1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* auditsc.c -- System-call auditing support
3 * Handles all system-call specific auditing features.
5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
6 * Copyright 2005 Hewlett-Packard Development Company, L.P.
7 * Copyright (C) 2005, 2006 IBM Corporation
10 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
12 * Many of the ideas implemented here are from Stephen C. Tweedie,
13 * especially the idea of avoiding a copy by using getname.
15 * The method for actual interception of syscall entry and exit (not in
16 * this file -- see entry.S) is based on a GPL'd patch written by
17 * okir@suse.de and Copyright 2003 SuSE Linux AG.
19 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
22 * The support of additional filter rules compares (>, <, >=, <=) was
23 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
25 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
26 * filesystem information.
28 * Subject and object context labeling support added by <danjones@us.ibm.com>
29 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 #include <linux/init.h>
35 #include <asm/types.h>
36 #include <linux/atomic.h>
38 #include <linux/namei.h>
40 #include <linux/export.h>
41 #include <linux/slab.h>
42 #include <linux/mount.h>
43 #include <linux/socket.h>
44 #include <linux/mqueue.h>
45 #include <linux/audit.h>
46 #include <linux/personality.h>
47 #include <linux/time.h>
48 #include <linux/netlink.h>
49 #include <linux/compiler.h>
50 #include <asm/unistd.h>
51 #include <linux/security.h>
52 #include <linux/list.h>
53 #include <linux/binfmts.h>
54 #include <linux/highmem.h>
55 #include <linux/syscalls.h>
56 #include <asm/syscall.h>
57 #include <linux/capability.h>
58 #include <linux/fs_struct.h>
59 #include <linux/compat.h>
60 #include <linux/ctype.h>
61 #include <linux/string.h>
62 #include <linux/uaccess.h>
63 #include <linux/fsnotify_backend.h>
64 #include <uapi/linux/limits.h>
65 #include <uapi/linux/netfilter/nf_tables.h>
66 #include <uapi/linux/openat2.h> // struct open_how
67 #include <uapi/linux/fanotify.h>
71 /* flags stating the success for a syscall */
72 #define AUDITSC_INVALID 0
73 #define AUDITSC_SUCCESS 1
74 #define AUDITSC_FAILURE 2
76 /* no execve audit message should be longer than this (userspace limits),
77 * see the note near the top of audit_log_execve_info() about this value */
78 #define MAX_EXECVE_AUDIT_LEN 7500
80 /* max length to print of cmdline/proctitle value during audit */
81 #define MAX_PROCTITLE_AUDIT_LEN 128
83 /* number of audit rules */
86 /* determines whether we collect data for signals sent */
89 struct audit_aux_data
{
90 struct audit_aux_data
*next
;
94 /* Number of target pids per aux struct. */
95 #define AUDIT_AUX_PIDS 16
97 struct audit_aux_data_pids
{
98 struct audit_aux_data d
;
99 pid_t target_pid
[AUDIT_AUX_PIDS
];
100 kuid_t target_auid
[AUDIT_AUX_PIDS
];
101 kuid_t target_uid
[AUDIT_AUX_PIDS
];
102 unsigned int target_sessionid
[AUDIT_AUX_PIDS
];
103 struct lsm_prop target_ref
[AUDIT_AUX_PIDS
];
104 char target_comm
[AUDIT_AUX_PIDS
][TASK_COMM_LEN
];
108 struct audit_aux_data_bprm_fcaps
{
109 struct audit_aux_data d
;
110 struct audit_cap_data fcap
;
111 unsigned int fcap_ver
;
112 struct audit_cap_data old_pcap
;
113 struct audit_cap_data new_pcap
;
116 struct audit_tree_refs
{
117 struct audit_tree_refs
*next
;
118 struct audit_chunk
*c
[31];
121 struct audit_nfcfgop_tab
{
122 enum audit_nfcfgop op
;
126 static const struct audit_nfcfgop_tab audit_nfcfgs
[] = {
127 { AUDIT_XT_OP_REGISTER
, "xt_register" },
128 { AUDIT_XT_OP_REPLACE
, "xt_replace" },
129 { AUDIT_XT_OP_UNREGISTER
, "xt_unregister" },
130 { AUDIT_NFT_OP_TABLE_REGISTER
, "nft_register_table" },
131 { AUDIT_NFT_OP_TABLE_UNREGISTER
, "nft_unregister_table" },
132 { AUDIT_NFT_OP_CHAIN_REGISTER
, "nft_register_chain" },
133 { AUDIT_NFT_OP_CHAIN_UNREGISTER
, "nft_unregister_chain" },
134 { AUDIT_NFT_OP_RULE_REGISTER
, "nft_register_rule" },
135 { AUDIT_NFT_OP_RULE_UNREGISTER
, "nft_unregister_rule" },
136 { AUDIT_NFT_OP_SET_REGISTER
, "nft_register_set" },
137 { AUDIT_NFT_OP_SET_UNREGISTER
, "nft_unregister_set" },
138 { AUDIT_NFT_OP_SETELEM_REGISTER
, "nft_register_setelem" },
139 { AUDIT_NFT_OP_SETELEM_UNREGISTER
, "nft_unregister_setelem" },
140 { AUDIT_NFT_OP_GEN_REGISTER
, "nft_register_gen" },
141 { AUDIT_NFT_OP_OBJ_REGISTER
, "nft_register_obj" },
142 { AUDIT_NFT_OP_OBJ_UNREGISTER
, "nft_unregister_obj" },
143 { AUDIT_NFT_OP_OBJ_RESET
, "nft_reset_obj" },
144 { AUDIT_NFT_OP_FLOWTABLE_REGISTER
, "nft_register_flowtable" },
