1 // SPDX-License-Identifier: GPL-2.0
3 * Filesystem-level keyring for fscrypt
5 * Copyright 2019 Google LLC
9 * This file implements management of fscrypt master keys in the
10 * filesystem-level keyring, including the ioctls:
12 * - FS_IOC_ADD_ENCRYPTION_KEY
13 * - FS_IOC_REMOVE_ENCRYPTION_KEY
14 * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS
15 * - FS_IOC_GET_ENCRYPTION_KEY_STATUS
17 * See the "User API" section of Documentation/filesystems/fscrypt.rst for more
18 * information about these ioctls.
21 #include <linux/unaligned.h>
22 #include <crypto/skcipher.h>
23 #include <linux/key-type.h>
24 #include <linux/random.h>
25 #include <linux/once.h>
26 #include <linux/seq_file.h>
28 #include "fscrypt_private.h"
30 /* The master encryption keys for a filesystem (->s_master_keys) */
31 struct fscrypt_keyring
{
33 * Lock that protects ->key_hashtable. It does *not* protect the
34 * fscrypt_master_key structs themselves.
38 /* Hash table that maps fscrypt_key_specifier to fscrypt_master_key */
39 struct hlist_head key_hashtable
[128];
42 static void wipe_master_key_secret(struct fscrypt_master_key_secret
*secret
)
44 fscrypt_destroy_hkdf(&secret
->hkdf
);
45 memzero_explicit(secret
, sizeof(*secret
));
48 static void move_master_key_secret(struct fscrypt_master_key_secret
*dst
,
49 struct fscrypt_master_key_secret
*src
)
51 memcpy(dst
, src
, sizeof(*dst
));
52 memzero_explicit(src
, sizeof(*src
));
55 static void fscrypt_free_master_key(struct rcu_head
*head
)
57 struct fscrypt_master_key
*mk
=
58 container_of(head
, struct fscrypt_master_key
, mk_rcu_head
);
60 * The master key secret and any embedded subkeys should have already
61 * been wiped when the last active reference to the fscrypt_master_key
62 * struct was dropped; doing it here would be unnecessarily late.
63 * Nevertheless, use kfree_sensitive() in case anything was missed.
68 void fscrypt_put_master_key(struct fscrypt_master_key
*mk
)
70 if (!refcount_dec_and_test(&mk
->mk_struct_refs
))
73 * No structural references left, so free ->mk_users, and also free the
74 * fscrypt_master_key struct itself after an RCU grace period ensures
75 * that concurrent keyring lookups can no longer find it.
77 WARN_ON_ONCE(refcount_read(&mk
->mk_active_refs
) != 0);
79 /* Clear the keyring so the quota gets released right away. */
80 keyring_clear(mk
->mk_users
);
81 key_put(mk
->mk_users
);
84 call_rcu(&mk
->mk_rcu_head
, fscrypt_free_master_key
);
87 void fscrypt_put_master_key_activeref(struct super_block
*sb
,
88 struct fscrypt_master_key
*mk
)
92 if (!refcount_dec_and_test(&mk
->mk_active_refs
))
95 * No active references left, so complete the full removal of this
96 * fscrypt_master_key struct by removing it from the keyring and
97 * destroying any subkeys embedded in it.
100 if (WARN_ON_ONCE(!sb
->s_master_keys
))
102 spin_lock(&sb
->s_master_keys
->lock
);
103 hlist_del_rcu(&mk
->mk_node
);
104 spin_unlock(&sb
->s_master_keys
->lock
);
107 * ->mk_active_refs == 0 implies that ->mk_present is false and
108 * ->mk_decrypted_inodes is empty.
110 WARN_ON_ONCE(mk
->mk_present
);
111 WARN_ON_ONCE(!list_empty(&mk
->mk_decrypted_inodes
));
113 for (i
= 0; i
<= FSCRYPT_MODE_MAX
; i
++) {
114 fscrypt_destroy_prepared_key(
115 sb
, &mk
->mk_direct_keys
[i
]);
116 fscrypt_destroy_prepared_key(
117 sb
, &mk
->mk_iv_ino_lblk_64_keys
[i
]);
118 fscrypt_destroy_prepared_key(
119 sb
, &mk
->mk_iv_ino_lblk_32_keys
[i
]);
121 memzero_explicit(&mk
->mk_ino_hash_key
,
122 sizeof(mk
->mk_ino_hash_key
));
123 mk
->mk_ino_hash_key_initialized
= false;
125 /* Drop the structural ref associated with the active refs. */
126 fscrypt_put_master_key(mk
);
130 * This transitions the key state from present to incompletely removed, and then
131 * potentially to absent (depending on whether inodes remain).
133 static void fscrypt_initiate_key_removal(struct super_block
*sb
,
134 struct fscrypt_master_key
*mk
)
136 WRITE_ONCE(mk
->mk_present
, false);
137 wipe_master_key_secret(&mk
->mk_secret
);
138 fscrypt_put_master_key_activeref(sb
, mk
);
141 static inline bool valid_key_spec(const struct fscrypt_key_specifier
*spec
)
143 if (spec
->__reserved
)
145 return master_key_spec_len(spec
) != 0;
148 static int fscrypt_user_key_instantiate(struct key
*key
,
149 struct key_preparsed_payload
*prep
)
152 * We just charge FSCRYPT_MAX_KEY_SIZE bytes to the user's key quota for
153 * each key, regardless of the exact key size. The amount of memory
154 * actually used is greater than the size of the raw key anyway.
