C1600
->wdtr_able
;
3077 seq_puts(m
, " Wide Transfer: ");
3078 for (i
= 0; i
<= ADV_MAX_TID
; i
++)
3079 seq_printf(m
, " %c",
3080 (word
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3083 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
||
3084 adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C1600
) {
3085 seq_puts(m
, " Synchronous Transfer Speed (Mhz):\n ");
3086 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3090 sdtr_speed
= adv_dvc_varp
->sdtr_speed1
;
3091 } else if (i
== 4) {
3092 sdtr_speed
= adv_dvc_varp
->sdtr_speed2
;
3093 } else if (i
== 8) {
3094 sdtr_speed
= adv_dvc_varp
->sdtr_speed3
;
3095 } else if (i
== 12) {
3096 sdtr_speed
= adv_dvc_varp
->sdtr_speed4
;
3098 switch (sdtr_speed
& ADV_MAX_TID
) {
3121 seq_printf(m
, "%X:%s ", i
, speed_str
);
3131 * asc_prt_driver_conf()
3133 static void asc_prt_driver_conf(struct seq_file
*m
, struct Scsi_Host
*shost
)
3135 struct asc_board
*boardp
= shost_priv(shost
);
3138 "\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n",
3142 " host_busy %d, max_id %u, max_lun %llu, max_channel %u\n",
3143 scsi_host_busy(shost
), shost
->max_id
,
3144 shost
->max_lun
, shost
->max_channel
);
3147 " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n",
3148 shost
->unique_id
, shost
->can_queue
, shost
->this_id
,
3149 shost
->sg_tablesize
, shost
->cmd_per_lun
);
3152 " flags 0x%x, last_reset 0x%lx, jiffies 0x%lx, asc_n_io_port 0x%x\n",
3153 boardp
->flags
, shost
->last_reset
, jiffies
,
3154 boardp
->asc_n_io_port
);
3156 seq_printf(m
, " io_port 0x%lx\n", shost
->io_port
);
3160 * asc_prt_asc_board_info()
3162 * Print dynamic board configuration information.
3164 static void asc_prt_asc_board_info(struct seq_file
*m
, struct Scsi_Host
*shost
)
3166 struct asc_board
*boardp
= shost_priv(shost
);
3171 int renegotiate
= 0;
3173 v
= &boardp
->dvc_var
.asc_dvc_var
;
3174 c
= &boardp
->dvc_cfg
.asc_dvc_cfg
;
3175 chip_scsi_id
= c
->chip_scsi_id
;
3178 "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3181 seq_printf(m
, " chip_version %u, mcode_date 0x%x, "
3182 "mcode_version 0x%x, err_code %u\n",
3183 c
->chip_version
, c
->mcode_date
, c
->mcode_version
,
3186 /* Current number of commands waiting for the host. */
3188 " Total Command Pending: %d\n", v
->cur_total_qng
);
3190 seq_puts(m
, " Command Queuing:");
3191 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3192 if ((chip_scsi_id
== i
) ||
3193 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3196 seq_printf(m
, " %X:%c",
3198 (v
->use_tagged_qng
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3201 /* Current number of commands waiting for a device. */
3202 seq_puts(m
, "\n Command Queue Pending:");
3203 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3204 if ((chip_scsi_id
== i
) ||
3205 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3208 seq_printf(m
, " %X:%u", i
, v
->cur_dvc_qng
[i
]);
3211 /* Current limit on number of commands that can be sent to a device. */
3212 seq_puts(m
, "\n Command Queue Limit:");
3213 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3214 if ((chip_scsi_id
== i
) ||
3215 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3218 seq_printf(m
, " %X:%u", i
, v
->max_dvc_qng
[i
]);
3221 /* Indicate whether the device has returned queue full status. */
3222 seq_puts(m
, "\n Command Queue Full:");
3223 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3224 if ((chip_scsi_id
== i
) ||
3225 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3228 if (boardp
->queue_full
& ADV_TID_TO_TIDMASK(i
))
3229 seq_printf(m
, " %X:Y-%d",
3230 i
, boardp
->queue_full_cnt
[i
]);
3232 seq_printf(m
, " %X:N", i
);
3235 seq_puts(m
, "\n Synchronous Transfer:");
3236 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3237 if ((chip_scsi_id
== i
) ||
3238 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3241 seq_printf(m
, " %X:%c",
3243 (v
->sdtr_done
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3247 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3248 uchar syn_period_ix
;
3250 if ((chip_scsi_id
== i
) ||
3251 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0) ||
3252 ((v
->init_sdtr
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3256 seq_printf(m
, " %X:", i
);
3258 if ((boardp
->sdtr_data
[i
] & ASC_SYN_MAX_OFFSET
) == 0) {
3259 seq_puts(m
, " Asynchronous");
3262 (boardp
->sdtr_data
[i
] >> 4) & (v
->max_sdtr_index
-
3266 " Transfer Period Factor: %d (%d.%d Mhz),",
3267 v
->sdtr_period_tbl
[syn_period_ix
],
3268 250 / v
->sdtr_period_tbl
[syn_period_ix
],
3270 v
->sdtr_period_tbl
[syn_period_ix
]));
3272 seq_printf(m
, " REQ/ACK Offset: %d",
3273 boardp
->sdtr_data
[i
] & ASC_SYN_MAX_OFFSET
);
3276 if ((v
->sdtr_done
& ADV_TID_TO_TIDMASK(i
)) == 0) {
3285 seq_puts(m
, " * = Re-negotiation pending before next command.\n");
3290 * asc_prt_adv_board_info()
3292 * Print dynamic board configuration information.
3294 static void asc_prt_adv_board_info(struct seq_file
*m
, struct Scsi_Host
*shost
)
3296 struct asc_board
*boardp
= shost_priv(shost
);
3300 AdvPortAddr iop_base
;
3301 ushort chip_scsi_id
;
3305 ushort sdtr_able
, wdtr_able
;
3306 ushort wdtr_done
, sdtr_done
;
3308 int renegotiate
= 0;
3310 v
= &boardp
->dvc_var
.adv_dvc_var
;
3311 c
= &boardp
->dvc_cfg
.adv_dvc_cfg
;
3312 iop_base
= v
->iop_base
;
3313 chip_scsi_id
= v
->chip_scsi_id
;
3316 "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3320 " iop_base 0x%p, cable_detect: %X, err_code %u\n",
3322 AdvReadWordRegister(iop_base
,IOPW_SCSI_CFG1
) & CABLE_DETECT
,
3325 seq_printf(m
, " chip_version %u, mcode_date 0x%x, "
3326 "mcode_version 0x%x\n", c
->chip_version
,
3327 c
->mcode_date
, c
->mcode_version
);
3329 AdvReadWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, tagqng_able
);
3330 seq_puts(m
, " Queuing Enabled:");
3331 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3332 if ((chip_scsi_id
== i
) ||
3333 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3337 seq_printf(m
, " %X:%c",
3339 (tagqng_able
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3342 seq_puts(m
, "\n Queue Limit:");
3343 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3344 if ((chip_scsi_id
== i
) ||
3345 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3349 AdvReadByteLram(iop_base
, ASC_MC_NUMBER_OF_MAX_CMD
+ i
,
3352 seq_printf(m
, " %X:%d", i
, lrambyte
);
3355 seq_puts(m
, "\n Command Pending:");
3356 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3357 if ((chip_scsi_id
== i
) ||
3358 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3362 AdvReadByteLram(iop_base
, ASC_MC_NUMBER_OF_QUEUED_CMD
+ i
,
3365 seq_printf(m
, " %X:%d", i
, lrambyte
);
3369 AdvReadWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
3370 seq_puts(m
, " Wide Enabled:");
3371 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3372 if ((chip_scsi_id
== i
) ||
3373 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3377 seq_printf(m
, " %X:%c",
3379 (wdtr_able
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3383 AdvReadWordLram(iop_base
, ASC_MC_WDTR_DONE
, wdtr_done
);
3384 seq_puts(m
, " Transfer Bit Width:");
3385 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3386 if ((chip_scsi_id
== i
) ||
3387 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3391 AdvReadWordLram(iop_base
,
3392 ASC_MC_DEVICE_HSHK_CFG_TABLE
+ (2 * i
),
3395 seq_printf(m
, " %X:%d",
3396 i
, (lramword
& 0x8000) ? 16 : 8);
3398 if ((wdtr_able
& ADV_TID_TO_TIDMASK(i
)) &&
3399 (wdtr_done
& ADV_TID_TO_TIDMASK(i
)) == 0) {
3406 AdvReadWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
3407 seq_puts(m
, " Synchronous Enabled:");
3408 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3409 if ((chip_scsi_id
== i
) ||
3410 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3414 seq_printf(m
, " %X:%c",
3416 (sdtr_able
& ADV_TID_TO_TIDMASK(i
)) ? 'Y' : 'N');
3420 AdvReadWordLram(iop_base
, ASC_MC_SDTR_DONE
, sdtr_done
);
3421 for (i
= 0; i
<= ADV_MAX_TID
; i
++) {
3423 AdvReadWordLram(iop_base
,
3424 ASC_MC_DEVICE_HSHK_CFG_TABLE
+ (2 * i
),
3426 lramword
&= ~0x8000;
3428 if ((chip_scsi_id
== i
) ||
3429 ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(i
)) == 0) ||
3430 ((sdtr_able
& ADV_TID_TO_TIDMASK(i
)) == 0)) {
3434 seq_printf(m
, " %X:", i
);
3436 if ((lramword
& 0x1F) == 0) { /* Check for REQ/ACK Offset 0. */
3437 seq_puts(m
, " Asynchronous");
3439 seq_puts(m
, " Transfer Period Factor: ");
3441 if ((lramword
& 0x1F00) == 0x1100) { /* 80 Mhz */
3442 seq_puts(m
, "9 (80.0 Mhz),");
3443 } else if ((lramword
& 0x1F00) == 0x1000) { /* 40 Mhz */
3444 seq_puts(m
, "10 (40.0 Mhz),");
3445 } else { /* 20 Mhz or below. */
3447 period
= (((lramword
>> 8) * 25) + 50) / 4;
3449 if (period
== 0) { /* Should never happen. */
3450 seq_printf(m
, "%d (? Mhz), ", period
);
3454 period
, 250 / period
,
3455 ASC_TENTHS(250, period
));
3459 seq_printf(m
, " REQ/ACK Offset: %d",
3463 if ((sdtr_done
& ADV_TID_TO_TIDMASK(i
)) == 0) {
3472 seq_puts(m
, " * = Re-negotiation pending before next command.\n");
3476 #ifdef ADVANSYS_STATS
3478 * asc_prt_board_stats()
3480 static void asc_prt_board_stats(struct seq_file
*m
, struct Scsi_Host
*shost
)
3482 struct asc_board
*boardp
= shost_priv(shost
);
3483 struct asc_stats
*s
= &boardp
->asc_stats
;
3486 "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n",
3490 " queuecommand %u, reset %u, biosparam %u, interrupt %u\n",
3491 s
->queuecommand
, s
->reset
, s
->biosparam
,
3495 " callback %u, done %u, build_error %u, build_noreq %u, build_nosg %u\n",
3496 s
->callback
, s
->done
, s
->build_error
,
3497 s
->adv_build_noreq
, s
->adv_build_nosg
);
3500 " exe_noerror %u, exe_busy %u, exe_error %u, exe_unknown %u\n",
3501 s
->exe_noerror
, s
->exe_busy
, s
->exe_error
,
3505 * Display data transfer statistics.
3507 if (s
->xfer_cnt
> 0) {
3508 seq_printf(m
, " xfer_cnt %u, xfer_elem %u, ",
3509 s
->xfer_cnt
, s
->xfer_elem
);
3511 seq_printf(m
, "xfer_bytes %u.%01u kb\n",
3512 s
->xfer_sect
/ 2, ASC_TENTHS(s
->xfer_sect
, 2));
3514 /* Scatter gather transfer statistics */
3515 seq_printf(m
, " avg_num_elem %u.%01u, ",
3516 s
->xfer_elem
/ s
->xfer_cnt
,
3517 ASC_TENTHS(s
->xfer_elem
, s
->xfer_cnt
));
3519 seq_printf(m
, "avg_elem_size %u.%01u kb, ",
3520 (s
->xfer_sect
/ 2) / s
->xfer_elem
,
3521 ASC_TENTHS((s
->xfer_sect
/ 2), s
->xfer_elem
));
3523 seq_printf(m
, "avg_xfer_size %u.%01u kb\n",
3524 (s
->xfer_sect
/ 2) / s
->xfer_cnt
,
3525 ASC_TENTHS((s
->xfer_sect
/ 2), s
->xfer_cnt
));
3528 #endif /* ADVANSYS_STATS */
3531 * advansys_show_info() - /proc/scsi/advansys/{0,1,2,3,...}
3533 * m: seq_file to print into
3536 * Return the number of bytes read from or written to a
3537 * /proc/scsi/advansys/[0...] file.
3540 advansys_show_info(struct seq_file
*m
, struct Scsi_Host
*shost
)
3542 struct asc_board
*boardp
= shost_priv(shost
);
3544 ASC_DBG(1, "begin\n");
3547 * User read of /proc/scsi/advansys/[0...] file.
3551 * Get board configuration information.
3553 * advansys_info() returns the board string from its own static buffer.
3555 /* Copy board information. */
3556 seq_printf(m
, "%s\n", (char *)advansys_info(shost
));
3558 * Display Wide Board BIOS Information.
3560 if (!ASC_NARROW_BOARD(boardp
))
3561 asc_prt_adv_bios(m
, shost
);
3564 * Display driver information for each device attached to the board.
3566 asc_prt_board_devices(m
, shost
);
3569 * Display EEPROM configuration for the board.
3571 if (ASC_NARROW_BOARD(boardp
))
3572 asc_prt_asc_board_eeprom(m
, shost
);
3574 asc_prt_adv_board_eeprom(m
, shost
);
3577 * Display driver configuration and information for the board.
3579 asc_prt_driver_conf(m
, shost
);
3581 #ifdef ADVANSYS_STATS
3583 * Display driver statistics for the board.
3585 asc_prt_board_stats(m
, shost
);
3586 #endif /* ADVANSYS_STATS */
3589 * Display Asc Library dynamic configuration information
3592 if (ASC_NARROW_BOARD(boardp
))
3593 asc_prt_asc_board_info(m
, shost
);
3595 asc_prt_adv_board_info(m
, shost
);
3598 #endif /* CONFIG_PROC_FS */
3600 static void asc_scsi_done(struct scsi_cmnd
*scp
)
3602 scsi_dma_unmap(scp
);
3603 ASC_STATS(scp
->device
->host
, done
);
3607 static void AscSetBank(PortAddr iop_base
, uchar bank
)
3611 val
= AscGetChipControl(iop_base
) &
3613 (CC_SINGLE_STEP
| CC_TEST
| CC_DIAG
| CC_SCSI_RESET
|
3617 } else if (bank
== 2) {
3618 val
|= CC_DIAG
| CC_BANK_ONE
;
3620 val
&= ~CC_BANK_ONE
;
3622 AscSetChipControl(iop_base
, val
);
3625 static void AscSetChipIH(PortAddr iop_base
, ushort ins_code
)
3627 AscSetBank(iop_base
, 1);
3628 AscWriteChipIH(iop_base
, ins_code
);
3629 AscSetBank(iop_base
, 0);
3632 static int AscStartChip(PortAddr iop_base
)
3634 AscSetChipControl(iop_base
, 0);
3635 if ((AscGetChipStatus(iop_base
) & CSW_HALTED
) != 0) {
3641 static bool AscStopChip(PortAddr iop_base
)
3646 AscGetChipControl(iop_base
) &
3647 (~(CC_SINGLE_STEP
| CC_TEST
| CC_DIAG
));
3648 AscSetChipControl(iop_base
, (uchar
)(cc_val
| CC_HALT
));
3649 AscSetChipIH(iop_base
, INS_HALT
);
3650 AscSetChipIH(iop_base
, INS_RFLAG_WTM
);
3651 if ((AscGetChipStatus(iop_base
) & CSW_HALTED
) == 0) {
3657 static bool AscIsChipHalted(PortAddr iop_base
)
3659 if ((AscGetChipStatus(iop_base
) & CSW_HALTED
) != 0) {
3660 if ((AscGetChipControl(iop_base
) & CC_HALT
) != 0) {
3667 static bool AscResetChipAndScsiBus(ASC_DVC_VAR
*asc_dvc
)
3672 iop_base
= asc_dvc
->iop_base
;
3673 while ((AscGetChipStatus(iop_base
) & CSW_SCSI_RESET_ACTIVE
)
3677 AscStopChip(iop_base
);
3678 AscSetChipControl(iop_base
, CC_CHIP_RESET
| CC_SCSI_RESET
| CC_HALT
);
3680 AscSetChipIH(iop_base
, INS_RFLAG_WTM
);
3681 AscSetChipIH(iop_base
, INS_HALT
);
3682 AscSetChipControl(iop_base
, CC_CHIP_RESET
| CC_HALT
);
3683 AscSetChipControl(iop_base
, CC_HALT
);
3685 AscSetChipStatus(iop_base
, CIW_CLR_SCSI_RESET_INT
);
3686 AscSetChipStatus(iop_base
, 0);
3687 return (AscIsChipHalted(iop_base
));
3690 static int AscFindSignature(PortAddr iop_base
)
3694 ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n",
3695 iop_base
, AscGetChipSignatureByte(iop_base
));
3696 if (AscGetChipSignatureByte(iop_base
) == (uchar
)ASC_1000_ID1B
) {
3697 ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n",
3698 iop_base
, AscGetChipSignatureWord(iop_base
));
3699 sig_word
= AscGetChipSignatureWord(iop_base
);
3700 if ((sig_word
== (ushort
)ASC_1000_ID0W
) ||
3701 (sig_word
== (ushort
)ASC_1000_ID0W_FIX
)) {
3708 static void AscEnableInterrupt(PortAddr iop_base
)
3712 cfg
= AscGetChipCfgLsw(iop_base
);
3713 AscSetChipCfgLsw(iop_base
, cfg
| ASC_CFG0_HOST_INT_ON
);
3716 static void AscDisableInterrupt(PortAddr iop_base
)
3720 cfg
= AscGetChipCfgLsw(iop_base
);
3721 AscSetChipCfgLsw(iop_base
, cfg
& (~ASC_CFG0_HOST_INT_ON
));
3724 static uchar
AscReadLramByte(PortAddr iop_base
, ushort addr
)
3726 unsigned char byte_data
;
3727 unsigned short word_data
;
3729 if (isodd_word(addr
)) {
3730 AscSetChipLramAddr(iop_base
, addr
- 1);
3731 word_data
= AscGetChipLramData(iop_base
);
3732 byte_data
= (word_data
>> 8) & 0xFF;
3734 AscSetChipLramAddr(iop_base
, addr
);
3735 word_data
= AscGetChipLramData(iop_base
);
3736 byte_data
= word_data
& 0xFF;
3741 static ushort
AscReadLramWord(PortAddr iop_base
, ushort addr
)
3745 AscSetChipLramAddr(iop_base
, addr
);
3746 word_data
= AscGetChipLramData(iop_base
);
3751 AscMemWordSetLram(PortAddr iop_base
, ushort s_addr
, ushort set_wval
, int words
)
3755 AscSetChipLramAddr(iop_base
, s_addr
);
3756 for (i
= 0; i
< words
; i
++) {
3757 AscSetChipLramData(iop_base
, set_wval
);
3761 static void AscWriteLramWord(PortAddr iop_base
, ushort addr
, ushort word_val
)
3763 AscSetChipLramAddr(iop_base
, addr
);
3764 AscSetChipLramData(iop_base
, word_val
);
3767 static void AscWriteLramByte(PortAddr iop_base
, ushort addr
, uchar byte_val
)
3771 if (isodd_word(addr
)) {
3773 word_data
= AscReadLramWord(iop_base
, addr
);
3774 word_data
&= 0x00FF;
3775 word_data
|= (((ushort
)byte_val
<< 8) & 0xFF00);
3777 word_data
= AscReadLramWord(iop_base
, addr
);
3778 word_data
&= 0xFF00;
3779 word_data
|= ((ushort
)byte_val
& 0x00FF);
3781 AscWriteLramWord(iop_base
, addr
, word_data
);
3785 * Copy 2 bytes to LRAM.
3787 * The source data is assumed to be in little-endian order in memory
3788 * and is maintained in little-endian order when written to LRAM.
3791 AscMemWordCopyPtrToLram(PortAddr iop_base
, ushort s_addr
,
3792 const uchar
*s_buffer
, int words
)
3796 AscSetChipLramAddr(iop_base
, s_addr
);
3797 for (i
= 0; i
< 2 * words
; i
+= 2) {
3799 * On a little-endian system the second argument below
3800 * produces a little-endian ushort which is written to
3801 * LRAM in little-endian order. On a big-endian system
3802 * the second argument produces a big-endian ushort which
3803 * is "transparently" byte-swapped by outpw() and written
3804 * in little-endian order to LRAM.
3806 outpw(iop_base
+ IOP_RAM_DATA
,
3807 ((ushort
)s_buffer
[i
+ 1] << 8) | s_buffer
[i
]);
3812 * Copy 4 bytes to LRAM.
3814 * The source data is assumed to be in little-endian order in memory
3815 * and is maintained in little-endian order when written to LRAM.
3818 AscMemDWordCopyPtrToLram(PortAddr iop_base
,
3819 ushort s_addr
, uchar
*s_buffer
, int dwords
)
3823 AscSetChipLramAddr(iop_base
, s_addr
);
3824 for (i
= 0; i
< 4 * dwords
; i
+= 4) {
3825 outpw(iop_base
+ IOP_RAM_DATA
, ((ushort
)s_buffer
[i
+ 1] << 8) | s_buffer
[i
]); /* LSW */
3826 outpw(iop_base
+ IOP_RAM_DATA
, ((ushort
)s_buffer
[i
+ 3] << 8) | s_buffer
[i
+ 2]); /* MSW */
3831 * Copy 2 bytes from LRAM.
3833 * The source data is assumed to be in little-endian order in LRAM
3834 * and is maintained in little-endian order when written to memory.
3837 AscMemWordCopyPtrFromLram(PortAddr iop_base
,
3838 ushort s_addr
, uchar
*d_buffer
, int words
)
3843 AscSetChipLramAddr(iop_base
, s_addr
);
3844 for (i
= 0; i
< 2 * words
; i
+= 2) {
3845 word
= inpw(iop_base
+ IOP_RAM_DATA
);
3846 d_buffer
[i
] = word
& 0xff;
3847 d_buffer
[i
+ 1] = (word
>> 8) & 0xff;
3851 static u32
AscMemSumLramWord(PortAddr iop_base
, ushort s_addr
, int words
)
3856 for (i
= 0; i
< words
; i
++, s_addr
+= 2) {
3857 sum
+= AscReadLramWord(iop_base
, s_addr
);
3862 static void AscInitLram(ASC_DVC_VAR
*asc_dvc
)
3868 iop_base
= asc_dvc
->iop_base
;
3869 AscMemWordSetLram(iop_base
, ASC_QADR_BEG
, 0,
3870 (ushort
)(((int)(asc_dvc
->max_total_qng
+ 2 + 1) *
3872 i
= ASC_MIN_ACTIVE_QNO
;
3873 s_addr
= ASC_QADR_BEG
+ ASC_QBLK_SIZE
;
3874 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_FWD
),
3876 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_BWD
),
3877 (uchar
)(asc_dvc
->max_total_qng
));
3878 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_QNO
),
3881 s_addr
+= ASC_QBLK_SIZE
;
3882 for (; i
< asc_dvc
->max_total_qng
; i
++, s_addr
+= ASC_QBLK_SIZE
) {
3883 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_FWD
),
3885 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_BWD
),
3887 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_QNO
),
3890 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_FWD
),
3891 (uchar
)ASC_QLINK_END
);
3892 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_BWD
),
3893 (uchar
)(asc_dvc
->max_total_qng
- 1));
3894 AscWriteLramByte(iop_base
, (ushort
)(s_addr
+ ASC_SCSIQ_B_QNO
),
3895 (uchar
)asc_dvc
->max_total_qng
);
3897 s_addr
+= ASC_QBLK_SIZE
;
3898 for (; i
<= (uchar
)(asc_dvc
->max_total_qng
+ 3);
3899 i
++, s_addr
+= ASC_QBLK_SIZE
) {
3900 AscWriteLramByte(iop_base
,
3901 (ushort
)(s_addr
+ (ushort
)ASC_SCSIQ_B_FWD
), i
);
3902 AscWriteLramByte(iop_base
,
3903 (ushort
)(s_addr
+ (ushort
)ASC_SCSIQ_B_BWD
), i
);
3904 AscWriteLramByte(iop_base
,
3905 (ushort
)(s_addr
+ (ushort
)ASC_SCSIQ_B_QNO
), i
);
3910 AscLoadMicroCode(PortAddr iop_base
, ushort s_addr
,
3911 const uchar
*mcode_buf
, ushort mcode_size
)
3914 ushort mcode_word_size
;
3915 ushort mcode_chksum
;
3917 /* Write the microcode buffer starting at LRAM address 0. */
3918 mcode_word_size
= (ushort
)(mcode_size
>> 1);
3919 AscMemWordSetLram(iop_base
, s_addr
, 0, mcode_word_size
);
3920 AscMemWordCopyPtrToLram(iop_base
, s_addr
, mcode_buf
, mcode_word_size
);
3922 chksum
= AscMemSumLramWord(iop_base
, s_addr
, mcode_word_size
);
3923 ASC_DBG(1, "chksum 0x%lx\n", (ulong
)chksum
);
3924 mcode_chksum
= (ushort
)AscMemSumLramWord(iop_base
,
3925 (ushort
)ASC_CODE_SEC_BEG
,
3926 (ushort
)((mcode_size
-
3930 ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong
)mcode_chksum
);
3931 AscWriteLramWord(iop_base
, ASCV_MCODE_CHKSUM_W
, mcode_chksum
);
3932 AscWriteLramWord(iop_base
, ASCV_MCODE_SIZE_W
, mcode_size
);
3936 static void AscInitQLinkVar(ASC_DVC_VAR
*asc_dvc
)
3942 iop_base
= asc_dvc
->iop_base
;
3943 AscPutRiscVarFreeQHead(iop_base
, 1);
3944 AscPutRiscVarDoneQTail(iop_base
, asc_dvc
->max_total_qng
);
3945 AscPutVarFreeQHead(iop_base
, 1);
3946 AscPutVarDoneQTail(iop_base
, asc_dvc
->max_total_qng
);
3947 AscWriteLramByte(iop_base
, ASCV_BUSY_QHEAD_B
,
3948 (uchar
)((int)asc_dvc
->max_total_qng
+ 1));
3949 AscWriteLramByte(iop_base
, ASCV_DISC1_QHEAD_B
,
3950 (uchar
)((int)asc_dvc
->max_total_qng
+ 2));
3951 AscWriteLramByte(iop_base
, (ushort
)ASCV_TOTAL_READY_Q_B
,
3952 asc_dvc
->max_total_qng
);
3953 AscWriteLramWord(iop_base
, ASCV_ASCDVC_ERR_CODE_W
, 0);
3954 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
3955 AscWriteLramByte(iop_base
, ASCV_STOP_CODE_B
, 0);
3956 AscWriteLramByte(iop_base
, ASCV_SCSIBUSY_B
, 0);
3957 AscWriteLramByte(iop_base
, ASCV_WTM_FLAG_B
, 0);
3958 AscPutQDoneInProgress(iop_base
, 0);
3959 lram_addr
= ASC_QADR_BEG
;
3960 for (i
= 0; i
< 32; i
++, lram_addr
+= 2) {
3961 AscWriteLramWord(iop_base
, lram_addr
, 0);
3965 static int AscInitMicroCodeVar(ASC_DVC_VAR
*asc_dvc
)
3972 struct asc_board
*board
= asc_dvc_to_board(asc_dvc
);
3974 iop_base
= asc_dvc
->iop_base
;
3976 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
3977 AscPutMCodeInitSDTRAtID(iop_base
, i
,
3978 asc_dvc
->cfg
->sdtr_period_offset
[i
]);
3981 AscInitQLinkVar(asc_dvc
);
3982 AscWriteLramByte(iop_base
, ASCV_DISC_ENABLE_B
,
3983 asc_dvc
->cfg
->disc_enable
);
3984 AscWriteLramByte(iop_base
, ASCV_HOSTSCSI_ID_B
,
3985 ASC_TID_TO_TARGET_ID(asc_dvc
->cfg
->chip_scsi_id
));
3987 /* Ensure overrun buffer is aligned on an 8 byte boundary. */
3988 BUG_ON((unsigned long)asc_dvc
->overrun_buf
& 7);
3989 asc_dvc
->overrun_dma
= dma_map_single(board
->dev
, asc_dvc
->overrun_buf
,
3990 ASC_OVERRUN_BSIZE
, DMA_FROM_DEVICE
);
3991 if (dma_mapping_error(board
->dev
, asc_dvc
->overrun_dma
)) {
3992 warn_code
= -ENOMEM
;
3995 phy_addr
= cpu_to_le32(asc_dvc
->overrun_dma
);
3996 AscMemDWordCopyPtrToLram(iop_base
, ASCV_OVERRUN_PADDR_D
,
3997 (uchar
*)&phy_addr
, 1);
3998 phy_size
= cpu_to_le32(ASC_OVERRUN_BSIZE
);
3999 AscMemDWordCopyPtrToLram(iop_base
, ASCV_OVERRUN_BSIZE_D
,
4000 (uchar
*)&phy_size
, 1);
4002 asc_dvc
->cfg
->mcode_date
=
4003 AscReadLramWord(iop_base
, (ushort
)ASCV_MC_DATE_W
);
4004 asc_dvc
->cfg
->mcode_version
=
4005 AscReadLramWord(iop_base
, (ushort
)ASCV_MC_VER_W
);
4007 AscSetPCAddr(iop_base
, ASC_MCODE_START_ADDR
);
4008 if (AscGetPCAddr(iop_base
) != ASC_MCODE_START_ADDR
) {
4009 asc_dvc
->err_code
|= ASC_IERR_SET_PC_ADDR
;
4010 warn_code
= -EINVAL
;
4011 goto err_mcode_start
;
4013 if (AscStartChip(iop_base
) != 1) {
4014 asc_dvc
->err_code
|= ASC_IERR_START_STOP_CHIP
;
4016 goto err_mcode_start
;
4022 dma_unmap_single(board
->dev
, asc_dvc
->overrun_dma
,
4023 ASC_OVERRUN_BSIZE
, DMA_FROM_DEVICE
);
4025 asc_dvc
->overrun_dma
= 0;
4029 static int AscInitAsc1000Driver(ASC_DVC_VAR
*asc_dvc
)
4031 const struct firmware
*fw
;
4032 const char fwname
[] = "advansys/mcode.bin";
4034 unsigned long chksum
;
4038 iop_base
= asc_dvc
->iop_base
;
4040 if ((asc_dvc
->dvc_cntl
& ASC_CNTL_RESET_SCSI
) &&
4041 !(asc_dvc
->init_state
& ASC_INIT_RESET_SCSI_DONE
)) {
4042 AscResetChipAndScsiBus(asc_dvc
);
4043 mdelay(asc_dvc
->scsi_reset_wait
* 1000); /* XXX: msleep? */
4045 asc_dvc
->init_state
|= ASC_INIT_STATE_BEG_LOAD_MC
;
4046 if (asc_dvc
->err_code
!= 0)
4048 if (!AscFindSignature(asc_dvc
->iop_base
)) {
4049 asc_dvc
->err_code
= ASC_IERR_BAD_SIGNATURE
;
4052 AscDisableInterrupt(iop_base
);
4053 AscInitLram(asc_dvc
);
4055 err
= request_firmware(&fw
, fwname
, asc_dvc
->drv_ptr
->dev
);
4057 printk(KERN_ERR
"Failed to load image \"%s\" err %d\n",
4059 asc_dvc
->err_code
|= ASC_IERR_MCODE_CHKSUM
;
4063 printk(KERN_ERR
"Bogus length %zu in image \"%s\"\n",
4065 release_firmware(fw
);
4066 asc_dvc
->err_code
|= ASC_IERR_MCODE_CHKSUM
;
4069 chksum
= (fw
->data
[3] << 24) | (fw
->data
[2] << 16) |
4070 (fw
->data
[1] << 8) | fw
->data
[0];
4071 ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong
)chksum
);
4072 if (AscLoadMicroCode(iop_base
, 0, &fw
->data
[4],
4073 fw
->size
- 4) != chksum
) {
4074 asc_dvc
->err_code
|= ASC_IERR_MCODE_CHKSUM
;
4075 release_firmware(fw
);
4078 release_firmware(fw
);
4079 warn_code
|= AscInitMicroCodeVar(asc_dvc
);
4080 if (!asc_dvc
->overrun_dma
)
4082 asc_dvc
->init_state
|= ASC_INIT_STATE_END_LOAD_MC
;
4083 AscEnableInterrupt(iop_base
);
4088 * Load the Microcode
4090 * Write the microcode image to RISC memory starting at address 0.
4092 * The microcode is stored compressed in the following format:
4094 * 254 word (508 byte) table indexed by byte code followed
4095 * by the following byte codes:
4098 * 00: Emit word 0 in table.
4099 * 01: Emit word 1 in table.
4101 * FD: Emit word 253 in table.
4104 * FE WW WW: (3 byte code) Word to emit is the next word WW WW.
4105 * FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
4107 * Returns 0 or an error if the checksum doesn't match
4109 static int AdvLoadMicrocode(AdvPortAddr iop_base
, const unsigned char *buf
,
4110 int size
, int memsize
, int chksum
)
4112 int i
, j
, end
, len
= 0;
4115 AdvWriteWordRegister(iop_base
, IOPW_RAM_ADDR
, 0);
4117 for (i
= 253 * 2; i
< size
; i
++) {
4118 if (buf
[i
] == 0xff) {
4119 unsigned short word
= (buf
[i
+ 3] << 8) | buf
[i
+ 2];
4120 for (j
= 0; j
< buf
[i
+ 1]; j
++) {
4121 AdvWriteWordAutoIncLram(iop_base
, word
);
4125 } else if (buf
[i
] == 0xfe) {
4126 unsigned short word
= (buf
[i
+ 2] << 8) | buf
[i
+ 1];
4127 AdvWriteWordAutoIncLram(iop_base
, word
);
4131 unsigned int off
= buf
[i
] * 2;
4132 unsigned short word
= (buf
[off
+ 1] << 8) | buf
[off
];
4133 AdvWriteWordAutoIncLram(iop_base
, word
);
4140 while (len
< memsize
) {
4141 AdvWriteWordAutoIncLram(iop_base
, 0);
4145 /* Verify the microcode checksum. */
4147 AdvWriteWordRegister(iop_base
, IOPW_RAM_ADDR
, 0);
4149 for (len
= 0; len
< end
; len
+= 2) {
4150 sum
+= AdvReadWordAutoIncLram(iop_base
);
4154 return ASC_IERR_MCODE_CHKSUM
;
4159 static void AdvBuildCarrierFreelist(struct adv_dvc_var
*adv_dvc
)
4161 off_t carr_offset
= 0, next_offset
;
4162 dma_addr_t carr_paddr
;
4163 int carr_num
= ADV_CARRIER_BUFSIZE
/ sizeof(ADV_CARR_T
), i
;
4165 for (i
= 0; i
< carr_num
; i
++) {
4166 carr_offset
= i
* sizeof(ADV_CARR_T
);
4167 /* Get physical address of the carrier 'carrp'. */
4168 carr_paddr
= adv_dvc
->carrier_addr
+ carr_offset
;
4170 adv_dvc
->carrier
[i
].carr_pa
= cpu_to_le32(carr_paddr
);
4171 adv_dvc
->carrier
[i
].carr_va
= cpu_to_le32(carr_offset
);
4172 adv_dvc
->carrier
[i
].areq_vpa
= 0;
4173 next_offset
= carr_offset
+ sizeof(ADV_CARR_T
);
4176 adv_dvc
->carrier
[i
].next_vpa
= cpu_to_le32(next_offset
);
4179 * We cannot have a carrier with 'carr_va' of '0', as
4180 * a reference to this carrier would be interpreted as
4182 * So start at carrier 1 with the freelist.
4184 adv_dvc
->carr_freelist
= &adv_dvc
->carrier
[1];
4187 static ADV_CARR_T
*adv_get_carrier(struct adv_dvc_var
*adv_dvc
, u32 offset
)
4191 BUG_ON(offset
> ADV_CARRIER_BUFSIZE
);
4193 index
= offset
/ sizeof(ADV_CARR_T
);
4194 return &adv_dvc
->carrier
[index
];
4197 static ADV_CARR_T
*adv_get_next_carrier(struct adv_dvc_var
*adv_dvc
)
4199 ADV_CARR_T
*carrp
= adv_dvc
->carr_freelist
;
4200 u32 next_vpa
= le32_to_cpu(carrp
->next_vpa
);
4202 if (next_vpa
== 0 || next_vpa
== ~0) {
4203 ASC_DBG(1, "invalid vpa offset 0x%x\n", next_vpa
);
4207 adv_dvc
->carr_freelist
= adv_get_carrier(adv_dvc
, next_vpa
);
4209 * insert stopper carrier to terminate list
4211 carrp
->next_vpa
= cpu_to_le32(ADV_CQ_STOPPER
);
4217 * 'offset' is the index in the request pointer array
4219 static adv_req_t
* adv_get_reqp(struct adv_dvc_var
*adv_dvc
, u32 offset
)
4221 struct asc_board
*boardp
= adv_dvc
->drv_ptr
;
4223 BUG_ON(offset
> adv_dvc
->max_host_qng
);
4224 return &boardp
->adv_reqp
[offset
];
4228 * Send an idle command to the chip and wait for completion.
4230 * Command completion is polled for once per microsecond.
4232 * The function can be called from anywhere including an interrupt handler.
4233 * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical()
4234 * functions to prevent reentrancy.