145 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER
, "nft_unregister_flowtable" },
146 { AUDIT_NFT_OP_SETELEM_RESET
, "nft_reset_setelem" },
147 { AUDIT_NFT_OP_RULE_RESET
, "nft_reset_rule" },
148 { AUDIT_NFT_OP_INVALID
, "nft_invalid" },
151 static int audit_match_perm(struct audit_context
*ctx
, int mask
)
159 switch (audit_classify_syscall(ctx
->arch
, n
)) {
161 if ((mask
& AUDIT_PERM_WRITE
) &&
162 audit_match_class(AUDIT_CLASS_WRITE
, n
))
164 if ((mask
& AUDIT_PERM_READ
) &&
165 audit_match_class(AUDIT_CLASS_READ
, n
))
167 if ((mask
& AUDIT_PERM_ATTR
) &&
168 audit_match_class(AUDIT_CLASS_CHATTR
, n
))
171 case AUDITSC_COMPAT
: /* 32bit on biarch */
172 if ((mask
& AUDIT_PERM_WRITE
) &&
173 audit_match_class(AUDIT_CLASS_WRITE_32
, n
))
175 if ((mask
& AUDIT_PERM_READ
) &&
176 audit_match_class(AUDIT_CLASS_READ_32
, n
))
178 if ((mask
& AUDIT_PERM_ATTR
) &&
179 audit_match_class(AUDIT_CLASS_CHATTR_32
, n
))
183 return mask
& ACC_MODE(ctx
->argv
[1]);
185 return mask
& ACC_MODE(ctx
->argv
[2]);
186 case AUDITSC_SOCKETCALL
:
187 return ((mask
& AUDIT_PERM_WRITE
) && ctx
->argv
[0] == SYS_BIND
);
189 return mask
& AUDIT_PERM_EXEC
;
190 case AUDITSC_OPENAT2
:
191 return mask
& ACC_MODE((u32
)ctx
->openat2
.flags
);
197 static int audit_match_filetype(struct audit_context
*ctx
, int val
)
199 struct audit_names
*n
;
200 umode_t mode
= (umode_t
)val
;
205 list_for_each_entry(n
, &ctx
->names_list
, list
) {
206 if ((n
->ino
!= AUDIT_INO_UNSET
) &&
207 ((n
->mode
& S_IFMT
) == mode
))
215 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
216 * ->first_trees points to its beginning, ->trees - to the current end of data.
217 * ->tree_count is the number of free entries in array pointed to by ->trees.
218 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
219 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
220 * it's going to remain 1-element for almost any setup) until we free context itself.
221 * References in it _are_ dropped - at the same time we free/drop aux stuff.
224 static void audit_set_auditable(struct audit_context
*ctx
)
228 ctx
->current_state
= AUDIT_STATE_RECORD
;
232 static int put_tree_ref(struct audit_context
*ctx
, struct audit_chunk
*chunk
)
234 struct audit_tree_refs
*p
= ctx
->trees
;
235 int left
= ctx
->tree_count
;
238 p
->c
[--left
] = chunk
;
239 ctx
->tree_count
= left
;
248 ctx
->tree_count
= 30;
254 static int grow_tree_refs(struct audit_context
*ctx
)
256 struct audit_tree_refs
*p
= ctx
->trees
;
258 ctx
->trees
= kzalloc(sizeof(struct audit_tree_refs
), GFP_KERNEL
);
264 p
->next
= ctx
->trees
;
266 ctx
->first_trees
= ctx
->trees
;
267 ctx
->tree_count
= 31;
271 static void unroll_tree_refs(struct audit_context
*ctx
,
272 struct audit_tree_refs
*p
, int count
)
274 struct audit_tree_refs
*q
;
278 /* we started with empty chain */
279 p
= ctx
->first_trees
;
281 /* if the very first allocation has failed, nothing to do */
286 for (q
= p
; q
!= ctx
->trees
; q
= q
->next
, n
= 31) {
288 audit_put_chunk(q
->c
[n
]);
292 while (n
-- > ctx
->tree_count
) {
293 audit_put_chunk(q
->c
[n
]);
297 ctx
->tree_count
= count
;
300 static void free_tree_refs(struct audit_context
*ctx
)
302 struct audit_tree_refs
*p
, *q
;
304 for (p
= ctx
->first_trees
; p
; p
= q
) {
310 static int match_tree_refs(struct audit_context
*ctx
, struct audit_tree
*tree
)
312 struct audit_tree_refs
*p
;
318 for (p
= ctx
->first_trees
; p
!= ctx
->trees
; p
= p
->next
) {
319 for (n
= 0; n
< 31; n
++)
320 if (audit_tree_match(p
->c
[n
], tree
))
325 for (n
= ctx
->tree_count
; n
< 31; n
++)
326 if (audit_tree_match(p
->c
[n
], tree
))
332 static int audit_compare_uid(kuid_t uid
,
333 struct audit_names
*name
,
334 struct audit_field
*f
,
335 struct audit_context
*ctx
)
337 struct audit_names
*n
;
341 rc
= audit_uid_comparator(uid
, f
->op
, name
->uid
);
347 list_for_each_entry(n
, &ctx
->names_list
, list
) {
348 rc
= audit_uid_comparator(uid
, f
->op
, n
->uid
);
356 static int audit_compare_gid(kgid_t gid
,
357 struct audit_names
*name
,
358 struct audit_field
*f
,
359 struct audit_context
*ctx
)
361 struct audit_names
*n
;
365 rc
= audit_gid_comparator(gid
, f
->op
, name
->gid
);
371 list_for_each_entry(n
, &ctx
->names_list
, list
) {
372 rc
= audit_gid_comparator(gid
, f
->op
, n
->gid
);
380 static int audit_field_compare(struct task_struct
*tsk
,
381 const struct cred
*cred
,
382 struct audit_field
*f
,
383 struct audit_context
*ctx
,
384 struct audit_names
*name
)
387 /* process to file object comparisons */
388 case AUDIT_COMPARE_UID_TO_OBJ_UID