156 return key_payload_reserve(key
, FSCRYPT_MAX_KEY_SIZE
);
159 static void fscrypt_user_key_describe(const struct key
*key
, struct seq_file
*m
)
161 seq_puts(m
, key
->description
);
165 * Type of key in ->mk_users. Each key of this type represents a particular
166 * user who has added a particular master key.
168 * Note that the name of this key type really should be something like
169 * ".fscrypt-user" instead of simply ".fscrypt". But the shorter name is chosen
170 * mainly for simplicity of presentation in /proc/keys when read by a non-root
171 * user. And it is expected to be rare that a key is actually added by multiple
172 * users, since users should keep their encryption keys confidential.
174 static struct key_type key_type_fscrypt_user
= {
176 .instantiate
= fscrypt_user_key_instantiate
,
177 .describe
= fscrypt_user_key_describe
,
180 #define FSCRYPT_MK_USERS_DESCRIPTION_SIZE \
181 (CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \
182 CONST_STRLEN("-users") + 1)
184 #define FSCRYPT_MK_USER_DESCRIPTION_SIZE \
185 (2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1)
187 static void format_mk_users_keyring_description(
188 char description
[FSCRYPT_MK_USERS_DESCRIPTION_SIZE
],
189 const u8 mk_identifier
[FSCRYPT_KEY_IDENTIFIER_SIZE
])
191 sprintf(description
, "fscrypt-%*phN-users",
192 FSCRYPT_KEY_IDENTIFIER_SIZE
, mk_identifier
);
195 static void format_mk_user_description(
196 char description
[FSCRYPT_MK_USER_DESCRIPTION_SIZE
],
197 const u8 mk_identifier
[FSCRYPT_KEY_IDENTIFIER_SIZE
])
200 sprintf(description
, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE
,
201 mk_identifier
, __kuid_val(current_fsuid()));
204 /* Create ->s_master_keys if needed. Synchronized by fscrypt_add_key_mutex. */
205 static int allocate_filesystem_keyring(struct super_block
*sb
)
207 struct fscrypt_keyring
*keyring
;
209 if (sb
->s_master_keys
)
212 keyring
= kzalloc(sizeof(*keyring
), GFP_KERNEL
);
215 spin_lock_init(&keyring
->lock
);
217 * Pairs with the smp_load_acquire() in fscrypt_find_master_key().
218 * I.e., here we publish ->s_master_keys with a RELEASE barrier so that
219 * concurrent tasks can ACQUIRE it.
221 smp_store_release(&sb
->s_master_keys
, keyring
);
226 * Release all encryption keys that have been added to the filesystem, along
227 * with the keyring that contains them.
229 * This is called at unmount time, after all potentially-encrypted inodes have
230 * been evicted. The filesystem's underlying block device(s) are still
231 * available at this time; this is important because after user file accesses
232 * have been allowed, this function may need to evict keys from the keyslots of
233 * an inline crypto engine, which requires the block device(s).
235 void fscrypt_destroy_keyring(struct super_block
*sb
)
237 struct fscrypt_keyring
*keyring
= sb
->s_master_keys
;
243 for (i
= 0; i
< ARRAY_SIZE(keyring
->key_hashtable
); i
++) {
244 struct hlist_head
*bucket
= &keyring
->key_hashtable
[i
];
245 struct fscrypt_master_key
*mk
;
246 struct hlist_node
*tmp
;
248 hlist_for_each_entry_safe(mk
, tmp
, bucket
, mk_node
) {
250 * Since all potentially-encrypted inodes were already
251 * evicted, every key remaining in the keyring should
252 * have an empty inode list, and should only still be in
253 * the keyring due to the single active ref associated
254 * with ->mk_present. There should be no structural
255 * refs beyond the one associated with the active ref.
257 WARN_ON_ONCE(refcount_read(&mk
->mk_active_refs
) != 1);
258 WARN_ON_ONCE(refcount_read(&mk
->mk_struct_refs
) != 1);
259 WARN_ON_ONCE(!mk
->mk_present
);
260 fscrypt_initiate_key_removal(sb
, mk
);
263 kfree_sensitive(keyring
);
264 sb
->s_master_keys
= NULL
;
267 static struct hlist_head
*
268 fscrypt_mk_hash_bucket(struct fscrypt_keyring
*keyring
,
269 const struct fscrypt_key_specifier
*mk_spec
)
272 * Since key specifiers should be "random" values, it is sufficient to
273 * use a trivial hash function that just takes the first several bits of
276 unsigned long i
= get_unaligned((unsigned long *)&mk_spec
->u
);
278 return &keyring
->key_hashtable
[i
% ARRAY_SIZE(keyring
->key_hashtable
)];
282 * Find the specified master key struct in ->s_master_keys and take a structural
283 * ref to it. The structural ref guarantees that the key struct continues to
284 * exist, but it does *not* guarantee that ->s_master_keys continues to contain
285 * the key struct. The structural ref needs to be dropped by
286 * fscrypt_put_master_key(). Returns NULL if the key struct is not found.