4237 * ADV_TRUE - command completed successfully
4238 * ADV_FALSE - command failed
4239 * ADV_ERROR - command timed out
4242 AdvSendIdleCmd(ADV_DVC_VAR
*asc_dvc
,
4243 ushort idle_cmd
, u32 idle_cmd_parameter
)
4246 AdvPortAddr iop_base
;
4248 iop_base
= asc_dvc
->iop_base
;
4251 * Clear the idle command status which is set by the microcode
4252 * to a non-zero value to indicate when the command is completed.
4253 * The non-zero result is one of the IDLE_CMD_STATUS_* values
4255 AdvWriteWordLram(iop_base
, ASC_MC_IDLE_CMD_STATUS
, (ushort
)0);
4258 * Write the idle command value after the idle command parameter
4259 * has been written to avoid a race condition. If the order is not
4260 * followed, the microcode may process the idle command before the
4261 * parameters have been written to LRAM.
4263 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_IDLE_CMD_PARAMETER
,
4264 cpu_to_le32(idle_cmd_parameter
));
4265 AdvWriteWordLram(iop_base
, ASC_MC_IDLE_CMD
, idle_cmd
);
4268 * Tickle the RISC to tell it to process the idle command.
4270 AdvWriteByteRegister(iop_base
, IOPB_TICKLE
, ADV_TICKLE_B
);
4271 if (asc_dvc
->chip_type
== ADV_CHIP_ASC3550
) {
4273 * Clear the tickle value. In the ASC-3550 the RISC flag
4274 * command 'clr_tickle_b' does not work unless the host
4277 AdvWriteByteRegister(iop_base
, IOPB_TICKLE
, ADV_TICKLE_NOP
);
4280 /* Wait for up to 100 millisecond for the idle command to timeout. */
4281 for (i
= 0; i
< SCSI_WAIT_100_MSEC
; i
++) {
4282 /* Poll once each microsecond for command completion. */
4283 for (j
= 0; j
< SCSI_US_PER_MSEC
; j
++) {
4284 AdvReadWordLram(iop_base
, ASC_MC_IDLE_CMD_STATUS
,
4292 BUG(); /* The idle command should never timeout. */
4297 * Reset SCSI Bus and purge all outstanding requests.
4300 * ADV_TRUE(1) - All requests are purged and SCSI Bus is reset.
4301 * ADV_FALSE(0) - Microcode command failed.
4302 * ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC
4303 * may be hung which requires driver recovery.
4305 static int AdvResetSB(ADV_DVC_VAR
*asc_dvc
)
4310 * Send the SCSI Bus Reset idle start idle command which asserts
4311 * the SCSI Bus Reset signal.
4313 status
= AdvSendIdleCmd(asc_dvc
, (ushort
)IDLE_CMD_SCSI_RESET_START
, 0L);
4314 if (status
!= ADV_TRUE
) {
4319 * Delay for the specified SCSI Bus Reset hold time.
4321 * The hold time delay is done on the host because the RISC has no
4322 * microsecond accurate timer.
4324 udelay(ASC_SCSI_RESET_HOLD_TIME_US
);
4327 * Send the SCSI Bus Reset end idle command which de-asserts
4328 * the SCSI Bus Reset signal and purges any pending requests.
4330 status
= AdvSendIdleCmd(asc_dvc
, (ushort
)IDLE_CMD_SCSI_RESET_END
, 0L);
4331 if (status
!= ADV_TRUE
) {
4335 mdelay(asc_dvc
->scsi_reset_wait
* 1000); /* XXX: msleep? */
4341 * Initialize the ASC-3550.
4343 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4345 * For a non-fatal error return a warning code. If there are no warnings
4346 * then 0 is returned.
4348 * Needed after initialization for error recovery.
4350 static int AdvInitAsc3550Driver(ADV_DVC_VAR
*asc_dvc
)
4352 const struct firmware
*fw
;
4353 const char fwname
[] = "advansys/3550.bin";
4354 AdvPortAddr iop_base
;
4362 unsigned long chksum
;
4365 ushort bios_mem
[ASC_MC_BIOSLEN
/ 2]; /* BIOS RISC Memory 0x40-0x8F. */
4366 ushort wdtr_able
= 0, sdtr_able
, tagqng_able
;
4367 uchar max_cmd
[ADV_MAX_TID
+ 1];
4369 /* If there is already an error, don't continue. */
4370 if (asc_dvc
->err_code
!= 0)
4374 * The caller must set 'chip_type' to ADV_CHIP_ASC3550.
4376 if (asc_dvc
->chip_type
!= ADV_CHIP_ASC3550
) {
4377 asc_dvc
->err_code
= ASC_IERR_BAD_CHIPTYPE
;
4382 iop_base
= asc_dvc
->iop_base
;
4385 * Save the RISC memory BIOS region before writing the microcode.
4386 * The BIOS may already be loaded and using its RISC LRAM region
4387 * so its region must be saved and restored.
4389 * Note: This code makes the assumption, which is currently true,
4390 * that a chip reset does not clear RISC LRAM.
4392 for (i
= 0; i
< ASC_MC_BIOSLEN
/ 2; i
++) {
4393 AdvReadWordLram(iop_base
, ASC_MC_BIOSMEM
+ (2 * i
),
4398 * Save current per TID negotiated values.
4400 if (bios_mem
[(ASC_MC_BIOS_SIGNATURE
- ASC_MC_BIOSMEM
) / 2] == 0x55AA) {
4401 ushort bios_version
, major
, minor
;
4404 bios_mem
[(ASC_MC_BIOS_VERSION
- ASC_MC_BIOSMEM
) / 2];
4405 major
= (bios_version
>> 12) & 0xF;
4406 minor
= (bios_version
>> 8) & 0xF;
4407 if (major
< 3 || (major
== 3 && minor
== 1)) {
4408 /* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
4409 AdvReadWordLram(iop_base
, 0x120, wdtr_able
);
4411 AdvReadWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
4414 AdvReadWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
4415 AdvReadWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, tagqng_able
);
4416 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
4417 AdvReadByteLram(iop_base
, ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
4421 err
= request_firmware(&fw
, fwname
, asc_dvc
->drv_ptr
->dev
);
4423 printk(KERN_ERR
"Failed to load image \"%s\" err %d\n",
4425 asc_dvc
->err_code
= ASC_IERR_MCODE_CHKSUM
;
4429 printk(KERN_ERR
"Bogus length %zu in image \"%s\"\n",
4431 release_firmware(fw
);
4432 asc_dvc
->err_code
= ASC_IERR_MCODE_CHKSUM
;
4435 chksum
= (fw
->data
[3] << 24) | (fw
->data
[2] << 16) |
4436 (fw
->data
[1] << 8) | fw
->data
[0];
4437 asc_dvc
->err_code
= AdvLoadMicrocode(iop_base
, &fw
->data
[4],
4438 fw
->size
- 4, ADV_3550_MEMSIZE
,
4440 release_firmware(fw
);
4441 if (asc_dvc
->err_code
)
4445 * Restore the RISC memory BIOS region.
4447 for (i
= 0; i
< ASC_MC_BIOSLEN
/ 2; i
++) {
4448 AdvWriteWordLram(iop_base
, ASC_MC_BIOSMEM
+ (2 * i
),
4453 * Calculate and write the microcode code checksum to the microcode
4454 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
4456 AdvReadWordLram(iop_base
, ASC_MC_CODE_BEGIN_ADDR
, begin_addr
);
4457 AdvReadWordLram(iop_base
, ASC_MC_CODE_END_ADDR
, end_addr
);
4459 AdvWriteWordRegister(iop_base
, IOPW_RAM_ADDR
, begin_addr
);
4460 for (word
= begin_addr
; word
< end_addr
; word
+= 2) {
4461 code_sum
+= AdvReadWordAutoIncLram(iop_base
);
4463 AdvWriteWordLram(iop_base
, ASC_MC_CODE_CHK_SUM
, code_sum
);
4466 * Read and save microcode version and date.
4468 AdvReadWordLram(iop_base
, ASC_MC_VERSION_DATE
,
4469 asc_dvc
->cfg
->mcode_date
);
4470 AdvReadWordLram(iop_base
, ASC_MC_VERSION_NUM
,
4471 asc_dvc
->cfg
->mcode_version
);
4474 * Set the chip type to indicate the ASC3550.
4476 AdvWriteWordLram(iop_base
, ASC_MC_CHIP_TYPE
, ADV_CHIP_ASC3550
);
4479 * If the PCI Configuration Command Register "Parity Error Response
4480 * Control" Bit was clear (0), then set the microcode variable
4481 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
4482 * to ignore DMA parity errors.
4484 if (asc_dvc
->cfg
->control_flag
& CONTROL_FLAG_IGNORE_PERR
) {
4485 AdvReadWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
4486 word
|= CONTROL_FLAG_IGNORE_PERR
;
4487 AdvWriteWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
4491 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
4492 * threshold of 128 bytes. This register is only accessible to the host.
4494 AdvWriteByteRegister(iop_base
, IOPB_DMA_CFG0
,
4495 START_CTL_EMFU
| READ_CMD_MRM
);
4498 * Microcode operating variables for WDTR, SDTR, and command tag
4499 * queuing will be set in slave_configure() based on what a
4500 * device reports it is capable of in Inquiry byte 7.
4502 * If SCSI Bus Resets have been disabled, then directly set
4503 * SDTR and WDTR from the EEPROM configuration. This will allow
4504 * the BIOS and warm boot to work without a SCSI bus hang on
4505 * the Inquiry caused by host and target mismatched DTR values.
4506 * Without the SCSI Bus Reset, before an Inquiry a device can't
4507 * be assumed to be in Asynchronous, Narrow mode.
4509 if ((asc_dvc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) == 0) {
4510 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
,
4511 asc_dvc
->wdtr_able
);
4512 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
,
4513 asc_dvc
->sdtr_able
);
4517 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
4518 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
4519 * bitmask. These values determine the maximum SDTR speed negotiated
4522 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
4523 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
4524 * without determining here whether the device supports SDTR.
4526 * 4-bit speed SDTR speed name
4527 * =========== ===============
4528 * 0000b (0x0) SDTR disabled
4530 * 0010b (0x2) 10 Mhz
4531 * 0011b (0x3) 20 Mhz (Ultra)
4532 * 0100b (0x4) 40 Mhz (LVD/Ultra2)
4533 * 0101b (0x5) 80 Mhz (LVD2/Ultra3)
4534 * 0110b (0x6) Undefined
4536 * 1111b (0xF) Undefined
4539 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
4540 if (ADV_TID_TO_TIDMASK(tid
) & asc_dvc
->ultra_able
) {
4541 /* Set Ultra speed for TID 'tid'. */
4542 word
|= (0x3 << (4 * (tid
% 4)));
4544 /* Set Fast speed for TID 'tid'. */
4545 word
|= (0x2 << (4 * (tid
% 4)));
4547 if (tid
== 3) { /* Check if done with sdtr_speed1. */
4548 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED1
, word
);
4550 } else if (tid
== 7) { /* Check if done with sdtr_speed2. */
4551 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED2
, word
);
4553 } else if (tid
== 11) { /* Check if done with sdtr_speed3. */
4554 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED3
, word
);
4556 } else if (tid
== 15) { /* Check if done with sdtr_speed4. */
4557 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED4
, word
);
4563 * Set microcode operating variable for the disconnect per TID bitmask.
4565 AdvWriteWordLram(iop_base
, ASC_MC_DISC_ENABLE
,
4566 asc_dvc
->cfg
->disc_enable
);
4569 * Set SCSI_CFG0 Microcode Default Value.
4571 * The microcode will set the SCSI_CFG0 register using this value
4572 * after it is started below.
4574 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SCSI_CFG0
,
4575 PARITY_EN
| QUEUE_128
| SEL_TMO_LONG
| OUR_ID_EN
|
4576 asc_dvc
->chip_scsi_id
);
4579 * Determine SCSI_CFG1 Microcode Default Value.
4581 * The microcode will set the SCSI_CFG1 register using this value
4582 * after it is started below.
4585 /* Read current SCSI_CFG1 Register value. */
4586 scsi_cfg1
= AdvReadWordRegister(iop_base
, IOPW_SCSI_CFG1
);
4589 * If all three connectors are in use, return an error.
4591 if ((scsi_cfg1
& CABLE_ILLEGAL_A
) == 0 ||
4592 (scsi_cfg1
& CABLE_ILLEGAL_B
) == 0) {
4593 asc_dvc
->err_code
|= ASC_IERR_ILLEGAL_CONNECTION
;
4598 * If the internal narrow cable is reversed all of the SCSI_CTRL
4599 * register signals will be set. Check for and return an error if
4600 * this condition is found.
4602 if ((AdvReadWordRegister(iop_base
, IOPW_SCSI_CTRL
) & 0x3F07) == 0x3F07) {
4603 asc_dvc
->err_code
|= ASC_IERR_REVERSED_CABLE
;
4608 * If this is a differential board and a single-ended device
4609 * is attached to one of the connectors, return an error.
4611 if ((scsi_cfg1
& DIFF_MODE
) && (scsi_cfg1
& DIFF_SENSE
) == 0) {
4612 asc_dvc
->err_code
|= ASC_IERR_SINGLE_END_DEVICE
;
4617 * If automatic termination control is enabled, then set the
4618 * termination value based on a table listed in a_condor.h.
4620 * If manual termination was specified with an EEPROM setting
4621 * then 'termination' was set-up in AdvInitFrom3550EEPROM() and
4622 * is ready to be 'ored' into SCSI_CFG1.
4624 if (asc_dvc
->cfg
->termination
== 0) {
4626 * The software always controls termination by setting TERM_CTL_SEL.
4627 * If TERM_CTL_SEL were set to 0, the hardware would set termination.
4629 asc_dvc
->cfg
->termination
|= TERM_CTL_SEL
;
4631 switch (scsi_cfg1
& CABLE_DETECT
) {
4632 /* TERM_CTL_H: on, TERM_CTL_L: on */
4639 asc_dvc
->cfg
->termination
|= (TERM_CTL_H
| TERM_CTL_L
);
4642 /* TERM_CTL_H: on, TERM_CTL_L: off */
4648 asc_dvc
->cfg
->termination
|= TERM_CTL_H
;
4651 /* TERM_CTL_H: off, TERM_CTL_L: off */
4659 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
4661 scsi_cfg1
&= ~TERM_CTL
;
4664 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
4665 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
4666 * referenced, because the hardware internally inverts
4667 * the Termination High and Low bits if TERM_POL is set.
4669 scsi_cfg1
|= (TERM_CTL_SEL
| (~asc_dvc
->cfg
->termination
& TERM_CTL
));
4672 * Set SCSI_CFG1 Microcode Default Value
4674 * Set filter value and possibly modified termination control
4675 * bits in the Microcode SCSI_CFG1 Register Value.
4677 * The microcode will set the SCSI_CFG1 register using this value
4678 * after it is started below.
4680 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SCSI_CFG1
,
4681 FLTR_DISABLE
| scsi_cfg1
);
4684 * Set MEM_CFG Microcode Default Value
4686 * The microcode will set the MEM_CFG register using this value
4687 * after it is started below.
4689 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
4692 * ASC-3550 has 8KB internal memory.
4694 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_MEM_CFG
,
4695 BIOS_EN
| RAM_SZ_8KB
);
4698 * Set SEL_MASK Microcode Default Value
4700 * The microcode will set the SEL_MASK register using this value
4701 * after it is started below.
4703 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SEL_MASK
,
4704 ADV_TID_TO_TIDMASK(asc_dvc
->chip_scsi_id
));
4706 AdvBuildCarrierFreelist(asc_dvc
);
4709 * Set-up the Host->RISC Initiator Command Queue (ICQ).
4712 asc_dvc
->icq_sp
= adv_get_next_carrier(asc_dvc
);
4713 if (!asc_dvc
->icq_sp
) {
4714 asc_dvc
->err_code
|= ASC_IERR_NO_CARRIER
;
4719 * Set RISC ICQ physical address start value.
4721 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_ICQ
, asc_dvc
->icq_sp
->carr_pa
);
4724 * Set-up the RISC->Host Initiator Response Queue (IRQ).
4726 asc_dvc
->irq_sp
= adv_get_next_carrier(asc_dvc
);
4727 if (!asc_dvc
->irq_sp
) {
4728 asc_dvc
->err_code
|= ASC_IERR_NO_CARRIER
;
4733 * Set RISC IRQ physical address start value.
4735 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_IRQ
, asc_dvc
->irq_sp
->carr_pa
);
4736 asc_dvc
->carr_pending_cnt
= 0;
4738 AdvWriteByteRegister(iop_base
, IOPB_INTR_ENABLES
,
4739 (ADV_INTR_ENABLE_HOST_INTR
|
4740 ADV_INTR_ENABLE_GLOBAL_INTR
));
4742 AdvReadWordLram(iop_base
, ASC_MC_CODE_BEGIN_ADDR
, word
);
4743 AdvWriteWordRegister(iop_base
, IOPW_PC
, word
);
4745 /* finally, finally, gentlemen, start your engine */
4746 AdvWriteWordRegister(iop_base
, IOPW_RISC_CSR
, ADV_RISC_CSR_RUN
);
4749 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
4750 * Resets should be performed. The RISC has to be running
4751 * to issue a SCSI Bus Reset.
4753 if (asc_dvc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) {
4755 * If the BIOS Signature is present in memory, restore the
4756 * BIOS Handshake Configuration Table and do not perform
4759 if (bios_mem
[(ASC_MC_BIOS_SIGNATURE
- ASC_MC_BIOSMEM
) / 2] ==
4762 * Restore per TID negotiated values.
4764 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
4765 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
4766 AdvWriteWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
,
4768 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
4769 AdvWriteByteLram(iop_base
,
4770 ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
4774 if (AdvResetSB(asc_dvc
) != ADV_TRUE
) {
4775 warn_code
= ASC_WARN_BUSRESET_ERROR
;
4784 * Initialize the ASC-38C0800.
4786 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4788 * For a non-fatal error return a warning code. If there are no warnings
4789 * then 0 is returned.
4791 * Needed after initialization for error recovery.
4793 static int AdvInitAsc38C0800Driver(ADV_DVC_VAR
*asc_dvc
)
4795 const struct firmware
*fw
;
4796 const char fwname
[] = "advansys/38C0800.bin";
4797 AdvPortAddr iop_base
;
4805 unsigned long chksum
;
4809 ushort bios_mem
[ASC_MC_BIOSLEN
/ 2]; /* BIOS RISC Memory 0x40-0x8F. */
4810 ushort wdtr_able
, sdtr_able
, tagqng_able
;
4811 uchar max_cmd
[ADV_MAX_TID
+ 1];
4813 /* If there is already an error, don't continue. */
4814 if (asc_dvc
->err_code
!= 0)
4818 * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800.
4820 if (asc_dvc
->chip_type
!= ADV_CHIP_ASC38C0800
) {
4821 asc_dvc
->err_code
= ASC_IERR_BAD_CHIPTYPE
;
4826 iop_base
= asc_dvc
->iop_base
;
4829 * Save the RISC memory BIOS region before writing the microcode.
4830 * The BIOS may already be loaded and using its RISC LRAM region
4831 * so its region must be saved and restored.
4833 * Note: This code makes the assumption, which is currently true,
4834 * that a chip reset does not clear RISC LRAM.
4836 for (i
= 0; i
< ASC_MC_BIOSLEN
/ 2; i
++) {
4837 AdvReadWordLram(iop_base
, ASC_MC_BIOSMEM
+ (2 * i
),
4842 * Save current per TID negotiated values.
4844 AdvReadWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
4845 AdvReadWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
4846 AdvReadWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, tagqng_able
);
4847 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
4848 AdvReadByteLram(iop_base
, ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
4853 * RAM BIST (RAM Built-In Self Test)
4855 * Address : I/O base + offset 0x38h register (byte).
4856 * Function: Bit 7-6(RW) : RAM mode
4857 * Normal Mode : 0x00
4858 * Pre-test Mode : 0x40
4859 * RAM Test Mode : 0x80
4861 * Bit 4(RO) : Done bit
4862 * Bit 3-0(RO) : Status
4864 * Int_RAM Error : 0x04
4869 * Note: RAM BIST code should be put right here, before loading the
4870 * microcode and after saving the RISC memory BIOS region.
4876 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
4877 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
4878 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
4879 * to NORMAL_MODE, return an error too.
4881 for (i
= 0; i
< 2; i
++) {
4882 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, PRE_TEST_MODE
);
4883 mdelay(10); /* Wait for 10ms before reading back. */
4884 byte
= AdvReadByteRegister(iop_base
, IOPB_RAM_BIST
);
4885 if ((byte
& RAM_TEST_DONE
) == 0
4886 || (byte
& 0x0F) != PRE_TEST_VALUE
) {
4887 asc_dvc
->err_code
= ASC_IERR_BIST_PRE_TEST
;
4891 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, NORMAL_MODE
);
4892 mdelay(10); /* Wait for 10ms before reading back. */
4893 if (AdvReadByteRegister(iop_base
, IOPB_RAM_BIST
)
4895 asc_dvc
->err_code
= ASC_IERR_BIST_PRE_TEST
;
4901 * LRAM Test - It takes about 1.5 ms to run through the test.
4903 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
4904 * If Done bit not set or Status not 0, save register byte, set the
4905 * err_code, and return an error.
4907 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, RAM_TEST_MODE
);
4908 mdelay(10); /* Wait for 10ms before checking status. */
4910 byte
= AdvReadByteRegister(iop_base
, IOPB_RAM_BIST
);
4911 if ((byte
& RAM_TEST_DONE
) == 0 || (byte
& RAM_TEST_STATUS
) != 0) {
4912 /* Get here if Done bit not set or Status not 0. */
4913 asc_dvc
->bist_err_code
= byte
; /* for BIOS display message */
4914 asc_dvc
->err_code
= ASC_IERR_BIST_RAM_TEST
;
4918 /* We need to reset back to normal mode after LRAM test passes. */
4919 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, NORMAL_MODE
);
4921 err
= request_firmware(&fw
, fwname
, asc_dvc
->drv_ptr
->dev
);
4923 printk(KERN_ERR
"Failed to load image \"%s\" err %d\n",
4925 asc_dvc
->err_code
= ASC_IERR_MCODE_CHKSUM
;
4929 printk(KERN_ERR
"Bogus length %zu in image \"%s\"\n",
4931 release_firmware(fw
);
4932 asc_dvc
->err_code
= ASC_IERR_MCODE_CHKSUM
;
4935 chksum
= (fw
->data
[3] << 24) | (fw
->data
[2] << 16) |
4936 (fw
->data
[1] << 8) | fw
->data
[0];
4937 asc_dvc
->err_code
= AdvLoadMicrocode(iop_base
, &fw
->data
[4],
4938 fw
->size
- 4, ADV_38C0800_MEMSIZE
,
4940 release_firmware(fw
);
4941 if (asc_dvc
->err_code
)
4945 * Restore the RISC memory BIOS region.
4947 for (i
= 0; i
< ASC_MC_BIOSLEN
/ 2; i
++) {
4948 AdvWriteWordLram(iop_base
, ASC_MC_BIOSMEM
+ (2 * i
),
4953 * Calculate and write the microcode code checksum to the microcode
4954 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
4956 AdvReadWordLram(iop_base
, ASC_MC_CODE_BEGIN_ADDR
, begin_addr
);
4957 AdvReadWordLram(iop_base
, ASC_MC_CODE_END_ADDR
, end_addr
);
4959 AdvWriteWordRegister(iop_base
, IOPW_RAM_ADDR
, begin_addr
);
4960 for (word
= begin_addr
; word
< end_addr
; word
+= 2) {
4961 code_sum
+= AdvReadWordAutoIncLram(iop_base
);
4963 AdvWriteWordLram(iop_base
, ASC_MC_CODE_CHK_SUM
, code_sum
);
4966 * Read microcode version and date.
4968 AdvReadWordLram(iop_base
, ASC_MC_VERSION_DATE
,
4969 asc_dvc
->cfg
->mcode_date
);
4970 AdvReadWordLram(iop_base
, ASC_MC_VERSION_NUM
,
4971 asc_dvc
->cfg
->mcode_version
);
4974 * Set the chip type to indicate the ASC38C0800.
4976 AdvWriteWordLram(iop_base
, ASC_MC_CHIP_TYPE
, ADV_CHIP_ASC38C0800
);
4979 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
4980 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
4981 * cable detection and then we are able to read C_DET[3:0].
4983 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
4984 * Microcode Default Value' section below.
4986 scsi_cfg1
= AdvReadWordRegister(iop_base
, IOPW_SCSI_CFG1
);
4987 AdvWriteWordRegister(iop_base
, IOPW_SCSI_CFG1
,
4988 scsi_cfg1
| DIS_TERM_DRV
);
4991 * If the PCI Configuration Command Register "Parity Error Response
4992 * Control" Bit was clear (0), then set the microcode variable
4993 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
4994 * to ignore DMA parity errors.
4996 if (asc_dvc
->cfg
->control_flag
& CONTROL_FLAG_IGNORE_PERR
) {
4997 AdvReadWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
4998 word
|= CONTROL_FLAG_IGNORE_PERR
;
4999 AdvWriteWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
5003 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2]
5004 * bits for the default FIFO threshold.
5006 * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
5008 * For DMA Errata #4 set the BC_THRESH_ENB bit.
5010 AdvWriteByteRegister(iop_base
, IOPB_DMA_CFG0
,
5011 BC_THRESH_ENB
| FIFO_THRESH_80B
| START_CTL_TH
|
5015 * Microcode operating variables for WDTR, SDTR, and command tag
5016 * queuing will be set in slave_configure() based on what a
5017 * device reports it is capable of in Inquiry byte 7.
5019 * If SCSI Bus Resets have been disabled, then directly set
5020 * SDTR and WDTR from the EEPROM configuration. This will allow
5021 * the BIOS and warm boot to work without a SCSI bus hang on
5022 * the Inquiry caused by host and target mismatched DTR values.
5023 * Without the SCSI Bus Reset, before an Inquiry a device can't
5024 * be assumed to be in Asynchronous, Narrow mode.
5026 if ((asc_dvc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) == 0) {
5027 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
,
5028 asc_dvc
->wdtr_able
);
5029 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
,
5030 asc_dvc
->sdtr_able
);
5034 * Set microcode operating variables for DISC and SDTR_SPEED1,
5035 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5036 * configuration values.
5038 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5039 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5040 * without determining here whether the device supports SDTR.
5042 AdvWriteWordLram(iop_base
, ASC_MC_DISC_ENABLE
,
5043 asc_dvc
->cfg
->disc_enable
);
5044 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED1
, asc_dvc
->sdtr_speed1
);
5045 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED2
, asc_dvc
->sdtr_speed2
);
5046 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED3
, asc_dvc
->sdtr_speed3
);
5047 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED4
, asc_dvc
->sdtr_speed4
);
5050 * Set SCSI_CFG0 Microcode Default Value.
5052 * The microcode will set the SCSI_CFG0 register using this value
5053 * after it is started below.
5055 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SCSI_CFG0
,
5056 PARITY_EN
| QUEUE_128
| SEL_TMO_LONG
| OUR_ID_EN
|
5057 asc_dvc
->chip_scsi_id
);
5060 * Determine SCSI_CFG1 Microcode Default Value.
5062 * The microcode will set the SCSI_CFG1 register using this value
5063 * after it is started below.
5066 /* Read current SCSI_CFG1 Register value. */
5067 scsi_cfg1
= AdvReadWordRegister(iop_base
, IOPW_SCSI_CFG1
);
5070 * If the internal narrow cable is reversed all of the SCSI_CTRL
5071 * register signals will be set. Check for and return an error if
5072 * this condition is found.
5074 if ((AdvReadWordRegister(iop_base
, IOPW_SCSI_CTRL
) & 0x3F07) == 0x3F07) {
5075 asc_dvc
->err_code
|= ASC_IERR_REVERSED_CABLE
;
5080 * All kind of combinations of devices attached to one of four
5081 * connectors are acceptable except HVD device attached. For example,
5082 * LVD device can be attached to SE connector while SE device attached
5083 * to LVD connector. If LVD device attached to SE connector, it only
5084 * runs up to Ultra speed.
5086 * If an HVD device is attached to one of LVD connectors, return an
5087 * error. However, there is no way to detect HVD device attached to
5090 if (scsi_cfg1
& HVD
) {
5091 asc_dvc
->err_code
= ASC_IERR_HVD_DEVICE
;
5096 * If either SE or LVD automatic termination control is enabled, then
5097 * set the termination value based on a table listed in a_condor.h.
5099 * If manual termination was specified with an EEPROM setting then
5100 * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready
5101 * to be 'ored' into SCSI_CFG1.
5103 if ((asc_dvc
->cfg
->termination
& TERM_SE
) == 0) {
5104 /* SE automatic termination control is enabled. */
5105 switch (scsi_cfg1
& C_DET_SE
) {
5106 /* TERM_SE_HI: on, TERM_SE_LO: on */
5110 asc_dvc
->cfg
->termination
|= TERM_SE
;
5113 /* TERM_SE_HI: on, TERM_SE_LO: off */
5115 asc_dvc
->cfg
->termination
|= TERM_SE_HI
;
5120 if ((asc_dvc
->cfg
->termination
& TERM_LVD
) == 0) {
5121 /* LVD automatic termination control is enabled. */
5122 switch (scsi_cfg1
& C_DET_LVD
) {
5123 /* TERM_LVD_HI: on, TERM_LVD_LO: on */
5127 asc_dvc
->cfg
->termination
|= TERM_LVD
;
5130 /* TERM_LVD_HI: off, TERM_LVD_LO: off */
5137 * Clear any set TERM_SE and TERM_LVD bits.
5139 scsi_cfg1
&= (~TERM_SE
& ~TERM_LVD
);
5142 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
5144 scsi_cfg1
|= (~asc_dvc
->cfg
->termination
& 0xF0);
5147 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE
5148 * bits and set possibly modified termination control bits in the
5149 * Microcode SCSI_CFG1 Register Value.
5151 scsi_cfg1
&= (~BIG_ENDIAN
& ~DIS_TERM_DRV
& ~TERM_POL
& ~HVD_LVD_SE
);
5154 * Set SCSI_CFG1 Microcode Default Value
5156 * Set possibly modified termination control and reset DIS_TERM_DRV
5157 * bits in the Microcode SCSI_CFG1 Register Value.
5159 * The microcode will set the SCSI_CFG1 register using this value
5160 * after it is started below.
5162 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SCSI_CFG1
, scsi_cfg1
);
5165 * Set MEM_CFG Microcode Default Value
5167 * The microcode will set the MEM_CFG register using this value
5168 * after it is started below.
5170 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5173 * ASC-38C0800 has 16KB internal memory.
5175 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_MEM_CFG
,
5176 BIOS_EN
| RAM_SZ_16KB
);
5179 * Set SEL_MASK Microcode Default Value
5181 * The microcode will set the SEL_MASK register using this value
5182 * after it is started below.
5184 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SEL_MASK
,
5185 ADV_TID_TO_TIDMASK(asc_dvc
->chip_scsi_id
));
5187 AdvBuildCarrierFreelist(asc_dvc
);
5190 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5193 asc_dvc
->icq_sp
= adv_get_next_carrier(asc_dvc
);
5194 if (!asc_dvc
->icq_sp
) {
5195 ASC_DBG(0, "Failed to get ICQ carrier\n");
5196 asc_dvc
->err_code
|= ASC_IERR_NO_CARRIER
;
5201 * Set RISC ICQ physical address start value.
5202 * carr_pa is LE, must be native before write
5204 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_ICQ
, asc_dvc
->icq_sp
->carr_pa
);
5207 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5209 asc_dvc
->irq_sp
= adv_get_next_carrier(asc_dvc
);
5210 if (!asc_dvc
->irq_sp
) {
5211 ASC_DBG(0, "Failed to get IRQ carrier\n");
5212 asc_dvc
->err_code
|= ASC_IERR_NO_CARRIER
;
5217 * Set RISC IRQ physical address start value.
5219 * carr_pa is LE, must be native before write *
5221 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_IRQ
, asc_dvc
->irq_sp
->carr_pa
);
5222 asc_dvc
->carr_pending_cnt
= 0;
5224 AdvWriteByteRegister(iop_base
, IOPB_INTR_ENABLES
,
5225 (ADV_INTR_ENABLE_HOST_INTR
|
5226 ADV_INTR_ENABLE_GLOBAL_INTR
));
5228 AdvReadWordLram(iop_base
, ASC_MC_CODE_BEGIN_ADDR
, word
);
5229 AdvWriteWordRegister(iop_base
, IOPW_PC
, word
);
5231 /* finally, finally, gentlemen, start your engine */
5232 AdvWriteWordRegister(iop_base
, IOPW_RISC_CSR
, ADV_RISC_CSR_RUN
);
5235 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5236 * Resets should be performed. The RISC has to be running
5237 * to issue a SCSI Bus Reset.
5239 if (asc_dvc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) {
5241 * If the BIOS Signature is present in memory, restore the
5242 * BIOS Handshake Configuration Table and do not perform
5245 if (bios_mem
[(ASC_MC_BIOS_SIGNATURE
- ASC_MC_BIOSMEM
) / 2] ==
5248 * Restore per TID negotiated values.
5250 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
5251 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
5252 AdvWriteWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
,
5254 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
5255 AdvWriteByteLram(iop_base
,
5256 ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
5260 if (AdvResetSB(asc_dvc
) != ADV_TRUE
) {
5261 warn_code
= ASC_WARN_BUSRESET_ERROR
;
5270 * Initialize the ASC-38C1600.
5272 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
5274 * For a non-fatal error return a warning code. If there are no warnings
5275 * then 0 is returned.
5277 * Needed after initialization for error recovery.
5279 static int AdvInitAsc38C1600Driver(ADV_DVC_VAR
*asc_dvc
)
5281 const struct firmware
*fw
;
5282 const char fwname
[] = "advansys/38C1600.bin";
5283 AdvPortAddr iop_base
;
5291 unsigned long chksum
;
5295 ushort bios_mem
[ASC_MC_BIOSLEN
/ 2]; /* BIOS RISC Memory 0x40-0x8F. */
5296 ushort wdtr_able
, sdtr_able
, ppr_able
, tagqng_able
;
5297 uchar max_cmd
[ASC_MAX_TID
+ 1];
5299 /* If there is already an error, don't continue. */
5300 if (asc_dvc
->err_code
!= 0) {
5305 * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600.
5307 if (asc_dvc
->chip_type
!= ADV_CHIP_ASC38C1600
) {
5308 asc_dvc
->err_code
= ASC_IERR_BAD_CHIPTYPE
;
5313 iop_base
= asc_dvc
->iop_base
;
5316 * Save the RISC memory BIOS region before writing the microcode.
5317 * The BIOS may already be loaded and using its RISC LRAM region
5318 * so its region must be saved and restored.
5320 * Note: This code makes the assumption, which is currently true,
5321 * that a chip reset does not clear RISC LRAM.
5323 for (i
= 0; i
< ASC_MC_BIOSLEN
/ 2; i
++) {
5324 AdvReadWordLram(iop_base
, ASC_MC_BIOSMEM
+ (2 * i
),
5329 * Save current per TID negotiated values.
5331 AdvReadWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
5332 AdvReadWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
5333 AdvReadWordLram(iop_base
, ASC_MC_PPR_ABLE
, ppr_able
);
5334 AdvReadWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, tagqng_able
);
5335 for (tid
= 0; tid
<= ASC_MAX_TID
; tid
++) {
5336 AdvReadByteLram(iop_base
, ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
5341 * RAM BIST (Built-In Self Test)
5343 * Address : I/O base + offset 0x38h register (byte).
5344 * Function: Bit 7-6(RW) : RAM mode
5345 * Normal Mode : 0x00
5346 * Pre-test Mode : 0x40
5347 * RAM Test Mode : 0x80
5349 * Bit 4(RO) : Done bit
5350 * Bit 3-0(RO) : Status
5352 * Int_RAM Error : 0x04
5357 * Note: RAM BIST code should be put right here, before loading the
5358 * microcode and after saving the RISC memory BIOS region.
5364 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5365 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5366 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5367 * to NORMAL_MODE, return an error too.
5369 for (i
= 0; i
< 2; i
++) {
5370 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, PRE_TEST_MODE
);
5371 mdelay(10); /* Wait for 10ms before reading back. */
5372 byte
= AdvReadByteRegister(iop_base
, IOPB_RAM_BIST
);
5373 if ((byte
& RAM_TEST_DONE
) == 0
5374 || (byte
& 0x0F) != PRE_TEST_VALUE
) {
5375 asc_dvc
->err_code
= ASC_IERR_BIST_PRE_TEST
;
5379 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, NORMAL_MODE
);
5380 mdelay(10); /* Wait for 10ms before reading back. */
5381 if (AdvReadByteRegister(iop_base
, IOPB_RAM_BIST
)
5383 asc_dvc
->err_code
= ASC_IERR_BIST_PRE_TEST
;
5389 * LRAM Test - It takes about 1.5 ms to run through the test.
5391 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5392 * If Done bit not set or Status not 0, save register byte, set the
5393 * err_code, and return an error.
5395 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, RAM_TEST_MODE
);
5396 mdelay(10); /* Wait for 10ms before checking status. */
5398 byte
= AdvReadByteRegister(iop_base
, IOPB_RAM_BIST
);
5399 if ((byte
& RAM_TEST_DONE
) == 0 || (byte
& RAM_TEST_STATUS
) != 0) {
5400 /* Get here if Done bit not set or Status not 0. */
5401 asc_dvc
->bist_err_code
= byte
; /* for BIOS display message */
5402 asc_dvc
->err_code
= ASC_IERR_BIST_RAM_TEST
;
5406 /* We need to reset back to normal mode after LRAM test passes. */
5407 AdvWriteByteRegister(iop_base
, IOPB_RAM_BIST
, NORMAL_MODE
);
5409 err
= request_firmware(&fw
, fwname
, asc_dvc
->drv_ptr
->dev
);
5411 printk(KERN_ERR
"Failed to load image \"%s\" err %d\n",
5413 asc_dvc
->err_code
= ASC_IERR_MCODE_CHKSUM
;
5417 printk(KERN_ERR
"Bogus length %zu in image \"%s\"\n",
5419 release_firmware(fw
);
5420 asc_dvc
->err_code
= ASC_IERR_MCODE_CHKSUM
;
5423 chksum
= (fw
->data
[3] << 24) | (fw
->data
[2] << 16) |
5424 (fw
->data
[1] << 8) | fw
->data
[0];
5425 asc_dvc
->err_code
= AdvLoadMicrocode(iop_base
, &fw
->data
[4],
5426 fw
->size
- 4, ADV_38C1600_MEMSIZE
,
5428 release_firmware(fw
);
5429 if (asc_dvc
->err_code
)
5433 * Restore the RISC memory BIOS region.