:
389 return audit_compare_uid(cred
->uid
, name
, f
, ctx
);
390 case AUDIT_COMPARE_GID_TO_OBJ_GID
:
391 return audit_compare_gid(cred
->gid
, name
, f
, ctx
);
392 case AUDIT_COMPARE_EUID_TO_OBJ_UID
:
393 return audit_compare_uid(cred
->euid
, name
, f
, ctx
);
394 case AUDIT_COMPARE_EGID_TO_OBJ_GID
:
395 return audit_compare_gid(cred
->egid
, name
, f
, ctx
);
396 case AUDIT_COMPARE_AUID_TO_OBJ_UID
:
397 return audit_compare_uid(audit_get_loginuid(tsk
), name
, f
, ctx
);
398 case AUDIT_COMPARE_SUID_TO_OBJ_UID
:
399 return audit_compare_uid(cred
->suid
, name
, f
, ctx
);
400 case AUDIT_COMPARE_SGID_TO_OBJ_GID
:
401 return audit_compare_gid(cred
->sgid
, name
, f
, ctx
);
402 case AUDIT_COMPARE_FSUID_TO_OBJ_UID
:
403 return audit_compare_uid(cred
->fsuid
, name
, f
, ctx
);
404 case AUDIT_COMPARE_FSGID_TO_OBJ_GID
:
405 return audit_compare_gid(cred
->fsgid
, name
, f
, ctx
);
406 /* uid comparisons */
407 case AUDIT_COMPARE_UID_TO_AUID
:
408 return audit_uid_comparator(cred
->uid
, f
->op
,
409 audit_get_loginuid(tsk
));
410 case AUDIT_COMPARE_UID_TO_EUID
:
411 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->euid
);
412 case AUDIT_COMPARE_UID_TO_SUID
:
413 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->suid
);
414 case AUDIT_COMPARE_UID_TO_FSUID
:
415 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->fsuid
);
416 /* auid comparisons */
417 case AUDIT_COMPARE_AUID_TO_EUID
:
418 return audit_uid_comparator(audit_get_loginuid(tsk
), f
->op
,
420 case AUDIT_COMPARE_AUID_TO_SUID
:
421 return audit_uid_comparator(audit_get_loginuid(tsk
), f
->op
,
423 case AUDIT_COMPARE_AUID_TO_FSUID
:
424 return audit_uid_comparator(audit_get_loginuid(tsk
), f
->op
,
426 /* euid comparisons */
427 case AUDIT_COMPARE_EUID_TO_SUID
:
428 return audit_uid_comparator(cred
->euid
, f
->op
, cred
->suid
);
429 case AUDIT_COMPARE_EUID_TO_FSUID
:
430 return audit_uid_comparator(cred
->euid
, f
->op
, cred
->fsuid
);
431 /* suid comparisons */
432 case AUDIT_COMPARE_SUID_TO_FSUID
:
433 return audit_uid_comparator(cred
->suid
, f
->op
, cred
->fsuid
);
434 /* gid comparisons */
435 case AUDIT_COMPARE_GID_TO_EGID
:
436 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->egid
);
437 case AUDIT_COMPARE_GID_TO_SGID
:
438 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->sgid
);
439 case AUDIT_COMPARE_GID_TO_FSGID
:
440 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->fsgid
);
441 /* egid comparisons */
442 case AUDIT_COMPARE_EGID_TO_SGID
:
443 return audit_gid_comparator(cred
->egid
, f
->op
, cred
->sgid
);
444 case AUDIT_COMPARE_EGID_TO_FSGID
:
445 return audit_gid_comparator(cred
->egid
, f
->op
, cred
->fsgid
);
446 /* sgid comparison */
447 case AUDIT_COMPARE_SGID_TO_FSGID
:
448 return audit_gid_comparator(cred
->sgid
, f
->op
, cred
->fsgid
);
450 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
456 /* Determine if any context name data matches a rule's watch data */
457 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
460 * If task_creation is true, this is an explicit indication that we are
461 * filtering a task rule at task creation time. This and tsk == current are
462 * the only situations where tsk->cred may be accessed without an rcu read lock.
464 static int audit_filter_rules(struct task_struct
*tsk
,
465 struct audit_krule
*rule
,
466 struct audit_context
*ctx
,
467 struct audit_names
*name
,
468 enum audit_state
*state
,
471 const struct cred
*cred
;
473 struct lsm_prop prop
= { };
474 unsigned int sessionid
;
476 if (ctx
&& rule
->prio
<= ctx
->prio
)
479 cred
= rcu_dereference_check(tsk
->cred
, tsk
== current
|| task_creation
);
481 for (i
= 0; i
< rule
->field_count
; i
++) {
482 struct audit_field
*f
= &rule
->fields
[i
];
483 struct audit_names
*n
;
489 pid
= task_tgid_nr(tsk
);
490 result
= audit_comparator(pid
, f
->op
, f
->val
);
495 ctx
->ppid
= task_ppid_nr(tsk
);
496 result
= audit_comparator(ctx
->ppid
, f
->op
, f
->val
);
500 result
= audit_exe_compare(tsk
, rule
->exe
);
501 if (f
->op
== Audit_not_equal
)
505 result
= audit_uid_comparator(cred
->uid
, f
->op
, f
->uid
);
508 result
= audit_uid_comparator(cred
->euid
, f
->op
, f
->uid
);
511 result
= audit_uid_comparator(cred
->suid
, f
->op
, f
->uid
);
514 result
= audit_uid_comparator(cred
->fsuid
, f
->op
, f
->uid
);
517 result
= audit_gid_comparator(cred
->gid
, f
->op
, f
->gid
);
518 if (f
->op
== Audit_equal
) {
520 result
= groups_search(cred
->group_info
, f
->gid
);
521 } else if (f
->op
== Audit_not_equal
) {
523 result
= !groups_search(cred
->group_info
, f
->gid
);