288 struct fscrypt_master_key
*
289 fscrypt_find_master_key(struct super_block
*sb
,
290 const struct fscrypt_key_specifier
*mk_spec
)
292 struct fscrypt_keyring
*keyring
;
293 struct hlist_head
*bucket
;
294 struct fscrypt_master_key
*mk
;
297 * Pairs with the smp_store_release() in allocate_filesystem_keyring().
298 * I.e., another task can publish ->s_master_keys concurrently,
299 * executing a RELEASE barrier. We need to use smp_load_acquire() here
300 * to safely ACQUIRE the memory the other task published.
302 keyring
= smp_load_acquire(&sb
->s_master_keys
);
304 return NULL
; /* No keyring yet, so no keys yet. */
306 bucket
= fscrypt_mk_hash_bucket(keyring
, mk_spec
);
308 switch (mk_spec
->type
) {
309 case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR
:
310 hlist_for_each_entry_rcu(mk
, bucket
, mk_node
) {
311 if (mk
->mk_spec
.type
==
312 FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR
&&
313 memcmp(mk
->mk_spec
.u
.descriptor
,
314 mk_spec
->u
.descriptor
,
315 FSCRYPT_KEY_DESCRIPTOR_SIZE
) == 0 &&
316 refcount_inc_not_zero(&mk
->mk_struct_refs
))
320 case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER
:
321 hlist_for_each_entry_rcu(mk
, bucket
, mk_node
) {
322 if (mk
->mk_spec
.type
==
323 FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER
&&
324 memcmp(mk
->mk_spec
.u
.identifier
,
325 mk_spec
->u
.identifier
,
326 FSCRYPT_KEY_IDENTIFIER_SIZE
) == 0 &&
327 refcount_inc_not_zero(&mk
->mk_struct_refs
))
338 static int allocate_master_key_users_keyring(struct fscrypt_master_key
*mk
)
340 char description
[FSCRYPT_MK_USERS_DESCRIPTION_SIZE
];
343 format_mk_users_keyring_description(description
,
344 mk
->mk_spec
.u
.identifier
);
345 keyring
= keyring_alloc(description
, GLOBAL_ROOT_UID
, GLOBAL_ROOT_GID
,
346 current_cred(), KEY_POS_SEARCH
|
347 KEY_USR_SEARCH
| KEY_USR_READ
| KEY_USR_VIEW
,
348 KEY_ALLOC_NOT_IN_QUOTA
, NULL
, NULL
);
350 return PTR_ERR(keyring
);
352 mk
->mk_users
= keyring
;
357 * Find the current user's "key" in the master key's ->mk_users.
358 * Returns ERR_PTR(-ENOKEY) if not found.
360 static struct key
*find_master_key_user(struct fscrypt_master_key
*mk
)
362 char description
[FSCRYPT_MK_USER_DESCRIPTION_SIZE
];
365 format_mk_user_description(description
, mk
->mk_spec
.u
.identifier
);
368 * We need to mark the keyring reference as "possessed" so that we
369 * acquire permission to search it, via the KEY_POS_SEARCH permission.
371 keyref
= keyring_search(make_key_ref(mk
->mk_users
, true /*possessed*/),
372 &key_type_fscrypt_user
, description
, false);
373 if (IS_ERR(keyref
)) {
374 if (PTR_ERR(keyref
) == -EAGAIN
|| /* not found */
375 PTR_ERR(keyref
) == -EKEYREVOKED
) /* recently invalidated */
376 keyref
= ERR_PTR(-ENOKEY
);
377 return ERR_CAST(keyref
);
379 return key_ref_to_ptr(keyref
);
383 * Give the current user a "key" in ->mk_users. This charges the user's quota
384 * and marks the master key as added by the current user, so that it cannot be
385 * removed by another user with the key. Either ->mk_sem must be held for
386 * write, or the master key must be still undergoing initialization.
388 static int add_master_key_user(struct fscrypt_master_key
*mk
)
390 char description
[FSCRYPT_MK_USER_DESCRIPTION_SIZE
];
394 format_mk_user_description(description
, mk
->mk_spec
.u
.identifier
);
395 mk_user
= key_alloc(&key_type_fscrypt_user
, description
,
396 current_fsuid(), current_gid(), current_cred(),
397 KEY_POS_SEARCH
| KEY_USR_VIEW
, 0, NULL
);
399 return PTR_ERR(mk_user
);
401 err
= key_instantiate_and_link(mk_user
, NULL
, 0, mk
->mk_users
, NULL
);
407 * Remove the current user's "key" from ->mk_users.
408 * ->mk_sem must be held for write.
410 * Returns 0 if removed, -ENOKEY if not found, or another -errno code.
412 static int remove_master_key_user(struct fscrypt_master_key
*mk
)
417 mk_user
= find_master_key_user(mk
);
419 return PTR_ERR(mk_user
);
420 err
= key_unlink(mk
->mk_users
, mk_user
);
426 * Allocate a new fscrypt_master_key, transfer the given secret over to it, and
427 * insert it into sb->s_master_keys.