5435 for (i
= 0; i
< ASC_MC_BIOSLEN
/ 2; i
++) {
5436 AdvWriteWordLram(iop_base
, ASC_MC_BIOSMEM
+ (2 * i
),
5441 * Calculate and write the microcode code checksum to the microcode
5442 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5444 AdvReadWordLram(iop_base
, ASC_MC_CODE_BEGIN_ADDR
, begin_addr
);
5445 AdvReadWordLram(iop_base
, ASC_MC_CODE_END_ADDR
, end_addr
);
5447 AdvWriteWordRegister(iop_base
, IOPW_RAM_ADDR
, begin_addr
);
5448 for (word
= begin_addr
; word
< end_addr
; word
+= 2) {
5449 code_sum
+= AdvReadWordAutoIncLram(iop_base
);
5451 AdvWriteWordLram(iop_base
, ASC_MC_CODE_CHK_SUM
, code_sum
);
5454 * Read microcode version and date.
5456 AdvReadWordLram(iop_base
, ASC_MC_VERSION_DATE
,
5457 asc_dvc
->cfg
->mcode_date
);
5458 AdvReadWordLram(iop_base
, ASC_MC_VERSION_NUM
,
5459 asc_dvc
->cfg
->mcode_version
);
5462 * Set the chip type to indicate the ASC38C1600.
5464 AdvWriteWordLram(iop_base
, ASC_MC_CHIP_TYPE
, ADV_CHIP_ASC38C1600
);
5467 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5468 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5469 * cable detection and then we are able to read C_DET[3:0].
5471 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5472 * Microcode Default Value' section below.
5474 scsi_cfg1
= AdvReadWordRegister(iop_base
, IOPW_SCSI_CFG1
);
5475 AdvWriteWordRegister(iop_base
, IOPW_SCSI_CFG1
,
5476 scsi_cfg1
| DIS_TERM_DRV
);
5479 * If the PCI Configuration Command Register "Parity Error Response
5480 * Control" Bit was clear (0), then set the microcode variable
5481 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5482 * to ignore DMA parity errors.
5484 if (asc_dvc
->cfg
->control_flag
& CONTROL_FLAG_IGNORE_PERR
) {
5485 AdvReadWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
5486 word
|= CONTROL_FLAG_IGNORE_PERR
;
5487 AdvWriteWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
5491 * If the BIOS control flag AIPP (Asynchronous Information
5492 * Phase Protection) disable bit is not set, then set the firmware
5493 * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
5494 * AIPP checking and encoding.
5496 if ((asc_dvc
->bios_ctrl
& BIOS_CTRL_AIPP_DIS
) == 0) {
5497 AdvReadWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
5498 word
|= CONTROL_FLAG_ENABLE_AIPP
;
5499 AdvWriteWordLram(iop_base
, ASC_MC_CONTROL_FLAG
, word
);
5503 * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
5504 * and START_CTL_TH [3:2].
5506 AdvWriteByteRegister(iop_base
, IOPB_DMA_CFG0
,
5507 FIFO_THRESH_80B
| START_CTL_TH
| READ_CMD_MRM
);
5510 * Microcode operating variables for WDTR, SDTR, and command tag
5511 * queuing will be set in slave_configure() based on what a
5512 * device reports it is capable of in Inquiry byte 7.
5514 * If SCSI Bus Resets have been disabled, then directly set
5515 * SDTR and WDTR from the EEPROM configuration. This will allow
5516 * the BIOS and warm boot to work without a SCSI bus hang on
5517 * the Inquiry caused by host and target mismatched DTR values.
5518 * Without the SCSI Bus Reset, before an Inquiry a device can't
5519 * be assumed to be in Asynchronous, Narrow mode.
5521 if ((asc_dvc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) == 0) {
5522 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
,
5523 asc_dvc
->wdtr_able
);
5524 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
,
5525 asc_dvc
->sdtr_able
);
5529 * Set microcode operating variables for DISC and SDTR_SPEED1,
5530 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5531 * configuration values.
5533 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5534 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5535 * without determining here whether the device supports SDTR.
5537 AdvWriteWordLram(iop_base
, ASC_MC_DISC_ENABLE
,
5538 asc_dvc
->cfg
->disc_enable
);
5539 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED1
, asc_dvc
->sdtr_speed1
);
5540 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED2
, asc_dvc
->sdtr_speed2
);
5541 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED3
, asc_dvc
->sdtr_speed3
);
5542 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_SPEED4
, asc_dvc
->sdtr_speed4
);
5545 * Set SCSI_CFG0 Microcode Default Value.
5547 * The microcode will set the SCSI_CFG0 register using this value
5548 * after it is started below.
5550 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SCSI_CFG0
,
5551 PARITY_EN
| QUEUE_128
| SEL_TMO_LONG
| OUR_ID_EN
|
5552 asc_dvc
->chip_scsi_id
);
5555 * Calculate SCSI_CFG1 Microcode Default Value.
5557 * The microcode will set the SCSI_CFG1 register using this value
5558 * after it is started below.
5560 * Each ASC-38C1600 function has only two cable detect bits.
5561 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
5563 scsi_cfg1
= AdvReadWordRegister(iop_base
, IOPW_SCSI_CFG1
);
5566 * If the cable is reversed all of the SCSI_CTRL register signals
5567 * will be set. Check for and return an error if this condition is
5570 if ((AdvReadWordRegister(iop_base
, IOPW_SCSI_CTRL
) & 0x3F07) == 0x3F07) {
5571 asc_dvc
->err_code
|= ASC_IERR_REVERSED_CABLE
;
5576 * Each ASC-38C1600 function has two connectors. Only an HVD device
5577 * can not be connected to either connector. An LVD device or SE device
5578 * may be connected to either connecor. If an SE device is connected,
5579 * then at most Ultra speed (20 Mhz) can be used on both connectors.
5581 * If an HVD device is attached, return an error.
5583 if (scsi_cfg1
& HVD
) {
5584 asc_dvc
->err_code
|= ASC_IERR_HVD_DEVICE
;
5589 * Each function in the ASC-38C1600 uses only the SE cable detect and
5590 * termination because there are two connectors for each function. Each
5591 * function may use either LVD or SE mode. Corresponding the SE automatic
5592 * termination control EEPROM bits are used for each function. Each
5593 * function has its own EEPROM. If SE automatic control is enabled for
5594 * the function, then set the termination value based on a table listed
5597 * If manual termination is specified in the EEPROM for the function,
5598 * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
5599 * ready to be 'ored' into SCSI_CFG1.
5601 if ((asc_dvc
->cfg
->termination
& TERM_SE
) == 0) {
5602 struct pci_dev
*pdev
= adv_dvc_to_pdev(asc_dvc
);
5603 /* SE automatic termination control is enabled. */
5604 switch (scsi_cfg1
& C_DET_SE
) {
5605 /* TERM_SE_HI: on, TERM_SE_LO: on */
5609 asc_dvc
->cfg
->termination
|= TERM_SE
;
5613 if (PCI_FUNC(pdev
->devfn
) == 0) {
5614 /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
5616 /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
5617 asc_dvc
->cfg
->termination
|= TERM_SE_HI
;
5624 * Clear any set TERM_SE bits.
5626 scsi_cfg1
&= ~TERM_SE
;
5629 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
5631 scsi_cfg1
|= (~asc_dvc
->cfg
->termination
& TERM_SE
);
5634 * Clear Big Endian and Terminator Polarity bits and set possibly
5635 * modified termination control bits in the Microcode SCSI_CFG1
5638 * Big Endian bit is not used even on big endian machines.
5640 scsi_cfg1
&= (~BIG_ENDIAN
& ~DIS_TERM_DRV
& ~TERM_POL
);
5643 * Set SCSI_CFG1 Microcode Default Value
5645 * Set possibly modified termination control bits in the Microcode
5646 * SCSI_CFG1 Register Value.
5648 * The microcode will set the SCSI_CFG1 register using this value
5649 * after it is started below.
5651 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SCSI_CFG1
, scsi_cfg1
);
5654 * Set MEM_CFG Microcode Default Value
5656 * The microcode will set the MEM_CFG register using this value
5657 * after it is started below.
5659 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5662 * ASC-38C1600 has 32KB internal memory.
5664 * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come
5665 * out a special 16K Adv Library and Microcode version. After the issue
5666 * resolved, we should turn back to the 32K support. Both a_condor.h and
5667 * mcode.sas files also need to be updated.
5669 * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5670 * BIOS_EN | RAM_SZ_32KB);
5672 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_MEM_CFG
,
5673 BIOS_EN
| RAM_SZ_16KB
);
5676 * Set SEL_MASK Microcode Default Value
5678 * The microcode will set the SEL_MASK register using this value
5679 * after it is started below.
5681 AdvWriteWordLram(iop_base
, ASC_MC_DEFAULT_SEL_MASK
,
5682 ADV_TID_TO_TIDMASK(asc_dvc
->chip_scsi_id
));
5684 AdvBuildCarrierFreelist(asc_dvc
);
5687 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5689 asc_dvc
->icq_sp
= adv_get_next_carrier(asc_dvc
);
5690 if (!asc_dvc
->icq_sp
) {
5691 asc_dvc
->err_code
|= ASC_IERR_NO_CARRIER
;
5696 * Set RISC ICQ physical address start value. Initialize the
5697 * COMMA register to the same value otherwise the RISC will
5698 * prematurely detect a command is available.
5700 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_ICQ
, asc_dvc
->icq_sp
->carr_pa
);
5701 AdvWriteDWordRegister(iop_base
, IOPDW_COMMA
,
5702 le32_to_cpu(asc_dvc
->icq_sp
->carr_pa
));
5705 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5707 asc_dvc
->irq_sp
= adv_get_next_carrier(asc_dvc
);
5708 if (!asc_dvc
->irq_sp
) {
5709 asc_dvc
->err_code
|= ASC_IERR_NO_CARRIER
;
5714 * Set RISC IRQ physical address start value.
5716 AdvWriteDWordLramNoSwap(iop_base
, ASC_MC_IRQ
, asc_dvc
->irq_sp
->carr_pa
);
5717 asc_dvc
->carr_pending_cnt
= 0;
5719 AdvWriteByteRegister(iop_base
, IOPB_INTR_ENABLES
,
5720 (ADV_INTR_ENABLE_HOST_INTR
|
5721 ADV_INTR_ENABLE_GLOBAL_INTR
));
5722 AdvReadWordLram(iop_base
, ASC_MC_CODE_BEGIN_ADDR
, word
);
5723 AdvWriteWordRegister(iop_base
, IOPW_PC
, word
);
5725 /* finally, finally, gentlemen, start your engine */
5726 AdvWriteWordRegister(iop_base
, IOPW_RISC_CSR
, ADV_RISC_CSR_RUN
);
5729 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5730 * Resets should be performed. The RISC has to be running
5731 * to issue a SCSI Bus Reset.
5733 if (asc_dvc
->bios_ctrl
& BIOS_CTRL_RESET_SCSI_BUS
) {
5735 * If the BIOS Signature is present in memory, restore the
5736 * per TID microcode operating variables.
5738 if (bios_mem
[(ASC_MC_BIOS_SIGNATURE
- ASC_MC_BIOSMEM
) / 2] ==
5741 * Restore per TID negotiated values.
5743 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
5744 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
5745 AdvWriteWordLram(iop_base
, ASC_MC_PPR_ABLE
, ppr_able
);
5746 AdvWriteWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
,
5748 for (tid
= 0; tid
<= ASC_MAX_TID
; tid
++) {
5749 AdvWriteByteLram(iop_base
,
5750 ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
5754 if (AdvResetSB(asc_dvc
) != ADV_TRUE
) {
5755 warn_code
= ASC_WARN_BUSRESET_ERROR
;
5764 * Reset chip and SCSI Bus.
5767 * ADV_TRUE(1) - Chip re-initialization and SCSI Bus Reset successful.
5768 * ADV_FALSE(0) - Chip re-initialization and SCSI Bus Reset failure.
5770 static int AdvResetChipAndSB(ADV_DVC_VAR
*asc_dvc
)
5773 ushort wdtr_able
, sdtr_able
, tagqng_able
;
5774 ushort ppr_able
= 0;
5775 uchar tid
, max_cmd
[ADV_MAX_TID
+ 1];
5776 AdvPortAddr iop_base
;
5779 iop_base
= asc_dvc
->iop_base
;
5782 * Save current per TID negotiated values.
5784 AdvReadWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
5785 AdvReadWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
5786 if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C1600
) {
5787 AdvReadWordLram(iop_base
, ASC_MC_PPR_ABLE
, ppr_able
);
5789 AdvReadWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, tagqng_able
);
5790 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
5791 AdvReadByteLram(iop_base
, ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
5796 * Force the AdvInitAsc3550/38C0800Driver() function to
5797 * perform a SCSI Bus Reset by clearing the BIOS signature word.
5798 * The initialization functions assumes a SCSI Bus Reset is not
5799 * needed if the BIOS signature word is present.
5801 AdvReadWordLram(iop_base
, ASC_MC_BIOS_SIGNATURE
, bios_sig
);
5802 AdvWriteWordLram(iop_base
, ASC_MC_BIOS_SIGNATURE
, 0);
5805 * Stop chip and reset it.
5807 AdvWriteWordRegister(iop_base
, IOPW_RISC_CSR
, ADV_RISC_CSR_STOP
);
5808 AdvWriteWordRegister(iop_base
, IOPW_CTRL_REG
, ADV_CTRL_REG_CMD_RESET
);
5810 AdvWriteWordRegister(iop_base
, IOPW_CTRL_REG
,
5811 ADV_CTRL_REG_CMD_WR_IO_REG
);
5814 * Reset Adv Library error code, if any, and try
5815 * re-initializing the chip.
5817 asc_dvc
->err_code
= 0;
5818 if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C1600
) {
5819 status
= AdvInitAsc38C1600Driver(asc_dvc
);
5820 } else if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C0800
) {
5821 status
= AdvInitAsc38C0800Driver(asc_dvc
);
5823 status
= AdvInitAsc3550Driver(asc_dvc
);
5826 /* Translate initialization return value to status value. */
5834 * Restore the BIOS signature word.
5836 AdvWriteWordLram(iop_base
, ASC_MC_BIOS_SIGNATURE
, bios_sig
);
5839 * Restore per TID negotiated values.
5841 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
, wdtr_able
);
5842 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
, sdtr_able
);
5843 if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C1600
) {
5844 AdvWriteWordLram(iop_base
, ASC_MC_PPR_ABLE
, ppr_able
);
5846 AdvWriteWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, tagqng_able
);
5847 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
5848 AdvWriteByteLram(iop_base
, ASC_MC_NUMBER_OF_MAX_CMD
+ tid
,
5856 * adv_async_callback() - Adv Library asynchronous event callback function.
5858 static void adv_async_callback(ADV_DVC_VAR
*adv_dvc_varp
, uchar code
)
5861 case ADV_ASYNC_SCSI_BUS_RESET_DET
:
5863 * The firmware detected a SCSI Bus reset.
5865 ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n");
5868 case ADV_ASYNC_RDMA_FAILURE
:
5870 * Handle RDMA failure by resetting the SCSI Bus and
5871 * possibly the chip if it is unresponsive. Log the error
5872 * with a unique code.
5874 ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n");
5875 AdvResetChipAndSB(adv_dvc_varp
);
5878 case ADV_HOST_SCSI_BUS_RESET
:
5880 * Host generated SCSI bus reset occurred.
5882 ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n");
5886 ASC_DBG(0, "unknown code 0x%x\n", code
);
5892 * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR().
5894 * Callback function for the Wide SCSI Adv Library.
5896 static void adv_isr_callback(ADV_DVC_VAR
*adv_dvc_varp
, ADV_SCSI_REQ_Q
*scsiqp
)
5898 struct asc_board
*boardp
= adv_dvc_varp
->drv_ptr
;
5900 adv_sgblk_t
*sgblkp
;
5901 struct scsi_cmnd
*scp
;
5903 dma_addr_t sense_addr
;
5905 ASC_DBG(1, "adv_dvc_varp 0x%p, scsiqp 0x%p\n",
5906 adv_dvc_varp
, scsiqp
);
5907 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp
);
5910 * Get the adv_req_t structure for the command that has been
5911 * completed. The adv_req_t structure actually contains the
5912 * completed ADV_SCSI_REQ_Q structure.
5914 scp
= scsi_host_find_tag(boardp
->shost
, scsiqp
->srb_tag
);
5916 ASC_DBG(1, "scp 0x%p\n", scp
);
5919 ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n");
5922 ASC_DBG_PRT_CDB(2, scp
->cmnd
, scp
->cmd_len
);
5924 reqp
= (adv_req_t
*)scp
->host_scribble
;
5925 ASC_DBG(1, "reqp 0x%lx\n", (ulong
)reqp
);
5927 ASC_PRINT("adv_isr_callback: reqp is NULL\n");
5931 * Remove backreferences to avoid duplicate
5932 * command completions.
5934 scp
->host_scribble
= NULL
;
5937 ASC_STATS(boardp
->shost
, callback
);
5938 ASC_DBG(1, "shost 0x%p\n", boardp
->shost
);
5940 sense_addr
= le32_to_cpu(scsiqp
->sense_addr
);
5941 dma_unmap_single(boardp
->dev
, sense_addr
,
5942 SCSI_SENSE_BUFFERSIZE
, DMA_FROM_DEVICE
);
5945 * 'done_status' contains the command's ending status.
5948 switch (scsiqp
->done_status
) {
5950 ASC_DBG(2, "QD_NO_ERROR\n");
5953 * Check for an underrun condition.
5955 * If there was no error and an underrun condition, then
5956 * then return the number of underrun bytes.
5958 resid_cnt
= le32_to_cpu(scsiqp
->data_cnt
);
5959 if (scsi_bufflen(scp
) != 0 && resid_cnt
!= 0 &&
5960 resid_cnt
<= scsi_bufflen(scp
)) {
5961 ASC_DBG(1, "underrun condition %lu bytes\n",
5963 scsi_set_resid(scp
, resid_cnt
);
5968 ASC_DBG(2, "QD_WITH_ERROR\n");
5969 switch (scsiqp
->host_status
) {
5970 case QHSTA_NO_ERROR
:
5971 set_status_byte(scp
, scsiqp
->scsi_status
);
5972 if (scsiqp
->scsi_status
== SAM_STAT_CHECK_CONDITION
) {
5973 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
5974 ASC_DBG_PRT_SENSE(2, scp
->sense_buffer
,
5975 SCSI_SENSE_BUFFERSIZE
);
5980 /* Some other QHSTA error occurred. */
5981 ASC_DBG(1, "host_status 0x%x\n", scsiqp
->host_status
);
5982 set_host_byte(scp
, DID_BAD_TARGET
);
5987 case QD_ABORTED_BY_HOST
:
5988 ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
5989 set_status_byte(scp
, scsiqp
->scsi_status
);
5990 set_host_byte(scp
, DID_ABORT
);
5994 ASC_DBG(1, "done_status 0x%x\n", scsiqp
->done_status
);
5995 set_status_byte(scp
, scsiqp
->scsi_status
);
5996 set_host_byte(scp
, DID_ERROR
);
6001 * If the 'init_tidmask' bit isn't already set for the target and the
6002 * current request finished normally, then set the bit for the target
6003 * to indicate that a device is present.
6005 if ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(scp
->device
->id
)) == 0 &&
6006 scsiqp
->done_status
== QD_NO_ERROR
&&
6007 scsiqp
->host_status
== QHSTA_NO_ERROR
) {
6008 boardp
->init_tidmask
|= ADV_TID_TO_TIDMASK(scp
->device
->id
);
6014 * Free all 'adv_sgblk_t' structures allocated for the request.
6016 while ((sgblkp
= reqp
->sgblkp
) != NULL
) {
6017 /* Remove 'sgblkp' from the request list. */
6018 reqp
->sgblkp
= sgblkp
->next_sgblkp
;
6020 dma_pool_free(boardp
->adv_sgblk_pool
, sgblkp
,
6024 ASC_DBG(1, "done\n");
6028 * Adv Library Interrupt Service Routine
6030 * This function is called by a driver's interrupt service routine.
6031 * The function disables and re-enables interrupts.
6033 * When a microcode idle command is completed, the ADV_DVC_VAR
6034 * 'idle_cmd_done' field is set to ADV_TRUE.
6036 * Note: AdvISR() can be called when interrupts are disabled or even
6037 * when there is no hardware interrupt condition present. It will
6038 * always check for completed idle commands and microcode requests.
6039 * This is an important feature that shouldn't be changed because it
6040 * allows commands to be completed from polling mode loops.
6043 * ADV_TRUE(1) - interrupt was pending
6044 * ADV_FALSE(0) - no interrupt was pending
6046 static int AdvISR(ADV_DVC_VAR
*asc_dvc
)
6048 AdvPortAddr iop_base
;
6050 ADV_CARR_T
*free_carrp
;
6051 __le32 irq_next_vpa
;
6052 ADV_SCSI_REQ_Q
*scsiq
;
6055 iop_base
= asc_dvc
->iop_base
;
6057 /* Reading the register clears the interrupt. */
6058 int_stat
= AdvReadByteRegister(iop_base
, IOPB_INTR_STATUS_REG
);
6060 if ((int_stat
& (ADV_INTR_STATUS_INTRA
| ADV_INTR_STATUS_INTRB
|
6061 ADV_INTR_STATUS_INTRC
)) == 0) {
6066 * Notify the driver of an asynchronous microcode condition by
6067 * calling the adv_async_callback function. The function
6068 * is passed the microcode ASC_MC_INTRB_CODE byte value.
6070 if (int_stat
& ADV_INTR_STATUS_INTRB
) {
6073 AdvReadByteLram(iop_base
, ASC_MC_INTRB_CODE
, intrb_code
);
6075 if (asc_dvc
->chip_type
== ADV_CHIP_ASC3550
||
6076 asc_dvc
->chip_type
== ADV_CHIP_ASC38C0800
) {
6077 if (intrb_code
== ADV_ASYNC_CARRIER_READY_FAILURE
&&
6078 asc_dvc
->carr_pending_cnt
!= 0) {
6079 AdvWriteByteRegister(iop_base
, IOPB_TICKLE
,
6081 if (asc_dvc
->chip_type
== ADV_CHIP_ASC3550
) {
6082 AdvWriteByteRegister(iop_base
,
6089 adv_async_callback(asc_dvc
, intrb_code
);
6093 * Check if the IRQ stopper carrier contains a completed request.
6095 while (((irq_next_vpa
=
6096 le32_to_cpu(asc_dvc
->irq_sp
->next_vpa
)) & ADV_RQ_DONE
) != 0) {
6098 * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure.
6099 * The RISC will have set 'areq_vpa' to a virtual address.
6101 * The firmware will have copied the ADV_SCSI_REQ_Q.scsiq_ptr
6102 * field to the carrier ADV_CARR_T.areq_vpa field. The conversion
6103 * below complements the conversion of ADV_SCSI_REQ_Q.scsiq_ptr'
6104 * in AdvExeScsiQueue().
6106 u32 pa_offset
= le32_to_cpu(asc_dvc
->irq_sp
->areq_vpa
);
6107 ASC_DBG(1, "irq_sp %p areq_vpa %u\n",
6108 asc_dvc
->irq_sp
, pa_offset
);
6109 reqp
= adv_get_reqp(asc_dvc
, pa_offset
);
6110 scsiq
= &reqp
->scsi_req_q
;
6113 * Request finished with good status and the queue was not
6114 * DMAed to host memory by the firmware. Set all status fields
6115 * to indicate good status.
6117 if ((irq_next_vpa
& ADV_RQ_GOOD
) != 0) {
6118 scsiq
->done_status
= QD_NO_ERROR
;
6119 scsiq
->host_status
= scsiq
->scsi_status
= 0;
6120 scsiq
->data_cnt
= 0L;
6124 * Advance the stopper pointer to the next carrier
6125 * ignoring the lower four bits. Free the previous
6128 free_carrp
= asc_dvc
->irq_sp
;
6129 asc_dvc
->irq_sp
= adv_get_carrier(asc_dvc
,
6130 ADV_GET_CARRP(irq_next_vpa
));
6132 free_carrp
->next_vpa
= asc_dvc
->carr_freelist
->carr_va
;
6133 asc_dvc
->carr_freelist
= free_carrp
;
6134 asc_dvc
->carr_pending_cnt
--;
6137 * Clear request microcode control flag.
6142 * Notify the driver of the completed request by passing
6143 * the ADV_SCSI_REQ_Q pointer to its callback function.
6145 adv_isr_callback(asc_dvc
, scsiq
);
6147 * Note: After the driver callback function is called, 'scsiq'
6148 * can no longer be referenced.
6150 * Fall through and continue processing other completed
6157 static int AscSetLibErrorCode(ASC_DVC_VAR
*asc_dvc
, ushort err_code
)
6159 if (asc_dvc
->err_code
== 0) {
6160 asc_dvc
->err_code
= err_code
;
6161 AscWriteLramWord(asc_dvc
->iop_base
, ASCV_ASCDVC_ERR_CODE_W
,
6167 static void AscAckInterrupt(PortAddr iop_base
)
6175 risc_flag
= AscReadLramByte(iop_base
, ASCV_RISC_FLAG_B
);
6176 if (loop
++ > 0x7FFF) {
6179 } while ((risc_flag
& ASC_RISC_FLAG_GEN_INT
) != 0);
6181 AscReadLramByte(iop_base
,
6182 ASCV_HOST_FLAG_B
) & (~ASC_HOST_FLAG_ACK_INT
);
6183 AscWriteLramByte(iop_base
, ASCV_HOST_FLAG_B
,
6184 (uchar
)(host_flag
| ASC_HOST_FLAG_ACK_INT
));
6185 AscSetChipStatus(iop_base
, CIW_INT_ACK
);
6187 while (AscGetChipStatus(iop_base
) & CSW_INT_PENDING
) {
6188 AscSetChipStatus(iop_base
, CIW_INT_ACK
);
6193 AscWriteLramByte(iop_base
, ASCV_HOST_FLAG_B
, host_flag
);
6196 static uchar
AscGetSynPeriodIndex(ASC_DVC_VAR
*asc_dvc
, uchar syn_time
)
6198 const uchar
*period_table
;
6203 period_table
= asc_dvc
->sdtr_period_tbl
;
6204 max_index
= (int)asc_dvc
->max_sdtr_index
;
6205 min_index
= (int)asc_dvc
->min_sdtr_index
;
6206 if ((syn_time
<= period_table
[max_index
])) {
6207 for (i
= min_index
; i
< (max_index
- 1); i
++) {
6208 if (syn_time
<= period_table
[i
]) {
6212 return (uchar
)max_index
;
6214 return (uchar
)(max_index
+ 1);
6219 AscMsgOutSDTR(ASC_DVC_VAR
*asc_dvc
, uchar sdtr_period
, uchar sdtr_offset
)
6221 PortAddr iop_base
= asc_dvc
->iop_base
;
6222 uchar sdtr_period_index
= AscGetSynPeriodIndex(asc_dvc
, sdtr_period
);
6223 EXT_MSG sdtr_buf
= {
6224 .msg_type
= EXTENDED_MESSAGE
,
6225 .msg_len
= MS_SDTR_LEN
,
6226 .msg_req
= EXTENDED_SDTR
,
6227 .xfer_period
= sdtr_period
,
6228 .req_ack_offset
= sdtr_offset
,
6230 sdtr_offset
&= ASC_SYN_MAX_OFFSET
;
6232 if (sdtr_period_index
<= asc_dvc
->max_sdtr_index
) {
6233 AscMemWordCopyPtrToLram(iop_base
, ASCV_MSGOUT_BEG
,
6235 sizeof(EXT_MSG
) >> 1);
6236 return ((sdtr_period_index
<< 4) | sdtr_offset
);
6238 sdtr_buf
.req_ack_offset
= 0;
6239 AscMemWordCopyPtrToLram(iop_base
, ASCV_MSGOUT_BEG
,
6241 sizeof(EXT_MSG
) >> 1);
6247 AscCalSDTRData(ASC_DVC_VAR
*asc_dvc
, uchar sdtr_period
, uchar syn_offset
)
6250 uchar sdtr_period_ix
;
6252 sdtr_period_ix
= AscGetSynPeriodIndex(asc_dvc
, sdtr_period
);
6253 if (sdtr_period_ix
> asc_dvc
->max_sdtr_index
)
6255 byte
= (sdtr_period_ix
<< 4) | (syn_offset
& ASC_SYN_MAX_OFFSET
);
6259 static bool AscSetChipSynRegAtID(PortAddr iop_base
, uchar id
, uchar sdtr_data
)
6261 ASC_SCSI_BIT_ID_TYPE org_id
;
6265 AscSetBank(iop_base
, 1);
6266 org_id
= AscReadChipDvcID(iop_base
);
6267 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
6268 if (org_id
== (0x01 << i
))
6271 org_id
= (ASC_SCSI_BIT_ID_TYPE
) i
;
6272 AscWriteChipDvcID(iop_base
, id
);
6273 if (AscReadChipDvcID(iop_base
) == (0x01 << id
)) {
6274 AscSetBank(iop_base
, 0);
6275 AscSetChipSyn(iop_base
, sdtr_data
);
6276 if (AscGetChipSyn(iop_base
) != sdtr_data
) {
6282 AscSetBank(iop_base
, 1);
6283 AscWriteChipDvcID(iop_base
, org_id
);
6284 AscSetBank(iop_base
, 0);
6288 static void AscSetChipSDTR(PortAddr iop_base
, uchar sdtr_data
, uchar tid_no
)
6290 AscSetChipSynRegAtID(iop_base
, tid_no
, sdtr_data
);
6291 AscPutMCodeSDTRDoneAtID(iop_base
, tid_no
, sdtr_data
);
6294 static void AscIsrChipHalted(ASC_DVC_VAR
*asc_dvc
)
6300 ushort int_halt_code
;
6301 ASC_SCSI_BIT_ID_TYPE scsi_busy
;
6302 ASC_SCSI_BIT_ID_TYPE target_id
;
6309 uchar q_cntl
, tid_no
;
6313 struct asc_board
*boardp
;
6315 BUG_ON(!asc_dvc
->drv_ptr
);
6316 boardp
= asc_dvc
->drv_ptr
;
6318 iop_base
= asc_dvc
->iop_base
;
6319 int_halt_code
= AscReadLramWord(iop_base
, ASCV_HALTCODE_W
);
6321 halt_qp
= AscReadLramByte(iop_base
, ASCV_CURCDB_B
);
6322 halt_q_addr
= ASC_QNO_TO_QADDR(halt_qp
);
6323 target_ix
= AscReadLramByte(iop_base
,
6324 (ushort
)(halt_q_addr
+
6325 (ushort
)ASC_SCSIQ_B_TARGET_IX
));
6326 q_cntl
= AscReadLramByte(iop_base
,
6327 (ushort
)(halt_q_addr
+ (ushort
)ASC_SCSIQ_B_CNTL
));
6328 tid_no
= ASC_TIX_TO_TID(target_ix
);
6329 target_id
= (uchar
)ASC_TID_TO_TARGET_ID(tid_no
);
6330 if (asc_dvc
->pci_fix_asyn_xfer
& target_id
) {
6331 asyn_sdtr
= ASYN_SDTR_DATA_FIX_PCI_REV_AB
;
6335 if (int_halt_code
== ASC_HALT_DISABLE_ASYN_USE_SYN_FIX
) {
6336 if (asc_dvc
->pci_fix_asyn_xfer
& target_id
) {
6337 AscSetChipSDTR(iop_base
, 0, tid_no
);
6338 boardp
->sdtr_data
[tid_no
] = 0;
6340 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
6342 } else if (int_halt_code
== ASC_HALT_ENABLE_ASYN_USE_SYN_FIX
) {
6343 if (asc_dvc
->pci_fix_asyn_xfer
& target_id
) {
6344 AscSetChipSDTR(iop_base
, asyn_sdtr
, tid_no
);
6345 boardp
->sdtr_data
[tid_no
] = asyn_sdtr
;
6347 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
6349 } else if (int_halt_code
== ASC_HALT_EXTMSG_IN
) {
6350 AscMemWordCopyPtrFromLram(iop_base
,
6353 sizeof(EXT_MSG
) >> 1);
6355 if (ext_msg
.msg_type
== EXTENDED_MESSAGE
&&
6356 ext_msg
.msg_req
== EXTENDED_SDTR
&&
6357 ext_msg
.msg_len
== MS_SDTR_LEN
) {
6359 if ((ext_msg
.req_ack_offset
> ASC_SYN_MAX_OFFSET
)) {
6361 sdtr_accept
= false;
6362 ext_msg
.req_ack_offset
= ASC_SYN_MAX_OFFSET
;
6364 if ((ext_msg
.xfer_period
<
6365 asc_dvc
->sdtr_period_tbl
[asc_dvc
->min_sdtr_index
])
6366 || (ext_msg
.xfer_period
>
6367 asc_dvc
->sdtr_period_tbl
[asc_dvc
->
6369 sdtr_accept
= false;
6370 ext_msg
.xfer_period
=
6371 asc_dvc
->sdtr_period_tbl
[asc_dvc
->
6376 AscCalSDTRData(asc_dvc
, ext_msg
.xfer_period
,
6377 ext_msg
.req_ack_offset
);
6378 if (sdtr_data
== 0xFF) {
6380 q_cntl
|= QC_MSG_OUT
;
6381 asc_dvc
->init_sdtr
&= ~target_id
;
6382 asc_dvc
->sdtr_done
&= ~target_id
;
6383 AscSetChipSDTR(iop_base
, asyn_sdtr
,
6385 boardp
->sdtr_data
[tid_no
] = asyn_sdtr
;
6388 if (ext_msg
.req_ack_offset
== 0) {
6390 q_cntl
&= ~QC_MSG_OUT
;
6391 asc_dvc
->init_sdtr
&= ~target_id
;
6392 asc_dvc
->sdtr_done
&= ~target_id
;
6393 AscSetChipSDTR(iop_base
, asyn_sdtr
, tid_no
);
6395 if (sdtr_accept
&& (q_cntl
& QC_MSG_OUT
)) {
6396 q_cntl
&= ~QC_MSG_OUT
;
6397 asc_dvc
->sdtr_done
|= target_id
;
6398 asc_dvc
->init_sdtr
|= target_id
;
6399 asc_dvc
->pci_fix_asyn_xfer
&=
6402 AscCalSDTRData(asc_dvc
,
6403 ext_msg
.xfer_period
,
6406 AscSetChipSDTR(iop_base
, sdtr_data
,
6408 boardp
->sdtr_data
[tid_no
] = sdtr_data
;
6410 q_cntl
|= QC_MSG_OUT
;
6411 AscMsgOutSDTR(asc_dvc
,
6412 ext_msg
.xfer_period
,
6413 ext_msg
.req_ack_offset
);
6414 asc_dvc
->pci_fix_asyn_xfer
&=
6417 AscCalSDTRData(asc_dvc
,
6418 ext_msg
.xfer_period
,
6421 AscSetChipSDTR(iop_base
, sdtr_data
,
6423 boardp
->sdtr_data
[tid_no
] = sdtr_data
;
6424 asc_dvc
->sdtr_done
|= target_id
;
6425 asc_dvc
->init_sdtr
|= target_id
;
6429 AscWriteLramByte(iop_base
,
6430 (ushort
)(halt_q_addr
+
6431 (ushort
)ASC_SCSIQ_B_CNTL
),
6433 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
6435 } else if (ext_msg
.msg_type
== EXTENDED_MESSAGE
&&
6436 ext_msg
.msg_req
== EXTENDED_WDTR
&&
6437 ext_msg
.msg_len
== MS_WDTR_LEN
) {
6439 ext_msg
.wdtr_width
= 0;
6440 AscMemWordCopyPtrToLram(iop_base
,
6443 sizeof(EXT_MSG
) >> 1);
6444 q_cntl
|= QC_MSG_OUT
;
6445 AscWriteLramByte(iop_base
,
6446 (ushort
)(halt_q_addr
+
6447 (ushort
)ASC_SCSIQ_B_CNTL
),
6449 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
6453 ext_msg
.msg_type
= MESSAGE_REJECT
;
6454 AscMemWordCopyPtrToLram(iop_base
,
6457 sizeof(EXT_MSG
) >> 1);
6458 q_cntl
|= QC_MSG_OUT
;
6459 AscWriteLramByte(iop_base
,
6460 (ushort
)(halt_q_addr
+
6461 (ushort
)ASC_SCSIQ_B_CNTL
),
6463 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
6466 } else if (int_halt_code
== ASC_HALT_CHK_CONDITION
) {
6468 q_cntl
|= QC_REQ_SENSE
;
6470 if ((asc_dvc
->init_sdtr
& target_id
) != 0) {
6472 asc_dvc
->sdtr_done
&= ~target_id
;
6474 sdtr_data
= AscGetMCodeInitSDTRAtID(iop_base
, tid_no
);
6475 q_cntl
|= QC_MSG_OUT
;
6476 AscMsgOutSDTR(asc_dvc
,
6478 sdtr_period_tbl
[(sdtr_data
>> 4) &
6482 (uchar
)(sdtr_data
& (uchar
)
6483 ASC_SYN_MAX_OFFSET
));
6486 AscWriteLramByte(iop_base
,
6487 (ushort
)(halt_q_addr
+
6488 (ushort
)ASC_SCSIQ_B_CNTL
), q_cntl
);
6490 tag_code
= AscReadLramByte(iop_base
,
6491 (ushort
)(halt_q_addr
+ (ushort
)
6492 ASC_SCSIQ_B_TAG_CODE
));
6494 if ((asc_dvc
->pci_fix_asyn_xfer
& target_id
)
6495 && !(asc_dvc
->pci_fix_asyn_xfer_always
& target_id
)
6498 tag_code
|= (ASC_TAG_FLAG_DISABLE_DISCONNECT
6499 | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX
);
6502 AscWriteLramByte(iop_base
,
6503 (ushort
)(halt_q_addr
+
6504 (ushort
)ASC_SCSIQ_B_TAG_CODE
),
6507 q_status
= AscReadLramByte(iop_base
,
6508 (ushort
)(halt_q_addr
+ (ushort
)
6509 ASC_SCSIQ_B_STATUS
));
6510 q_status
|= (QS_READY
| QS_BUSY
);
6511 AscWriteLramByte(iop_base
,
6512 (ushort
)(halt_q_addr
+
6513 (ushort
)ASC_SCSIQ_B_STATUS
),
6516 scsi_busy
= AscReadLramByte(iop_base
, (ushort
)ASCV_SCSIBUSY_B
);
6517 scsi_busy
&= ~target_id
;
6518 AscWriteLramByte(iop_base
, (ushort
)ASCV_SCSIBUSY_B
, scsi_busy
);
6520 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
6522 } else if (int_halt_code
== ASC_HALT_SDTR_REJECTED
) {
6524 AscMemWordCopyPtrFromLram(iop_base
,
6527 sizeof(EXT_MSG
) >> 1);
6529 if ((out_msg
.msg_type
== EXTENDED_MESSAGE
) &&
6530 (out_msg
.msg_len
== MS_SDTR_LEN
) &&
6531 (out_msg
.msg_req
== EXTENDED_SDTR
)) {
6533 asc_dvc
->init_sdtr
&= ~target_id
;
6534 asc_dvc
->sdtr_done
&= ~target_id
;
6535 AscSetChipSDTR(iop_base
, asyn_sdtr
, tid_no
);
6536 boardp
->sdtr_data
[tid_no
] = asyn_sdtr
;
6538 q_cntl
&= ~QC_MSG_OUT
;
6539 AscWriteLramByte(iop_base
,
6540 (ushort
)(halt_q_addr
+
6541 (ushort
)ASC_SCSIQ_B_CNTL
), q_cntl
);
6542 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
6544 } else if (int_halt_code
== ASC_HALT_SS_QUEUE_FULL
) {
6546 scsi_status
= AscReadLramByte(iop_base
,
6547 (ushort
)((ushort
)halt_q_addr
+
6549 ASC_SCSIQ_SCSI_STATUS
));
6551 AscReadLramByte(iop_base
,
6552 (ushort
)((ushort
)ASC_QADR_BEG
+
6553 (ushort
)target_ix
));
6554 if ((cur_dvc_qng
> 0) && (asc_dvc
->cur_dvc_qng
[tid_no
] > 0)) {
6556 scsi_busy
= AscReadLramByte(iop_base
,
6557 (ushort
)ASCV_SCSIBUSY_B
);
6558 scsi_busy
|= target_id
;
6559 AscWriteLramByte(iop_base
,
6560 (ushort
)ASCV_SCSIBUSY_B
, scsi_busy
);
6561 asc_dvc
->queue_full_or_busy
|= target_id
;
6563 if (scsi_status
== SAM_STAT_TASK_SET_FULL
) {
6564 if (cur_dvc_qng
> ASC_MIN_TAGGED_CMD
) {
6566 asc_dvc
->max_dvc_qng
[tid_no
] =
6569 AscWriteLramByte(iop_base
,
6571 ASCV_MAX_DVC_QNG_BEG
6577 * Set the device queue depth to the
6578 * number of active requests when the
6579 * QUEUE FULL condition was encountered.