527 result
= audit_gid_comparator(cred
->egid
, f
->op
, f
->gid
);
528 if (f
->op
== Audit_equal
) {
530 result
= groups_search(cred
->group_info
, f
->gid
);
531 } else if (f
->op
== Audit_not_equal
) {
533 result
= !groups_search(cred
->group_info
, f
->gid
);
537 result
= audit_gid_comparator(cred
->sgid
, f
->op
, f
->gid
);
540 result
= audit_gid_comparator(cred
->fsgid
, f
->op
, f
->gid
);
542 case AUDIT_SESSIONID
:
543 sessionid
= audit_get_sessionid(tsk
);
544 result
= audit_comparator(sessionid
, f
->op
, f
->val
);
547 result
= audit_comparator(tsk
->personality
, f
->op
, f
->val
);
551 result
= audit_comparator(ctx
->arch
, f
->op
, f
->val
);
555 if (ctx
&& ctx
->return_valid
!= AUDITSC_INVALID
)
556 result
= audit_comparator(ctx
->return_code
, f
->op
, f
->val
);
559 if (ctx
&& ctx
->return_valid
!= AUDITSC_INVALID
) {
561 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_SUCCESS
);
563 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_FAILURE
);
568 if (audit_comparator(MAJOR(name
->dev
), f
->op
, f
->val
) ||
569 audit_comparator(MAJOR(name
->rdev
), f
->op
, f
->val
))
572 list_for_each_entry(n
, &ctx
->names_list
, list
) {
573 if (audit_comparator(MAJOR(n
->dev
), f
->op
, f
->val
) ||
574 audit_comparator(MAJOR(n
->rdev
), f
->op
, f
->val
)) {
583 if (audit_comparator(MINOR(name
->dev
), f
->op
, f
->val
) ||
584 audit_comparator(MINOR(name
->rdev
), f
->op
, f
->val
))
587 list_for_each_entry(n
, &ctx
->names_list
, list
) {
588 if (audit_comparator(MINOR(n
->dev
), f
->op
, f
->val
) ||
589 audit_comparator(MINOR(n
->rdev
), f
->op
, f
->val
)) {
598 result
= audit_comparator(name
->ino
, f
->op
, f
->val
);
600 list_for_each_entry(n
, &ctx
->names_list
, list
) {
601 if (audit_comparator(n
->ino
, f
->op
, f
->val
)) {
610 result
= audit_uid_comparator(name
->uid
, f
->op
, f
->uid
);
612 list_for_each_entry(n
, &ctx
->names_list
, list
) {
613 if (audit_uid_comparator(n
->uid
, f
->op
, f
->uid
)) {
622 result
= audit_gid_comparator(name
->gid
, f
->op
, f
->gid
);
624 list_for_each_entry(n
, &ctx
->names_list
, list
) {
625 if (audit_gid_comparator(n
->gid
, f
->op
, f
->gid
)) {
634 result
= audit_watch_compare(rule
->watch
,
637 if (f
->op
== Audit_not_equal
)
643 result
= match_tree_refs(ctx
, rule
->tree
);
644 if (f
->op
== Audit_not_equal
)
649 result
= audit_uid_comparator(audit_get_loginuid(tsk
),
652 case AUDIT_LOGINUID_SET
:
653 result
= audit_comparator(audit_loginuid_set(tsk
), f
->op
, f
->val
);
655 case AUDIT_SADDR_FAM
:
656 if (ctx
&& ctx
->sockaddr
)
657 result
= audit_comparator(ctx
->sockaddr
->ss_family
,
660 case AUDIT_SUBJ_USER
:
661 case AUDIT_SUBJ_ROLE
:
662 case AUDIT_SUBJ_TYPE
:
665 /* NOTE: this may return negative values indicating
666 a temporary error. We simply treat this as a
667 match for now to avoid losing information that
668 may be wanted. An error message will also be
672 /* @tsk should always be equal to
673 * @current with the exception of
674 * fork()/copy_process() in which case
675 * the new @tsk creds are still a dup
676 * of @current's creds so we can still
678 * security_current_getlsmprop_subj()
679 * here even though it always refs
682 security_current_getlsmprop_subj(&prop
);
685 result
= security_audit_rule_match(&prop
,
694 case AUDIT_OBJ_LEV_LOW
:
695 case AUDIT_OBJ_LEV_HIGH
:
696 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
699 /* Find files that match */
701 result
= security_audit_rule_match(
707 list_for_each_entry(n
, &ctx
->names_list
, list
) {
708 if (security_audit_rule_match(
718 /* Find ipc objects that match */
719 if (!ctx
|| ctx
->type
!= AUDIT_IPC
)
721 if (security_audit_rule_match(&ctx
->ipc
.oprop
,
732 result
= audit_comparator(ctx
->argv
[f
->type
-AUDIT_ARG0
], f
->op
, f
->val
);
734 case AUDIT_FILTERKEY
:
735 /* ignore this field for filtering */
739 result
= audit_match_perm(ctx
, f
->val
);
740 if (f
->op
== Audit_not_equal
)
744 result
= audit_match_filetype(ctx
, f
->val
);
745 if (f
->op
== Audit_not_equal
)
748 case AUDIT_FIELD_COMPARE
:
749 result
= audit_field_compare(tsk
, cred
, f
, ctx
, name
);
757 if (rule
->filterkey
) {
758 kfree(ctx
->filterkey
);
759 ctx
->filterkey
= kstrdup(rule
->filterkey
, GFP_ATOMIC
);
761 ctx
->prio
= rule
->prio
;
763 switch (rule
->action
) {
765 *state
= AUDIT_STATE_DISABLED
;
768 *state
= AUDIT_STATE_RECORD
;
774 /* At process creation time, we can determine if system-call auditing is
775 * completely disabled for this task. Since we only have the task
776 * structure at this point, we can only check uid and gid.