429 static int add_new_master_key(struct super_block
*sb
,
430 struct fscrypt_master_key_secret
*secret
,
431 const struct fscrypt_key_specifier
*mk_spec
)
433 struct fscrypt_keyring
*keyring
= sb
->s_master_keys
;
434 struct fscrypt_master_key
*mk
;
437 mk
= kzalloc(sizeof(*mk
), GFP_KERNEL
);
441 init_rwsem(&mk
->mk_sem
);
442 refcount_set(&mk
->mk_struct_refs
, 1);
443 mk
->mk_spec
= *mk_spec
;
445 INIT_LIST_HEAD(&mk
->mk_decrypted_inodes
);
446 spin_lock_init(&mk
->mk_decrypted_inodes_lock
);
448 if (mk_spec
->type
== FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER
) {
449 err
= allocate_master_key_users_keyring(mk
);
452 err
= add_master_key_user(mk
);
457 move_master_key_secret(&mk
->mk_secret
, secret
);
458 mk
->mk_present
= true;
459 refcount_set(&mk
->mk_active_refs
, 1); /* ->mk_present is true */
461 spin_lock(&keyring
->lock
);
462 hlist_add_head_rcu(&mk
->mk_node
,
463 fscrypt_mk_hash_bucket(keyring
, mk_spec
));
464 spin_unlock(&keyring
->lock
);
468 fscrypt_put_master_key(mk
);
474 static int add_existing_master_key(struct fscrypt_master_key
*mk
,
475 struct fscrypt_master_key_secret
*secret
)
480 * If the current user is already in ->mk_users, then there's nothing to
481 * do. Otherwise, we need to add the user to ->mk_users. (Neither is
482 * applicable for v1 policy keys, which have NULL ->mk_users.)
485 struct key
*mk_user
= find_master_key_user(mk
);
487 if (mk_user
!= ERR_PTR(-ENOKEY
)) {
489 return PTR_ERR(mk_user
);
493 err
= add_master_key_user(mk
);
498 /* If the key is incompletely removed, make it present again. */
499 if (!mk
->mk_present
) {
500 if (!refcount_inc_not_zero(&mk
->mk_active_refs
)) {
502 * Raced with the last active ref being dropped, so the
503 * key has become, or is about to become, "absent".
504 * Therefore, we need to allocate a new key struct.
508 move_master_key_secret(&mk
->mk_secret
, secret
);
509 WRITE_ONCE(mk
->mk_present
, true);
515 static int do_add_master_key(struct super_block
*sb
,
516 struct fscrypt_master_key_secret
*secret
,
517 const struct fscrypt_key_specifier
*mk_spec
)
519 static DEFINE_MUTEX(fscrypt_add_key_mutex
);
520 struct fscrypt_master_key
*mk
;
523 mutex_lock(&fscrypt_add_key_mutex
); /* serialize find + link */
525 mk
= fscrypt_find_master_key(sb
, mk_spec
);
527 /* Didn't find the key in ->s_master_keys. Add it. */
528 err
= allocate_filesystem_keyring(sb
);
530 err
= add_new_master_key(sb
, secret
, mk_spec
);
533 * Found the key in ->s_master_keys. Add the user to ->mk_users
534 * if needed, and make the key "present" again if possible.
536 down_write(&mk
->mk_sem
);
537 err
= add_existing_master_key(mk
, secret
);
538 up_write(&mk
->mk_sem
);
539 if (err
== KEY_DEAD
) {
541 * We found a key struct, but it's already been fully
542 * removed. Ignore the old struct and add a new one.
543 * fscrypt_add_key_mutex means we don't need to worry
544 * about concurrent adds.
546 err
= add_new_master_key(sb
, secret
, mk_spec
);
548 fscrypt_put_master_key(mk
);
550 mutex_unlock(&fscrypt_add_key_mutex
);
554 static int add_master_key(struct super_block
*sb
,
555 struct fscrypt_master_key_secret
*secret
,
556 struct fscrypt_key_specifier
*key_spec
)
560 if (key_spec
->type
== FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER
) {
561 err
= fscrypt_init_hkdf(&secret
->hkdf
, secret
->raw
,
567 * Now that the HKDF context is initialized, the raw key is no
570 memzero_explicit(secret
->raw
, secret
->size
);
572 /* Calculate the key identifier */
573 err
= fscrypt_hkdf_expand(&secret
->hkdf
,
574 HKDF_CONTEXT_KEY_IDENTIFIER
, NULL
, 0,
575 key_spec
->u
.identifier
,
576 FSCRYPT_KEY_IDENTIFIER_SIZE
);
580 return do_add_master_key(sb
, secret
, key_spec
);
583 static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload
*prep
)
585 const struct fscrypt_provisioning_key_payload
*payload
= prep
->data
;
587 if (prep
->datalen
< sizeof(*payload
) + FSCRYPT_MIN_KEY_SIZE
||
588 prep
->datalen
> sizeof(*payload
) + FSCRYPT_MAX_KEY_SIZE
)
591 if (payload
->type
!= FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR
&&
592 payload
->type
!= FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER
)
595 if (payload
->__reserved
)
598 prep
->payload
.data
[0] = kmemdup(payload
, prep
->datalen
, GFP_KERNEL
);
599 if (!prep
->payload
.data
[0])
602 prep
->quotalen
= prep
->datalen
;
606 static void fscrypt_provisioning_key_free_preparse(
607 struct key_preparsed_payload
*prep
)
609 kfree_sensitive(prep
->payload
.data
[0]);
612 static void fscrypt_provisioning_key_describe(const struct key
*key
,
615 seq_puts(m
, key
->description
);
616 if (key_is_positive(key
)) {
617 const struct fscrypt_provisioning_key_payload
*payload
=
618 key
->payload
.data
[0];
620 seq_printf(m
, ": %u [%u]", key
->datalen
, payload
->type
);
624 static void fscrypt_provisioning_key_destroy(struct key
*key
)
626 kfree_sensitive(key
->payload
.data
[0]);
629 static struct key_type key_type_fscrypt_provisioning
= {
630 .name
= "fscrypt-provisioning",
631 .preparse
= fscrypt_provisioning_key_preparse
,
632 .free_preparse
= fscrypt_provisioning_key_free_preparse
,
633 .instantiate
= generic_key_instantiate
,
634 .describe
= fscrypt_provisioning_key_describe
,
635 .destroy
= fscrypt_provisioning_key_destroy
,
639 * Retrieve the raw key from the Linux keyring key specified by 'key_id', and
640 * store it into 'secret'.