6581 boardp
->queue_full
|= target_id
;
6582 boardp
->queue_full_cnt
[tid_no
] =
6587 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0);
6595 * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
6597 * Calling/Exit State:
6601 * Input an ASC_QDONE_INFO structure from the chip
6604 DvcGetQinfo(PortAddr iop_base
, ushort s_addr
, uchar
*inbuf
, int words
)
6609 AscSetChipLramAddr(iop_base
, s_addr
);
6610 for (i
= 0; i
< 2 * words
; i
+= 2) {
6614 word
= inpw(iop_base
+ IOP_RAM_DATA
);
6615 inbuf
[i
] = word
& 0xff;
6616 inbuf
[i
+ 1] = (word
>> 8) & 0xff;
6618 ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf
, 2 * words
);
6622 _AscCopyLramScsiDoneQ(PortAddr iop_base
,
6624 ASC_QDONE_INFO
*scsiq
, unsigned int max_dma_count
)
6629 DvcGetQinfo(iop_base
,
6630 q_addr
+ ASC_SCSIQ_DONE_INFO_BEG
,
6632 (sizeof(ASC_SCSIQ_2
) + sizeof(ASC_SCSIQ_3
)) / 2);
6634 _val
= AscReadLramWord(iop_base
,
6635 (ushort
)(q_addr
+ (ushort
)ASC_SCSIQ_B_STATUS
));
6636 scsiq
->q_status
= (uchar
)_val
;
6637 scsiq
->q_no
= (uchar
)(_val
>> 8);
6638 _val
= AscReadLramWord(iop_base
,
6639 (ushort
)(q_addr
+ (ushort
)ASC_SCSIQ_B_CNTL
));
6640 scsiq
->cntl
= (uchar
)_val
;
6641 sg_queue_cnt
= (uchar
)(_val
>> 8);
6642 _val
= AscReadLramWord(iop_base
,
6644 (ushort
)ASC_SCSIQ_B_SENSE_LEN
));
6645 scsiq
->sense_len
= (uchar
)_val
;
6646 scsiq
->extra_bytes
= (uchar
)(_val
>> 8);
6649 * Read high word of remain bytes from alternate location.
6651 scsiq
->remain_bytes
= (((u32
)AscReadLramWord(iop_base
,
6654 ASC_SCSIQ_W_ALT_DC1
)))
6657 * Read low word of remain bytes from original location.
6659 scsiq
->remain_bytes
+= AscReadLramWord(iop_base
,
6660 (ushort
)(q_addr
+ (ushort
)
6661 ASC_SCSIQ_DW_REMAIN_XFER_CNT
));
6663 scsiq
->remain_bytes
&= max_dma_count
;
6664 return sg_queue_cnt
;
6668 * asc_isr_callback() - Second Level Interrupt Handler called by AscISR().
6670 * Interrupt callback function for the Narrow SCSI Asc Library.
6672 static void asc_isr_callback(ASC_DVC_VAR
*asc_dvc_varp
, ASC_QDONE_INFO
*qdonep
)
6674 struct asc_board
*boardp
= asc_dvc_varp
->drv_ptr
;
6676 struct scsi_cmnd
*scp
;
6678 ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp
, qdonep
);
6679 ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep
);
6682 * Decrease the srb_tag by 1 to find the SCSI command
6684 srb_tag
= qdonep
->d2
.srb_tag
- 1;
6685 scp
= scsi_host_find_tag(boardp
->shost
, srb_tag
);
6689 ASC_DBG_PRT_CDB(2, scp
->cmnd
, scp
->cmd_len
);
6691 ASC_STATS(boardp
->shost
, callback
);
6693 dma_unmap_single(boardp
->dev
, advansys_cmd(scp
)->dma_handle
,
6694 SCSI_SENSE_BUFFERSIZE
, DMA_FROM_DEVICE
);
6696 * 'qdonep' contains the command's ending status.
6699 switch (qdonep
->d3
.done_stat
) {
6701 ASC_DBG(2, "QD_NO_ERROR\n");
6704 * Check for an underrun condition.
6706 * If there was no error and an underrun condition, then
6707 * return the number of underrun bytes.
6709 if (scsi_bufflen(scp
) != 0 && qdonep
->remain_bytes
!= 0 &&
6710 qdonep
->remain_bytes
<= scsi_bufflen(scp
)) {
6711 ASC_DBG(1, "underrun condition %u bytes\n",
6712 (unsigned)qdonep
->remain_bytes
);
6713 scsi_set_resid(scp
, qdonep
->remain_bytes
);
6718 ASC_DBG(2, "QD_WITH_ERROR\n");
6719 switch (qdonep
->d3
.host_stat
) {
6720 case QHSTA_NO_ERROR
:
6721 set_status_byte(scp
, qdonep
->d3
.scsi_stat
);
6722 if (qdonep
->d3
.scsi_stat
== SAM_STAT_CHECK_CONDITION
) {
6723 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6724 ASC_DBG_PRT_SENSE(2, scp
->sense_buffer
,
6725 SCSI_SENSE_BUFFERSIZE
);
6730 /* QHSTA error occurred */
6731 ASC_DBG(1, "host_stat 0x%x\n", qdonep
->d3
.host_stat
);
6732 set_host_byte(scp
, DID_BAD_TARGET
);
6737 case QD_ABORTED_BY_HOST
:
6738 ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6739 set_status_byte(scp
, qdonep
->d3
.scsi_stat
);
6740 set_host_byte(scp
, DID_ABORT
);
6744 ASC_DBG(1, "done_stat 0x%x\n", qdonep
->d3
.done_stat
);
6745 set_status_byte(scp
, qdonep
->d3
.scsi_stat
);
6746 set_host_byte(scp
, DID_ERROR
);
6751 * If the 'init_tidmask' bit isn't already set for the target and the
6752 * current request finished normally, then set the bit for the target
6753 * to indicate that a device is present.
6755 if ((boardp
->init_tidmask
& ADV_TID_TO_TIDMASK(scp
->device
->id
)) == 0 &&
6756 qdonep
->d3
.done_stat
== QD_NO_ERROR
&&
6757 qdonep
->d3
.host_stat
== QHSTA_NO_ERROR
) {
6758 boardp
->init_tidmask
|= ADV_TID_TO_TIDMASK(scp
->device
->id
);
6764 static int AscIsrQDone(ASC_DVC_VAR
*asc_dvc
)
6773 ASC_SCSI_BIT_ID_TYPE scsi_busy
;
6774 ASC_SCSI_BIT_ID_TYPE target_id
;
6778 uchar cur_target_qng
;
6779 ASC_QDONE_INFO scsiq_buf
;
6780 ASC_QDONE_INFO
*scsiq
;
6783 iop_base
= asc_dvc
->iop_base
;
6785 scsiq
= (ASC_QDONE_INFO
*)&scsiq_buf
;
6786 done_q_tail
= (uchar
)AscGetVarDoneQTail(iop_base
);
6787 q_addr
= ASC_QNO_TO_QADDR(done_q_tail
);
6788 next_qp
= AscReadLramByte(iop_base
,
6789 (ushort
)(q_addr
+ (ushort
)ASC_SCSIQ_B_FWD
));
6790 if (next_qp
!= ASC_QLINK_END
) {
6791 AscPutVarDoneQTail(iop_base
, next_qp
);
6792 q_addr
= ASC_QNO_TO_QADDR(next_qp
);
6793 sg_queue_cnt
= _AscCopyLramScsiDoneQ(iop_base
, q_addr
, scsiq
,
6794 asc_dvc
->max_dma_count
);
6795 AscWriteLramByte(iop_base
,
6797 (ushort
)ASC_SCSIQ_B_STATUS
),
6799 q_status
& (uchar
)~(QS_READY
|
6801 tid_no
= ASC_TIX_TO_TID(scsiq
->d2
.target_ix
);
6802 target_id
= ASC_TIX_TO_TARGET_ID(scsiq
->d2
.target_ix
);
6803 if ((scsiq
->cntl
& QC_SG_HEAD
) != 0) {
6805 sg_list_qp
= next_qp
;
6806 for (q_cnt
= 0; q_cnt
< sg_queue_cnt
; q_cnt
++) {
6807 sg_list_qp
= AscReadLramByte(iop_base
,
6811 sg_q_addr
= ASC_QNO_TO_QADDR(sg_list_qp
);
6812 if (sg_list_qp
== ASC_QLINK_END
) {
6813 AscSetLibErrorCode(asc_dvc
,
6814 ASCQ_ERR_SG_Q_LINKS
);
6815 scsiq
->d3
.done_stat
= QD_WITH_ERROR
;
6816 scsiq
->d3
.host_stat
=
6817 QHSTA_D_QDONE_SG_LIST_CORRUPTED
;
6818 goto FATAL_ERR_QDONE
;
6820 AscWriteLramByte(iop_base
,
6821 (ushort
)(sg_q_addr
+ (ushort
)
6822 ASC_SCSIQ_B_STATUS
),
6825 n_q_used
= sg_queue_cnt
+ 1;
6826 AscPutVarDoneQTail(iop_base
, sg_list_qp
);
6828 if (asc_dvc
->queue_full_or_busy
& target_id
) {
6829 cur_target_qng
= AscReadLramByte(iop_base
,
6835 if (cur_target_qng
< asc_dvc
->max_dvc_qng
[tid_no
]) {
6836 scsi_busy
= AscReadLramByte(iop_base
, (ushort
)
6838 scsi_busy
&= ~target_id
;
6839 AscWriteLramByte(iop_base
,
6840 (ushort
)ASCV_SCSIBUSY_B
,
6842 asc_dvc
->queue_full_or_busy
&= ~target_id
;
6845 if (asc_dvc
->cur_total_qng
>= n_q_used
) {
6846 asc_dvc
->cur_total_qng
-= n_q_used
;
6847 if (asc_dvc
->cur_dvc_qng
[tid_no
] != 0) {
6848 asc_dvc
->cur_dvc_qng
[tid_no
]--;
6851 AscSetLibErrorCode(asc_dvc
, ASCQ_ERR_CUR_QNG
);
6852 scsiq
->d3
.done_stat
= QD_WITH_ERROR
;
6853 goto FATAL_ERR_QDONE
;
6855 if ((scsiq
->d2
.srb_tag
== 0UL) ||
6856 ((scsiq
->q_status
& QS_ABORTED
) != 0)) {
6858 } else if (scsiq
->q_status
== QS_DONE
) {
6860 * This is also curious.
6861 * false_overrun will _always_ be set to 'false'
6863 false_overrun
= false;
6864 if (scsiq
->extra_bytes
!= 0) {
6865 scsiq
->remain_bytes
+= scsiq
->extra_bytes
;
6867 if (scsiq
->d3
.done_stat
== QD_WITH_ERROR
) {
6868 if (scsiq
->d3
.host_stat
==
6869 QHSTA_M_DATA_OVER_RUN
) {
6871 cntl
& (QC_DATA_IN
| QC_DATA_OUT
))
6873 scsiq
->d3
.done_stat
=
6875 scsiq
->d3
.host_stat
=
6877 } else if (false_overrun
) {
6878 scsiq
->d3
.done_stat
=
6880 scsiq
->d3
.host_stat
=
6883 } else if (scsiq
->d3
.host_stat
==
6884 QHSTA_M_HUNG_REQ_SCSI_BUS_RESET
) {
6885 AscStopChip(iop_base
);
6886 AscSetChipControl(iop_base
,
6887 (uchar
)(CC_SCSI_RESET
6890 AscSetChipControl(iop_base
, CC_HALT
);
6891 AscSetChipStatus(iop_base
,
6892 CIW_CLR_SCSI_RESET_INT
);
6893 AscSetChipStatus(iop_base
, 0);
6894 AscSetChipControl(iop_base
, 0);
6897 if ((scsiq
->cntl
& QC_NO_CALLBACK
) == 0) {
6898 asc_isr_callback(asc_dvc
, scsiq
);
6900 if ((AscReadLramByte(iop_base
,
6901 (ushort
)(q_addr
+ (ushort
)
6904 asc_dvc
->unit_not_ready
&= ~target_id
;
6905 if (scsiq
->d3
.done_stat
!= QD_NO_ERROR
) {
6906 asc_dvc
->start_motor
&=
6913 AscSetLibErrorCode(asc_dvc
, ASCQ_ERR_Q_STATUS
);
6915 if ((scsiq
->cntl
& QC_NO_CALLBACK
) == 0) {
6916 asc_isr_callback(asc_dvc
, scsiq
);
6924 static int AscISR(ASC_DVC_VAR
*asc_dvc
)
6926 ASC_CS_TYPE chipstat
;
6928 ushort saved_ram_addr
;
6930 uchar saved_ctrl_reg
;
6935 iop_base
= asc_dvc
->iop_base
;
6936 int_pending
= ASC_FALSE
;
6938 if (AscIsIntPending(iop_base
) == 0)
6941 if ((asc_dvc
->init_state
& ASC_INIT_STATE_END_LOAD_MC
) == 0) {
6944 if (asc_dvc
->in_critical_cnt
!= 0) {
6945 AscSetLibErrorCode(asc_dvc
, ASCQ_ERR_ISR_ON_CRITICAL
);
6948 if (asc_dvc
->is_in_int
) {
6949 AscSetLibErrorCode(asc_dvc
, ASCQ_ERR_ISR_RE_ENTRY
);
6952 asc_dvc
->is_in_int
= true;
6953 ctrl_reg
= AscGetChipControl(iop_base
);
6954 saved_ctrl_reg
= ctrl_reg
& (~(CC_SCSI_RESET
| CC_CHIP_RESET
|
6955 CC_SINGLE_STEP
| CC_DIAG
| CC_TEST
));
6956 chipstat
= AscGetChipStatus(iop_base
);
6957 if (chipstat
& CSW_SCSI_RESET_LATCH
) {
6958 if (!(asc_dvc
->bus_type
& (ASC_IS_VL
| ASC_IS_EISA
))) {
6960 int_pending
= ASC_TRUE
;
6961 asc_dvc
->sdtr_done
= 0;
6962 saved_ctrl_reg
&= (uchar
)(~CC_HALT
);
6963 while ((AscGetChipStatus(iop_base
) &
6964 CSW_SCSI_RESET_ACTIVE
) && (i
-- > 0)) {
6967 AscSetChipControl(iop_base
, (CC_CHIP_RESET
| CC_HALT
));
6968 AscSetChipControl(iop_base
, CC_HALT
);
6969 AscSetChipStatus(iop_base
, CIW_CLR_SCSI_RESET_INT
);
6970 AscSetChipStatus(iop_base
, 0);
6971 chipstat
= AscGetChipStatus(iop_base
);
6974 saved_ram_addr
= AscGetChipLramAddr(iop_base
);
6975 host_flag
= AscReadLramByte(iop_base
,
6977 (uchar
)(~ASC_HOST_FLAG_IN_ISR
);
6978 AscWriteLramByte(iop_base
, ASCV_HOST_FLAG_B
,
6979 (uchar
)(host_flag
| (uchar
)ASC_HOST_FLAG_IN_ISR
));
6980 if ((chipstat
& CSW_INT_PENDING
) || (int_pending
)) {
6981 AscAckInterrupt(iop_base
);
6982 int_pending
= ASC_TRUE
;
6983 if ((chipstat
& CSW_HALTED
) && (ctrl_reg
& CC_SINGLE_STEP
)) {
6984 AscIsrChipHalted(asc_dvc
);
6985 saved_ctrl_reg
&= (uchar
)(~CC_HALT
);
6987 if ((asc_dvc
->dvc_cntl
& ASC_CNTL_INT_MULTI_Q
) != 0) {
6989 AscIsrQDone(asc_dvc
)) & 0x01) != 0) {
6994 AscIsrQDone(asc_dvc
)) == 1) {
6997 } while (status
== 0x11);
6999 if ((status
& 0x80) != 0)
7000 int_pending
= ASC_ERROR
;
7003 AscWriteLramByte(iop_base
, ASCV_HOST_FLAG_B
, host_flag
);
7004 AscSetChipLramAddr(iop_base
, saved_ram_addr
);
7005 AscSetChipControl(iop_base
, saved_ctrl_reg
);
7006 asc_dvc
->is_in_int
= false;
7013 * Reset the host associated with the command 'scp'.
7015 * This function runs its own thread. Interrupts must be blocked but
7016 * sleeping is allowed and no locking other than for host structures is
7017 * required. Returns SUCCESS or FAILED.
7019 static int advansys_reset(struct scsi_cmnd
*scp
)
7021 struct Scsi_Host
*shost
= scp
->device
->host
;
7022 struct asc_board
*boardp
= shost_priv(shost
);
7023 unsigned long flags
;
7027 ASC_DBG(1, "0x%p\n", scp
);
7029 ASC_STATS(shost
, reset
);
7031 scmd_printk(KERN_INFO
, scp
, "SCSI host reset started...\n");
7033 if (ASC_NARROW_BOARD(boardp
)) {
7034 ASC_DVC_VAR
*asc_dvc
= &boardp
->dvc_var
.asc_dvc_var
;
7036 /* Reset the chip and SCSI bus. */
7037 ASC_DBG(1, "before AscInitAsc1000Driver()\n");
7038 status
= AscInitAsc1000Driver(asc_dvc
);
7040 /* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */
7041 if (asc_dvc
->err_code
|| !asc_dvc
->overrun_dma
) {
7042 scmd_printk(KERN_INFO
, scp
, "SCSI host reset error: "
7043 "0x%x, status: 0x%x\n", asc_dvc
->err_code
,
7046 } else if (status
) {
7047 scmd_printk(KERN_INFO
, scp
, "SCSI host reset warning: "
7050 scmd_printk(KERN_INFO
, scp
, "SCSI host reset "
7054 ASC_DBG(1, "after AscInitAsc1000Driver()\n");
7057 * If the suggest reset bus flags are set, then reset the bus.
7058 * Otherwise only reset the device.
7060 ADV_DVC_VAR
*adv_dvc
= &boardp
->dvc_var
.adv_dvc_var
;
7063 * Reset the chip and SCSI bus.
7065 ASC_DBG(1, "before AdvResetChipAndSB()\n");
7066 switch (AdvResetChipAndSB(adv_dvc
)) {
7068 scmd_printk(KERN_INFO
, scp
, "SCSI host reset "
7073 scmd_printk(KERN_INFO
, scp
, "SCSI host reset error\n");
7077 spin_lock_irqsave(shost
->host_lock
, flags
);
7079 spin_unlock_irqrestore(shost
->host_lock
, flags
);
7082 ASC_DBG(1, "ret %d\n", ret
);
7088 * advansys_biosparam()
7090 * Translate disk drive geometry if the "BIOS greater than 1 GB"
7091 * support is enabled for a drive.
7093 * ip (information pointer) is an int array with the following definition:
7099 advansys_biosparam(struct scsi_device
*sdev
, struct block_device
*bdev
,
7100 sector_t capacity
, int ip
[])
7102 struct asc_board
*boardp
= shost_priv(sdev
->host
);
7104 ASC_DBG(1, "begin\n");
7105 ASC_STATS(sdev
->host
, biosparam
);
7106 if (ASC_NARROW_BOARD(boardp
)) {
7107 if ((boardp
->dvc_var
.asc_dvc_var
.dvc_cntl
&
7108 ASC_CNTL_BIOS_GT_1GB
) && capacity
> 0x200000) {
7116 if ((boardp
->dvc_var
.adv_dvc_var
.bios_ctrl
&
7117 BIOS_CTRL_EXTENDED_XLAT
) && capacity
> 0x200000) {
7125 ip
[2] = (unsigned long)capacity
/ (ip
[0] * ip
[1]);
7126 ASC_DBG(1, "end\n");
7131 * First-level interrupt handler.
7133 * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host.
7135 static irqreturn_t
advansys_interrupt(int irq
, void *dev_id
)
7137 struct Scsi_Host
*shost
= dev_id
;
7138 struct asc_board
*boardp
= shost_priv(shost
);
7139 irqreturn_t result
= IRQ_NONE
;
7140 unsigned long flags
;
7142 ASC_DBG(2, "boardp 0x%p\n", boardp
);
7143 spin_lock_irqsave(shost
->host_lock
, flags
);
7144 if (ASC_NARROW_BOARD(boardp
)) {
7145 if (AscIsIntPending(shost
->io_port
)) {
7146 result
= IRQ_HANDLED
;
7147 ASC_STATS(shost
, interrupt
);
7148 ASC_DBG(1, "before AscISR()\n");
7149 AscISR(&boardp
->dvc_var
.asc_dvc_var
);
7152 ASC_DBG(1, "before AdvISR()\n");
7153 if (AdvISR(&boardp
->dvc_var
.adv_dvc_var
)) {
7154 result
= IRQ_HANDLED
;
7155 ASC_STATS(shost
, interrupt
);
7158 spin_unlock_irqrestore(shost
->host_lock
, flags
);
7160 ASC_DBG(1, "end\n");
7164 static bool AscHostReqRiscHalt(PortAddr iop_base
)
7168 uchar saved_stop_code
;
7170 if (AscIsChipHalted(iop_base
))
7172 saved_stop_code
= AscReadLramByte(iop_base
, ASCV_STOP_CODE_B
);
7173 AscWriteLramByte(iop_base
, ASCV_STOP_CODE_B
,
7174 ASC_STOP_HOST_REQ_RISC_HALT
| ASC_STOP_REQ_RISC_STOP
);
7176 if (AscIsChipHalted(iop_base
)) {
7181 } while (count
++ < 20);
7182 AscWriteLramByte(iop_base
, ASCV_STOP_CODE_B
, saved_stop_code
);
7187 AscSetRunChipSynRegAtID(PortAddr iop_base
, uchar tid_no
, uchar sdtr_data
)
7191 if (AscHostReqRiscHalt(iop_base
)) {
7192 sta
= AscSetChipSynRegAtID(iop_base
, tid_no
, sdtr_data
);
7193 AscStartChip(iop_base
);
7198 static void AscAsyncFix(ASC_DVC_VAR
*asc_dvc
, struct scsi_device
*sdev
)
7200 char type
= sdev
->type
;
7201 ASC_SCSI_BIT_ID_TYPE tid_bits
= 1 << sdev
->id
;
7203 if (!(asc_dvc
->bug_fix_cntl
& ASC_BUG_FIX_ASYN_USE_SYN
))
7205 if (asc_dvc
->init_sdtr
& tid_bits
)
7208 if ((type
== TYPE_ROM
) && (strncmp(sdev
->vendor
, "HP ", 3) == 0))
7209 asc_dvc
->pci_fix_asyn_xfer_always
|= tid_bits
;
7211 asc_dvc
->pci_fix_asyn_xfer
|= tid_bits
;
7212 if ((type
== TYPE_PROCESSOR
) || (type
== TYPE_SCANNER
) ||
7213 (type
== TYPE_ROM
) || (type
== TYPE_TAPE
))
7214 asc_dvc
->pci_fix_asyn_xfer
&= ~tid_bits
;
7216 if (asc_dvc
->pci_fix_asyn_xfer
& tid_bits
)
7217 AscSetRunChipSynRegAtID(asc_dvc
->iop_base
, sdev
->id
,
7218 ASYN_SDTR_DATA_FIX_PCI_REV_AB
);
7222 advansys_narrow_slave_configure(struct scsi_device
*sdev
, ASC_DVC_VAR
*asc_dvc
)
7224 ASC_SCSI_BIT_ID_TYPE tid_bit
= 1 << sdev
->id
;
7225 ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng
= asc_dvc
->use_tagged_qng
;
7227 if (sdev
->lun
== 0) {
7228 ASC_SCSI_BIT_ID_TYPE orig_init_sdtr
= asc_dvc
->init_sdtr
;
7229 if ((asc_dvc
->cfg
->sdtr_enable
& tid_bit
) && sdev
->sdtr
) {
7230 asc_dvc
->init_sdtr
|= tid_bit
;
7232 asc_dvc
->init_sdtr
&= ~tid_bit
;
7235 if (orig_init_sdtr
!= asc_dvc
->init_sdtr
)
7236 AscAsyncFix(asc_dvc
, sdev
);
7239 if (sdev
->tagged_supported
) {
7240 if (asc_dvc
->cfg
->cmd_qng_enabled
& tid_bit
) {
7241 if (sdev
->lun
== 0) {
7242 asc_dvc
->cfg
->can_tagged_qng
|= tid_bit
;
7243 asc_dvc
->use_tagged_qng
|= tid_bit
;
7245 scsi_change_queue_depth(sdev
,
7246 asc_dvc
->max_dvc_qng
[sdev
->id
]);
7249 if (sdev
->lun
== 0) {
7250 asc_dvc
->cfg
->can_tagged_qng
&= ~tid_bit
;
7251 asc_dvc
->use_tagged_qng
&= ~tid_bit
;
7255 if ((sdev
->lun
== 0) &&
7256 (orig_use_tagged_qng
!= asc_dvc
->use_tagged_qng
)) {
7257 AscWriteLramByte(asc_dvc
->iop_base
, ASCV_DISC_ENABLE_B
,
7258 asc_dvc
->cfg
->disc_enable
);
7259 AscWriteLramByte(asc_dvc
->iop_base
, ASCV_USE_TAGGED_QNG_B
,
7260 asc_dvc
->use_tagged_qng
);
7261 AscWriteLramByte(asc_dvc
->iop_base
, ASCV_CAN_TAGGED_QNG_B
,
7262 asc_dvc
->cfg
->can_tagged_qng
);
7264 asc_dvc
->max_dvc_qng
[sdev
->id
] =
7265 asc_dvc
->cfg
->max_tag_qng
[sdev
->id
];
7266 AscWriteLramByte(asc_dvc
->iop_base
,
7267 (ushort
)(ASCV_MAX_DVC_QNG_BEG
+ sdev
->id
),
7268 asc_dvc
->max_dvc_qng
[sdev
->id
]);
7275 * If the EEPROM enabled WDTR for the device and the device supports wide
7276 * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and
7277 * write the new value to the microcode.
7280 advansys_wide_enable_wdtr(AdvPortAddr iop_base
, unsigned short tidmask
)
7282 unsigned short cfg_word
;
7283 AdvReadWordLram(iop_base
, ASC_MC_WDTR_ABLE
, cfg_word
);
7284 if ((cfg_word
& tidmask
) != 0)
7287 cfg_word
|= tidmask
;
7288 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_ABLE
, cfg_word
);
7291 * Clear the microcode SDTR and WDTR negotiation done indicators for
7292 * the target to cause it to negotiate with the new setting set above.
7293 * WDTR when accepted causes the target to enter asynchronous mode, so
7294 * SDTR must be negotiated.
7296 AdvReadWordLram(iop_base
, ASC_MC_SDTR_DONE
, cfg_word
);
7297 cfg_word
&= ~tidmask
;
7298 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_DONE
, cfg_word
);
7299 AdvReadWordLram(iop_base
, ASC_MC_WDTR_DONE
, cfg_word
);
7300 cfg_word
&= ~tidmask
;
7301 AdvWriteWordLram(iop_base
, ASC_MC_WDTR_DONE
, cfg_word
);
7305 * Synchronous Transfers
7307 * If the EEPROM enabled SDTR for the device and the device
7308 * supports synchronous transfers, then turn on the device's
7309 * 'sdtr_able' bit. Write the new value to the microcode.
7312 advansys_wide_enable_sdtr(AdvPortAddr iop_base
, unsigned short tidmask
)
7314 unsigned short cfg_word
;
7315 AdvReadWordLram(iop_base
, ASC_MC_SDTR_ABLE
, cfg_word
);
7316 if ((cfg_word
& tidmask
) != 0)
7319 cfg_word
|= tidmask
;
7320 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_ABLE
, cfg_word
);
7323 * Clear the microcode "SDTR negotiation" done indicator for the
7324 * target to cause it to negotiate with the new setting set above.
7326 AdvReadWordLram(iop_base
, ASC_MC_SDTR_DONE
, cfg_word
);
7327 cfg_word
&= ~tidmask
;
7328 AdvWriteWordLram(iop_base
, ASC_MC_SDTR_DONE
, cfg_word
);
7332 * PPR (Parallel Protocol Request) Capable
7334 * If the device supports DT mode, then it must be PPR capable.
7335 * The PPR message will be used in place of the SDTR and WDTR
7336 * messages to negotiate synchronous speed and offset, transfer
7337 * width, and protocol options.
7339 static void advansys_wide_enable_ppr(ADV_DVC_VAR
*adv_dvc
,
7340 AdvPortAddr iop_base
, unsigned short tidmask
)
7342 AdvReadWordLram(iop_base
, ASC_MC_PPR_ABLE
, adv_dvc
->ppr_able
);
7343 adv_dvc
->ppr_able
|= tidmask
;
7344 AdvWriteWordLram(iop_base
, ASC_MC_PPR_ABLE
, adv_dvc
->ppr_able
);
7348 advansys_wide_slave_configure(struct scsi_device
*sdev
, ADV_DVC_VAR
*adv_dvc
)
7350 AdvPortAddr iop_base
= adv_dvc
->iop_base
;
7351 unsigned short tidmask
= 1 << sdev
->id
;
7353 if (sdev
->lun
== 0) {
7355 * Handle WDTR, SDTR, and Tag Queuing. If the feature
7356 * is enabled in the EEPROM and the device supports the
7357 * feature, then enable it in the microcode.
7360 if ((adv_dvc
->wdtr_able
& tidmask
) && sdev
->wdtr
)
7361 advansys_wide_enable_wdtr(iop_base
, tidmask
);
7362 if ((adv_dvc
->sdtr_able
& tidmask
) && sdev
->sdtr
)
7363 advansys_wide_enable_sdtr(iop_base
, tidmask
);
7364 if (adv_dvc
->chip_type
== ADV_CHIP_ASC38C1600
&& sdev
->ppr
)
7365 advansys_wide_enable_ppr(adv_dvc
, iop_base
, tidmask
);
7368 * Tag Queuing is disabled for the BIOS which runs in polled
7369 * mode and would see no benefit from Tag Queuing. Also by
7370 * disabling Tag Queuing in the BIOS devices with Tag Queuing
7371 * bugs will at least work with the BIOS.
7373 if ((adv_dvc
->tagqng_able
& tidmask
) &&
7374 sdev
->tagged_supported
) {
7375 unsigned short cfg_word
;
7376 AdvReadWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
, cfg_word
);
7377 cfg_word
|= tidmask
;
7378 AdvWriteWordLram(iop_base
, ASC_MC_TAGQNG_ABLE
,
7380 AdvWriteByteLram(iop_base
,
7381 ASC_MC_NUMBER_OF_MAX_CMD
+ sdev
->id
,
7382 adv_dvc
->max_dvc_qng
);
7386 if ((adv_dvc
->tagqng_able
& tidmask
) && sdev
->tagged_supported
)
7387 scsi_change_queue_depth(sdev
, adv_dvc
->max_dvc_qng
);
7391 * Set the number of commands to queue per device for the
7392 * specified host adapter.
7394 static int advansys_slave_configure(struct scsi_device
*sdev
)
7396 struct asc_board
*boardp
= shost_priv(sdev
->host
);
7398 if (ASC_NARROW_BOARD(boardp
))
7399 advansys_narrow_slave_configure(sdev
,
7400 &boardp
->dvc_var
.asc_dvc_var
);
7402 advansys_wide_slave_configure(sdev
,
7403 &boardp
->dvc_var
.adv_dvc_var
);
7408 static __le32
asc_get_sense_buffer_dma(struct scsi_cmnd
*scp
)
7410 struct asc_board
*board
= shost_priv(scp
->device
->host
);
7411 struct advansys_cmd
*acmd
= advansys_cmd(scp
);
7413 acmd
->dma_handle
= dma_map_single(board
->dev
, scp
->sense_buffer
,
7414 SCSI_SENSE_BUFFERSIZE
, DMA_FROM_DEVICE
);
7415 if (dma_mapping_error(board
->dev
, acmd
->dma_handle
)) {
7416 ASC_DBG(1, "failed to map sense buffer\n");
7419 return cpu_to_le32(acmd
->dma_handle
);
7422 static int asc_build_req(struct asc_board
*boardp
, struct scsi_cmnd
*scp
,
7423 struct asc_scsi_q
*asc_scsi_q
)
7425 struct asc_dvc_var
*asc_dvc
= &boardp
->dvc_var
.asc_dvc_var
;
7429 memset(asc_scsi_q
, 0, sizeof(*asc_scsi_q
));
7432 * Set the srb_tag to the command tag + 1, as
7433 * srb_tag '0' is used internally by the chip.
7435 srb_tag
= scsi_cmd_to_rq(scp
)->tag
+ 1;
7436 asc_scsi_q
->q2
.srb_tag
= srb_tag
;
7439 * Build the ASC_SCSI_Q request.
7441 asc_scsi_q
->cdbptr
= &scp
->cmnd
[0];
7442 asc_scsi_q
->q2
.cdb_len
= scp
->cmd_len
;
7443 asc_scsi_q
->q1
.target_id
= ASC_TID_TO_TARGET_ID(scp
->device
->id
);
7444 asc_scsi_q
->q1
.target_lun
= scp
->device
->lun
;
7445 asc_scsi_q
->q2
.target_ix
=
7446 ASC_TIDLUN_TO_IX(scp
->device
->id
, scp
->device
->lun
);
7447 asc_scsi_q
->q1
.sense_addr
= asc_get_sense_buffer_dma(scp
);
7448 asc_scsi_q
->q1
.sense_len
= SCSI_SENSE_BUFFERSIZE
;
7449 if (!asc_scsi_q
->q1
.sense_addr
)
7453 * If there are any outstanding requests for the current target,
7454 * then every 255th request send an ORDERED request. This heuristic
7455 * tries to retain the benefit of request sorting while preventing
7456 * request starvation. 255 is the max number of tags or pending commands
7457 * a device may have outstanding.
7459 * The request count is incremented below for every successfully
7463 if ((asc_dvc
->cur_dvc_qng
[scp
->device
->id
] > 0) &&
7464 (boardp
->reqcnt
[scp
->device
->id
] % 255) == 0) {
7465 asc_scsi_q
->q2
.tag_code
= ORDERED_QUEUE_TAG
;
7467 asc_scsi_q
->q2
.tag_code
= SIMPLE_QUEUE_TAG
;
7470 /* Build ASC_SCSI_Q */
7471 use_sg
= scsi_dma_map(scp
);
7473 ASC_DBG(1, "failed to map sglist\n");
7475 } else if (use_sg
> 0) {
7477 struct scatterlist
*slp
;
7478 struct asc_sg_head
*asc_sg_head
;
7480 if (use_sg
> scp
->device
->host
->sg_tablesize
) {
7481 scmd_printk(KERN_ERR
, scp
, "use_sg %d > "
7482 "sg_tablesize %d\n", use_sg
,
7483 scp
->device
->host
->sg_tablesize
);
7484 scsi_dma_unmap(scp
);
7485 set_host_byte(scp
, DID_ERROR
);
7489 asc_sg_head
= kzalloc(struct_size(asc_sg_head
, sg_list
, use_sg
),
7492 scsi_dma_unmap(scp
);
7493 set_host_byte(scp
, DID_SOFT_ERROR
);
7497 asc_scsi_q
->q1
.cntl
|= QC_SG_HEAD
;
7498 asc_scsi_q
->sg_head
= asc_sg_head
;
7499 asc_scsi_q
->q1
.data_cnt
= 0;
7500 asc_scsi_q
->q1
.data_addr
= 0;
7501 /* This is a byte value, otherwise it would need to be swapped. */
7502 asc_sg_head
->entry_cnt
= asc_scsi_q
->q1
.sg_queue_cnt
= use_sg
;
7503 ASC_STATS_ADD(scp
->device
->host
, xfer_elem
,
7504 asc_sg_head
->entry_cnt
);
7507 * Convert scatter-gather list into ASC_SG_HEAD list.