778 static enum audit_state
audit_filter_task(struct task_struct
*tsk
, char **key
)
780 struct audit_entry
*e
;
781 enum audit_state state
;
784 list_for_each_entry_rcu(e
, &audit_filter_list
[AUDIT_FILTER_TASK
], list
) {
785 if (audit_filter_rules(tsk
, &e
->rule
, NULL
, NULL
,
787 if (state
== AUDIT_STATE_RECORD
)
788 *key
= kstrdup(e
->rule
.filterkey
, GFP_ATOMIC
);
794 return AUDIT_STATE_BUILD
;
797 static int audit_in_mask(const struct audit_krule
*rule
, unsigned long val
)
801 if (val
> 0xffffffff)
804 word
= AUDIT_WORD(val
);
805 if (word
>= AUDIT_BITMASK_SIZE
)
808 bit
= AUDIT_BIT(val
);
810 return rule
->mask
[word
] & bit
;
814 * __audit_filter_op - common filter helper for operations (syscall/uring/etc)
815 * @tsk: associated task
816 * @ctx: audit context
817 * @list: audit filter list
818 * @name: audit_name (can be NULL)
819 * @op: current syscall/uring_op
821 * Run the udit filters specified in @list against @tsk using @ctx,
822 * @name, and @op, as necessary; the caller is responsible for ensuring
823 * that the call is made while the RCU read lock is held. The @name
824 * parameter can be NULL, but all others must be specified.
825 * Returns 1/true if the filter finds a match, 0/false if none are found.
827 static int __audit_filter_op(struct task_struct
*tsk
,
828 struct audit_context
*ctx
,
829 struct list_head
*list
,
830 struct audit_names
*name
,
833 struct audit_entry
*e
;
834 enum audit_state state
;
836 list_for_each_entry_rcu(e
, list
, list
) {
837 if (audit_in_mask(&e
->rule
, op
) &&
838 audit_filter_rules(tsk
, &e
->rule
, ctx
, name
,
840 ctx
->current_state
= state
;
848 * audit_filter_uring - apply filters to an io_uring operation
849 * @tsk: associated task
850 * @ctx: audit context
852 static void audit_filter_uring(struct task_struct
*tsk
,
853 struct audit_context
*ctx
)
855 if (auditd_test_task(tsk
))
859 __audit_filter_op(tsk
, ctx
, &audit_filter_list
[AUDIT_FILTER_URING_EXIT
],
860 NULL
, ctx
->uring_op
);
864 /* At syscall exit time, this filter is called if the audit_state is
865 * not low enough that auditing cannot take place, but is also not
866 * high enough that we already know we have to write an audit record
867 * (i.e., the state is AUDIT_STATE_BUILD).
869 static void audit_filter_syscall(struct task_struct
*tsk
,
870 struct audit_context
*ctx
)
872 if (auditd_test_task(tsk
))
876 __audit_filter_op(tsk
, ctx
, &audit_filter_list
[AUDIT_FILTER_EXIT
],
882 * Given an audit_name check the inode hash table to see if they match.
883 * Called holding the rcu read lock to protect the use of audit_inode_hash
885 static int audit_filter_inode_name(struct task_struct
*tsk
,
886 struct audit_names
*n
,
887 struct audit_context
*ctx
)
889 int h
= audit_hash_ino((u32
)n
->ino
);
890 struct list_head
*list
= &audit_inode_hash
[h
];
892 return __audit_filter_op(tsk
, ctx
, list
, n
, ctx
->major
);
895 /* At syscall exit time, this filter is called if any audit_names have been
896 * collected during syscall processing. We only check rules in sublists at hash
897 * buckets applicable to the inode numbers in audit_names.
898 * Regarding audit_state, same rules apply as for audit_filter_syscall().
900 void audit_filter_inodes(struct task_struct
*tsk
, struct audit_context
*ctx
)
902 struct audit_names
*n
;
904 if (auditd_test_task(tsk
))
909 list_for_each_entry(n
, &ctx
->names_list
, list
) {
910 if (audit_filter_inode_name(tsk
, n
, ctx
))
916 static inline void audit_proctitle_free(struct audit_context
*context
)
918 kfree(context
->proctitle
.value
);
919 context
->proctitle
.value
= NULL
;
920 context
->proctitle
.len
= 0;
923 static inline void audit_free_module(struct audit_context
*context
)
925 if (context
->type
== AUDIT_KERN_MODULE
) {
926 kfree(context
->module
.name
);
927 context
->module
.name
= NULL
;
930 static inline void audit_free_names(struct audit_context
*context
)
932 struct audit_names
*n
, *next
;
934 list_for_each_entry_safe(n
, next
, &context
->names_list
, list
) {
941 context
->name_count
= 0;
942 path_put(&context
->pwd
);
943 context
->pwd
.dentry
= NULL
;
944 context
->pwd
.mnt
= NULL
;
947 static inline void audit_free_aux(struct audit_context
*context
)
949 struct audit_aux_data
*aux
;
951 while ((aux
= context
->aux
)) {
952 context
->aux
= aux
->next
;
956 while ((aux
= context
->aux_pids
)) {
957 context
->aux_pids
= aux
->next
;
960 context
->aux_pids
= NULL
;
964 * audit_reset_context - reset a audit_context structure
965 * @ctx: the audit_context to reset
967 * All fields in the audit_context will be reset to an initial state, all
968 * references held by fields will be dropped, and private memory will be
969 * released. When this function returns the audit_context will be suitable
970 * for reuse, so long as the passed context is not NULL or a dummy context.
972 static void audit_reset_context(struct audit_context
*ctx
)
977 /* if ctx is non-null, reset the "ctx->context" regardless */
978 ctx
->context
= AUDIT_CTX_UNUSED
;
983 * NOTE: It shouldn't matter in what order we release the fields, so
984 * release them in the order in which they appear in the struct;
985 * this gives us some hope of quickly making sure we are
986 * resetting the audit_context properly.