642 * The key must be of type "fscrypt-provisioning" and must have the field
643 * fscrypt_provisioning_key_payload::type set to 'type', indicating that it's
644 * only usable with fscrypt with the particular KDF version identified by
645 * 'type'. We don't use the "logon" key type because there's no way to
646 * completely restrict the use of such keys; they can be used by any kernel API
647 * that accepts "logon" keys and doesn't require a specific service prefix.
649 * The ability to specify the key via Linux keyring key is intended for cases
650 * where userspace needs to re-add keys after the filesystem is unmounted and
651 * re-mounted. Most users should just provide the raw key directly instead.
653 static int get_keyring_key(u32 key_id
, u32 type
,
654 struct fscrypt_master_key_secret
*secret
)
658 const struct fscrypt_provisioning_key_payload
*payload
;
661 ref
= lookup_user_key(key_id
, 0, KEY_NEED_SEARCH
);
664 key
= key_ref_to_ptr(ref
);
666 if (key
->type
!= &key_type_fscrypt_provisioning
)
668 payload
= key
->payload
.data
[0];
670 /* Don't allow fscrypt v1 keys to be used as v2 keys and vice versa. */
671 if (payload
->type
!= type
)
674 secret
->size
= key
->datalen
- sizeof(*payload
);
675 memcpy(secret
->raw
, payload
->raw
, secret
->size
);
687 * Add a master encryption key to the filesystem, causing all files which were
688 * encrypted with it to appear "unlocked" (decrypted) when accessed.
690 * When adding a key for use by v1 encryption policies, this ioctl is
691 * privileged, and userspace must provide the 'key_descriptor'.
693 * When adding a key for use by v2+ encryption policies, this ioctl is
694 * unprivileged. This is needed, in general, to allow non-root users to use
695 * encryption without encountering the visibility problems of process-subscribed
696 * keyrings and the inability to properly remove keys. This works by having
697 * each key identified by its cryptographically secure hash --- the
698 * 'key_identifier'. The cryptographic hash ensures that a malicious user
699 * cannot add the wrong key for a given identifier. Furthermore, each added key
700 * is charged to the appropriate user's quota for the keyrings service, which
701 * prevents a malicious user from adding too many keys. Finally, we forbid a
702 * user from removing a key while other users have added it too, which prevents
703 * a user who knows another user's key from causing a denial-of-service by
704 * removing it at an inopportune time. (We tolerate that a user who knows a key
705 * can prevent other users from removing it.)
707 * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of
708 * Documentation/filesystems/fscrypt.rst.
710 int fscrypt_ioctl_add_key(struct file
*filp
, void __user
*_uarg
)
712 struct super_block
*sb
= file_inode(filp
)->i_sb
;
713 struct fscrypt_add_key_arg __user
*uarg
= _uarg
;
714 struct fscrypt_add_key_arg arg
;
715 struct fscrypt_master_key_secret secret
;
718 if (copy_from_user(&arg
, uarg
, sizeof(arg
)))
721 if (!valid_key_spec(&arg
.key_spec
))
724 if (memchr_inv(arg
.__reserved
, 0, sizeof(arg
.__reserved
)))
728 * Only root can add keys that are identified by an arbitrary descriptor
729 * rather than by a cryptographic hash --- since otherwise a malicious
730 * user could add the wrong key.