7509 scsi_for_each_sg(scp
, slp
, use_sg
, sgcnt
) {
7510 asc_sg_head
->sg_list
[sgcnt
].addr
=
7511 cpu_to_le32(sg_dma_address(slp
));
7512 asc_sg_head
->sg_list
[sgcnt
].bytes
=
7513 cpu_to_le32(sg_dma_len(slp
));
7514 ASC_STATS_ADD(scp
->device
->host
, xfer_sect
,
7515 DIV_ROUND_UP(sg_dma_len(slp
), 512));
7519 ASC_STATS(scp
->device
->host
, xfer_cnt
);
7521 ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q
);
7522 ASC_DBG_PRT_CDB(1, scp
->cmnd
, scp
->cmd_len
);
7528 * Build scatter-gather list for Adv Library (Wide Board).
7530 * Additional ADV_SG_BLOCK structures will need to be allocated
7531 * if the total number of scatter-gather elements exceeds
7532 * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are
7533 * assumed to be physically contiguous.
7536 * ADV_SUCCESS(1) - SG List successfully created
7537 * ADV_ERROR(-1) - SG List creation failed
7540 adv_get_sglist(struct asc_board
*boardp
, adv_req_t
*reqp
,
7541 ADV_SCSI_REQ_Q
*scsiqp
, struct scsi_cmnd
*scp
, int use_sg
)
7543 adv_sgblk_t
*sgblkp
, *prev_sgblkp
;
7544 struct scatterlist
*slp
;
7546 ADV_SG_BLOCK
*sg_block
, *prev_sg_block
;
7547 dma_addr_t sgblk_paddr
;
7550 slp
= scsi_sglist(scp
);
7551 sg_elem_cnt
= use_sg
;
7553 prev_sg_block
= NULL
;
7554 reqp
->sgblkp
= NULL
;
7558 * Allocate a 'adv_sgblk_t' structure from the board free
7559 * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK
7560 * (15) scatter-gather elements.
7562 sgblkp
= dma_pool_alloc(boardp
->adv_sgblk_pool
, GFP_ATOMIC
,
7565 ASC_DBG(1, "no free adv_sgblk_t\n");
7566 ASC_STATS(scp
->device
->host
, adv_build_nosg
);
7569 * Allocation failed. Free 'adv_sgblk_t' structures
7570 * already allocated for the request.
7572 while ((sgblkp
= reqp
->sgblkp
) != NULL
) {
7573 /* Remove 'sgblkp' from the request list. */
7574 reqp
->sgblkp
= sgblkp
->next_sgblkp
;
7575 sgblkp
->next_sgblkp
= NULL
;
7576 dma_pool_free(boardp
->adv_sgblk_pool
, sgblkp
,
7581 /* Complete 'adv_sgblk_t' board allocation. */
7582 sgblkp
->sg_addr
= sgblk_paddr
;
7583 sgblkp
->next_sgblkp
= NULL
;
7584 sg_block
= &sgblkp
->sg_block
;
7587 * Check if this is the first 'adv_sgblk_t' for the
7590 if (reqp
->sgblkp
== NULL
) {
7591 /* Request's first scatter-gather block. */
7592 reqp
->sgblkp
= sgblkp
;
7595 * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical
7598 scsiqp
->sg_list_ptr
= sg_block
;
7599 scsiqp
->sg_real_addr
= cpu_to_le32(sgblk_paddr
);
7601 /* Request's second or later scatter-gather block. */
7602 prev_sgblkp
->next_sgblkp
= sgblkp
;
7605 * Point the previous ADV_SG_BLOCK structure to
7606 * the newly allocated ADV_SG_BLOCK structure.
7608 prev_sg_block
->sg_ptr
= cpu_to_le32(sgblk_paddr
);
7611 for (i
= 0; i
< NO_OF_SG_PER_BLOCK
; i
++) {
7612 sg_block
->sg_list
[i
].sg_addr
=
7613 cpu_to_le32(sg_dma_address(slp
));
7614 sg_block
->sg_list
[i
].sg_count
=
7615 cpu_to_le32(sg_dma_len(slp
));
7616 ASC_STATS_ADD(scp
->device
->host
, xfer_sect
,
7617 DIV_ROUND_UP(sg_dma_len(slp
), 512));
7619 if (--sg_elem_cnt
== 0) {
7621 * Last ADV_SG_BLOCK and scatter-gather entry.
7623 sg_block
->sg_cnt
= i
+ 1;
7624 sg_block
->sg_ptr
= 0L; /* Last ADV_SG_BLOCK in list. */
7629 sg_block
->sg_cnt
= NO_OF_SG_PER_BLOCK
;
7630 prev_sg_block
= sg_block
;
7631 prev_sgblkp
= sgblkp
;
7636 * Build a request structure for the Adv Library (Wide Board).
7638 * If an adv_req_t can not be allocated to issue the request,
7639 * then return ASC_BUSY. If an error occurs, then return ASC_ERROR.
7641 * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the
7642 * microcode for DMA addresses or math operations are byte swapped
7643 * to little-endian order.
7646 adv_build_req(struct asc_board
*boardp
, struct scsi_cmnd
*scp
,
7647 adv_req_t
**adv_reqpp
)
7649 u32 srb_tag
= scsi_cmd_to_rq(scp
)->tag
;
7651 ADV_SCSI_REQ_Q
*scsiqp
;
7654 dma_addr_t sense_addr
;
7657 * Allocate an adv_req_t structure from the board to execute
7660 reqp
= &boardp
->adv_reqp
[srb_tag
];
7661 if (reqp
->cmndp
&& reqp
->cmndp
!= scp
) {
7662 ASC_DBG(1, "no free adv_req_t\n");
7663 ASC_STATS(scp
->device
->host
, adv_build_noreq
);
7667 reqp
->req_addr
= boardp
->adv_reqp_addr
+ (srb_tag
* sizeof(adv_req_t
));
7669 scsiqp
= &reqp
->scsi_req_q
;
7672 * Initialize the structure.
7674 scsiqp
->cntl
= scsiqp
->scsi_cntl
= scsiqp
->done_status
= 0;
7677 * Set the srb_tag to the command tag.
7679 scsiqp
->srb_tag
= srb_tag
;
7682 * Set 'host_scribble' to point to the adv_req_t structure.
7685 scp
->host_scribble
= (void *)reqp
;
7688 * Build the ADV_SCSI_REQ_Q request.
7691 /* Set CDB length and copy it to the request structure. */
7692 scsiqp
->cdb_len
= scp
->cmd_len
;
7693 /* Copy first 12 CDB bytes to cdb[]. */
7694 memcpy(scsiqp
->cdb
, scp
->cmnd
, scp
->cmd_len
< 12 ? scp
->cmd_len
: 12);
7695 /* Copy last 4 CDB bytes, if present, to cdb16[]. */
7696 if (scp
->cmd_len
> 12) {
7697 int cdb16_len
= scp
->cmd_len
- 12;
7699 memcpy(scsiqp
->cdb16
, &scp
->cmnd
[12], cdb16_len
);
7702 scsiqp
->target_id
= scp
->device
->id
;
7703 scsiqp
->target_lun
= scp
->device
->lun
;
7705 sense_addr
= dma_map_single(boardp
->dev
, scp
->sense_buffer
,
7706 SCSI_SENSE_BUFFERSIZE
, DMA_FROM_DEVICE
);
7707 if (dma_mapping_error(boardp
->dev
, sense_addr
)) {
7708 ASC_DBG(1, "failed to map sense buffer\n");
7709 ASC_STATS(scp
->device
->host
, adv_build_noreq
);
7712 scsiqp
->sense_addr
= cpu_to_le32(sense_addr
);
7713 scsiqp
->sense_len
= SCSI_SENSE_BUFFERSIZE
;
7715 /* Build ADV_SCSI_REQ_Q */
7717 use_sg
= scsi_dma_map(scp
);
7719 ASC_DBG(1, "failed to map SG list\n");
7720 ASC_STATS(scp
->device
->host
, adv_build_noreq
);
7722 } else if (use_sg
== 0) {
7723 /* Zero-length transfer */
7724 reqp
->sgblkp
= NULL
;
7725 scsiqp
->data_cnt
= 0;
7727 scsiqp
->data_addr
= 0;
7728 scsiqp
->sg_list_ptr
= NULL
;
7729 scsiqp
->sg_real_addr
= 0;
7731 if (use_sg
> ADV_MAX_SG_LIST
) {
7732 scmd_printk(KERN_ERR
, scp
, "use_sg %d > "
7733 "ADV_MAX_SG_LIST %d\n", use_sg
,
7734 scp
->device
->host
->sg_tablesize
);
7735 scsi_dma_unmap(scp
);
7736 set_host_byte(scp
, DID_ERROR
);
7738 scp
->host_scribble
= NULL
;
7743 scsiqp
->data_cnt
= cpu_to_le32(scsi_bufflen(scp
));
7745 ret
= adv_get_sglist(boardp
, reqp
, scsiqp
, scp
, use_sg
);
7746 if (ret
!= ADV_SUCCESS
) {
7747 scsi_dma_unmap(scp
);
7748 set_host_byte(scp
, DID_ERROR
);
7750 scp
->host_scribble
= NULL
;
7755 ASC_STATS_ADD(scp
->device
->host
, xfer_elem
, use_sg
);
7758 ASC_STATS(scp
->device
->host
, xfer_cnt
);
7760 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp
);
7761 ASC_DBG_PRT_CDB(1, scp
->cmnd
, scp
->cmd_len
);
7768 static int AscSgListToQueue(int sg_list
)
7772 n_sg_list_qs
= ((sg_list
- 1) / ASC_SG_LIST_PER_Q
);
7773 if (((sg_list
- 1) % ASC_SG_LIST_PER_Q
) != 0)
7775 return n_sg_list_qs
+ 1;
7779 AscGetNumOfFreeQueue(ASC_DVC_VAR
*asc_dvc
, uchar target_ix
, uchar n_qs
)
7783 ASC_SCSI_BIT_ID_TYPE target_id
;
7786 target_id
= ASC_TIX_TO_TARGET_ID(target_ix
);
7787 tid_no
= ASC_TIX_TO_TID(target_ix
);
7788 if ((asc_dvc
->unit_not_ready
& target_id
) ||
7789 (asc_dvc
->queue_full_or_busy
& target_id
)) {
7793 cur_used_qs
= (uint
) asc_dvc
->cur_total_qng
+
7794 (uint
) asc_dvc
->last_q_shortage
+ (uint
) ASC_MIN_FREE_Q
;
7796 cur_used_qs
= (uint
) asc_dvc
->cur_total_qng
+
7797 (uint
) ASC_MIN_FREE_Q
;
7799 if ((uint
) (cur_used_qs
+ n_qs
) <= (uint
) asc_dvc
->max_total_qng
) {
7800 cur_free_qs
= (uint
) asc_dvc
->max_total_qng
- cur_used_qs
;
7801 if (asc_dvc
->cur_dvc_qng
[tid_no
] >=
7802 asc_dvc
->max_dvc_qng
[tid_no
]) {
7808 if ((n_qs
> asc_dvc
->last_q_shortage
)
7809 && (n_qs
<= (asc_dvc
->max_total_qng
- ASC_MIN_FREE_Q
))) {
7810 asc_dvc
->last_q_shortage
= n_qs
;
7816 static uchar
AscAllocFreeQueue(PortAddr iop_base
, uchar free_q_head
)
7822 q_addr
= ASC_QNO_TO_QADDR(free_q_head
);
7823 q_status
= (uchar
)AscReadLramByte(iop_base
,
7825 ASC_SCSIQ_B_STATUS
));
7826 next_qp
= AscReadLramByte(iop_base
, (ushort
)(q_addr
+ ASC_SCSIQ_B_FWD
));
7827 if (((q_status
& QS_READY
) == 0) && (next_qp
!= ASC_QLINK_END
))
7829 return ASC_QLINK_END
;
7833 AscAllocMultipleFreeQueue(PortAddr iop_base
, uchar free_q_head
, uchar n_free_q
)
7837 for (i
= 0; i
< n_free_q
; i
++) {
7838 free_q_head
= AscAllocFreeQueue(iop_base
, free_q_head
);
7839 if (free_q_head
== ASC_QLINK_END
)
7847 * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
7849 * Calling/Exit State:
7853 * Output an ASC_SCSI_Q structure to the chip
7856 DvcPutScsiQ(PortAddr iop_base
, ushort s_addr
, uchar
*outbuf
, int words
)
7860 ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf
, 2 * words
);
7861 AscSetChipLramAddr(iop_base
, s_addr
);
7862 for (i
= 0; i
< 2 * words
; i
+= 2) {
7863 if (i
== 4 || i
== 20) {
7866 outpw(iop_base
+ IOP_RAM_DATA
,
7867 ((ushort
)outbuf
[i
+ 1] << 8) | outbuf
[i
]);
7871 static int AscPutReadyQueue(ASC_DVC_VAR
*asc_dvc
, ASC_SCSI_Q
*scsiq
, uchar q_no
)
7876 uchar syn_period_ix
;
7880 iop_base
= asc_dvc
->iop_base
;
7881 if (((asc_dvc
->init_sdtr
& scsiq
->q1
.target_id
) != 0) &&
7882 ((asc_dvc
->sdtr_done
& scsiq
->q1
.target_id
) == 0)) {
7883 tid_no
= ASC_TIX_TO_TID(scsiq
->q2
.target_ix
);
7884 sdtr_data
= AscGetMCodeInitSDTRAtID(iop_base
, tid_no
);
7886 (sdtr_data
>> 4) & (asc_dvc
->max_sdtr_index
- 1);
7887 syn_offset
= sdtr_data
& ASC_SYN_MAX_OFFSET
;
7888 AscMsgOutSDTR(asc_dvc
,
7889 asc_dvc
->sdtr_period_tbl
[syn_period_ix
],
7891 scsiq
->q1
.cntl
|= QC_MSG_OUT
;
7893 q_addr
= ASC_QNO_TO_QADDR(q_no
);
7894 if ((scsiq
->q1
.target_id
& asc_dvc
->use_tagged_qng
) == 0) {
7895 scsiq
->q2
.tag_code
&= ~SIMPLE_QUEUE_TAG
;
7897 scsiq
->q1
.status
= QS_FREE
;
7898 AscMemWordCopyPtrToLram(iop_base
,
7899 q_addr
+ ASC_SCSIQ_CDB_BEG
,
7900 (uchar
*)scsiq
->cdbptr
, scsiq
->q2
.cdb_len
>> 1);
7902 DvcPutScsiQ(iop_base
,
7903 q_addr
+ ASC_SCSIQ_CPY_BEG
,
7904 (uchar
*)&scsiq
->q1
.cntl
,
7905 ((sizeof(ASC_SCSIQ_1
) + sizeof(ASC_SCSIQ_2
)) / 2) - 1);
7906 AscWriteLramWord(iop_base
,
7907 (ushort
)(q_addr
+ (ushort
)ASC_SCSIQ_B_STATUS
),
7908 (ushort
)(((ushort
)scsiq
->q1
.
7909 q_no
<< 8) | (ushort
)QS_READY
));
7914 AscPutReadySgListQueue(ASC_DVC_VAR
*asc_dvc
, ASC_SCSI_Q
*scsiq
, uchar q_no
)
7918 ASC_SG_HEAD
*sg_head
;
7919 ASC_SG_LIST_Q scsi_sg_q
;
7920 __le32 saved_data_addr
;
7921 __le32 saved_data_cnt
;
7923 ushort sg_list_dwords
;
7925 ushort sg_entry_cnt
;
7929 iop_base
= asc_dvc
->iop_base
;
7930 sg_head
= scsiq
->sg_head
;
7931 saved_data_addr
= scsiq
->q1
.data_addr
;
7932 saved_data_cnt
= scsiq
->q1
.data_cnt
;
7933 scsiq
->q1
.data_addr
= cpu_to_le32(sg_head
->sg_list
[0].addr
);
7934 scsiq
->q1
.data_cnt
= cpu_to_le32(sg_head
->sg_list
[0].bytes
);
7936 * Set sg_entry_cnt to be the number of SG elements that
7937 * will fit in the allocated SG queues. It is minus 1, because
7938 * the first SG element is handled above.
7940 sg_entry_cnt
= sg_head
->entry_cnt
- 1;
7942 if (sg_entry_cnt
!= 0) {
7943 scsiq
->q1
.cntl
|= QC_SG_HEAD
;
7944 q_addr
= ASC_QNO_TO_QADDR(q_no
);
7946 scsiq
->q1
.sg_queue_cnt
= sg_head
->queue_cnt
;
7947 scsi_sg_q
.sg_head_qp
= q_no
;
7948 scsi_sg_q
.cntl
= QCSG_SG_XFER_LIST
;
7949 for (i
= 0; i
< sg_head
->queue_cnt
; i
++) {
7950 scsi_sg_q
.seq_no
= i
+ 1;
7951 if (sg_entry_cnt
> ASC_SG_LIST_PER_Q
) {
7952 sg_list_dwords
= (uchar
)(ASC_SG_LIST_PER_Q
* 2);
7953 sg_entry_cnt
-= ASC_SG_LIST_PER_Q
;
7955 scsi_sg_q
.sg_list_cnt
=
7957 scsi_sg_q
.sg_cur_list_cnt
=
7960 scsi_sg_q
.sg_list_cnt
=
7961 ASC_SG_LIST_PER_Q
- 1;
7962 scsi_sg_q
.sg_cur_list_cnt
=
7963 ASC_SG_LIST_PER_Q
- 1;
7966 scsi_sg_q
.cntl
|= QCSG_SG_XFER_END
;
7967 sg_list_dwords
= sg_entry_cnt
<< 1;
7969 scsi_sg_q
.sg_list_cnt
= sg_entry_cnt
;
7970 scsi_sg_q
.sg_cur_list_cnt
=
7973 scsi_sg_q
.sg_list_cnt
=
7975 scsi_sg_q
.sg_cur_list_cnt
=
7980 next_qp
= AscReadLramByte(iop_base
,
7983 scsi_sg_q
.q_no
= next_qp
;
7984 q_addr
= ASC_QNO_TO_QADDR(next_qp
);
7985 AscMemWordCopyPtrToLram(iop_base
,
7986 q_addr
+ ASC_SCSIQ_SGHD_CPY_BEG
,
7987 (uchar
*)&scsi_sg_q
,
7988 sizeof(ASC_SG_LIST_Q
) >> 1);
7989 AscMemDWordCopyPtrToLram(iop_base
,
7990 q_addr
+ ASC_SGQ_LIST_BEG
,
7994 sg_index
+= ASC_SG_LIST_PER_Q
;
7995 scsiq
->next_sg_index
= sg_index
;
7998 scsiq
->q1
.cntl
&= ~QC_SG_HEAD
;
8000 sta
= AscPutReadyQueue(asc_dvc
, scsiq
, q_no
);
8001 scsiq
->q1
.data_addr
= saved_data_addr
;
8002 scsiq
->q1
.data_cnt
= saved_data_cnt
;
8007 AscSendScsiQueue(ASC_DVC_VAR
*asc_dvc
, ASC_SCSI_Q
*scsiq
, uchar n_q_required
)
8016 iop_base
= asc_dvc
->iop_base
;
8017 target_ix
= scsiq
->q2
.target_ix
;
8018 tid_no
= ASC_TIX_TO_TID(target_ix
);
8020 free_q_head
= (uchar
)AscGetVarFreeQHead(iop_base
);
8021 if (n_q_required
> 1) {
8022 next_qp
= AscAllocMultipleFreeQueue(iop_base
, free_q_head
,
8023 (uchar
)n_q_required
);
8024 if (next_qp
!= ASC_QLINK_END
) {
8025 asc_dvc
->last_q_shortage
= 0;
8026 scsiq
->sg_head
->queue_cnt
= n_q_required
- 1;
8027 scsiq
->q1
.q_no
= free_q_head
;
8028 sta
= AscPutReadySgListQueue(asc_dvc
, scsiq
,
8031 } else if (n_q_required
== 1) {
8032 next_qp
= AscAllocFreeQueue(iop_base
, free_q_head
);
8033 if (next_qp
!= ASC_QLINK_END
) {
8034 scsiq
->q1
.q_no
= free_q_head
;
8035 sta
= AscPutReadyQueue(asc_dvc
, scsiq
, free_q_head
);
8039 AscPutVarFreeQHead(iop_base
, next_qp
);
8040 asc_dvc
->cur_total_qng
+= n_q_required
;
8041 asc_dvc
->cur_dvc_qng
[tid_no
]++;
8046 #define ASC_SYN_OFFSET_ONE_DISABLE_LIST 16
8047 static uchar _syn_offset_one_disable_cmd
[ASC_SYN_OFFSET_ONE_DISABLE_LIST
] = {
8066 static int AscExeScsiQueue(ASC_DVC_VAR
*asc_dvc
, ASC_SCSI_Q
*scsiq
)
8071 bool disable_syn_offset_one_fix
;
8074 ushort sg_entry_cnt
= 0;
8075 ushort sg_entry_cnt_minus_one
= 0;
8082 ASC_SG_HEAD
*sg_head
;
8083 unsigned long data_cnt
;
8085 iop_base
= asc_dvc
->iop_base
;
8086 sg_head
= scsiq
->sg_head
;
8087 if (asc_dvc
->err_code
!= 0)
8090 if ((scsiq
->q2
.tag_code
& ASC_TAG_FLAG_EXTRA_BYTES
) == 0) {
8091 scsiq
->q1
.extra_bytes
= 0;
8094 target_ix
= scsiq
->q2
.target_ix
;
8095 tid_no
= ASC_TIX_TO_TID(target_ix
);
8097 if (scsiq
->cdbptr
[0] == REQUEST_SENSE
) {
8098 if ((asc_dvc
->init_sdtr
& scsiq
->q1
.target_id
) != 0) {
8099 asc_dvc
->sdtr_done
&= ~scsiq
->q1
.target_id
;
8100 sdtr_data
= AscGetMCodeInitSDTRAtID(iop_base
, tid_no
);
8101 AscMsgOutSDTR(asc_dvc
,
8103 sdtr_period_tbl
[(sdtr_data
>> 4) &
8107 (uchar
)(sdtr_data
& (uchar
)
8108 ASC_SYN_MAX_OFFSET
));
8109 scsiq
->q1
.cntl
|= (QC_MSG_OUT
| QC_URGENT
);
8112 if (asc_dvc
->in_critical_cnt
!= 0) {
8113 AscSetLibErrorCode(asc_dvc
, ASCQ_ERR_CRITICAL_RE_ENTRY
);
8116 asc_dvc
->in_critical_cnt
++;
8117 if ((scsiq
->q1
.cntl
& QC_SG_HEAD
) != 0) {
8118 if ((sg_entry_cnt
= sg_head
->entry_cnt
) == 0) {
8119 asc_dvc
->in_critical_cnt
--;
8122 if (sg_entry_cnt
> ASC_MAX_SG_LIST
) {
8123 asc_dvc
->in_critical_cnt
--;
8126 if (sg_entry_cnt
== 1) {
8127 scsiq
->q1
.data_addr
= cpu_to_le32(sg_head
->sg_list
[0].addr
);
8128 scsiq
->q1
.data_cnt
= cpu_to_le32(sg_head
->sg_list
[0].bytes
);
8129 scsiq
->q1
.cntl
&= ~(QC_SG_HEAD
| QC_SG_SWAP_QUEUE
);
8131 sg_entry_cnt_minus_one
= sg_entry_cnt
- 1;
8133 scsi_cmd
= scsiq
->cdbptr
[0];
8134 disable_syn_offset_one_fix
= false;
8135 if ((asc_dvc
->pci_fix_asyn_xfer
& scsiq
->q1
.target_id
) &&
8136 !(asc_dvc
->pci_fix_asyn_xfer_always
& scsiq
->q1
.target_id
)) {
8137 if (scsiq
->q1
.cntl
& QC_SG_HEAD
) {
8139 for (i
= 0; i
< sg_entry_cnt
; i
++) {
8140 data_cnt
+= le32_to_cpu(sg_head
->sg_list
[i
].
8144 data_cnt
= le32_to_cpu(scsiq
->q1
.data_cnt
);
8146 if (data_cnt
!= 0UL) {
8147 if (data_cnt
< 512UL) {
8148 disable_syn_offset_one_fix
= true;
8150 for (i
= 0; i
< ASC_SYN_OFFSET_ONE_DISABLE_LIST
;
8153 _syn_offset_one_disable_cmd
[i
];
8154 if (disable_cmd
== 0xFF) {
8157 if (scsi_cmd
== disable_cmd
) {
8158 disable_syn_offset_one_fix
=
8166 if (disable_syn_offset_one_fix
) {
8167 scsiq
->q2
.tag_code
&= ~SIMPLE_QUEUE_TAG
;
8168 scsiq
->q2
.tag_code
|= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX
|
8169 ASC_TAG_FLAG_DISABLE_DISCONNECT
);
8171 scsiq
->q2
.tag_code
&= 0x27;
8173 if ((scsiq
->q1
.cntl
& QC_SG_HEAD
) != 0) {
8174 if (asc_dvc
->bug_fix_cntl
) {
8175 if (asc_dvc
->bug_fix_cntl
& ASC_BUG_FIX_IF_NOT_DWB
) {
8176 if ((scsi_cmd
== READ_6
) ||
8177 (scsi_cmd
== READ_10
)) {
8178 addr
= le32_to_cpu(sg_head
->
8180 [sg_entry_cnt_minus_one
].
8182 le32_to_cpu(sg_head
->
8184 [sg_entry_cnt_minus_one
].
8187 (uchar
)((ushort
)addr
& 0x0003);
8188 if ((extra_bytes
!= 0)
8192 ASC_TAG_FLAG_EXTRA_BYTES
)
8194 scsiq
->q2
.tag_code
|=
8195 ASC_TAG_FLAG_EXTRA_BYTES
;
8196 scsiq
->q1
.extra_bytes
=
8199 le32_to_cpu(sg_head
->
8201 [sg_entry_cnt_minus_one
].
8203 data_cnt
-= extra_bytes
;
8206 [sg_entry_cnt_minus_one
].
8208 cpu_to_le32(data_cnt
);
8213 sg_head
->entry_to_copy
= sg_head
->entry_cnt
;
8214 n_q_required
= AscSgListToQueue(sg_entry_cnt
);
8215 if ((AscGetNumOfFreeQueue(asc_dvc
, target_ix
, n_q_required
) >=
8216 (uint
) n_q_required
)
8217 || ((scsiq
->q1
.cntl
& QC_URGENT
) != 0)) {
8219 AscSendScsiQueue(asc_dvc
, scsiq
,
8220 n_q_required
)) == 1) {
8221 asc_dvc
->in_critical_cnt
--;
8226 if (asc_dvc
->bug_fix_cntl
) {
8227 if (asc_dvc
->bug_fix_cntl
& ASC_BUG_FIX_IF_NOT_DWB
) {
8228 if ((scsi_cmd
== READ_6
) ||
8229 (scsi_cmd
== READ_10
)) {
8231 le32_to_cpu(scsiq
->q1
.data_addr
) +
8232 le32_to_cpu(scsiq
->q1
.data_cnt
);
8234 (uchar
)((ushort
)addr
& 0x0003);
8235 if ((extra_bytes
!= 0)
8239 ASC_TAG_FLAG_EXTRA_BYTES
)
8242 le32_to_cpu(scsiq
->q1
.
8244 if (((ushort
)data_cnt
& 0x01FF)
8246 scsiq
->q2
.tag_code
|=
8247 ASC_TAG_FLAG_EXTRA_BYTES
;
8248 data_cnt
-= extra_bytes
;
8249 scsiq
->q1
.data_cnt
=
8252 scsiq
->q1
.extra_bytes
=
8260 if ((AscGetNumOfFreeQueue(asc_dvc
, target_ix
, 1) >= 1) ||
8261 ((scsiq
->q1
.cntl
& QC_URGENT
) != 0)) {
8262 if ((sta
= AscSendScsiQueue(asc_dvc
, scsiq
,
8263 n_q_required
)) == 1) {
8264 asc_dvc
->in_critical_cnt
--;
8269 asc_dvc
->in_critical_cnt
--;
8274 * AdvExeScsiQueue() - Send a request to the RISC microcode program.
8276 * Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q,
8277 * add the carrier to the ICQ (Initiator Command Queue), and tickle the
8278 * RISC to notify it a new command is ready to be executed.
8280 * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
8281 * set to SCSI_MAX_RETRY.
8283 * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the microcode
8284 * for DMA addresses or math operations are byte swapped to little-endian
8288 * ADV_SUCCESS(1) - The request was successfully queued.
8289 * ADV_BUSY(0) - Resource unavailable; Retry again after pending
8290 * request completes.
8291 * ADV_ERROR(-1) - Invalid ADV_SCSI_REQ_Q request structure
8294 static int AdvExeScsiQueue(ADV_DVC_VAR
*asc_dvc
, adv_req_t
*reqp
)
8296 AdvPortAddr iop_base
;
8297 ADV_CARR_T
*new_carrp
;
8298 ADV_SCSI_REQ_Q
*scsiq
= &reqp
->scsi_req_q
;
8301 * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID.
8303 if (scsiq
->target_id
> ADV_MAX_TID
) {
8304 scsiq
->host_status
= QHSTA_M_INVALID_DEVICE
;
8305 scsiq
->done_status
= QD_WITH_ERROR
;
8309 iop_base
= asc_dvc
->iop_base
;
8312 * Allocate a carrier ensuring at least one carrier always
8313 * remains on the freelist and initialize fields.
8315 new_carrp
= adv_get_next_carrier(asc_dvc
);
8317 ASC_DBG(1, "No free carriers\n");
8321 asc_dvc
->carr_pending_cnt
++;
8323 /* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */
8324 scsiq
->scsiq_ptr
= cpu_to_le32(scsiq
->srb_tag
);
8325 scsiq
->scsiq_rptr
= cpu_to_le32(reqp
->req_addr
);
8327 scsiq
->carr_va
= asc_dvc
->icq_sp
->carr_va
;
8328 scsiq
->carr_pa
= asc_dvc
->icq_sp
->carr_pa
;
8331 * Use the current stopper to send the ADV_SCSI_REQ_Q command to
8332 * the microcode. The newly allocated stopper will become the new
8335 asc_dvc
->icq_sp
->areq_vpa
= scsiq
->scsiq_rptr
;
8338 * Set the 'next_vpa' pointer for the old stopper to be the
8339 * physical address of the new stopper. The RISC can only
8340 * follow physical addresses.
8342 asc_dvc
->icq_sp
->next_vpa
= new_carrp
->carr_pa
;
8345 * Set the host adapter stopper pointer to point to the new carrier.
8347 asc_dvc
->icq_sp
= new_carrp
;
8349 if (asc_dvc
->chip_type
== ADV_CHIP_ASC3550
||
8350 asc_dvc
->chip_type
== ADV_CHIP_ASC38C0800
) {
8352 * Tickle the RISC to tell it to read its Command Queue Head pointer.
8354 AdvWriteByteRegister(iop_base
, IOPB_TICKLE
, ADV_TICKLE_A
);
8355 if (asc_dvc
->chip_type
== ADV_CHIP_ASC3550
) {
8357 * Clear the tickle value. In the ASC-3550 the RISC flag
8358 * command 'clr_tickle_a' does not work unless the host
8361 AdvWriteByteRegister(iop_base
, IOPB_TICKLE
,
8364 } else if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C1600
) {
8366 * Notify the RISC a carrier is ready by writing the physical
8367 * address of the new carrier stopper to the COMMA register.
8369 AdvWriteDWordRegister(iop_base
, IOPDW_COMMA
,
8370 le32_to_cpu(new_carrp
->carr_pa
));
8377 * Execute a single 'struct scsi_cmnd'.
8379 static int asc_execute_scsi_cmnd(struct scsi_cmnd
*scp
)
8382 struct asc_board
*boardp
= shost_priv(scp
->device
->host
);
8384 ASC_DBG(1, "scp 0x%p\n", scp
);
8386 if (ASC_NARROW_BOARD(boardp
)) {
8387 ASC_DVC_VAR
*asc_dvc
= &boardp
->dvc_var
.asc_dvc_var
;
8388 struct asc_scsi_q asc_scsi_q
;
8390 ret
= asc_build_req(boardp
, scp
, &asc_scsi_q
);
8391 if (ret
!= ASC_NOERROR
) {
8392 ASC_STATS(scp
->device
->host
, build_error
);
8396 ret
= AscExeScsiQueue(asc_dvc
, &asc_scsi_q
);
8397 kfree(asc_scsi_q
.sg_head
);
8398 err_code
= asc_dvc
->err_code
;
8400 ADV_DVC_VAR
*adv_dvc
= &boardp
->dvc_var
.adv_dvc_var
;
8401 adv_req_t
*adv_reqp
;
8403 switch (adv_build_req(boardp
, scp
, &adv_reqp
)) {
8405 ASC_DBG(3, "adv_build_req ASC_NOERROR\n");
8408 ASC_DBG(1, "adv_build_req ASC_BUSY\n");
8410 * The asc_stats fields 'adv_build_noreq' and
8411 * 'adv_build_nosg' count wide board busy conditions.
8412 * They are updated in adv_build_req and
8413 * adv_get_sglist, respectively.
8418 ASC_DBG(1, "adv_build_req ASC_ERROR\n");
8419 ASC_STATS(scp
->device
->host
, build_error
);
8423 ret
= AdvExeScsiQueue(adv_dvc
, adv_reqp
);
8424 err_code
= adv_dvc
->err_code
;
8429 ASC_STATS(scp
->device
->host
, exe_noerror
);
8431 * Increment monotonically increasing per device
8432 * successful request counter. Wrapping doesn't matter.
8434 boardp
->reqcnt
[scp
->device
->id
]++;
8435 ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n");
8438 ASC_DBG(1, "ExeScsiQueue() ASC_BUSY\n");
8439 ASC_STATS(scp
->device
->host
, exe_busy
);
8442 scmd_printk(KERN_ERR
, scp
, "ExeScsiQueue() ASC_ERROR, "
8443 "err_code 0x%x\n", err_code
);
8444 ASC_STATS(scp
->device
->host
, exe_error
);
8445 set_host_byte(scp
, DID_ERROR
);
8448 scmd_printk(KERN_ERR
, scp
, "ExeScsiQueue() unknown, "
8449 "err_code 0x%x\n", err_code
);
8450 ASC_STATS(scp
->device
->host
, exe_unknown
);
8451 set_host_byte(scp
, DID_ERROR
);
8455 ASC_DBG(1, "end\n");
8460 * advansys_queuecommand() - interrupt-driven I/O entrypoint.
8462 * This function always returns 0. Command return status is saved
8463 * in the 'scp' result field.
8465 static int advansys_queuecommand_lck(struct scsi_cmnd
*scp
)
8467 struct Scsi_Host
*shost
= scp
->device
->host
;
8468 int asc_res
, result
= 0;
8470 ASC_STATS(shost
, queuecommand
);
8472 asc_res
= asc_execute_scsi_cmnd(scp
);
8478 result
= SCSI_MLQUEUE_HOST_BUSY
;
8489 static DEF_SCSI_QCMD(advansys_queuecommand
)
8491 static ushort
AscGetEisaChipCfg(PortAddr iop_base
)
8493 PortAddr eisa_cfg_iop
= (PortAddr
) ASC_GET_EISA_SLOT(iop_base
) |
8494 (PortAddr
) (ASC_EISA_CFG_IOP_MASK
);
8495 return inpw(eisa_cfg_iop
);
8499 * Return the BIOS address of the adapter at the specified
8500 * I/O port and with the specified bus type.
8502 static unsigned short AscGetChipBiosAddress(PortAddr iop_base
,
8503 unsigned short bus_type
)
8505 unsigned short cfg_lsw
;
8506 unsigned short bios_addr
;
8509 * The PCI BIOS is re-located by the motherboard BIOS. Because
8510 * of this the driver can not determine where a PCI BIOS is
8511 * loaded and executes.