988 * Other things worth mentioning:
989 * - we don't reset "dummy"
990 * - we don't reset "state", we do reset "current_state"
991 * - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD
992 * - much of this is likely overkill, but play it safe for now
993 * - we really need to work on improving the audit_context struct
996 ctx
->current_state
= ctx
->state
;
1000 ctx
->ctime
= (struct timespec64
){ .tv_sec
= 0, .tv_nsec
= 0 };
1001 memset(ctx
->argv
, 0, sizeof(ctx
->argv
));
1002 ctx
->return_code
= 0;
1003 ctx
->prio
= (ctx
->state
== AUDIT_STATE_RECORD
? ~0ULL : 0);
1004 ctx
->return_valid
= AUDITSC_INVALID
;
1005 audit_free_names(ctx
);
1006 if (ctx
->state
!= AUDIT_STATE_RECORD
) {
1007 kfree(ctx
->filterkey
);
1008 ctx
->filterkey
= NULL
;
1010 audit_free_aux(ctx
);
1011 kfree(ctx
->sockaddr
);
1012 ctx
->sockaddr
= NULL
;
1013 ctx
->sockaddr_len
= 0;
1015 ctx
->uid
= ctx
->euid
= ctx
->suid
= ctx
->fsuid
= KUIDT_INIT(0);
1016 ctx
->gid
= ctx
->egid
= ctx
->sgid
= ctx
->fsgid
= KGIDT_INIT(0);
1017 ctx
->personality
= 0;
1019 ctx
->target_pid
= 0;
1020 ctx
->target_auid
= ctx
->target_uid
= KUIDT_INIT(0);
1021 ctx
->target_sessionid
= 0;
1022 lsmprop_init(&ctx
->target_ref
);
1023 ctx
->target_comm
[0] = '\0';
1024 unroll_tree_refs(ctx
, NULL
, 0);
1025 WARN_ON(!list_empty(&ctx
->killed_trees
));
1026 audit_free_module(ctx
);
1028 ctx
->type
= 0; /* reset last for audit_free_*() */
1031 static inline struct audit_context
*audit_alloc_context(enum audit_state state
)
1033 struct audit_context
*context
;
1035 context
= kzalloc(sizeof(*context
), GFP_KERNEL
);
1038 context
->context
= AUDIT_CTX_UNUSED
;
1039 context
->state
= state
;
1040 context
->prio
= state
== AUDIT_STATE_RECORD
? ~0ULL : 0;
1041 INIT_LIST_HEAD(&context
->killed_trees
);
1042 INIT_LIST_HEAD(&context
->names_list
);
1043 context
->fds
[0] = -1;
1044 context
->return_valid
= AUDITSC_INVALID
;
1049 * audit_alloc - allocate an audit context block for a task
1052 * Filter on the task information and allocate a per-task audit context
1053 * if necessary. Doing so turns on system call auditing for the
1054 * specified task. This is called from copy_process, so no lock is
1057 int audit_alloc(struct task_struct
*tsk
)
1059 struct audit_context
*context
;
1060 enum audit_state state
;
1063 if (likely(!audit_ever_enabled
))
1066 state
= audit_filter_task(tsk
, &key
);
1067 if (state
== AUDIT_STATE_DISABLED
) {
1068 clear_task_syscall_work(tsk
, SYSCALL_AUDIT
);
1072 context
= audit_alloc_context(state
);
1075 audit_log_lost("out of memory in audit_alloc");
1078 context
->filterkey
= key
;
1080 audit_set_context(tsk
, context
);
1081 set_task_syscall_work(tsk
, SYSCALL_AUDIT
);
1085 static inline void audit_free_context(struct audit_context
*context
)
1087 /* resetting is extra work, but it is likely just noise */
1088 audit_reset_context(context
);
1089 audit_proctitle_free(context
);
1090 free_tree_refs(context
);
1091 kfree(context
->filterkey
);
1095 static int audit_log_pid_context(struct audit_context
*context
, pid_t pid
,
1096 kuid_t auid
, kuid_t uid
,
1097 unsigned int sessionid
, struct lsm_prop
*prop
,
1100 struct audit_buffer
*ab
;
1105 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_OBJ_PID
);
1109 audit_log_format(ab
, "opid=%d oauid=%d ouid=%d oses=%d", pid
,
1110 from_kuid(&init_user_ns
, auid
),
1111 from_kuid(&init_user_ns
, uid
), sessionid
);
1112 if (lsmprop_is_set(prop
)) {
1113 if (security_lsmprop_to_secctx(prop
, &ctx
, &len
)) {
1114 audit_log_format(ab
, " obj=(none)");
1117 audit_log_format(ab
, " obj=%s", ctx
);
1118 security_release_secctx(ctx
, len
);
1121 audit_log_format(ab
, " ocomm=");
1122 audit_log_untrustedstring(ab
, comm
);
1128 static void audit_log_execve_info(struct audit_context
*context
,
1129 struct audit_buffer
**ab
)
1143 const char __user
*p
= (const char __user
*)current
->mm
->arg_start
;
1145 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1146 * data we put in the audit record for this argument (see the
1147 * code below) ... at this point in time 96 is plenty */
1150 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1151 * current value of 7500 is not as important as the fact that it
1152 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1153 * room if we go over a little bit in the logging below */
1154 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN
> 7500);
1155 len_max
= MAX_EXECVE_AUDIT_LEN
;
1157 /* scratch buffer to hold the userspace args */
1158 buf_head
= kmalloc(MAX_EXECVE_AUDIT_LEN
+ 1, GFP_KERNEL
);
1160 audit_panic("out of memory for argv string");
1165 audit_log_format(*ab
, "argc=%d", context
->execve
.argc
);
1170 require_data
= true;
1175 /* NOTE: we don't ever want to trust this value for anything
1176 * serious, but the audit record format insists we
1177 * provide an argument length for really long arguments,
1178 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1179 * to use strncpy_from_user() to obtain this value for
1180 * recording in the log, although we don't use it
1181 * anywhere here to avoid a double-fetch problem */
1183 len_full
= strnlen_user(p
, MAX_ARG_STRLEN
) - 1;
1185 /* read more data from userspace */
1187 /* can we make more room in the buffer? */
1188 if (buf
!= buf_head
) {
1189 memmove(buf_head
, buf
, len_buf
);
1193 /* fetch as much as we can of the argument */
1194 len_tmp
= strncpy_from_user(&buf_head
[len_buf
], p
,
1196 if (len_tmp
== -EFAULT
) {
1197 /* unable to copy from userspace */
1198 send_sig(SIGKILL
, current
, 0);
1200 } else if (len_tmp
== (len_max
- len_buf
)) {
1201 /* buffer is not large enough */
1202 require_data
= true;
1203 /* NOTE: if we are going to span multiple
1204 * buffers force the encoding so we stand
1205 * a chance at a sane len_full value and
1206 * consistent record encoding */
1208 len_full
= len_full
* 2;
1211 require_data
= false;
1213 encode
= audit_string_contains_control(
1215 /* try to use a trusted value for len_full */
1216 if (len_full
< len_max
)
1217 len_full
= (encode
?