732 if (arg
.key_spec
.type
== FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR
&&
733 !capable(CAP_SYS_ADMIN
))
736 memset(&secret
, 0, sizeof(secret
));
738 if (arg
.raw_size
!= 0)
740 err
= get_keyring_key(arg
.key_id
, arg
.key_spec
.type
, &secret
);
742 goto out_wipe_secret
;
744 if (arg
.raw_size
< FSCRYPT_MIN_KEY_SIZE
||
745 arg
.raw_size
> FSCRYPT_MAX_KEY_SIZE
)
747 secret
.size
= arg
.raw_size
;
749 if (copy_from_user(secret
.raw
, uarg
->raw
, secret
.size
))
750 goto out_wipe_secret
;
753 err
= add_master_key(sb
, &secret
, &arg
.key_spec
);
755 goto out_wipe_secret
;
757 /* Return the key identifier to userspace, if applicable */
759 if (arg
.key_spec
.type
== FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER
&&
760 copy_to_user(uarg
->key_spec
.u
.identifier
, arg
.key_spec
.u
.identifier
,
761 FSCRYPT_KEY_IDENTIFIER_SIZE
))
762 goto out_wipe_secret
;
765 wipe_master_key_secret(&secret
);
768 EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key
);
771 fscrypt_get_test_dummy_secret(struct fscrypt_master_key_secret
*secret
)
773 static u8 test_key
[FSCRYPT_MAX_KEY_SIZE
];
775 get_random_once(test_key
, FSCRYPT_MAX_KEY_SIZE
);
777 memset(secret
, 0, sizeof(*secret
));
778 secret
->size
= FSCRYPT_MAX_KEY_SIZE
;
779 memcpy(secret
->raw
, test_key
, FSCRYPT_MAX_KEY_SIZE
);
782 int fscrypt_get_test_dummy_key_identifier(
783 u8 key_identifier
[FSCRYPT_KEY_IDENTIFIER_SIZE
])
785 struct fscrypt_master_key_secret secret
;
788 fscrypt_get_test_dummy_secret(&secret
);
790 err
= fscrypt_init_hkdf(&secret
.hkdf
, secret
.raw
, secret
.size
);
793 err
= fscrypt_hkdf_expand(&secret
.hkdf
, HKDF_CONTEXT_KEY_IDENTIFIER
,
794 NULL
, 0, key_identifier
,
795 FSCRYPT_KEY_IDENTIFIER_SIZE
);
797 wipe_master_key_secret(&secret
);
802 * fscrypt_add_test_dummy_key() - add the test dummy encryption key
803 * @sb: the filesystem instance to add the key to
804 * @key_spec: the key specifier of the test dummy encryption key
806 * Add the key for the test_dummy_encryption mount option to the filesystem. To
807 * prevent misuse of this mount option, a per-boot random key is used instead of
808 * a hardcoded one. This makes it so that any encrypted files created using
809 * this option won't be accessible after a reboot.
811 * Return: 0 on success, -errno on failure
813 int fscrypt_add_test_dummy_key(struct super_block
*sb
,
814 struct fscrypt_key_specifier
*key_spec
)
816 struct fscrypt_master_key_secret secret
;
819 fscrypt_get_test_dummy_secret(&secret
);
820 err
= add_master_key(sb
, &secret
, key_spec
);
821 wipe_master_key_secret(&secret
);
826 * Verify that the current user has added a master key with the given identifier
827 * (returns -ENOKEY if not). This is needed to prevent a user from encrypting
828 * their files using some other user's key which they don't actually know.
829 * Cryptographically this isn't much of a problem, but the semantics of this
830 * would be a bit weird, so it's best to just forbid it.
832 * The system administrator (CAP_FOWNER) can override this, which should be
833 * enough for any use cases where encryption policies are being set using keys
834 * that were chosen ahead of time but aren't available at the moment.
836 * Note that the key may have already removed by the time this returns, but
837 * that's okay; we just care whether the key was there at some point.
839 * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code
841 int fscrypt_verify_key_added(struct super_block
*sb
,
842 const u8 identifier
[FSCRYPT_KEY_IDENTIFIER_SIZE
])
844 struct fscrypt_key_specifier mk_spec
;
845 struct fscrypt_master_key
*mk
;
849 mk_spec
.type
= FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER
;
850 memcpy(mk_spec
.u
.identifier
, identifier
, FSCRYPT_KEY_IDENTIFIER_SIZE
);
852 mk
= fscrypt_find_master_key(sb
, &mk_spec
);
857 down_read(&mk
->mk_sem
);
858 mk_user
= find_master_key_user(mk
);
859 if (IS_ERR(mk_user
)) {
860 err
= PTR_ERR(mk_user
);
865 up_read(&mk
->mk_sem
);
866 fscrypt_put_master_key(mk
);
868 if (err
== -ENOKEY
&& capable(CAP_FOWNER
))
874 * Try to evict the inode's dentries from the dentry cache. If the inode is a
875 * directory, then it can have at most one dentry; however, that dentry may be
876 * pinned by child dentries, so first try to evict the children too.