8513 if (bus_type
& ASC_IS_PCI
)
8516 if ((bus_type
& ASC_IS_EISA
) != 0) {
8517 cfg_lsw
= AscGetEisaChipCfg(iop_base
);
8519 bios_addr
= ASC_BIOS_MIN_ADDR
+ cfg_lsw
* ASC_BIOS_BANK_SIZE
;
8523 cfg_lsw
= AscGetChipCfgLsw(iop_base
);
8524 bios_addr
= ASC_BIOS_MIN_ADDR
+ (cfg_lsw
>> 12) * ASC_BIOS_BANK_SIZE
;
8528 static uchar
AscSetChipScsiID(PortAddr iop_base
, uchar new_host_id
)
8532 if (AscGetChipScsiID(iop_base
) == new_host_id
) {
8533 return (new_host_id
);
8535 cfg_lsw
= AscGetChipCfgLsw(iop_base
);
8537 cfg_lsw
|= (ushort
)((new_host_id
& ASC_MAX_TID
) << 8);
8538 AscSetChipCfgLsw(iop_base
, cfg_lsw
);
8539 return (AscGetChipScsiID(iop_base
));
8542 static unsigned char AscGetChipScsiCtrl(PortAddr iop_base
)
8546 AscSetBank(iop_base
, 1);
8547 sc
= inp(iop_base
+ IOP_REG_SC
);
8548 AscSetBank(iop_base
, 0);
8552 static unsigned char AscGetChipVersion(PortAddr iop_base
,
8553 unsigned short bus_type
)
8555 if (bus_type
& ASC_IS_EISA
) {
8557 unsigned char revision
;
8558 eisa_iop
= (PortAddr
) ASC_GET_EISA_SLOT(iop_base
) |
8559 (PortAddr
) ASC_EISA_REV_IOP_MASK
;
8560 revision
= inp(eisa_iop
);
8561 return ASC_CHIP_MIN_VER_EISA
- 1 + revision
;
8563 return AscGetChipVerNo(iop_base
);
8566 static int AscStopQueueExe(PortAddr iop_base
)
8570 if (AscReadLramByte(iop_base
, ASCV_STOP_CODE_B
) == 0) {
8571 AscWriteLramByte(iop_base
, ASCV_STOP_CODE_B
,
8572 ASC_STOP_REQ_RISC_STOP
);
8574 if (AscReadLramByte(iop_base
, ASCV_STOP_CODE_B
) &
8575 ASC_STOP_ACK_RISC_STOP
) {
8579 } while (count
++ < 20);
8584 static unsigned int AscGetMaxDmaCount(ushort bus_type
)
8586 if (bus_type
& (ASC_IS_EISA
| ASC_IS_VL
))
8587 return ASC_MAX_VL_DMA_COUNT
;
8588 return ASC_MAX_PCI_DMA_COUNT
;
8591 static void AscInitAscDvcVar(ASC_DVC_VAR
*asc_dvc
)
8597 iop_base
= asc_dvc
->iop_base
;
8598 asc_dvc
->err_code
= 0;
8599 if ((asc_dvc
->bus_type
&
8600 (ASC_IS_PCI
| ASC_IS_EISA
| ASC_IS_VL
)) == 0) {
8601 asc_dvc
->err_code
|= ASC_IERR_NO_BUS_TYPE
;
8603 AscSetChipControl(iop_base
, CC_HALT
);
8604 AscSetChipStatus(iop_base
, 0);
8605 asc_dvc
->bug_fix_cntl
= 0;
8606 asc_dvc
->pci_fix_asyn_xfer
= 0;
8607 asc_dvc
->pci_fix_asyn_xfer_always
= 0;
8608 /* asc_dvc->init_state initialized in AscInitGetConfig(). */
8609 asc_dvc
->sdtr_done
= 0;
8610 asc_dvc
->cur_total_qng
= 0;
8611 asc_dvc
->is_in_int
= false;
8612 asc_dvc
->in_critical_cnt
= 0;
8613 asc_dvc
->last_q_shortage
= 0;
8614 asc_dvc
->use_tagged_qng
= 0;
8615 asc_dvc
->no_scam
= 0;
8616 asc_dvc
->unit_not_ready
= 0;
8617 asc_dvc
->queue_full_or_busy
= 0;
8618 asc_dvc
->redo_scam
= 0;
8620 asc_dvc
->min_sdtr_index
= 0;
8621 asc_dvc
->cfg
->can_tagged_qng
= 0;
8622 asc_dvc
->cfg
->cmd_qng_enabled
= 0;
8623 asc_dvc
->dvc_cntl
= ASC_DEF_DVC_CNTL
;
8624 asc_dvc
->init_sdtr
= 0;
8625 asc_dvc
->max_total_qng
= ASC_DEF_MAX_TOTAL_QNG
;
8626 asc_dvc
->scsi_reset_wait
= 3;
8627 asc_dvc
->start_motor
= ASC_SCSI_WIDTH_BIT_SET
;
8628 asc_dvc
->max_dma_count
= AscGetMaxDmaCount(asc_dvc
->bus_type
);
8629 asc_dvc
->cfg
->sdtr_enable
= ASC_SCSI_WIDTH_BIT_SET
;
8630 asc_dvc
->cfg
->disc_enable
= ASC_SCSI_WIDTH_BIT_SET
;
8631 asc_dvc
->cfg
->chip_scsi_id
= ASC_DEF_CHIP_SCSI_ID
;
8632 chip_version
= AscGetChipVersion(iop_base
, asc_dvc
->bus_type
);
8633 asc_dvc
->cfg
->chip_version
= chip_version
;
8634 asc_dvc
->sdtr_period_tbl
= asc_syn_xfer_period
;
8635 asc_dvc
->max_sdtr_index
= 7;
8636 if ((asc_dvc
->bus_type
& ASC_IS_PCI
) &&
8637 (chip_version
>= ASC_CHIP_VER_PCI_ULTRA_3150
)) {
8638 asc_dvc
->bus_type
= ASC_IS_PCI_ULTRA
;
8639 asc_dvc
->sdtr_period_tbl
= asc_syn_ultra_xfer_period
;
8640 asc_dvc
->max_sdtr_index
= 15;
8641 if (chip_version
== ASC_CHIP_VER_PCI_ULTRA_3150
) {
8642 AscSetExtraControl(iop_base
,
8643 (SEC_ACTIVE_NEGATE
| SEC_SLEW_RATE
));
8644 } else if (chip_version
>= ASC_CHIP_VER_PCI_ULTRA_3050
) {
8645 AscSetExtraControl(iop_base
,
8646 (SEC_ACTIVE_NEGATE
|
8647 SEC_ENABLE_FILTER
));
8650 if (asc_dvc
->bus_type
== ASC_IS_PCI
) {
8651 AscSetExtraControl(iop_base
,
8652 (SEC_ACTIVE_NEGATE
| SEC_SLEW_RATE
));
8655 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
8656 asc_dvc
->cur_dvc_qng
[i
] = 0;
8657 asc_dvc
->max_dvc_qng
[i
] = ASC_MAX_SCSI1_QNG
;
8658 asc_dvc
->scsiq_busy_head
[i
] = (ASC_SCSI_Q
*)0L;
8659 asc_dvc
->scsiq_busy_tail
[i
] = (ASC_SCSI_Q
*)0L;
8660 asc_dvc
->cfg
->max_tag_qng
[i
] = ASC_MAX_INRAM_TAG_QNG
;
8664 static int AscWriteEEPCmdReg(PortAddr iop_base
, uchar cmd_reg
)
8668 for (retry
= 0; retry
< ASC_EEP_MAX_RETRY
; retry
++) {
8669 unsigned char read_back
;
8670 AscSetChipEEPCmd(iop_base
, cmd_reg
);
8672 read_back
= AscGetChipEEPCmd(iop_base
);
8673 if (read_back
== cmd_reg
)
8679 static void AscWaitEEPRead(void)
8684 static ushort
AscReadEEPWord(PortAddr iop_base
, uchar addr
)
8689 AscWriteEEPCmdReg(iop_base
, ASC_EEP_CMD_WRITE_DISABLE
);
8691 cmd_reg
= addr
| ASC_EEP_CMD_READ
;
8692 AscWriteEEPCmdReg(iop_base
, cmd_reg
);
8694 read_wval
= AscGetChipEEPData(iop_base
);
8699 static ushort
AscGetEEPConfig(PortAddr iop_base
, ASCEEP_CONFIG
*cfg_buf
,
8707 int uchar_end_in_config
= ASC_EEP_MAX_DVC_ADDR
- 2;
8710 wbuf
= (ushort
*)cfg_buf
;
8712 /* Read two config words; Byte-swapping done by AscReadEEPWord(). */
8713 for (s_addr
= 0; s_addr
< 2; s_addr
++, wbuf
++) {
8714 *wbuf
= AscReadEEPWord(iop_base
, (uchar
)s_addr
);
8717 if (bus_type
& ASC_IS_VL
) {
8718 cfg_beg
= ASC_EEP_DVC_CFG_BEG_VL
;
8719 cfg_end
= ASC_EEP_MAX_DVC_ADDR_VL
;
8721 cfg_beg
= ASC_EEP_DVC_CFG_BEG
;
8722 cfg_end
= ASC_EEP_MAX_DVC_ADDR
;
8724 for (s_addr
= cfg_beg
; s_addr
<= (cfg_end
- 1); s_addr
++, wbuf
++) {
8725 wval
= AscReadEEPWord(iop_base
, (uchar
)s_addr
);
8726 if (s_addr
<= uchar_end_in_config
) {
8728 * Swap all char fields - must unswap bytes already swapped
8729 * by AscReadEEPWord().
8731 *wbuf
= le16_to_cpu(wval
);
8733 /* Don't swap word field at the end - cntl field. */
8736 sum
+= wval
; /* Checksum treats all EEPROM data as words. */
8739 * Read the checksum word which will be compared against 'sum'
8740 * by the caller. Word field already swapped.
8742 *wbuf
= AscReadEEPWord(iop_base
, (uchar
)s_addr
);
8746 static int AscTestExternalLram(ASC_DVC_VAR
*asc_dvc
)
8753 iop_base
= asc_dvc
->iop_base
;
8755 q_addr
= ASC_QNO_TO_QADDR(241);
8756 saved_word
= AscReadLramWord(iop_base
, q_addr
);
8757 AscSetChipLramAddr(iop_base
, q_addr
);
8758 AscSetChipLramData(iop_base
, 0x55AA);
8760 AscSetChipLramAddr(iop_base
, q_addr
);
8761 if (AscGetChipLramData(iop_base
) == 0x55AA) {
8763 AscWriteLramWord(iop_base
, q_addr
, saved_word
);
8768 static void AscWaitEEPWrite(void)
8773 static int AscWriteEEPDataReg(PortAddr iop_base
, ushort data_reg
)
8780 AscSetChipEEPData(iop_base
, data_reg
);
8782 read_back
= AscGetChipEEPData(iop_base
);
8783 if (read_back
== data_reg
) {
8786 if (retry
++ > ASC_EEP_MAX_RETRY
) {
8792 static ushort
AscWriteEEPWord(PortAddr iop_base
, uchar addr
, ushort word_val
)
8796 read_wval
= AscReadEEPWord(iop_base
, addr
);
8797 if (read_wval
!= word_val
) {
8798 AscWriteEEPCmdReg(iop_base
, ASC_EEP_CMD_WRITE_ABLE
);
8800 AscWriteEEPDataReg(iop_base
, word_val
);
8802 AscWriteEEPCmdReg(iop_base
,
8803 (uchar
)((uchar
)ASC_EEP_CMD_WRITE
| addr
));
8805 AscWriteEEPCmdReg(iop_base
, ASC_EEP_CMD_WRITE_DISABLE
);
8807 return (AscReadEEPWord(iop_base
, addr
));
8812 static int AscSetEEPConfigOnce(PortAddr iop_base
, ASCEEP_CONFIG
*cfg_buf
,
8822 int uchar_end_in_config
= ASC_EEP_MAX_DVC_ADDR
- 2;
8824 wbuf
= (ushort
*)cfg_buf
;
8827 /* Write two config words; AscWriteEEPWord() will swap bytes. */
8828 for (s_addr
= 0; s_addr
< 2; s_addr
++, wbuf
++) {
8830 if (*wbuf
!= AscWriteEEPWord(iop_base
, (uchar
)s_addr
, *wbuf
)) {
8834 if (bus_type
& ASC_IS_VL
) {
8835 cfg_beg
= ASC_EEP_DVC_CFG_BEG_VL
;
8836 cfg_end
= ASC_EEP_MAX_DVC_ADDR_VL
;
8838 cfg_beg
= ASC_EEP_DVC_CFG_BEG
;
8839 cfg_end
= ASC_EEP_MAX_DVC_ADDR
;
8841 for (s_addr
= cfg_beg
; s_addr
<= (cfg_end
- 1); s_addr
++, wbuf
++) {
8842 if (s_addr
<= uchar_end_in_config
) {
8844 * This is a char field. Swap char fields before they are
8845 * swapped again by AscWriteEEPWord().
8847 word
= cpu_to_le16(*wbuf
);
8849 AscWriteEEPWord(iop_base
, (uchar
)s_addr
, word
)) {
8853 /* Don't swap word field at the end - cntl field. */
8855 AscWriteEEPWord(iop_base
, (uchar
)s_addr
, *wbuf
)) {
8859 sum
+= *wbuf
; /* Checksum calculated from word values. */
8861 /* Write checksum word. It will be swapped by AscWriteEEPWord(). */
8863 if (sum
!= AscWriteEEPWord(iop_base
, (uchar
)s_addr
, sum
)) {
8867 /* Read EEPROM back again. */
8868 wbuf
= (ushort
*)cfg_buf
;
8870 * Read two config words; Byte-swapping done by AscReadEEPWord().
8872 for (s_addr
= 0; s_addr
< 2; s_addr
++, wbuf
++) {
8873 if (*wbuf
!= AscReadEEPWord(iop_base
, (uchar
)s_addr
)) {
8877 if (bus_type
& ASC_IS_VL
) {
8878 cfg_beg
= ASC_EEP_DVC_CFG_BEG_VL
;
8879 cfg_end
= ASC_EEP_MAX_DVC_ADDR_VL
;
8881 cfg_beg
= ASC_EEP_DVC_CFG_BEG
;
8882 cfg_end
= ASC_EEP_MAX_DVC_ADDR
;
8884 for (s_addr
= cfg_beg
; s_addr
<= (cfg_end
- 1); s_addr
++, wbuf
++) {
8885 if (s_addr
<= uchar_end_in_config
) {
8887 * Swap all char fields. Must unswap bytes already swapped
8888 * by AscReadEEPWord().
8891 le16_to_cpu(AscReadEEPWord
8892 (iop_base
, (uchar
)s_addr
));
8894 /* Don't swap word field at the end - cntl field. */
8895 word
= AscReadEEPWord(iop_base
, (uchar
)s_addr
);
8897 if (*wbuf
!= word
) {
8901 /* Read checksum; Byte swapping not needed. */
8902 if (AscReadEEPWord(iop_base
, (uchar
)s_addr
) != sum
) {
8908 static int AscSetEEPConfig(PortAddr iop_base
, ASCEEP_CONFIG
*cfg_buf
,
8916 if ((n_error
= AscSetEEPConfigOnce(iop_base
, cfg_buf
,
8920 if (++retry
> ASC_EEP_MAX_RETRY
) {
8927 static int AscInitFromEEP(ASC_DVC_VAR
*asc_dvc
)
8929 ASCEEP_CONFIG eep_config_buf
;
8930 ASCEEP_CONFIG
*eep_config
;
8934 ushort cfg_msw
, cfg_lsw
;
8938 iop_base
= asc_dvc
->iop_base
;
8940 AscWriteLramWord(iop_base
, ASCV_HALTCODE_W
, 0x00FE);
8941 AscStopQueueExe(iop_base
);
8942 if ((AscStopChip(iop_base
)) ||
8943 (AscGetChipScsiCtrl(iop_base
) != 0)) {
8944 asc_dvc
->init_state
|= ASC_INIT_RESET_SCSI_DONE
;
8945 AscResetChipAndScsiBus(asc_dvc
);
8946 mdelay(asc_dvc
->scsi_reset_wait
* 1000); /* XXX: msleep? */
8948 if (!AscIsChipHalted(iop_base
)) {
8949 asc_dvc
->err_code
|= ASC_IERR_START_STOP_CHIP
;
8952 AscSetPCAddr(iop_base
, ASC_MCODE_START_ADDR
);
8953 if (AscGetPCAddr(iop_base
) != ASC_MCODE_START_ADDR
) {
8954 asc_dvc
->err_code
|= ASC_IERR_SET_PC_ADDR
;
8957 eep_config
= (ASCEEP_CONFIG
*)&eep_config_buf
;
8958 cfg_msw
= AscGetChipCfgMsw(iop_base
);
8959 cfg_lsw
= AscGetChipCfgLsw(iop_base
);
8960 if ((cfg_msw
& ASC_CFG_MSW_CLR_MASK
) != 0) {
8961 cfg_msw
&= ~ASC_CFG_MSW_CLR_MASK
;
8962 warn_code
|= ASC_WARN_CFG_MSW_RECOVER
;
8963 AscSetChipCfgMsw(iop_base
, cfg_msw
);
8965 chksum
= AscGetEEPConfig(iop_base
, eep_config
, asc_dvc
->bus_type
);
8966 ASC_DBG(1, "chksum 0x%x\n", chksum
);
8970 if (AscGetChipStatus(iop_base
) & CSW_AUTO_CONFIG
) {
8971 warn_code
|= ASC_WARN_AUTO_CONFIG
;
8972 if (asc_dvc
->cfg
->chip_version
== 3) {
8973 if (eep_config
->cfg_lsw
!= cfg_lsw
) {
8974 warn_code
|= ASC_WARN_EEPROM_RECOVER
;
8975 eep_config
->cfg_lsw
=
8976 AscGetChipCfgLsw(iop_base
);
8978 if (eep_config
->cfg_msw
!= cfg_msw
) {
8979 warn_code
|= ASC_WARN_EEPROM_RECOVER
;
8980 eep_config
->cfg_msw
=
8981 AscGetChipCfgMsw(iop_base
);
8985 eep_config
->cfg_msw
&= ~ASC_CFG_MSW_CLR_MASK
;
8986 eep_config
->cfg_lsw
|= ASC_CFG0_HOST_INT_ON
;
8987 ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config
->chksum
);
8988 if (chksum
!= eep_config
->chksum
) {
8989 if (AscGetChipVersion(iop_base
, asc_dvc
->bus_type
) ==
8990 ASC_CHIP_VER_PCI_ULTRA_3050
) {
8991 ASC_DBG(1, "chksum error ignored; EEPROM-less board\n");
8992 eep_config
->init_sdtr
= 0xFF;
8993 eep_config
->disc_enable
= 0xFF;
8994 eep_config
->start_motor
= 0xFF;
8995 eep_config
->use_cmd_qng
= 0;
8996 eep_config
->max_total_qng
= 0xF0;
8997 eep_config
->max_tag_qng
= 0x20;
8998 eep_config
->cntl
= 0xBFFF;
8999 ASC_EEP_SET_CHIP_ID(eep_config
, 7);
9000 eep_config
->no_scam
= 0;
9001 eep_config
->adapter_info
[0] = 0;
9002 eep_config
->adapter_info
[1] = 0;
9003 eep_config
->adapter_info
[2] = 0;
9004 eep_config
->adapter_info
[3] = 0;
9005 eep_config
->adapter_info
[4] = 0;
9006 /* Indicate EEPROM-less board. */
9007 eep_config
->adapter_info
[5] = 0xBB;
9010 ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n");
9012 warn_code
|= ASC_WARN_EEPROM_CHKSUM
;
9015 asc_dvc
->cfg
->sdtr_enable
= eep_config
->init_sdtr
;
9016 asc_dvc
->cfg
->disc_enable
= eep_config
->disc_enable
;
9017 asc_dvc
->cfg
->cmd_qng_enabled
= eep_config
->use_cmd_qng
;
9018 asc_dvc
->start_motor
= eep_config
->start_motor
;
9019 asc_dvc
->dvc_cntl
= eep_config
->cntl
;
9020 asc_dvc
->no_scam
= eep_config
->no_scam
;
9021 asc_dvc
->cfg
->adapter_info
[0] = eep_config
->adapter_info
[0];
9022 asc_dvc
->cfg
->adapter_info
[1] = eep_config
->adapter_info
[1];
9023 asc_dvc
->cfg
->adapter_info
[2] = eep_config
->adapter_info
[2];
9024 asc_dvc
->cfg
->adapter_info
[3] = eep_config
->adapter_info
[3];
9025 asc_dvc
->cfg
->adapter_info
[4] = eep_config
->adapter_info
[4];
9026 asc_dvc
->cfg
->adapter_info
[5] = eep_config
->adapter_info
[5];
9027 if (!AscTestExternalLram(asc_dvc
)) {
9028 if (((asc_dvc
->bus_type
& ASC_IS_PCI_ULTRA
) ==
9029 ASC_IS_PCI_ULTRA
)) {
9030 eep_config
->max_total_qng
=
9031 ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG
;
9032 eep_config
->max_tag_qng
=
9033 ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG
;
9035 eep_config
->cfg_msw
|= 0x0800;
9037 AscSetChipCfgMsw(iop_base
, cfg_msw
);
9038 eep_config
->max_total_qng
= ASC_MAX_PCI_INRAM_TOTAL_QNG
;
9039 eep_config
->max_tag_qng
= ASC_MAX_INRAM_TAG_QNG
;
9043 if (eep_config
->max_total_qng
< ASC_MIN_TOTAL_QNG
) {
9044 eep_config
->max_total_qng
= ASC_MIN_TOTAL_QNG
;
9046 if (eep_config
->max_total_qng
> ASC_MAX_TOTAL_QNG
) {
9047 eep_config
->max_total_qng
= ASC_MAX_TOTAL_QNG
;
9049 if (eep_config
->max_tag_qng
> eep_config
->max_total_qng
) {
9050 eep_config
->max_tag_qng
= eep_config
->max_total_qng
;
9052 if (eep_config
->max_tag_qng
< ASC_MIN_TAG_Q_PER_DVC
) {
9053 eep_config
->max_tag_qng
= ASC_MIN_TAG_Q_PER_DVC
;
9055 asc_dvc
->max_total_qng
= eep_config
->max_total_qng
;
9056 if ((eep_config
->use_cmd_qng
& eep_config
->disc_enable
) !=
9057 eep_config
->use_cmd_qng
) {
9058 eep_config
->disc_enable
= eep_config
->use_cmd_qng
;
9059 warn_code
|= ASC_WARN_CMD_QNG_CONFLICT
;
9061 ASC_EEP_SET_CHIP_ID(eep_config
,
9062 ASC_EEP_GET_CHIP_ID(eep_config
) & ASC_MAX_TID
);
9063 asc_dvc
->cfg
->chip_scsi_id
= ASC_EEP_GET_CHIP_ID(eep_config
);
9064 if (((asc_dvc
->bus_type
& ASC_IS_PCI_ULTRA
) == ASC_IS_PCI_ULTRA
) &&
9065 !(asc_dvc
->dvc_cntl
& ASC_CNTL_SDTR_ENABLE_ULTRA
)) {
9066 asc_dvc
->min_sdtr_index
= ASC_SDTR_ULTRA_PCI_10MB_INDEX
;
9069 for (i
= 0; i
<= ASC_MAX_TID
; i
++) {
9070 asc_dvc
->dos_int13_table
[i
] = eep_config
->dos_int13_table
[i
];
9071 asc_dvc
->cfg
->max_tag_qng
[i
] = eep_config
->max_tag_qng
;
9072 asc_dvc
->cfg
->sdtr_period_offset
[i
] =
9073 (uchar
)(ASC_DEF_SDTR_OFFSET
|
9074 (asc_dvc
->min_sdtr_index
<< 4));
9076 eep_config
->cfg_msw
= AscGetChipCfgMsw(iop_base
);
9078 if ((i
= AscSetEEPConfig(iop_base
, eep_config
,
9079 asc_dvc
->bus_type
)) != 0) {
9081 ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n",
9085 ("AscInitFromEEP: Successfully re-wrote EEPROM.\n");
9091 static int AscInitGetConfig(struct Scsi_Host
*shost
)
9093 struct asc_board
*board
= shost_priv(shost
);
9094 ASC_DVC_VAR
*asc_dvc
= &board
->dvc_var
.asc_dvc_var
;
9095 unsigned short warn_code
= 0;
9097 asc_dvc
->init_state
= ASC_INIT_STATE_BEG_GET_CFG
;
9098 if (asc_dvc
->err_code
!= 0)
9099 return asc_dvc
->err_code
;
9101 if (AscFindSignature(asc_dvc
->iop_base
)) {
9102 AscInitAscDvcVar(asc_dvc
);
9103 warn_code
= AscInitFromEEP(asc_dvc
);
9104 asc_dvc
->init_state
|= ASC_INIT_STATE_END_GET_CFG
;
9105 if (asc_dvc
->scsi_reset_wait
> ASC_MAX_SCSI_RESET_WAIT
)
9106 asc_dvc
->scsi_reset_wait
= ASC_MAX_SCSI_RESET_WAIT
;
9108 asc_dvc
->err_code
= ASC_IERR_BAD_SIGNATURE
;
9111 switch (warn_code
) {
9112 case 0: /* No error */
9114 case ASC_WARN_IO_PORT_ROTATE
:
9115 shost_printk(KERN_WARNING
, shost
, "I/O port address "
9118 case ASC_WARN_AUTO_CONFIG
:
9119 shost_printk(KERN_WARNING
, shost
, "I/O port increment switch "
9122 case ASC_WARN_EEPROM_CHKSUM
:
9123 shost_printk(KERN_WARNING
, shost
, "EEPROM checksum error\n");
9125 case ASC_WARN_IRQ_MODIFIED
:
9126 shost_printk(KERN_WARNING
, shost
, "IRQ modified\n");
9128 case ASC_WARN_CMD_QNG_CONFLICT
:
9129 shost_printk(KERN_WARNING
, shost
, "tag queuing enabled w/o "
9133 shost_printk(KERN_WARNING
, shost
, "unknown warning: 0x%x\n",
9138 if (asc_dvc
->err_code
!= 0)
9139 shost_printk(KERN_ERR
, shost
, "error 0x%x at init_state "
9140 "0x%x\n", asc_dvc
->err_code
, asc_dvc
->init_state
);
9142 return asc_dvc
->err_code
;
9145 static int AscInitSetConfig(struct pci_dev
*pdev
, struct Scsi_Host
*shost
)
9147 struct asc_board
*board
= shost_priv(shost
);
9148 ASC_DVC_VAR
*asc_dvc
= &board
->dvc_var
.asc_dvc_var
;
9149 PortAddr iop_base
= asc_dvc
->iop_base
;
9150 unsigned short cfg_msw
;
9151 unsigned short warn_code
= 0;
9153 asc_dvc
->init_state
|= ASC_INIT_STATE_BEG_SET_CFG
;
9154 if (asc_dvc
->err_code
!= 0)
9155 return asc_dvc
->err_code
;
9156 if (!AscFindSignature(asc_dvc
->iop_base
)) {
9157 asc_dvc
->err_code
= ASC_IERR_BAD_SIGNATURE
;
9158 return asc_dvc
->err_code
;
9161 cfg_msw
= AscGetChipCfgMsw(iop_base
);
9162 if ((cfg_msw
& ASC_CFG_MSW_CLR_MASK
) != 0) {
9163 cfg_msw
&= ~ASC_CFG_MSW_CLR_MASK
;
9164 warn_code
|= ASC_WARN_CFG_MSW_RECOVER
;
9165 AscSetChipCfgMsw(iop_base
, cfg_msw
);
9167 if ((asc_dvc
->cfg
->cmd_qng_enabled
& asc_dvc
->cfg
->disc_enable
) !=
9168 asc_dvc
->cfg
->cmd_qng_enabled
) {
9169 asc_dvc
->cfg
->disc_enable
= asc_dvc
->cfg
->cmd_qng_enabled
;
9170 warn_code
|= ASC_WARN_CMD_QNG_CONFLICT
;
9172 if (AscGetChipStatus(iop_base
) & CSW_AUTO_CONFIG
) {
9173 warn_code
|= ASC_WARN_AUTO_CONFIG
;
9176 if (asc_dvc
->bus_type
& ASC_IS_PCI
) {
9178 AscSetChipCfgMsw(iop_base
, cfg_msw
);
9179 if ((asc_dvc
->bus_type
& ASC_IS_PCI_ULTRA
) == ASC_IS_PCI_ULTRA
) {
9181 if ((pdev
->device
== PCI_DEVICE_ID_ASP_1200A
) ||
9182 (pdev
->device
== PCI_DEVICE_ID_ASP_ABP940
)) {
9183 asc_dvc
->bug_fix_cntl
|= ASC_BUG_FIX_IF_NOT_DWB
;
9184 asc_dvc
->bug_fix_cntl
|=
9185 ASC_BUG_FIX_ASYN_USE_SYN
;
9189 #endif /* CONFIG_PCI */
9190 if (AscSetChipScsiID(iop_base
, asc_dvc
->cfg
->chip_scsi_id
) !=
9191 asc_dvc
->cfg
->chip_scsi_id
) {
9192 asc_dvc
->err_code
|= ASC_IERR_SET_SCSI_ID
;
9195 asc_dvc
->init_state
|= ASC_INIT_STATE_END_SET_CFG
;
9197 switch (warn_code
) {
9198 case 0: /* No error. */
9200 case ASC_WARN_IO_PORT_ROTATE
:
9201 shost_printk(KERN_WARNING
, shost
, "I/O port address "
9204 case ASC_WARN_AUTO_CONFIG
:
9205 shost_printk(KERN_WARNING
, shost
, "I/O port increment switch "
9208 case ASC_WARN_EEPROM_CHKSUM
:
9209 shost_printk(KERN_WARNING
, shost
, "EEPROM checksum error\n");
9211 case ASC_WARN_IRQ_MODIFIED
:
9212 shost_printk(KERN_WARNING
, shost
, "IRQ modified\n");
9214 case ASC_WARN_CMD_QNG_CONFLICT
:
9215 shost_printk(KERN_WARNING
, shost
, "tag queuing w/o "
9219 shost_printk(KERN_WARNING
, shost
, "unknown warning: 0x%x\n",
9224 if (asc_dvc
->err_code
!= 0)
9225 shost_printk(KERN_ERR
, shost
, "error 0x%x at init_state "
9226 "0x%x\n", asc_dvc
->err_code
, asc_dvc
->init_state
);
9228 return asc_dvc
->err_code
;
9232 * EEPROM Configuration.
9234 * All drivers should use this structure to set the default EEPROM
9235 * configuration. The BIOS now uses this structure when it is built.
9236 * Additional structure information can be found in a_condor.h where
9237 * the structure is defined.
9239 * The *_Field_IsChar structs are needed to correct for endianness.
9240 * These values are read from the board 16 bits at a time directly
9241 * into the structs. Because some fields are char, the values will be
9242 * in the wrong order. The *_Field_IsChar tells when to flip the
9243 * bytes. Data read and written to PCI memory is automatically swapped
9244 * on big-endian platforms so char fields read as words are actually being
9245 * unswapped on big-endian platforms.
9248 static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config
= {
9249 ADV_EEPROM_BIOS_ENABLE
, /* cfg_lsw */
9250 0x0000, /* cfg_msw */
9251 0xFFFF, /* disc_enable */
9252 0xFFFF, /* wdtr_able */
9253 0xFFFF, /* sdtr_able */
9254 0xFFFF, /* start_motor */
9255 0xFFFF, /* tagqng_able */
9256 0xFFFF, /* bios_scan */
9257 0, /* scam_tolerant */
9258 7, /* adapter_scsi_id */
9259 0, /* bios_boot_delay */
9260 3, /* scsi_reset_delay */
9261 0, /* bios_id_lun */
9262 0, /* termination */
9264 0xFFE7, /* bios_ctrl */
9265 0xFFFF, /* ultra_able */
9267 ASC_DEF_MAX_HOST_QNG
, /* max_host_qng */
9268 ASC_DEF_MAX_DVC_QNG
, /* max_dvc_qng */
9271 0, /* serial_number_word1 */
9272 0, /* serial_number_word2 */
9273 0, /* serial_number_word3 */
9275 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9276 , /* oem_name[16] */
9277 0, /* dvc_err_code */
9278 0, /* adv_err_code */
9279 0, /* adv_err_addr */
9280 0, /* saved_dvc_err_code */
9281 0, /* saved_adv_err_code */
9282 0, /* saved_adv_err_addr */
9286 static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar
= {
9289 0, /* -disc_enable */
9292 0, /* start_motor */
9293 0, /* tagqng_able */
9295 0, /* scam_tolerant */
9296 1, /* adapter_scsi_id */
9297 1, /* bios_boot_delay */
9298 1, /* scsi_reset_delay */
9299 1, /* bios_id_lun */
9300 1, /* termination */
9305 1, /* max_host_qng */
9306 1, /* max_dvc_qng */
9309 0, /* serial_number_word1 */
9310 0, /* serial_number_word2 */
9311 0, /* serial_number_word3 */
9313 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9314 , /* oem_name[16] */
9315 0, /* dvc_err_code */
9316 0, /* adv_err_code */
9317 0, /* adv_err_addr */
9318 0, /* saved_dvc_err_code */
9319 0, /* saved_adv_err_code */
9320 0, /* saved_adv_err_addr */
9324 static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config
= {
9325 ADV_EEPROM_BIOS_ENABLE
, /* 00 cfg_lsw */
9326 0x0000, /* 01 cfg_msw */
9327 0xFFFF, /* 02 disc_enable */
9328 0xFFFF, /* 03 wdtr_able */
9329 0x4444, /* 04 sdtr_speed1 */
9330 0xFFFF, /* 05 start_motor */
9331 0xFFFF, /* 06 tagqng_able */
9332 0xFFFF, /* 07 bios_scan */
9333 0, /* 08 scam_tolerant */
9334 7, /* 09 adapter_scsi_id */
9335 0, /* bios_boot_delay */
9336 3, /* 10 scsi_reset_delay */
9337 0, /* bios_id_lun */
9338 0, /* 11 termination_se */
9339 0, /* termination_lvd */
9340 0xFFE7, /* 12 bios_ctrl */
9341 0x4444, /* 13 sdtr_speed2 */
9342 0x4444, /* 14 sdtr_speed3 */
9343 ASC_DEF_MAX_HOST_QNG
, /* 15 max_host_qng */
9344 ASC_DEF_MAX_DVC_QNG
, /* max_dvc_qng */
9345 0, /* 16 dvc_cntl */
9346 0x4444, /* 17 sdtr_speed4 */
9347 0, /* 18 serial_number_word1 */
9348 0, /* 19 serial_number_word2 */
9349 0, /* 20 serial_number_word3 */
9350 0, /* 21 check_sum */
9351 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9352 , /* 22-29 oem_name[16] */
9353 0, /* 30 dvc_err_code */
9354 0, /* 31 adv_err_code */
9355 0, /* 32 adv_err_addr */
9356 0, /* 33 saved_dvc_err_code */
9357 0, /* 34 saved_adv_err_code */
9358 0, /* 35 saved_adv_err_addr */
9359 0, /* 36 reserved */
9360 0, /* 37 reserved */
9361 0, /* 38 reserved */
9362 0, /* 39 reserved */
9363 0, /* 40 reserved */
9364 0, /* 41 reserved */
9365 0, /* 42 reserved */
9366 0, /* 43 reserved */
9367 0, /* 44 reserved */
9368 0, /* 45 reserved */
9369 0, /* 46 reserved */
9370 0, /* 47 reserved */
9371 0, /* 48 reserved */
9372 0, /* 49 reserved */
9373 0, /* 50 reserved */
9374 0, /* 51 reserved */
9375 0, /* 52 reserved */
9376 0, /* 53 reserved */
9377 0, /* 54 reserved */
9378 0, /* 55 reserved */
9379 0, /* 56 cisptr_lsw */
9380 0, /* 57 cisprt_msw */
9381 PCI_VENDOR_ID_ASP
, /* 58 subsysvid */
9382 PCI_DEVICE_ID_38C0800_REV1
, /* 59 subsysid */
9383 0, /* 60 reserved */
9384 0, /* 61 reserved */
9385 0, /* 62 reserved */
9389 static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar
= {
9392 0, /* 02 disc_enable */
9393 0, /* 03 wdtr_able */
9394 0, /* 04 sdtr_speed1 */
9395 0, /* 05 start_motor */
9396 0, /* 06 tagqng_able */
9397 0, /* 07 bios_scan */
9398 0, /* 08 scam_tolerant */
9399 1, /* 09 adapter_scsi_id */
9400 1, /* bios_boot_delay */
9401 1, /* 10 scsi_reset_delay */
9402 1, /* bios_id_lun */
9403 1, /* 11 termination_se */
9404 1, /* termination_lvd */
9405 0, /* 12 bios_ctrl */
9406 0, /* 13 sdtr_speed2 */
9407 0, /* 14 sdtr_speed3 */
9408 1, /* 15 max_host_qng */
9409 1, /* max_dvc_qng */
9410 0, /* 16 dvc_cntl */
9411 0, /* 17 sdtr_speed4 */
9412 0, /* 18 serial_number_word1 */
9413 0, /* 19 serial_number_word2 */
9414 0, /* 20 serial_number_word3 */
9415 0, /* 21 check_sum */
9416 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9417 , /* 22-29 oem_name[16] */
9418 0, /* 30 dvc_err_code */
9419 0, /* 31 adv_err_code */
9420 0, /* 32 adv_err_addr */
9421 0, /* 33 saved_dvc_err_code */
9422 0, /* 34 saved_adv_err_code */
9423 0, /* 35 saved_adv_err_addr */
9424 0, /* 36 reserved */
9425 0, /* 37 reserved */
9426 0, /* 38 reserved */
9427 0, /* 39 reserved */
9428 0, /* 40 reserved */
9429 0, /* 41 reserved */
9430 0, /* 42 reserved */
9431 0, /* 43 reserved */
9432 0, /* 44 reserved */
9433 0, /* 45 reserved */
9434 0, /* 46 reserved */
9435 0, /* 47 reserved */
9436 0, /* 48 reserved */
9437 0, /* 49 reserved */
9438 0, /* 50 reserved */
9439 0, /* 51 reserved */
9440 0, /* 52 reserved */
9441 0, /* 53 reserved */
9442 0, /* 54 reserved */
9443 0, /* 55 reserved */
9444 0, /* 56 cisptr_lsw */
9445 0, /* 57 cisprt_msw */
9446 0, /* 58 subsysvid */
9447 0, /* 59 subsysid */
9448 0, /* 60 reserved */
9449 0, /* 61 reserved */
9450 0, /* 62 reserved */
9454 static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config
= {
9455 ADV_EEPROM_BIOS_ENABLE
, /* 00 cfg_lsw */
9456 0x0000, /* 01 cfg_msw */
9457 0xFFFF, /* 02 disc_enable */
9458 0xFFFF, /* 03 wdtr_able */
9459 0x5555, /* 04 sdtr_speed1 */
9460 0xFFFF, /* 05 start_motor */
9461 0xFFFF, /* 06 tagqng_able */
9462 0xFFFF, /* 07 bios_scan */
9463 0, /* 08 scam_tolerant */
9464 7, /* 09 adapter_scsi_id */
9465 0, /* bios_boot_delay */
9466 3, /* 10 scsi_reset_delay */
9467 0, /* bios_id_lun */
9468 0, /* 11 termination_se */
9469 0, /* termination_lvd */
9470 0xFFE7, /* 12 bios_ctrl */
9471 0x5555, /* 13 sdtr_speed2 */
9472 0x5555, /* 14 sdtr_speed3 */
9473 ASC_DEF_MAX_HOST_QNG
, /* 15 max_host_qng */
9474 ASC_DEF_MAX_DVC_QNG
, /* max_dvc_qng */
9475 0, /* 16 dvc_cntl */
9476 0x5555, /* 17 sdtr_speed4 */
9477 0, /* 18 serial_number_word1 */
9478 0, /* 19 serial_number_word2 */
9479 0, /* 20 serial_number_word3 */
9480 0, /* 21 check_sum */
9481 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9482 , /* 22-29 oem_name[16] */
9483 0, /* 30 dvc_err_code */
9484 0, /* 31 adv_err_code */
9485 0, /* 32 adv_err_addr */
9486 0, /* 33 saved_dvc_err_code */
9487 0, /* 34 saved_adv_err_code */
9488 0, /* 35 saved_adv_err_addr */
9489 0, /* 36 reserved */
9490 0, /* 37 reserved */
9491 0, /* 38 reserved */
9492 0, /* 39 reserved */
9493 0, /* 40 reserved */
9494 0, /* 41 reserved */
9495 0, /* 42 reserved */
9496 0, /* 43 reserved */
9497 0, /* 44 reserved */
9498 0, /* 45 reserved */
9499 0, /* 46 reserved */
9500 0, /* 47 reserved */
9501 0, /* 48 reserved */
9502 0, /* 49 reserved */
9503 0, /* 50 reserved */
9504 0, /* 51 reserved */
9505 0, /* 52 reserved */
9506 0, /* 53 reserved */
9507 0, /* 54 reserved */
9508 0, /* 55 reserved */
9509 0, /* 56 cisptr_lsw */
9510 0, /* 57 cisprt_msw */
9511 PCI_VENDOR_ID_ASP
, /* 58 subsysvid */
9512 PCI_DEVICE_ID_38C1600_REV1
, /* 59 subsysid */
9513 0, /* 60 reserved */
9514 0, /* 61 reserved */
9515 0, /* 62 reserved */
9519 static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar
= {
9522 0, /* 02 disc_enable */
9523 0, /* 03 wdtr_able */
9524 0, /* 04 sdtr_speed1 */
9525 0, /* 05 start_motor */
9526 0, /* 06 tagqng_able */
9527 0, /* 07 bios_scan */
9528 0, /* 08 scam_tolerant */
9529 1, /* 09 adapter_scsi_id */
9530 1, /* bios_boot_delay */
9531 1, /* 10 scsi_reset_delay */
9532 1, /* bios_id_lun */
9533 1, /* 11 termination_se */
9534 1, /* termination_lvd */
9535 0, /* 12 bios_ctrl */
9536 0, /* 13 sdtr_speed2 */
9537 0, /* 14 sdtr_speed3 */
9538 1, /* 15 max_host_qng */
9539 1, /* max_dvc_qng */
9540 0, /* 16 dvc_cntl */
9541 0, /* 17 sdtr_speed4 */
9542 0, /* 18 serial_number_word1 */
9543 0, /* 19 serial_number_word2 */
9544 0, /* 20 serial_number_word3 */
9545 0, /* 21 check_sum */
9546 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9547 , /* 22-29 oem_name[16] */
9548 0, /* 30 dvc_err_code */
9549 0, /* 31 adv_err_code */
9550 0, /* 32 adv_err_addr */
9551 0, /* 33 saved_dvc_err_code */
9552 0, /* 34 saved_adv_err_code */
9553 0, /* 35 saved_adv_err_addr */
9554 0, /* 36 reserved */
9555 0, /* 37 reserved */
9556 0, /* 38 reserved */
9557 0, /* 39 reserved */
9558 0, /* 40 reserved */
9559 0, /* 41 reserved */
9560 0, /* 42 reserved */
9561 0, /* 43 reserved */
9562 0, /* 44 reserved */
9563 0, /* 45 reserved */
9564 0, /* 46 reserved */
9565 0, /* 47 reserved */
9566 0, /* 48 reserved */
9567 0, /* 49 reserved */
9568 0, /* 50 reserved */
9569 0, /* 51 reserved */
9570 0, /* 52 reserved */
9571 0, /* 53 reserved */
9572 0, /* 54 reserved */
9573 0, /* 55 reserved */
9574 0, /* 56 cisptr_lsw */
9575 0, /* 57 cisprt_msw */
9576 0, /* 58 subsysvid */
9577 0, /* 59 subsysid */
9578 0, /* 60 reserved */
9579 0, /* 61 reserved */
9580 0, /* 62 reserved */
9585 * Wait for EEPROM command to complete
9587 static void AdvWaitEEPCmd(AdvPortAddr iop_base
)
9591 for (eep_delay_ms
= 0; eep_delay_ms
< ADV_EEP_DELAY_MS
; eep_delay_ms
++) {
9592 if (AdvReadWordRegister(iop_base
, IOPW_EE_CMD
) &
9598 if ((AdvReadWordRegister(iop_base
, IOPW_EE_CMD
) & ASC_EEP_CMD_DONE
) ==
9604 * Read the EEPROM from specified location
9606 static ushort
AdvReadEEPWord(AdvPortAddr iop_base
, int eep_word_addr
)
9608 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
9609 ASC_EEP_CMD_READ
| eep_word_addr
);
9610 AdvWaitEEPCmd(iop_base
);
9611 return AdvReadWordRegister(iop_base
, IOPW_EE_DATA
);
9615 * Write the EEPROM from 'cfg_buf'.