1218 len_tmp
* 2 : len_tmp
);
1222 buf_head
[len_buf
] = '\0';
1224 /* length of the buffer in the audit record? */
1225 len_abuf
= (encode
? len_buf
* 2 : len_buf
+ 2);
1228 /* write as much as we can to the audit log */
1230 /* NOTE: some magic numbers here - basically if we
1231 * can't fit a reasonable amount of data into the
1232 * existing audit buffer, flush it and start with
1234 if ((sizeof(abuf
) + 8) > len_rem
) {
1237 *ab
= audit_log_start(context
,
1238 GFP_KERNEL
, AUDIT_EXECVE
);
1243 /* create the non-arg portion of the arg record */
1245 if (require_data
|| (iter
> 0) ||
1246 ((len_abuf
+ sizeof(abuf
)) > len_rem
)) {
1248 len_tmp
+= snprintf(&abuf
[len_tmp
],
1249 sizeof(abuf
) - len_tmp
,
1253 len_tmp
+= snprintf(&abuf
[len_tmp
],
1254 sizeof(abuf
) - len_tmp
,
1255 " a%d[%d]=", arg
, iter
++);
1257 len_tmp
+= snprintf(&abuf
[len_tmp
],
1258 sizeof(abuf
) - len_tmp
,
1260 WARN_ON(len_tmp
>= sizeof(abuf
));
1261 abuf
[sizeof(abuf
) - 1] = '\0';
1263 /* log the arg in the audit record */
1264 audit_log_format(*ab
, "%s", abuf
);
1268 if (len_abuf
> len_rem
)
1269 len_tmp
= len_rem
/ 2; /* encoding */
1270 audit_log_n_hex(*ab
, buf
, len_tmp
);
1271 len_rem
-= len_tmp
* 2;
1272 len_abuf
-= len_tmp
* 2;
1274 if (len_abuf
> len_rem
)
1275 len_tmp
= len_rem
- 2; /* quotes */
1276 audit_log_n_string(*ab
, buf
, len_tmp
);
1277 len_rem
-= len_tmp
+ 2;
1278 /* don't subtract the "2" because we still need
1279 * to add quotes to the remaining string */
1280 len_abuf
-= len_tmp
;
1286 /* ready to move to the next argument? */
1287 if ((len_buf
== 0) && !require_data
) {
1291 require_data
= true;
1294 } while (arg
< context
->execve
.argc
);
1296 /* NOTE: the caller handles the final audit_log_end() call */
1302 static void audit_log_cap(struct audit_buffer
*ab
, char *prefix
,
1305 if (cap_isclear(*cap
)) {
1306 audit_log_format(ab
, " %s=0", prefix
);
1309 audit_log_format(ab
, " %s=%016llx", prefix
, cap
->val
);
1312 static void audit_log_fcaps(struct audit_buffer
*ab
, struct audit_names
*name
)
1314 if (name
->fcap_ver
== -1) {
1315 audit_log_format(ab
, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1318 audit_log_cap(ab
, "cap_fp", &name
->fcap
.permitted
);
1319 audit_log_cap(ab
, "cap_fi", &name
->fcap
.inheritable
);
1320 audit_log_format(ab
, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1321 name
->fcap
.fE
, name
->fcap_ver
,
1322 from_kuid(&init_user_ns
, name
->fcap
.rootid
));
1325 static void audit_log_time(struct audit_context
*context
, struct audit_buffer
**ab
)
1327 const struct audit_ntp_data
*ntp
= &context
->time
.ntp_data
;
1328 const struct timespec64
*tk
= &context
->time
.tk_injoffset
;
1329 static const char * const ntp_name
[] = {
1339 if (context
->type
== AUDIT_TIME_ADJNTPVAL
) {
1340 for (type
= 0; type
< AUDIT_NTP_NVALS
; type
++) {
1341 if (ntp
->vals
[type
].newval
!= ntp
->vals
[type
].oldval
) {
1343 *ab
= audit_log_start(context
,
1345 AUDIT_TIME_ADJNTPVAL
);
1349 audit_log_format(*ab
, "op=%s old=%lli new=%lli",
1351 ntp
->vals
[type
].oldval
,
1352 ntp
->vals
[type
].newval
);
1358 if (tk
->tv_sec
!= 0 || tk
->tv_nsec
!= 0) {
1360 *ab
= audit_log_start(context
, GFP_KERNEL
,
1361 AUDIT_TIME_INJOFFSET
);
1365 audit_log_format(*ab
, "sec=%lli nsec=%li",
1366 (long long)tk
->tv_sec
, tk
->tv_nsec
);
1372 static void show_special(struct audit_context
*context
, int *call_panic
)
1374 struct audit_buffer
*ab
;
1377 ab
= audit_log_start(context
, GFP_KERNEL
, context
->type
);
1381 switch (context
->type
) {
1382 case AUDIT_SOCKETCALL
: {
1383 int nargs
= context
->socketcall
.nargs
;
1385 audit_log_format(ab
, "nargs=%d", nargs
);
1386 for (i
= 0; i
< nargs
; i
++)
1387 audit_log_format(ab
, " a%d=%lx", i
,
1388 context
->socketcall
.args
[i
]);
1391 audit_log_format(ab
, "ouid=%u ogid=%u mode=%#ho",
1392 from_kuid(&init_user_ns
, context
->ipc
.uid
),
1393 from_kgid(&init_user_ns