878 static void shrink_dcache_inode(struct inode
*inode
)
880 struct dentry
*dentry
;
882 if (S_ISDIR(inode
->i_mode
)) {
883 dentry
= d_find_any_alias(inode
);
885 shrink_dcache_parent(dentry
);
889 d_prune_aliases(inode
);
892 static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key
*mk
)
894 struct fscrypt_inode_info
*ci
;
896 struct inode
*toput_inode
= NULL
;
898 spin_lock(&mk
->mk_decrypted_inodes_lock
);
900 list_for_each_entry(ci
, &mk
->mk_decrypted_inodes
, ci_master_key_link
) {
901 inode
= ci
->ci_inode
;
902 spin_lock(&inode
->i_lock
);
903 if (inode
->i_state
& (I_FREEING
| I_WILL_FREE
| I_NEW
)) {
904 spin_unlock(&inode
->i_lock
);
908 spin_unlock(&inode
->i_lock
);
909 spin_unlock(&mk
->mk_decrypted_inodes_lock
);
911 shrink_dcache_inode(inode
);
915 spin_lock(&mk
->mk_decrypted_inodes_lock
);
918 spin_unlock(&mk
->mk_decrypted_inodes_lock
);
922 static int check_for_busy_inodes(struct super_block
*sb
,
923 struct fscrypt_master_key
*mk
)
925 struct list_head
*pos
;
926 size_t busy_count
= 0;
928 char ino_str
[50] = "";
930 spin_lock(&mk
->mk_decrypted_inodes_lock
);
932 list_for_each(pos
, &mk
->mk_decrypted_inodes
)
935 if (busy_count
== 0) {
936 spin_unlock(&mk
->mk_decrypted_inodes_lock
);
941 /* select an example file to show for debugging purposes */
942 struct inode
*inode
=
943 list_first_entry(&mk
->mk_decrypted_inodes
,
944 struct fscrypt_inode_info
,
945 ci_master_key_link
)->ci_inode
;
948 spin_unlock(&mk
->mk_decrypted_inodes_lock
);
950 /* If the inode is currently being created, ino may still be 0. */
952 snprintf(ino_str
, sizeof(ino_str
), ", including ino %lu", ino
);
955 "%s: %zu inode(s) still busy after removing key with %s %*phN%s",
956 sb
->s_id
, busy_count
, master_key_spec_type(&mk
->mk_spec
),
957 master_key_spec_len(&mk
->mk_spec
), (u8
*)&mk
->mk_spec
.u
,
962 static int try_to_lock_encrypted_files(struct super_block
*sb
,
963 struct fscrypt_master_key
*mk
)
969 * An inode can't be evicted while it is dirty or has dirty pages.
970 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes.
972 * Just do it the easy way: call sync_filesystem(). It's overkill, but
973 * it works, and it's more important to minimize the amount of caches we
974 * drop than the amount of data we sync. Also, unprivileged users can
975 * already call sync_filesystem() via sys_syncfs() or sys_sync().
977 down_read(&sb
->s_umount
);
978 err1
= sync_filesystem(sb
);
979 up_read(&sb
->s_umount
);
980 /* If a sync error occurs, still try to evict as much as possible. */
983 * Inodes are pinned by their dentries, so we have to evict their
984 * dentries. shrink_dcache_sb() would suffice, but would be overkill
985 * and inappropriate for use by unprivileged users. So instead go
986 * through the inodes' alias lists and try to evict each dentry.
988 evict_dentries_for_decrypted_inodes(mk
);
991 * evict_dentries_for_decrypted_inodes() already iput() each inode in
992 * the list; any inodes for which that dropped the last reference will
993 * have been evicted due to fscrypt_drop_inode() detecting the key
994 * removal and telling the VFS to evict the inode. So to finish, we
995 * just need to check whether any inodes couldn't be evicted.
997 err2
= check_for_busy_inodes(sb
, mk
);
1003 * Try to remove an fscrypt master encryption key.
1005 * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's
1006 * claim to the key, then removes the key itself if no other users have claims.
1007 * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the
1010 * To "remove the key itself", first we transition the key to the "incompletely
1011 * removed" state, so that no more inodes can be unlocked with it. Then we try
1012 * to evict all cached inodes that had been unlocked with the key.
1014 * If all inodes were evicted, then we unlink the fscrypt_master_key from the
1015 * keyring. Otherwise it remains in the keyring in the "incompletely removed"
1016 * state where it tracks the list of remaining inodes. Userspace can execute
1017 * the ioctl again later to retry eviction, or alternatively can re-add the key.
1019 * For more details, see the "Removing keys" section of
1020 * Documentation/filesystems/fscrypt.rst.
1022 static int do_remove_key(struct file
*filp
, void __user
*_uarg
, bool all_users
)
1024 struct super_block
*sb
= file_inode(filp
)->i_sb
;
1025 struct fscrypt_remove_key_arg __user
*uarg
= _uarg
;
1026 struct fscrypt_remove_key_arg arg
;
1027 struct fscrypt_master_key
*mk
;
1028 u32 status_flags
= 0;
1032 if (copy_from_user(&arg
, uarg
, sizeof(arg
)))
1035 if (!valid_key_spec(&arg
.key_spec
))
1038 if (memchr_inv(arg
.__reserved
, 0, sizeof(arg
.__reserved
)))
1042 * Only root can add and remove keys that are identified by an arbitrary
1043 * descriptor rather than by a cryptographic hash.