9617 static void AdvSet3550EEPConfig(AdvPortAddr iop_base
,
9618 ADVEEP_3550_CONFIG
*cfg_buf
)
9621 ushort addr
, chksum
;
9624 wbuf
= (ushort
*)cfg_buf
;
9625 charfields
= (ushort
*)&ADVEEP_3550_Config_Field_IsChar
;
9628 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_ABLE
);
9629 AdvWaitEEPCmd(iop_base
);
9632 * Write EEPROM from word 0 to word 20.
9634 for (addr
= ADV_EEP_DVC_CFG_BEGIN
;
9635 addr
< ADV_EEP_DVC_CFG_END
; addr
++, wbuf
++) {
9638 if (*charfields
++) {
9639 word
= cpu_to_le16(*wbuf
);
9643 chksum
+= *wbuf
; /* Checksum is calculated from word values. */
9644 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, word
);
9645 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
9646 ASC_EEP_CMD_WRITE
| addr
);
9647 AdvWaitEEPCmd(iop_base
);
9648 mdelay(ADV_EEP_DELAY_MS
);
9652 * Write EEPROM checksum at word 21.
9654 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, chksum
);
9655 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE
| addr
);
9656 AdvWaitEEPCmd(iop_base
);
9661 * Write EEPROM OEM name at words 22 to 29.
9663 for (addr
= ADV_EEP_DVC_CTL_BEGIN
;
9664 addr
< ADV_EEP_MAX_WORD_ADDR
; addr
++, wbuf
++) {
9667 if (*charfields
++) {
9668 word
= cpu_to_le16(*wbuf
);
9672 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, word
);
9673 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
9674 ASC_EEP_CMD_WRITE
| addr
);
9675 AdvWaitEEPCmd(iop_base
);
9677 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_DISABLE
);
9678 AdvWaitEEPCmd(iop_base
);
9682 * Write the EEPROM from 'cfg_buf'.
9684 static void AdvSet38C0800EEPConfig(AdvPortAddr iop_base
,
9685 ADVEEP_38C0800_CONFIG
*cfg_buf
)
9689 ushort addr
, chksum
;
9691 wbuf
= (ushort
*)cfg_buf
;
9692 charfields
= (ushort
*)&ADVEEP_38C0800_Config_Field_IsChar
;
9695 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_ABLE
);
9696 AdvWaitEEPCmd(iop_base
);
9699 * Write EEPROM from word 0 to word 20.
9701 for (addr
= ADV_EEP_DVC_CFG_BEGIN
;
9702 addr
< ADV_EEP_DVC_CFG_END
; addr
++, wbuf
++) {
9705 if (*charfields
++) {
9706 word
= cpu_to_le16(*wbuf
);
9710 chksum
+= *wbuf
; /* Checksum is calculated from word values. */
9711 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, word
);
9712 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
9713 ASC_EEP_CMD_WRITE
| addr
);
9714 AdvWaitEEPCmd(iop_base
);
9715 mdelay(ADV_EEP_DELAY_MS
);
9719 * Write EEPROM checksum at word 21.
9721 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, chksum
);
9722 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE
| addr
);
9723 AdvWaitEEPCmd(iop_base
);
9728 * Write EEPROM OEM name at words 22 to 29.
9730 for (addr
= ADV_EEP_DVC_CTL_BEGIN
;
9731 addr
< ADV_EEP_MAX_WORD_ADDR
; addr
++, wbuf
++) {
9734 if (*charfields
++) {
9735 word
= cpu_to_le16(*wbuf
);
9739 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, word
);
9740 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
9741 ASC_EEP_CMD_WRITE
| addr
);
9742 AdvWaitEEPCmd(iop_base
);
9744 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_DISABLE
);
9745 AdvWaitEEPCmd(iop_base
);
9749 * Write the EEPROM from 'cfg_buf'.
9751 static void AdvSet38C1600EEPConfig(AdvPortAddr iop_base
,
9752 ADVEEP_38C1600_CONFIG
*cfg_buf
)
9756 ushort addr
, chksum
;
9758 wbuf
= (ushort
*)cfg_buf
;
9759 charfields
= (ushort
*)&ADVEEP_38C1600_Config_Field_IsChar
;
9762 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_ABLE
);
9763 AdvWaitEEPCmd(iop_base
);
9766 * Write EEPROM from word 0 to word 20.
9768 for (addr
= ADV_EEP_DVC_CFG_BEGIN
;
9769 addr
< ADV_EEP_DVC_CFG_END
; addr
++, wbuf
++) {
9772 if (*charfields
++) {
9773 word
= cpu_to_le16(*wbuf
);
9777 chksum
+= *wbuf
; /* Checksum is calculated from word values. */
9778 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, word
);
9779 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
9780 ASC_EEP_CMD_WRITE
| addr
);
9781 AdvWaitEEPCmd(iop_base
);
9782 mdelay(ADV_EEP_DELAY_MS
);
9786 * Write EEPROM checksum at word 21.
9788 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, chksum
);
9789 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE
| addr
);
9790 AdvWaitEEPCmd(iop_base
);
9795 * Write EEPROM OEM name at words 22 to 29.
9797 for (addr
= ADV_EEP_DVC_CTL_BEGIN
;
9798 addr
< ADV_EEP_MAX_WORD_ADDR
; addr
++, wbuf
++) {
9801 if (*charfields
++) {
9802 word
= cpu_to_le16(*wbuf
);
9806 AdvWriteWordRegister(iop_base
, IOPW_EE_DATA
, word
);
9807 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
,
9808 ASC_EEP_CMD_WRITE
| addr
);
9809 AdvWaitEEPCmd(iop_base
);
9811 AdvWriteWordRegister(iop_base
, IOPW_EE_CMD
, ASC_EEP_CMD_WRITE_DISABLE
);
9812 AdvWaitEEPCmd(iop_base
);
9816 * Read EEPROM configuration into the specified buffer.
9818 * Return a checksum based on the EEPROM configuration read.
9820 static ushort
AdvGet3550EEPConfig(AdvPortAddr iop_base
,
9821 ADVEEP_3550_CONFIG
*cfg_buf
)
9823 ushort wval
, chksum
;
9828 charfields
= (ushort
*)&ADVEEP_3550_Config_Field_IsChar
;
9829 wbuf
= (ushort
*)cfg_buf
;
9832 for (eep_addr
= ADV_EEP_DVC_CFG_BEGIN
;
9833 eep_addr
< ADV_EEP_DVC_CFG_END
; eep_addr
++, wbuf
++) {
9834 wval
= AdvReadEEPWord(iop_base
, eep_addr
);
9835 chksum
+= wval
; /* Checksum is calculated from word values. */
9836 if (*charfields
++) {
9837 *wbuf
= le16_to_cpu(wval
);
9842 /* Read checksum word. */
9843 *wbuf
= AdvReadEEPWord(iop_base
, eep_addr
);
9847 /* Read rest of EEPROM not covered by the checksum. */
9848 for (eep_addr
= ADV_EEP_DVC_CTL_BEGIN
;
9849 eep_addr
< ADV_EEP_MAX_WORD_ADDR
; eep_addr
++, wbuf
++) {
9850 *wbuf
= AdvReadEEPWord(iop_base
, eep_addr
);
9851 if (*charfields
++) {
9852 *wbuf
= le16_to_cpu(*wbuf
);
9859 * Read EEPROM configuration into the specified buffer.
9861 * Return a checksum based on the EEPROM configuration read.
9863 static ushort
AdvGet38C0800EEPConfig(AdvPortAddr iop_base
,
9864 ADVEEP_38C0800_CONFIG
*cfg_buf
)
9866 ushort wval
, chksum
;
9871 charfields
= (ushort
*)&ADVEEP_38C0800_Config_Field_IsChar
;
9872 wbuf
= (ushort
*)cfg_buf
;
9875 for (eep_addr
= ADV_EEP_DVC_CFG_BEGIN
;
9876 eep_addr
< ADV_EEP_DVC_CFG_END
; eep_addr
++, wbuf
++) {
9877 wval
= AdvReadEEPWord(iop_base
, eep_addr
);
9878 chksum
+= wval
; /* Checksum is calculated from word values. */
9879 if (*charfields
++) {
9880 *wbuf
= le16_to_cpu(wval
);
9885 /* Read checksum word. */
9886 *wbuf
= AdvReadEEPWord(iop_base
, eep_addr
);
9890 /* Read rest of EEPROM not covered by the checksum. */
9891 for (eep_addr
= ADV_EEP_DVC_CTL_BEGIN
;
9892 eep_addr
< ADV_EEP_MAX_WORD_ADDR
; eep_addr
++, wbuf
++) {
9893 *wbuf
= AdvReadEEPWord(iop_base
, eep_addr
);
9894 if (*charfields
++) {
9895 *wbuf
= le16_to_cpu(*wbuf
);
9902 * Read EEPROM configuration into the specified buffer.
9904 * Return a checksum based on the EEPROM configuration read.
9906 static ushort
AdvGet38C1600EEPConfig(AdvPortAddr iop_base
,
9907 ADVEEP_38C1600_CONFIG
*cfg_buf
)
9909 ushort wval
, chksum
;
9914 charfields
= (ushort
*)&ADVEEP_38C1600_Config_Field_IsChar
;
9915 wbuf
= (ushort
*)cfg_buf
;
9918 for (eep_addr
= ADV_EEP_DVC_CFG_BEGIN
;
9919 eep_addr
< ADV_EEP_DVC_CFG_END
; eep_addr
++, wbuf
++) {
9920 wval
= AdvReadEEPWord(iop_base
, eep_addr
);
9921 chksum
+= wval
; /* Checksum is calculated from word values. */
9922 if (*charfields
++) {
9923 *wbuf
= le16_to_cpu(wval
);
9928 /* Read checksum word. */
9929 *wbuf
= AdvReadEEPWord(iop_base
, eep_addr
);
9933 /* Read rest of EEPROM not covered by the checksum. */
9934 for (eep_addr
= ADV_EEP_DVC_CTL_BEGIN
;
9935 eep_addr
< ADV_EEP_MAX_WORD_ADDR
; eep_addr
++, wbuf
++) {
9936 *wbuf
= AdvReadEEPWord(iop_base
, eep_addr
);
9937 if (*charfields
++) {
9938 *wbuf
= le16_to_cpu(*wbuf
);
9945 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
9946 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
9947 * all of this is done.
9949 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
9951 * For a non-fatal error return a warning code. If there are no warnings
9952 * then 0 is returned.
9954 * Note: Chip is stopped on entry.
9956 static int AdvInitFrom3550EEP(ADV_DVC_VAR
*asc_dvc
)
9958 AdvPortAddr iop_base
;
9960 ADVEEP_3550_CONFIG eep_config
;
9962 iop_base
= asc_dvc
->iop_base
;
9967 * Read the board's EEPROM configuration.
9969 * Set default values if a bad checksum is found.
9971 if (AdvGet3550EEPConfig(iop_base
, &eep_config
) != eep_config
.check_sum
) {
9972 warn_code
|= ASC_WARN_EEPROM_CHKSUM
;
9975 * Set EEPROM default values.
9977 memcpy(&eep_config
, &Default_3550_EEPROM_Config
,
9978 sizeof(ADVEEP_3550_CONFIG
));
9981 * Assume the 6 byte board serial number that was read from
9982 * EEPROM is correct even if the EEPROM checksum failed.
9984 eep_config
.serial_number_word3
=
9985 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 1);
9987 eep_config
.serial_number_word2
=
9988 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 2);
9990 eep_config
.serial_number_word1
=
9991 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 3);
9993 AdvSet3550EEPConfig(iop_base
, &eep_config
);
9996 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
9997 * EEPROM configuration that was read.
9999 * This is the mapping of EEPROM fields to Adv Library fields.
10001 asc_dvc
->wdtr_able
= eep_config
.wdtr_able
;
10002 asc_dvc
->sdtr_able
= eep_config
.sdtr_able
;
10003 asc_dvc
->ultra_able
= eep_config
.ultra_able
;
10004 asc_dvc
->tagqng_able
= eep_config
.tagqng_able
;
10005 asc_dvc
->cfg
->disc_enable
= eep_config
.disc_enable
;
10006 asc_dvc
->max_host_qng
= eep_config
.max_host_qng
;
10007 asc_dvc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
10008 asc_dvc
->chip_scsi_id
= (eep_config
.adapter_scsi_id
& ADV_MAX_TID
);
10009 asc_dvc
->start_motor
= eep_config
.start_motor
;
10010 asc_dvc
->scsi_reset_wait
= eep_config
.scsi_reset_delay
;
10011 asc_dvc
->bios_ctrl
= eep_config
.bios_ctrl
;
10012 asc_dvc
->no_scam
= eep_config
.scam_tolerant
;
10013 asc_dvc
->cfg
->serial1
= eep_config
.serial_number_word1
;
10014 asc_dvc
->cfg
->serial2
= eep_config
.serial_number_word2
;
10015 asc_dvc
->cfg
->serial3
= eep_config
.serial_number_word3
;
10018 * Set the host maximum queuing (max. 253, min. 16) and the per device
10019 * maximum queuing (max. 63, min. 4).
10021 if (eep_config
.max_host_qng
> ASC_DEF_MAX_HOST_QNG
) {
10022 eep_config
.max_host_qng
= ASC_DEF_MAX_HOST_QNG
;
10023 } else if (eep_config
.max_host_qng
< ASC_DEF_MIN_HOST_QNG
) {
10024 /* If the value is zero, assume it is uninitialized. */
10025 if (eep_config
.max_host_qng
== 0) {
10026 eep_config
.max_host_qng
= ASC_DEF_MAX_HOST_QNG
;
10028 eep_config
.max_host_qng
= ASC_DEF_MIN_HOST_QNG
;
10032 if (eep_config
.max_dvc_qng
> ASC_DEF_MAX_DVC_QNG
) {
10033 eep_config
.max_dvc_qng
= ASC_DEF_MAX_DVC_QNG
;
10034 } else if (eep_config
.max_dvc_qng
< ASC_DEF_MIN_DVC_QNG
) {
10035 /* If the value is zero, assume it is uninitialized. */
10036 if (eep_config
.max_dvc_qng
== 0) {
10037 eep_config
.max_dvc_qng
= ASC_DEF_MAX_DVC_QNG
;
10039 eep_config
.max_dvc_qng
= ASC_DEF_MIN_DVC_QNG
;
10044 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10045 * set 'max_dvc_qng' to 'max_host_qng'.
10047 if (eep_config
.max_dvc_qng
> eep_config
.max_host_qng
) {
10048 eep_config
.max_dvc_qng
= eep_config
.max_host_qng
;
10052 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10053 * values based on possibly adjusted EEPROM values.
10055 asc_dvc
->max_host_qng
= eep_config
.max_host_qng
;
10056 asc_dvc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
10059 * If the EEPROM 'termination' field is set to automatic (0), then set
10060 * the ADV_DVC_CFG 'termination' field to automatic also.
10062 * If the termination is specified with a non-zero 'termination'
10063 * value check that a legal value is set and set the ADV_DVC_CFG
10064 * 'termination' field appropriately.
10066 if (eep_config
.termination
== 0) {
10067 asc_dvc
->cfg
->termination
= 0; /* auto termination */
10069 /* Enable manual control with low off / high off. */
10070 if (eep_config
.termination
== 1) {
10071 asc_dvc
->cfg
->termination
= TERM_CTL_SEL
;
10073 /* Enable manual control with low off / high on. */
10074 } else if (eep_config
.termination
== 2) {
10075 asc_dvc
->cfg
->termination
= TERM_CTL_SEL
| TERM_CTL_H
;
10077 /* Enable manual control with low on / high on. */
10078 } else if (eep_config
.termination
== 3) {
10079 asc_dvc
->cfg
->termination
=
10080 TERM_CTL_SEL
| TERM_CTL_H
| TERM_CTL_L
;
10083 * The EEPROM 'termination' field contains a bad value. Use
10084 * automatic termination instead.
10086 asc_dvc
->cfg
->termination
= 0;
10087 warn_code
|= ASC_WARN_EEPROM_TERMINATION
;
10095 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
10096 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
10097 * all of this is done.
10099 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10101 * For a non-fatal error return a warning code. If there are no warnings
10102 * then 0 is returned.
10104 * Note: Chip is stopped on entry.
10106 static int AdvInitFrom38C0800EEP(ADV_DVC_VAR
*asc_dvc
)
10108 AdvPortAddr iop_base
;
10110 ADVEEP_38C0800_CONFIG eep_config
;
10111 uchar tid
, termination
;
10112 ushort sdtr_speed
= 0;
10114 iop_base
= asc_dvc
->iop_base
;
10119 * Read the board's EEPROM configuration.
10121 * Set default values if a bad checksum is found.
10123 if (AdvGet38C0800EEPConfig(iop_base
, &eep_config
) !=
10124 eep_config
.check_sum
) {
10125 warn_code
|= ASC_WARN_EEPROM_CHKSUM
;
10128 * Set EEPROM default values.
10130 memcpy(&eep_config
, &Default_38C0800_EEPROM_Config
,
10131 sizeof(ADVEEP_38C0800_CONFIG
));
10134 * Assume the 6 byte board serial number that was read from
10135 * EEPROM is correct even if the EEPROM checksum failed.
10137 eep_config
.serial_number_word3
=
10138 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 1);
10140 eep_config
.serial_number_word2
=
10141 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 2);
10143 eep_config
.serial_number_word1
=
10144 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 3);
10146 AdvSet38C0800EEPConfig(iop_base
, &eep_config
);
10149 * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
10150 * EEPROM configuration that was read.
10152 * This is the mapping of EEPROM fields to Adv Library fields.
10154 asc_dvc
->wdtr_able
= eep_config
.wdtr_able
;
10155 asc_dvc
->sdtr_speed1
= eep_config
.sdtr_speed1
;
10156 asc_dvc
->sdtr_speed2
= eep_config
.sdtr_speed2
;
10157 asc_dvc
->sdtr_speed3
= eep_config
.sdtr_speed3
;
10158 asc_dvc
->sdtr_speed4
= eep_config
.sdtr_speed4
;
10159 asc_dvc
->tagqng_able
= eep_config
.tagqng_able
;
10160 asc_dvc
->cfg
->disc_enable
= eep_config
.disc_enable
;
10161 asc_dvc
->max_host_qng
= eep_config
.max_host_qng
;
10162 asc_dvc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
10163 asc_dvc
->chip_scsi_id
= (eep_config
.adapter_scsi_id
& ADV_MAX_TID
);
10164 asc_dvc
->start_motor
= eep_config
.start_motor
;
10165 asc_dvc
->scsi_reset_wait
= eep_config
.scsi_reset_delay
;
10166 asc_dvc
->bios_ctrl
= eep_config
.bios_ctrl
;
10167 asc_dvc
->no_scam
= eep_config
.scam_tolerant
;
10168 asc_dvc
->cfg
->serial1
= eep_config
.serial_number_word1
;
10169 asc_dvc
->cfg
->serial2
= eep_config
.serial_number_word2
;
10170 asc_dvc
->cfg
->serial3
= eep_config
.serial_number_word3
;
10173 * For every Target ID if any of its 'sdtr_speed[1234]' bits
10174 * are set, then set an 'sdtr_able' bit for it.
10176 asc_dvc
->sdtr_able
= 0;
10177 for (tid
= 0; tid
<= ADV_MAX_TID
; tid
++) {
10179 sdtr_speed
= asc_dvc
->sdtr_speed1
;
10180 } else if (tid
== 4) {
10181 sdtr_speed
= asc_dvc
->sdtr_speed2
;
10182 } else if (tid
== 8) {
10183 sdtr_speed
= asc_dvc
->sdtr_speed3
;
10184 } else if (tid
== 12) {
10185 sdtr_speed
= asc_dvc
->sdtr_speed4
;
10187 if (sdtr_speed
& ADV_MAX_TID
) {
10188 asc_dvc
->sdtr_able
|= (1 << tid
);
10194 * Set the host maximum queuing (max. 253, min. 16) and the per device
10195 * maximum queuing (max. 63, min. 4).
10197 if (eep_config
.max_host_qng
> ASC_DEF_MAX_HOST_QNG
) {
10198 eep_config
.max_host_qng
= ASC_DEF_MAX_HOST_QNG
;
10199 } else if (eep_config
.max_host_qng
< ASC_DEF_MIN_HOST_QNG
) {
10200 /* If the value is zero, assume it is uninitialized. */
10201 if (eep_config
.max_host_qng
== 0) {
10202 eep_config
.max_host_qng
= ASC_DEF_MAX_HOST_QNG
;
10204 eep_config
.max_host_qng
= ASC_DEF_MIN_HOST_QNG
;
10208 if (eep_config
.max_dvc_qng
> ASC_DEF_MAX_DVC_QNG
) {
10209 eep_config
.max_dvc_qng
= ASC_DEF_MAX_DVC_QNG
;
10210 } else if (eep_config
.max_dvc_qng
< ASC_DEF_MIN_DVC_QNG
) {
10211 /* If the value is zero, assume it is uninitialized. */
10212 if (eep_config
.max_dvc_qng
== 0) {
10213 eep_config
.max_dvc_qng
= ASC_DEF_MAX_DVC_QNG
;
10215 eep_config
.max_dvc_qng
= ASC_DEF_MIN_DVC_QNG
;
10220 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10221 * set 'max_dvc_qng' to 'max_host_qng'.
10223 if (eep_config
.max_dvc_qng
> eep_config
.max_host_qng
) {
10224 eep_config
.max_dvc_qng
= eep_config
.max_host_qng
;
10228 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10229 * values based on possibly adjusted EEPROM values.
10231 asc_dvc
->max_host_qng
= eep_config
.max_host_qng
;
10232 asc_dvc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
10235 * If the EEPROM 'termination' field is set to automatic (0), then set
10236 * the ADV_DVC_CFG 'termination' field to automatic also.
10238 * If the termination is specified with a non-zero 'termination'
10239 * value check that a legal value is set and set the ADV_DVC_CFG
10240 * 'termination' field appropriately.
10242 if (eep_config
.termination_se
== 0) {
10243 termination
= 0; /* auto termination for SE */
10245 /* Enable manual control with low off / high off. */
10246 if (eep_config
.termination_se
== 1) {
10249 /* Enable manual control with low off / high on. */
10250 } else if (eep_config
.termination_se
== 2) {
10251 termination
= TERM_SE_HI
;
10253 /* Enable manual control with low on / high on. */
10254 } else if (eep_config
.termination_se
== 3) {
10255 termination
= TERM_SE
;
10258 * The EEPROM 'termination_se' field contains a bad value.
10259 * Use automatic termination instead.
10262 warn_code
|= ASC_WARN_EEPROM_TERMINATION
;
10266 if (eep_config
.termination_lvd
== 0) {
10267 asc_dvc
->cfg
->termination
= termination
; /* auto termination for LVD */
10269 /* Enable manual control with low off / high off. */
10270 if (eep_config
.termination_lvd
== 1) {
10271 asc_dvc
->cfg
->termination
= termination
;
10273 /* Enable manual control with low off / high on. */
10274 } else if (eep_config
.termination_lvd
== 2) {
10275 asc_dvc
->cfg
->termination
= termination
| TERM_LVD_HI
;
10277 /* Enable manual control with low on / high on. */
10278 } else if (eep_config
.termination_lvd
== 3) {
10279 asc_dvc
->cfg
->termination
= termination
| TERM_LVD
;
10282 * The EEPROM 'termination_lvd' field contains a bad value.
10283 * Use automatic termination instead.
10285 asc_dvc
->cfg
->termination
= termination
;
10286 warn_code
|= ASC_WARN_EEPROM_TERMINATION
;
10294 * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
10295 * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
10296 * all of this is done.
10298 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
10300 * For a non-fatal error return a warning code. If there are no warnings
10301 * then 0 is returned.
10303 * Note: Chip is stopped on entry.
10305 static int AdvInitFrom38C1600EEP(ADV_DVC_VAR
*asc_dvc
)
10307 AdvPortAddr iop_base
;
10309 ADVEEP_38C1600_CONFIG eep_config
;
10310 uchar tid
, termination
;
10311 ushort sdtr_speed
= 0;
10313 iop_base
= asc_dvc
->iop_base
;
10318 * Read the board's EEPROM configuration.
10320 * Set default values if a bad checksum is found.
10322 if (AdvGet38C1600EEPConfig(iop_base
, &eep_config
) !=
10323 eep_config
.check_sum
) {
10324 struct pci_dev
*pdev
= adv_dvc_to_pdev(asc_dvc
);
10325 warn_code
|= ASC_WARN_EEPROM_CHKSUM
;
10328 * Set EEPROM default values.
10330 memcpy(&eep_config
, &Default_38C1600_EEPROM_Config
,
10331 sizeof(ADVEEP_38C1600_CONFIG
));
10333 if (PCI_FUNC(pdev
->devfn
) != 0) {
10336 * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60
10337 * and old Mac system booting problem. The Expansion
10338 * ROM must be disabled in Function 1 for these systems
10340 eep_config
.cfg_lsw
&= ~ADV_EEPROM_BIOS_ENABLE
;
10342 * Clear the INTAB (bit 11) if the GPIO 0 input
10343 * indicates the Function 1 interrupt line is wired
10346 * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
10347 * 1 - Function 1 interrupt line wired to INT A.
10348 * 0 - Function 1 interrupt line wired to INT B.
10350 * Note: Function 0 is always wired to INTA.
10351 * Put all 5 GPIO bits in input mode and then read
10352 * their input values.
10354 AdvWriteByteRegister(iop_base
, IOPB_GPIO_CNTL
, 0);
10355 ints
= AdvReadByteRegister(iop_base
, IOPB_GPIO_DATA
);
10356 if ((ints
& 0x01) == 0)
10357 eep_config
.cfg_lsw
&= ~ADV_EEPROM_INTAB
;
10361 * Assume the 6 byte board serial number that was read from
10362 * EEPROM is correct even if the EEPROM checksum failed.
10364 eep_config
.serial_number_word3
=
10365 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 1);
10366 eep_config
.serial_number_word2
=
10367 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 2);
10368 eep_config
.serial_number_word1
=
10369 AdvReadEEPWord(iop_base
, ADV_EEP_DVC_CFG_END
- 3);
10371 AdvSet38C1600EEPConfig(iop_base
, &eep_config
);
10375 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
10376 * EEPROM configuration that was read.
10378 * This is the mapping of EEPROM fields to Adv Library fields.
10380 asc_dvc
->wdtr_able
= eep_config
.wdtr_able
;
10381 asc_dvc
->sdtr_speed1
= eep_config
.sdtr_speed1
;
10382 asc_dvc
->sdtr_speed2
= eep_config
.sdtr_speed2
;
10383 asc_dvc
->sdtr_speed3
= eep_config
.sdtr_speed3
;
10384 asc_dvc
->sdtr_speed4
= eep_config
.sdtr_speed4
;
10385 asc_dvc
->ppr_able
= 0;
10386 asc_dvc
->tagqng_able
= eep_config
.tagqng_able
;
10387 asc_dvc
->cfg
->disc_enable
= eep_config
.disc_enable
;
10388 asc_dvc
->max_host_qng
= eep_config
.max_host_qng
;
10389 asc_dvc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
10390 asc_dvc
->chip_scsi_id
= (eep_config
.adapter_scsi_id
& ASC_MAX_TID
);
10391 asc_dvc
->start_motor
= eep_config
.start_motor
;
10392 asc_dvc
->scsi_reset_wait
= eep_config
.scsi_reset_delay
;
10393 asc_dvc
->bios_ctrl
= eep_config
.bios_ctrl
;
10394 asc_dvc
->no_scam
= eep_config
.scam_tolerant
;
10397 * For every Target ID if any of its 'sdtr_speed[1234]' bits
10398 * are set, then set an 'sdtr_able' bit for it.
10400 asc_dvc
->sdtr_able
= 0;
10401 for (tid
= 0; tid
<= ASC_MAX_TID
; tid
++) {
10403 sdtr_speed
= asc_dvc
->sdtr_speed1
;
10404 } else if (tid
== 4) {
10405 sdtr_speed
= asc_dvc
->sdtr_speed2
;
10406 } else if (tid
== 8) {
10407 sdtr_speed
= asc_dvc
->sdtr_speed3
;
10408 } else if (tid
== 12) {
10409 sdtr_speed
= asc_dvc
->sdtr_speed4
;
10411 if (sdtr_speed
& ASC_MAX_TID
) {
10412 asc_dvc
->sdtr_able
|= (1 << tid
);
10418 * Set the host maximum queuing (max. 253, min. 16) and the per device
10419 * maximum queuing (max. 63, min. 4).
10421 if (eep_config
.max_host_qng
> ASC_DEF_MAX_HOST_QNG
) {
10422 eep_config
.max_host_qng
= ASC_DEF_MAX_HOST_QNG
;
10423 } else if (eep_config
.max_host_qng
< ASC_DEF_MIN_HOST_QNG
) {
10424 /* If the value is zero, assume it is uninitialized. */
10425 if (eep_config
.max_host_qng
== 0) {
10426 eep_config
.max_host_qng
= ASC_DEF_MAX_HOST_QNG
;
10428 eep_config
.max_host_qng
= ASC_DEF_MIN_HOST_QNG
;
10432 if (eep_config
.max_dvc_qng
> ASC_DEF_MAX_DVC_QNG
) {
10433 eep_config
.max_dvc_qng
= ASC_DEF_MAX_DVC_QNG
;
10434 } else if (eep_config
.max_dvc_qng
< ASC_DEF_MIN_DVC_QNG
) {
10435 /* If the value is zero, assume it is uninitialized. */
10436 if (eep_config
.max_dvc_qng
== 0) {
10437 eep_config
.max_dvc_qng
= ASC_DEF_MAX_DVC_QNG
;
10439 eep_config
.max_dvc_qng
= ASC_DEF_MIN_DVC_QNG
;
10444 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10445 * set 'max_dvc_qng' to 'max_host_qng'.
10447 if (eep_config
.max_dvc_qng
> eep_config
.max_host_qng
) {
10448 eep_config
.max_dvc_qng
= eep_config
.max_host_qng
;
10452 * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
10453 * values based on possibly adjusted EEPROM values.
10455 asc_dvc
->max_host_qng
= eep_config
.max_host_qng
;
10456 asc_dvc
->max_dvc_qng
= eep_config
.max_dvc_qng
;
10459 * If the EEPROM 'termination' field is set to automatic (0), then set
10460 * the ASC_DVC_CFG 'termination' field to automatic also.
10462 * If the termination is specified with a non-zero 'termination'
10463 * value check that a legal value is set and set the ASC_DVC_CFG
10464 * 'termination' field appropriately.
10466 if (eep_config
.termination_se
== 0) {
10467 termination
= 0; /* auto termination for SE */
10469 /* Enable manual control with low off / high off. */
10470 if (eep_config
.termination_se
== 1) {
10473 /* Enable manual control with low off / high on. */
10474 } else if (eep_config
.termination_se
== 2) {
10475 termination
= TERM_SE_HI
;
10477 /* Enable manual control with low on / high on. */
10478 } else if (eep_config
.termination_se
== 3) {
10479 termination
= TERM_SE
;
10482 * The EEPROM 'termination_se' field contains a bad value.
10483 * Use automatic termination instead.
10486 warn_code
|= ASC_WARN_EEPROM_TERMINATION
;
10490 if (eep_config
.termination_lvd
== 0) {
10491 asc_dvc
->cfg
->termination
= termination
; /* auto termination for LVD */
10493 /* Enable manual control with low off / high off. */
10494 if (eep_config
.termination_lvd
== 1) {
10495 asc_dvc
->cfg
->termination
= termination
;
10497 /* Enable manual control with low off / high on. */
10498 } else if (eep_config
.termination_lvd
== 2) {
10499 asc_dvc
->cfg
->termination
= termination
| TERM_LVD_HI
;
10501 /* Enable manual control with low on / high on. */
10502 } else if (eep_config
.termination_lvd
== 3) {
10503 asc_dvc
->cfg
->termination
= termination
| TERM_LVD
;
10506 * The EEPROM 'termination_lvd' field contains a bad value.
10507 * Use automatic termination instead.
10509 asc_dvc
->cfg
->termination
= termination
;
10510 warn_code
|= ASC_WARN_EEPROM_TERMINATION
;
10518 * Initialize the ADV_DVC_VAR structure.
10520 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10522 * For a non-fatal error return a warning code. If there are no warnings
10523 * then 0 is returned.
10525 static int AdvInitGetConfig(struct pci_dev
*pdev
, struct Scsi_Host
*shost
)
10527 struct asc_board
*board
= shost_priv(shost
);
10528 ADV_DVC_VAR
*asc_dvc
= &board
->dvc_var
.adv_dvc_var
;
10529 unsigned short warn_code
= 0;
10530 AdvPortAddr iop_base
= asc_dvc
->iop_base
;
10534 asc_dvc
->err_code
= 0;
10537 * Save the state of the PCI Configuration Command Register
10538 * "Parity Error Response Control" Bit. If the bit is clear (0),
10539 * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore
10540 * DMA parity errors.
10542 asc_dvc
->cfg
->control_flag
= 0;
10543 pci_read_config_word(pdev
, PCI_COMMAND
, &cmd
);
10544 if ((cmd
& PCI_COMMAND_PARITY
) == 0)
10545 asc_dvc
->cfg
->control_flag
|= CONTROL_FLAG_IGNORE_PERR
;
10547 asc_dvc
->cfg
->chip_version
=
10548 AdvGetChipVersion(iop_base
, asc_dvc
->bus_type
);
10550 ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n",
10551 (ushort
)AdvReadByteRegister(iop_base
, IOPB_CHIP_ID_1
),
10552 (ushort
)ADV_CHIP_ID_BYTE
);
10554 ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n",
10555 (ushort
)AdvReadWordRegister(iop_base
, IOPW_CHIP_ID_0
),
10556 (ushort
)ADV_CHIP_ID_WORD
);
10559 * Reset the chip to start and allow register writes.
10561 if (AdvFindSignature(iop_base
) == 0) {
10562 asc_dvc
->err_code
= ASC_IERR_BAD_SIGNATURE
;
10566 * The caller must set 'chip_type' to a valid setting.
10568 if (asc_dvc
->chip_type
!= ADV_CHIP_ASC3550
&&
10569 asc_dvc
->chip_type
!= ADV_CHIP_ASC38C0800
&&
10570 asc_dvc
->chip_type
!= ADV_CHIP_ASC38C1600
) {
10571 asc_dvc
->err_code
|= ASC_IERR_BAD_CHIPTYPE
;
10578 AdvWriteWordRegister(iop_base
, IOPW_CTRL_REG
,
10579 ADV_CTRL_REG_CMD_RESET
);
10581 AdvWriteWordRegister(iop_base
, IOPW_CTRL_REG
,
10582 ADV_CTRL_REG_CMD_WR_IO_REG
);
10584 if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C1600
) {
10585 status
= AdvInitFrom38C1600EEP(asc_dvc
);
10586 } else if (asc_dvc
->chip_type
== ADV_CHIP_ASC38C0800
) {
10587 status
= AdvInitFrom38C0800EEP(asc_dvc
);
10589 status
= AdvInitFrom3550EEP(asc_dvc
);
10591 warn_code
|= status
;
10594 if (warn_code
!= 0)
10595 shost_printk(KERN_WARNING
, shost
, "warning: 0x%x\n", warn_code
);
10597 if (asc_dvc
->err_code
)
10598 shost_printk(KERN_ERR
, shost
, "error code 0x%x\n",
10599 asc_dvc
->err_code
);
10601 return asc_dvc
->err_code
;
10605 static const struct scsi_host_template advansys_template
= {
10606 .proc_name
= DRV_NAME
,
10607 #ifdef CONFIG_PROC_FS
10608 .show_info
= advansys_show_info
,
10611 .info
= advansys_info
,
10612 .queuecommand
= advansys_queuecommand
,
10613 .eh_host_reset_handler
= advansys_reset
,
10614 .bios_param
= advansys_biosparam
,
10615 .slave_configure
= advansys_slave_configure
,
10616 .cmd_size
= sizeof(struct advansys_cmd
),
10619 static int advansys_wide_init_chip(struct Scsi_Host
*shost
)
10621 struct asc_board
*board
= shost_priv(shost
);
10622 struct adv_dvc_var
*adv_dvc
= &board
->dvc_var
.adv_dvc_var
;
10623 size_t sgblk_pool_size
;
10624 int warn_code
, err_code
;
10627 * Allocate buffer carrier structures. The total size
10628 * is about 8 KB, so allocate all at once.
10630 adv_dvc
->carrier
= dma_alloc_coherent(board
->dev
,
10631 ADV_CARRIER_BUFSIZE
, &adv_dvc
->carrier_addr
, GFP_KERNEL
);
10632 ASC_DBG(1, "carrier 0x%p\n", adv_dvc
->carrier
);
10634 if (!adv_dvc
->carrier
)
10635 goto kmalloc_failed
;
10638 * Allocate up to 'max_host_qng' request structures for the Wide
10639 * board. The total size is about 16 KB, so allocate all at once.
10640 * If the allocation fails decrement and try again.
10642 board
->adv_reqp_size
= adv_dvc
->max_host_qng
* sizeof(adv_req_t
);
10643 if (board
->adv_reqp_size
& 0x1f) {
10644 ASC_DBG(1, "unaligned reqp %lu bytes\n", sizeof(adv_req_t
));
10645 board
->adv_reqp_size
= ADV_32BALIGN(board
->adv_reqp_size
);
10647 board
->adv_reqp
= dma_alloc_coherent(board
->dev
, board
->adv_reqp_size
,
10648 &board
->adv_reqp_addr
, GFP_KERNEL
);
10650 if (!board
->adv_reqp
)
10651 goto kmalloc_failed
;
10653 ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", board
->adv_reqp
,
10654 adv_dvc
->max_host_qng
, board
->adv_reqp_size
);
10657 * Allocate up to ADV_TOT_SG_BLOCK request structures for
10658 * the Wide board. Each structure is about 136 bytes.
10660 sgblk_pool_size
= sizeof(adv_sgblk_t
) * ADV_TOT_SG_BLOCK
;
10661 board
->adv_sgblk_pool
= dma_pool_create("adv_sgblk", board
->dev
,
10662 sgblk_pool_size
, 32, 0);
10664 ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", ADV_TOT_SG_BLOCK
,
10665 sizeof(adv_sgblk_t
), sgblk_pool_size
);
10667 if (!board
->adv_sgblk_pool
)
10668 goto kmalloc_failed
;
10670 if (adv_dvc
->chip_type
== ADV_CHIP_ASC3550
) {
10671 ASC_DBG(2, "AdvInitAsc3550Driver()\n");
10672 warn_code
= AdvInitAsc3550Driver(adv_dvc
);
10673 } else if (adv_dvc
->chip_type
== ADV_CHIP_ASC38C0800
) {
10674 ASC_DBG(2, "AdvInitAsc38C0800Driver()\n");
10675 warn_code
= AdvInitAsc38C0800Driver(adv_dvc
);
10677 ASC_DBG(2, "AdvInitAsc38C1600Driver()\n");
10678 warn_code
= AdvInitAsc38C1600Driver(adv_dvc
);
10680 err_code
= adv_dvc
->err_code
;
10682 if (warn_code
|| err_code
) {
10683 shost_printk(KERN_WARNING
, shost
, "error: warn 0x%x, error "
10684 "0x%x\n", warn_code
, err_code
);
10690 shost_printk(KERN_ERR
, shost
, "error: kmalloc() failed\n");
10691 err_code
= ADV_ERROR
;
10696 static void advansys_wide_free_mem(struct asc_board
*board
)
10698 struct adv_dvc_var
*adv_dvc
= &board
->dvc_var
.adv_dvc_var
;
10700 if (adv_dvc
->carrier
) {
10701 dma_free_coherent(board
->dev
, ADV_CARRIER_BUFSIZE
,
10702 adv_dvc
->carrier
, adv_dvc
->carrier_addr
);
10703 adv_dvc
->carrier
= NULL
;
10705 if (board
->adv_reqp
) {
10706 dma_free_coherent(board
->dev
, board
->adv_reqp_size
,
10707 board
->adv_reqp
, board
->adv_reqp_addr
);
10708 board
->adv_reqp
= NULL
;
10710 if (board
->adv_sgblk_pool
) {
10711 dma_pool_destroy(board
->adv_sgblk_pool
);
10712 board
->adv_sgblk_pool
= NULL
;
10716 static int advansys_board_found(struct Scsi_Host
*shost
, unsigned int iop
,
10719 struct pci_dev
*pdev
;
10720 struct asc_board
*boardp
= shost_priv(shost
);
10721 ASC_DVC_VAR
*asc_dvc_varp
= NULL
;
10722 ADV_DVC_VAR
*adv_dvc_varp
= NULL
;
10723 int share_irq
, warn_code
, ret
;
10725 pdev
= (bus_type
== ASC_IS_PCI
) ? to_pci_dev(boardp
->dev
) : NULL
;
10727 if (ASC_NARROW_BOARD(boardp
)) {
10728 ASC_DBG(1, "narrow board\n");
10729 asc_dvc_varp
= &boardp
->dvc_var
.asc_dvc_var
;
10730 asc_dvc_varp
->bus_type
= bus_type
;
10731 asc_dvc_varp
->drv_ptr
= boardp
;
10732 asc_dvc_varp
->cfg
= &boardp
->dvc_cfg
.asc_dvc_cfg
;
10733 asc_dvc_varp
->iop_base
= iop
;
10736 adv_dvc_varp
= &boardp
->dvc_var
.adv_dvc_var
;
10737 adv_dvc_varp
->drv_ptr
= boardp
;
10738 adv_dvc_varp
->cfg
= &boardp
->dvc_cfg
.adv_dvc_cfg
;
10739 if (pdev
->device
== PCI_DEVICE_ID_ASP_ABP940UW
) {
10740 ASC_DBG(1, "wide board ASC-3550\n");
10741 adv_dvc_varp
->chip_type
= ADV_CHIP_ASC3550
;
10742 } else if (pdev
->device
== PCI_DEVICE_ID_38C0800_REV1
) {
10743 ASC_DBG(1, "wide board ASC-38C0800\n");
10744 adv_dvc_varp
->chip_type
= ADV_CHIP_ASC38C0800
;
10746 ASC_DBG(1, "wide board ASC-38C1600\n");
10747 adv_dvc_varp
->chip_type
= ADV_CHIP_ASC38C1600
;
10750 boardp
->asc_n_io_port
= pci_resource_len(pdev
, 1);
10751 boardp
->ioremap_addr
= pci_ioremap_bar(pdev
, 1);
10752 if (!boardp
->ioremap_addr
) {
10753 shost_printk(KERN_ERR
, shost
, "ioremap(%lx, %d) "
10755 (long)pci_resource_start(pdev
, 1),
10756 boardp
->asc_n_io_port
);
10760 adv_dvc_varp
->iop_base
= (AdvPortAddr
)boardp
->ioremap_addr
;
10761 ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp
->iop_base
);
10764 * Even though it isn't used to access wide boards, other
10765 * than for the debug line below, save I/O Port address so
10766 * that it can be reported.
10768 boardp
->ioport
= iop
;
10770 ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n",
10771 (ushort
)inp(iop
+ 1), (ushort
)inpw(iop
));
10772 #endif /* CONFIG_PCI */
10775 if (ASC_NARROW_BOARD(boardp
)) {
10777 * Set the board bus type and PCI IRQ before
10778 * calling AscInitGetConfig().
10780 switch (asc_dvc_varp
->bus_type
) {
10786 share_irq
= IRQF_SHARED
;
10788 #endif /* CONFIG_ISA */
10791 share_irq
= IRQF_SHARED
;
10793 #endif /* CONFIG_PCI */
10795 shost_printk(KERN_ERR
, shost
, "unknown adapter type: "
10796 "%d\n", asc_dvc_varp
->bus_type
);
10802 * NOTE: AscInitGetConfig() may change the board's
10803 * bus_type value. The bus_type value should no
10804 * longer be used. If the bus_type field must be
10805 * referenced only use the bit-wise AND operator "&".
10807 ASC_DBG(2, "AscInitGetConfig()\n");
10808 ret
= AscInitGetConfig(shost
) ? -ENODEV
: 0;
10812 * For Wide boards set PCI information before calling
10813 * AdvInitGetConfig().
10815 share_irq
= IRQF_SHARED
;
10816 ASC_DBG(2, "AdvInitGetConfig()\n");
10818 ret
= AdvInitGetConfig(pdev
, shost
) ? -ENODEV
: 0;
10822 #endif /* CONFIG_PCI */
10829 * Save the EEPROM configuration so that it can be displayed
10830 * from /proc/scsi/advansys/[0...].
10832 if (ASC_NARROW_BOARD(boardp
)) {
10837 * Set the adapter's target id bit in the 'init_tidmask' field.
10839 boardp
->init_tidmask
|=
10840 ADV_TID_TO_TIDMASK(asc_dvc_varp
->cfg
->chip_scsi_id
);
10843 * Save EEPROM settings for the board.
10845 ep
= &boardp
->eep_config
.asc_eep
;
10847 ep
->init_sdtr
= asc_dvc_varp
->cfg
->sdtr_enable
;
10848 ep
->disc_enable
= asc_dvc_varp
->cfg
->disc_enable
;
10849 ep
->use_cmd_qng
= asc_dvc_varp
->cfg
->cmd_qng_enabled
;
10850 ASC_EEP_SET_DMA_SPD(ep
, ASC_DEF_ISA_DMA_SPEED
);
10851 ep
->start_motor
= asc_dvc_varp
->start_motor
;
10852 ep
->cntl
= asc_dvc_varp
->dvc_cntl
;
10853 ep
->no_scam
= asc_dvc_varp
->no_scam
;
10854 ep
->max_total_qng
= asc_dvc_varp
->max_total_qng
;
10855 ASC_EEP_SET_CHIP_ID(ep
, asc_dvc_varp
->cfg
->chip_scsi_id
);
10856 /* 'max_tag_qng' is set to the same value for every device. */
10857 ep
->max_tag_qng
= asc_dvc_varp
->cfg
->max_tag_qng
[0];
10858 ep
->adapter_info
[0] = asc_dvc_varp
->cfg
->adapter_info
[0];
10859 ep
->adapter_info
[1] = asc_dvc_varp
->cfg
->adapter_info
[1];
10860 ep
->adapter_info
[2] = asc_dvc_varp
->cfg
->adapter_info
[2];
10861 ep
->adapter_info
[3] = asc_dvc_varp
->cfg
->adapter_info
[3];
10862 ep
->adapter_info
[4] = asc_dvc_varp
->cfg
->adapter_info
[4];
10863 ep
->adapter_info
[5] = asc_dvc_varp
->cfg
->adapter_info
[5];
10866 * Modify board configuration.
10868 ASC_DBG(2, "AscInitSetConfig()\n");
10869 ret
= AscInitSetConfig(pdev
, shost
) ? -ENODEV
: 0;
10873 ADVEEP_3550_CONFIG
*ep_3550
;
10874 ADVEEP_38C0800_CONFIG
*ep_38C0800
;
10875 ADVEEP_38C1600_CONFIG
*ep_38C1600
;
10878 * Save Wide EEP Configuration Information.
10880 if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC3550
) {
10881 ep_3550
= &boardp
->eep_config
.adv_3550_eep
;
10883 ep_3550
->adapter_scsi_id
= adv_dvc_varp
->chip_scsi_id
;
10884 ep_3550
->max_host_qng
= adv_dvc_varp
->max_host_qng
;
10885 ep_3550
->max_dvc_qng
= adv_dvc_varp
->max_dvc_qng
;
10886 ep_3550
->termination
= adv_dvc_varp
->cfg
->termination
;
10887 ep_3550
->disc_enable
= adv_dvc_varp
->cfg
->disc_enable
;
10888 ep_3550
->bios_ctrl
= adv_dvc_varp
->bios_ctrl
;
10889 ep_3550
->wdtr_able
= adv_dvc_varp
->wdtr_able
;
10890 ep_3550
->sdtr_able
= adv_dvc_varp
->sdtr_able
;
10891 ep_3550
->ultra_able
= adv_dvc_varp
->ultra_able
;
10892 ep_3550
->tagqng_able
= adv_dvc_varp
->tagqng_able
;
10893 ep_3550
->start_motor
= adv_dvc_varp
->start_motor
;
10894 ep_3550
->scsi_reset_delay
=
10895 adv_dvc_varp
->scsi_reset_wait
;
10896 ep_3550
->serial_number_word1
=
10897 adv_dvc_varp
->cfg
->serial1
;
10898 ep_3550
->serial_number_word2
=
10899 adv_dvc_varp
->cfg
->serial2
;
10900 ep_3550
->serial_number_word3
=
10901 adv_dvc_varp
->cfg
->serial3
;
10902 } else if (adv_dvc_varp
->chip_type
== ADV_CHIP_ASC38C0800
) {
10903 ep_38C0800
= &boardp
->eep_config
.adv_38C0800_eep
;
10905 ep_38C0800
->adapter_scsi_id
=
10906 adv_dvc_varp
->chip_scsi_id
;
10907 ep_38C0800
->max_host_qng
= adv_dvc_varp
->max_host_qng
;
10908 ep_38C0800
->max_dvc_qng
= adv_dvc_varp
->max_dvc_qng
;
10909 ep_38C0800
->termination_lvd
=
10910 adv_dvc_varp
->cfg
->termination
;
10911 ep_38C0800
->disc_enable
=
10912 adv_dvc_varp
->cfg
->disc_enable
;
10913 ep_38C0800
->bios_ctrl
= adv_dvc_varp
->bios_ctrl
;
10914 ep_38C0800
->wdtr_able
= adv_dvc_varp
->wdtr_able
;
10915 ep_38C0800
->tagqng_able
= adv_dvc_varp
->tagqng_able
;
10916 ep_38C0800
->sdtr_speed1
= adv_dvc_varp
->sdtr_speed1
;
10917 ep_38C0800
->sdtr_speed2
= adv_dvc_varp
->sdtr_speed2
;
10918 ep_38C0800
->sdtr_speed3
= adv_dvc_varp
->sdtr_speed3
;
10919 ep_38C0800
->sdtr_speed4
= adv_dvc_varp
->sdtr_speed4
;
10920 ep_38C0800
->tagqng_able
= adv_dvc_varp
->tagqng_able
;
10921 ep_38C0800
->start_motor
= adv_dvc_varp
->start_motor
;
10922 ep_38C0800
->scsi_reset_delay
=
10923 adv_dvc_varp
->scsi_reset_wait
;
10924 ep_38C0800
->serial_number_word1
=
10925 adv_dvc_varp
->cfg
->serial1
;
10926 ep_38C0800
->serial_number_word2
=
10927 adv_dvc_varp
->cfg
->serial2
;
10928 ep_38C0800
->serial_number_word3
=
10929 adv_dvc_varp
->cfg
->serial3
;
10931 ep_38C1600
= &boardp
->eep_config
.adv_38C1600_eep
;
10933 ep_38C1600
->adapter_scsi_id
=
10934 adv_dvc_varp
->chip_scsi_id
;
10935 ep_38C1600
->max_host_qng
= adv_dvc_varp
->max_host_qng
;
10936 ep_38C1600
->max_dvc_qng
= adv_dvc_varp
->max_dvc_qng
;
10937 ep_38C1600
->termination_lvd
=
10938 adv_dvc_varp
->cfg
->termination
;
10939 ep_38C1600
->disc_enable
=
10940 adv_dvc_varp
->cfg
->disc_enable
;
10941 ep_38C1600
->bios_ctrl
= adv_dvc_varp
->bios_ctrl
;
10942 ep_38C1600
->wdtr_able
= adv_dvc_varp
->wdtr_able
;
10943 ep_38C1600
->tagqng_able
= adv_dvc_varp
->tagqng_able
;
10944 ep_38C1600
->sdtr_speed1
= adv_dvc_varp
->sdtr_speed1
;
10945 ep_38C1600
->sdtr_speed2
= adv_dvc_varp
->sdtr_speed2
;
10946 ep_38C1600
->sdtr_speed3
= adv_dvc_varp
->sdtr_speed3
;
10947 ep_38C1600
->sdtr_speed4
= adv_dvc_varp
->sdtr_speed4
;
10948 ep_38C1600
->tagqng_able
= adv_dvc_varp
->tagqng_able
;
10949 ep_38C1600
->start_motor
= adv_dvc_varp
->start_motor
;
10950 ep_38C1600
->scsi_reset_delay
=
10951 adv_dvc_varp
->scsi_reset_wait
;
10952 ep_38C1600
->serial_number_word1
=
10953 adv_dvc_varp
->cfg
->serial1
;
10954 ep_38C1600
->serial_number_word2
=
10955 adv_dvc_varp
->cfg
->serial2
;
10956 ep_38C1600
->serial_number_word3
=
10957 adv_dvc_varp
->cfg
->serial3
;
10961 * Set the adapter's target id bit in the 'init_tidmask' field.
10963 boardp
->init_tidmask
|=
10964 ADV_TID_TO_TIDMASK(adv_dvc_varp
->chip_scsi_id
);
10968 * Channels are numbered beginning with 0. For AdvanSys one host
10969 * structure supports one channel. Multi-channel boards have a
10970 * separate host structure for each channel.
10972 shost
->max_channel
= 0;
10973 if (ASC_NARROW_BOARD(boardp
)) {
10974 shost
->max_id
= ASC_MAX_TID
+ 1;
10975 shost
->max_lun
= ASC_MAX_LUN
+ 1;
10976 shost
->max_cmd_len
= ASC_MAX_CDB_LEN
;
10978 shost
->io_port
= asc_dvc_varp
->iop_base
;
10979 boardp
->asc_n_io_port
= ASC_IOADR_GAP
;
10980 shost
->this_id
= asc_dvc_varp
->cfg
->chip_scsi_id
;
10982 /* Set maximum number of queues the adapter can handle. */
10983 shost
->can_queue
= asc_dvc_varp
->max_total_qng
;
10985 shost
->max_id
= ADV_MAX_TID
+ 1;
10986 shost
->max_lun
= ADV_MAX_LUN
+ 1;
10987 shost
->max_cmd_len
= ADV_MAX_CDB_LEN
;
10990 * Save the I/O Port address and length even though
10991 * I/O ports are not used to access Wide boards.
10992 * Instead the Wide boards are accessed with
10993 * PCI Memory Mapped I/O.
10995 shost
->io_port
= iop
;
10997 shost
->this_id
= adv_dvc_varp
->chip_scsi_id
;
10999 /* Set maximum number of queues the adapter can handle. */
11000 shost
->can_queue
= adv_dvc_varp
->max_host_qng
;
11004 * Set the maximum number of scatter-gather elements the
11005 * adapter can handle.
11007 if (ASC_NARROW_BOARD(boardp
)) {
11009 * Allow two commands with 'sg_tablesize' scatter-gather
11010 * elements to be executed simultaneously. This value is
11011 * the theoretical hardware limit. It may be decreased
11014 shost
->sg_tablesize
=
11015 (((asc_dvc_varp
->max_total_qng
- 2) / 2) *
11016 ASC_SG_LIST_PER_Q
) + 1;
11018 shost
->sg_tablesize
= ADV_MAX_SG_LIST
;
11022 * The value of 'sg_tablesize' can not exceed the SCSI
11023 * mid-level driver definition of SG_ALL. SG_ALL also
11024 * must not be exceeded, because it is used to define the
11025 * size of the scatter-gather table in 'struct asc_sg_head'.
11027 if (shost
->sg_tablesize
> SG_ALL
) {
11028 shost
->sg_tablesize
= SG_ALL
;
11031 ASC_DBG(1, "sg_tablesize: %d\n", shost
->sg_tablesize
);
11033 /* BIOS start address. */
11034 if (ASC_NARROW_BOARD(boardp
)) {
11035 shost
->base
= AscGetChipBiosAddress(asc_dvc_varp
->iop_base
,
11036 asc_dvc_varp
->bus_type
);
11039 * Fill-in BIOS board variables. The Wide BIOS saves
11040 * information in LRAM that is used by the driver.
11042 AdvReadWordLram(adv_dvc_varp
->iop_base
,
11043 BIOS_SIGNATURE
, boardp
->bios_signature
);
11044 AdvReadWordLram(adv_dvc_varp
->iop_base
,
11045 BIOS_VERSION
, boardp
->bios_version
);
11046 AdvReadWordLram(adv_dvc_varp
->iop_base
,
11047 BIOS_CODESEG
, boardp
->bios_codeseg
);
11048 AdvReadWordLram(adv_dvc_varp
->iop_base
,
11049 BIOS_CODELEN
, boardp
->bios_codelen
);
11051 ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n",
11052 boardp
->bios_signature
, boardp
->bios_version
);
11054 ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n",
11055 boardp
->bios_codeseg
, boardp
->bios_codelen
);
11058 * If the BIOS saved a valid signature, then fill in
11059 * the BIOS code segment base address.
11061 if (boardp
->bios_signature
== 0x55AA) {
11063 * Convert x86 realmode code segment to a linear
11064 * address by shifting left 4.
11066 shost
->base
= ((ulong
)boardp
->bios_codeseg
<< 4);
11073 * Register Board Resources - I/O Port, DMA, IRQ
11076 /* Register DMA Channel for Narrow boards. */
11077 shost
->dma_channel
= NO_ISA_DMA
; /* Default to no ISA DMA. */
11079 /* Register IRQ Number. */
11080 ASC_DBG(2, "request_irq(%d, %p)\n", boardp
->irq
, shost
);
11082 ret
= request_irq(boardp
->irq
, advansys_interrupt
, share_irq
,
11086 if (ret
== -EBUSY
) {
11087 shost_printk(KERN_ERR
, shost
, "request_irq(): IRQ 0x%x "
11088 "already in use\n", boardp
->irq
);
11089 } else if (ret
== -EINVAL
) {
11090 shost_printk(KERN_ERR
, shost
, "request_irq(): IRQ 0x%x "
11091 "not valid\n", boardp
->irq
);
11093 shost_printk(KERN_ERR
, shost
, "request_irq(): IRQ 0x%x "
11094 "failed with %d\n", boardp
->irq
, ret
);
11100 * Initialize board RISC chip and enable interrupts.
11102 if (ASC_NARROW_BOARD(boardp
)) {
11103 ASC_DBG(2, "AscInitAsc1000Driver()\n");
11105 asc_dvc_varp
->overrun_buf
= kzalloc(ASC_OVERRUN_BSIZE
, GFP_KERNEL
);
11106 if (!asc_dvc_varp
->overrun_buf
) {
11110 warn_code
= AscInitAsc1000Driver(asc_dvc_varp
);
11112 if (warn_code
|| asc_dvc_varp
->err_code
) {
11113 shost_printk(KERN_ERR
, shost
, "error: init_state 0x%x, "
11114 "warn 0x%x, error 0x%x\n",
11115 asc_dvc_varp
->init_state
, warn_code
,
11116 asc_dvc_varp
->err_code
);
11117 if (!asc_dvc_varp
->overrun_dma
) {
11123 if (advansys_wide_init_chip(shost
)) {
11129 ASC_DBG_PRT_SCSI_HOST(2, shost
);
11131 ret
= scsi_add_host(shost
, boardp
->dev
);
11135 scsi_scan_host(shost
);
11139 if (ASC_NARROW_BOARD(boardp
)) {
11140 if (asc_dvc_varp
->overrun_dma
)
11141 dma_unmap_single(boardp
->dev
, asc_dvc_varp
->overrun_dma
,
11142 ASC_OVERRUN_BSIZE
, DMA_FROM_DEVICE
);
11143 kfree(asc_dvc_varp
->overrun_buf
);
11145 advansys_wide_free_mem(boardp
);
11147 free_irq(boardp
->irq
, shost
);
11149 if (boardp
->ioremap_addr
)
11150 iounmap(boardp
->ioremap_addr
);
11158 * advansys_release()
11160 * Release resources allocated for a single AdvanSys adapter.
11162 static int advansys_release(struct Scsi_Host
*shost
)
11164 struct asc_board
*board
= shost_priv(shost
);
11165 ASC_DBG(1, "begin\n");
11166 scsi_remove_host(shost
);
11167 free_irq(board
->irq
, shost
);
11169 if (ASC_NARROW_BOARD(board
)) {
11170 dma_unmap_single(board
->dev
,
11171 board
->dvc_var
.asc_dvc_var
.overrun_dma
,
11172 ASC_OVERRUN_BSIZE
, DMA_FROM_DEVICE
);
11173 kfree(board
->dvc_var
.asc_dvc_var
.overrun_buf
);
11175 iounmap(board
->ioremap_addr
);
11176 advansys_wide_free_mem(board
);
11178 scsi_host_put(shost
);
11179 ASC_DBG(1, "end\n");
11183 #define ASC_IOADR_TABLE_MAX_IX 11
11185 static PortAddr _asc_def_iop_base
[ASC_IOADR_TABLE_MAX_IX
] = {
11186 0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190,
11187 0x0210, 0x0230, 0x0250, 0x0330
11190 static void advansys_vlb_remove(struct device
*dev
, unsigned int id
)
11192 int ioport
= _asc_def_iop_base
[id
];
11193 advansys_release(dev_get_drvdata(dev
));
11194 release_region(ioport
, ASC_IOADR_GAP
);
11198 * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw. It decodes as:
11208 static unsigned int advansys_vlb_irq_no(PortAddr iop_base
)
11210 unsigned short cfg_lsw
= AscGetChipCfgLsw(iop_base
);
11211 unsigned int chip_irq
= ((cfg_lsw
>> 2) & 0x07) + 9;
11212 if ((chip_irq
< 10) || (chip_irq
== 13) || (chip_irq
> 15))
11217 static int advansys_vlb_probe(struct device
*dev
, unsigned int id
)
11220 PortAddr iop_base
= _asc_def_iop_base
[id
];
11221 struct Scsi_Host
*shost
;
11222 struct asc_board
*board
;
11224 if (!request_region(iop_base
, ASC_IOADR_GAP
, DRV_NAME
)) {
11225 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base
);
11228 ASC_DBG(1, "probing I/O port 0x%x\n", iop_base
);
11229 if (!AscFindSignature(iop_base
))
11230 goto release_region
;
11232 * I don't think this condition can actually happen, but the old
11233 * driver did it, and the chances of finding a VLB setup in 2007
11234 * to do testing with is slight to none.
11236 if (AscGetChipVersion(iop_base
, ASC_IS_VL
) > ASC_CHIP_MAX_VER_VL
)
11237 goto release_region
;
11240 shost
= scsi_host_alloc(&advansys_template
, sizeof(*board
));
11242 goto release_region
;
11244 board
= shost_priv(shost
);
11245 board
->irq
= advansys_vlb_irq_no(iop_base
);
11247 board
->shost
= shost
;
11249 err
= advansys_board_found(shost
, iop_base
, ASC_IS_VL
);
11253 dev_set_drvdata(dev
, shost
);
11257 scsi_host_put(shost
);
11259 release_region(iop_base
, ASC_IOADR_GAP
);
11263 static struct isa_driver advansys_vlb_driver
= {
11264 .probe
= advansys_vlb_probe
,
11265 .remove
= advansys_vlb_remove
,
11267 .owner
= THIS_MODULE
,
11268 .name
= "advansys_vlb",
11272 static struct eisa_device_id advansys_eisa_table
[] = {
11278 MODULE_DEVICE_TABLE(eisa
, advansys_eisa_table
);
11281 * EISA is a little more tricky than PCI; each EISA device may have two
11282 * channels, and this driver is written to make each channel its own Scsi_Host
11284 struct eisa_scsi_data
{
11285 struct Scsi_Host
*host
[2];
11289 * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw. It decodes as:
11299 static unsigned int advansys_eisa_irq_no(struct eisa_device
*edev
)
11301 unsigned short cfg_lsw
= inw(edev
->base_addr
+ 0xc86);
11302 unsigned int chip_irq
= ((cfg_lsw
>> 8) & 0x07) + 10;
11303 if ((chip_irq
== 13) || (chip_irq
> 15))
11308 static int advansys_eisa_probe(struct device
*dev
)
11310 int i
, ioport
, irq
= 0;
11312 struct eisa_device
*edev
= to_eisa_device(dev
);
11313 struct eisa_scsi_data
*data
;
11316 data
= kzalloc(sizeof(*data
), GFP_KERNEL
);
11319 ioport
= edev
->base_addr
+ 0xc30;
11322 for (i
= 0; i
< 2; i
++, ioport
+= 0x20) {
11323 struct asc_board
*board
;
11324 struct Scsi_Host
*shost
;
11325 if (!request_region(ioport
, ASC_IOADR_GAP
, DRV_NAME
)) {
11326 printk(KERN_WARNING
"Region %x-%x busy\n", ioport
,
11327 ioport
+ ASC_IOADR_GAP
- 1);
11330 if (!AscFindSignature(ioport
)) {
11331 release_region(ioport
, ASC_IOADR_GAP
);
11336 * I don't know why we need to do this for EISA chips, but
11337 * not for any others. It looks to be equivalent to
11338 * AscGetChipCfgMsw, but I may have overlooked something,
11339 * so I'm not converting it until I get an EISA board to
11345 irq
= advansys_eisa_irq_no(edev
);
11348 shost
= scsi_host_alloc(&advansys_template
, sizeof(*board
));
11350 goto release_region
;
11352 board
= shost_priv(shost
);
11355 board
->shost
= shost
;
11357 err
= advansys_board_found(shost
, ioport
, ASC_IS_EISA
);
11359 data
->host
[i
] = shost
;
11363 scsi_host_put(shost
);
11365 release_region(ioport
, ASC_IOADR_GAP
);
11371 dev_set_drvdata(dev
, data
);
11375 kfree(data
->host
[0]);
11376 kfree(data
->host
[1]);
11382 static int advansys_eisa_remove(struct device
*dev
)
11385 struct eisa_scsi_data
*data
= dev_get_drvdata(dev
);
11387 for (i
= 0; i
< 2; i
++) {
11389 struct Scsi_Host
*shost
= data
->host
[i
];
11392 ioport
= shost
->io_port
;
11393 advansys_release(shost
);
11394 release_region(ioport
, ASC_IOADR_GAP
);
11401 static struct eisa_driver advansys_eisa_driver
= {
11402 .id_table
= advansys_eisa_table
,
11405 .probe
= advansys_eisa_probe
,
11406 .remove
= advansys_eisa_remove
,
11410 /* PCI Devices supported by this driver */
11411 static struct pci_device_id advansys_pci_tbl
[] = {
11412 {PCI_VENDOR_ID_ASP
, PCI_DEVICE_ID_ASP_1200A
,
11413 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
11414 {PCI_VENDOR_ID_ASP
, PCI_DEVICE_ID_ASP_ABP940
,
11415 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
11416 {PCI_VENDOR_ID_ASP
, PCI_DEVICE_ID_ASP_ABP940U
,
11417 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
11418 {PCI_VENDOR_ID_ASP
, PCI_DEVICE_ID_ASP_ABP940UW
,
11419 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
11420 {PCI_VENDOR_ID_ASP
, PCI_DEVICE_ID_38C0800_REV1
,
11421 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
11422 {PCI_VENDOR_ID_ASP
, PCI_DEVICE_ID_38C1600_REV1
,
11423 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
11427 MODULE_DEVICE_TABLE(pci
, advansys_pci_tbl
);
11429 static void advansys_set_latency(struct pci_dev
*pdev
)
11431 if ((pdev
->device
== PCI_DEVICE_ID_ASP_1200A
) ||
11432 (pdev
->device
== PCI_DEVICE_ID_ASP_ABP940
)) {
11433 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, 0);
11436 pci_read_config_byte(pdev
, PCI_LATENCY_TIMER
, &latency
);
11437 if (latency
< 0x20)
11438 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, 0x20);
11442 static int advansys_pci_probe(struct pci_dev
*pdev
,
11443 const struct pci_device_id
*ent
)
11446 struct Scsi_Host
*shost
;
11447 struct asc_board
*board
;
11449 err
= pci_enable_device(pdev
);
11452 err
= pci_request_regions(pdev
, DRV_NAME
);
11454 goto disable_device
;
11455 pci_set_master(pdev
);
11456 advansys_set_latency(pdev
);
11459 if (pci_resource_len(pdev
, 0) == 0)
11460 goto release_region
;
11462 ioport
= pci_resource_start(pdev
, 0);
11465 shost
= scsi_host_alloc(&advansys_template
, sizeof(*board
));
11467 goto release_region
;
11469 board
= shost_priv(shost
);
11470 board
->irq
= pdev
->irq
;
11471 board
->dev
= &pdev
->dev
;
11472 board
->shost
= shost
;
11474 if (pdev
->device
== PCI_DEVICE_ID_ASP_ABP940UW
||
11475 pdev
->device
== PCI_DEVICE_ID_38C0800_REV1
||
11476 pdev
->device
== PCI_DEVICE_ID_38C1600_REV1
) {
11477 board
->flags
|= ASC_IS_WIDE_BOARD
;
11480 err
= advansys_board_found(shost
, ioport
, ASC_IS_PCI
);
11484 pci_set_drvdata(pdev
, shost
);
11488 scsi_host_put(shost
);
11490 pci_release_regions(pdev
);
11492 pci_disable_device(pdev
);
11497 static void advansys_pci_remove(struct pci_dev
*pdev
)
11499 advansys_release(pci_get_drvdata(pdev
));
11500 pci_release_regions(pdev
);
11501 pci_disable_device(pdev
);
11504 static struct pci_driver advansys_pci_driver
= {
11506 .id_table
= advansys_pci_tbl
,
11507 .probe
= advansys_pci_probe
,
11508 .remove
= advansys_pci_remove
,
11511 static int __init
advansys_init(void)
11515 error
= isa_register_driver(&advansys_vlb_driver
,
11516 ASC_IOADR_TABLE_MAX_IX
);
11520 error
= eisa_driver_register(&advansys_eisa_driver
);
11522 goto unregister_vlb
;
11524 error
= pci_register_driver(&advansys_pci_driver
);
11526 goto unregister_eisa
;
11531 eisa_driver_unregister(&advansys_eisa_driver
);
11533 isa_unregister_driver(&advansys_vlb_driver
);
11538 static void __exit
advansys_exit(void)
11540 pci_unregister_driver(&advansys_pci_driver
);
11541 eisa_driver_unregister(&advansys_eisa_driver
);
11542 isa_unregister_driver(&advansys_vlb_driver
);
11545 module_init(advansys_init
);
11546 module_exit(advansys_exit
);
11548 MODULE_DESCRIPTION("AdvanSys SCSI Adapter driver");
11549 MODULE_LICENSE("GPL");
11550 MODULE_FIRMWARE("advansys/mcode.bin");
11551 MODULE_FIRMWARE("advansys/3550.bin");
11552 MODULE_FIRMWARE("advansys/38C0800.bin");
11553 MODULE_FIRMWARE("advansys/38C1600.bin");