1045 if (arg
.key_spec
.type
== FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR
&&
1046 !capable(CAP_SYS_ADMIN
))
1049 /* Find the key being removed. */
1050 mk
= fscrypt_find_master_key(sb
, &arg
.key_spec
);
1053 down_write(&mk
->mk_sem
);
1055 /* If relevant, remove current user's (or all users) claim to the key */
1056 if (mk
->mk_users
&& mk
->mk_users
->keys
.nr_leaves_on_tree
!= 0) {
1058 err
= keyring_clear(mk
->mk_users
);
1060 err
= remove_master_key_user(mk
);
1062 up_write(&mk
->mk_sem
);
1065 if (mk
->mk_users
->keys
.nr_leaves_on_tree
!= 0) {
1067 * Other users have still added the key too. We removed
1068 * the current user's claim to the key, but we still
1069 * can't remove the key itself.
1072 FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS
;
1074 up_write(&mk
->mk_sem
);
1079 /* No user claims remaining. Initiate removal of the key. */
1081 if (mk
->mk_present
) {
1082 fscrypt_initiate_key_removal(sb
, mk
);
1085 inodes_remain
= refcount_read(&mk
->mk_active_refs
) > 0;
1086 up_write(&mk
->mk_sem
);
1088 if (inodes_remain
) {
1089 /* Some inodes still reference this key; try to evict them. */
1090 err
= try_to_lock_encrypted_files(sb
, mk
);
1091 if (err
== -EBUSY
) {
1093 FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY
;
1098 * We return 0 if we successfully did something: removed a claim to the
1099 * key, initiated removal of the key, or tried locking the files again.
1100 * Users need to check the informational status flags if they care
1101 * whether the key has been fully removed including all files locked.
1104 fscrypt_put_master_key(mk
);
1106 err
= put_user(status_flags
, &uarg
->removal_status_flags
);
1110 int fscrypt_ioctl_remove_key(struct file
*filp
, void __user
*uarg
)
1112 return do_remove_key(filp
, uarg
, false);
1114 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key
);
1116 int fscrypt_ioctl_remove_key_all_users(struct file
*filp
, void __user
*uarg
)
1118 if (!capable(CAP_SYS_ADMIN
))
1120 return do_remove_key(filp
, uarg
, true);
1122 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users
);
1125 * Retrieve the status of an fscrypt master encryption key.
1127 * We set ->status to indicate whether the key is absent, present, or
1128 * incompletely removed. (For an explanation of what these statuses mean and
1129 * how they are represented internally, see struct fscrypt_master_key.) This
1130 * field allows applications to easily determine the status of an encrypted
1131 * directory without using a hack such as trying to open a regular file in it
1132 * (which can confuse the "incompletely removed" status with absent or present).
1134 * In addition, for v2 policy keys we allow applications to determine, via
1135 * ->status_flags and ->user_count, whether the key has been added by the
1136 * current user, by other users, or by both. Most applications should not need
1137 * this, since ordinarily only one user should know a given key. However, if a
1138 * secret key is shared by multiple users, applications may wish to add an
1139 * already-present key to prevent other users from removing it. This ioctl can
1140 * be used to check whether that really is the case before the work is done to
1141 * add the key --- which might e.g. require prompting the user for a passphrase.
1143 * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of
1144 * Documentation/filesystems/fscrypt.rst.
1146 int fscrypt_ioctl_get_key_status(struct file
*filp
, void __user
*uarg
)
1148 struct super_block
*sb
= file_inode(filp
)->i_sb
;
1149 struct fscrypt_get_key_status_arg arg
;
1150 struct fscrypt_master_key
*mk
;
1153 if (copy_from_user(&arg
, uarg
, sizeof(arg
)))
1156 if (!valid_key_spec(&arg
.key_spec
))
1159 if (memchr_inv(arg
.__reserved
, 0, sizeof(arg
.__reserved
)))
1162 arg
.status_flags
= 0;
1164 memset(arg
.__out_reserved
, 0, sizeof(arg
.__out_reserved
));
1166 mk
= fscrypt_find_master_key(sb
, &arg
.key_spec
);
1168 arg
.status
= FSCRYPT_KEY_STATUS_ABSENT
;
1172 down_read(&mk
->mk_sem
);
1174 if (!mk
->mk_present
) {
1175 arg
.status
= refcount_read(&mk
->mk_active_refs
) > 0 ?
1176 FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED
:
1177 FSCRYPT_KEY_STATUS_ABSENT
/* raced with full removal */;
1179 goto out_release_key
;
1182 arg
.status
= FSCRYPT_KEY_STATUS_PRESENT
;
1184 struct key
*mk_user
;
1186 arg
.user_count
= mk
->mk_users
->keys
.nr_leaves_on_tree
;
1187 mk_user
= find_master_key_user(mk
);
1188 if (!IS_ERR(mk_user
)) {
1190 FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF
;
1192 } else if (mk_user
!= ERR_PTR(-ENOKEY
)) {
1193 err
= PTR_ERR(mk_user
);
1194 goto out_release_key
;
1199 up_read(&mk
->mk_sem
);
1200 fscrypt_put_master_key(mk
);
1202 if (!err
&& copy_to_user(uarg
, &arg
, sizeof(arg
)))
1206 EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status
);
1208 int __init
fscrypt_init_keyring(void)
1212 err
= register_key_type(&key_type_fscrypt_user
);
1216 err
= register_key_type(&key_type_fscrypt_provisioning
);
1218 goto err_unregister_fscrypt_user
;
1222 err_unregister_fscrypt_user
:
1223 unregister_key_type(&key_type_fscrypt_user
);