, context
->ipc
.gid
),
1395 if (lsmprop_is_set(&context
->ipc
.oprop
)) {
1399 if (security_lsmprop_to_secctx(&context
->ipc
.oprop
,
1403 audit_log_format(ab
, " obj=%s", ctx
);
1404 security_release_secctx(ctx
, len
);
1407 if (context
->ipc
.has_perm
) {
1409 ab
= audit_log_start(context
, GFP_KERNEL
,
1410 AUDIT_IPC_SET_PERM
);
1413 audit_log_format(ab
,
1414 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1415 context
->ipc
.qbytes
,
1416 context
->ipc
.perm_uid
,
1417 context
->ipc
.perm_gid
,
1418 context
->ipc
.perm_mode
);
1422 audit_log_format(ab
,
1423 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1424 "mq_msgsize=%ld mq_curmsgs=%ld",
1425 context
->mq_open
.oflag
, context
->mq_open
.mode
,
1426 context
->mq_open
.attr
.mq_flags
,
1427 context
->mq_open
.attr
.mq_maxmsg
,
1428 context
->mq_open
.attr
.mq_msgsize
,
1429 context
->mq_open
.attr
.mq_curmsgs
);
1431 case AUDIT_MQ_SENDRECV
:
1432 audit_log_format(ab
,
1433 "mqdes=%d msg_len=%zd msg_prio=%u "
1434 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1435 context
->mq_sendrecv
.mqdes
,
1436 context
->mq_sendrecv
.msg_len
,
1437 context
->mq_sendrecv
.msg_prio
,
1438 (long long) context
->mq_sendrecv
.abs_timeout
.tv_sec
,
1439 context
->mq_sendrecv
.abs_timeout
.tv_nsec
);
1441 case AUDIT_MQ_NOTIFY
:
1442 audit_log_format(ab
, "mqdes=%d sigev_signo=%d",
1443 context
->mq_notify
.mqdes
,
1444 context
->mq_notify
.sigev_signo
);
1446 case AUDIT_MQ_GETSETATTR
: {
1447 struct mq_attr
*attr
= &context
->mq_getsetattr
.mqstat
;
1449 audit_log_format(ab
,
1450 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1452 context
->mq_getsetattr
.mqdes
,
1453 attr
->mq_flags
, attr
->mq_maxmsg
,
1454 attr
->mq_msgsize
, attr
->mq_curmsgs
);
1457 audit_log_format(ab
, "pid=%d", context
->capset
.pid
);
1458 audit_log_cap(ab
, "cap_pi", &context
->capset
.cap
.inheritable
);
1459 audit_log_cap(ab
, "cap_pp", &context
->capset
.cap
.permitted
);
1460 audit_log_cap(ab
, "cap_pe", &context
->capset
.cap
.effective
);
1461 audit_log_cap(ab
, "cap_pa", &context
->capset
.cap
.ambient
);
1464 audit_log_format(ab
, "fd=%d flags=0x%x", context
->mmap
.fd
,
1465 context
->mmap
.flags
);
1468 audit_log_format(ab
, "oflag=0%llo mode=0%llo resolve=0x%llx",
1469 context
->openat2
.flags
,
1470 context
->openat2
.mode
,
1471 context
->openat2
.resolve
);
1474 audit_log_execve_info(context
, &ab
);
1476 case AUDIT_KERN_MODULE
:
1477 audit_log_format(ab
, "name=");
1478 if (context
->module
.name
) {
1479 audit_log_untrustedstring(ab
, context
->module
.name
);
1481 audit_log_format(ab
, "(null)");
1484 case AUDIT_TIME_ADJNTPVAL
:
1485 case AUDIT_TIME_INJOFFSET
:
1486 /* this call deviates from the rest, eating the buffer */
1487 audit_log_time(context
, &ab
);
1493 static inline int audit_proctitle_rtrim(char *proctitle
, int len
)
1495 char *end
= proctitle
+ len
- 1;
1497 while (end
> proctitle
&& !isprint(*end
))
1500 /* catch the case where proctitle is only 1 non-print character */
1501 len
= end
- proctitle
+ 1;
1502 len
-= isprint(proctitle
[len
-1]) == 0;
1507 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1508 * @context: audit_context for the task
1509 * @n: audit_names structure with reportable details
1510 * @path: optional path to report instead of audit_names->name
1511 * @record_num: record number to report when handling a list of names
1512 * @call_panic: optional pointer to int that will be updated if secid fails
1514 static void audit_log_name(struct audit_context
*context
, struct audit_names
*n
,
1515 const struct path
*path
, int record_num
, int *call_panic
)
1517 struct audit_buffer
*ab
;
1519 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_PATH
);
1523 audit_log_format(ab
, "item=%d", record_num
);
1526 audit_log_d_path(ab
, " name=", path
);
1528 switch (n
->name_len
) {
1529 case AUDIT_NAME_FULL
:
1530 /* log the full path */
1531 audit_log_format(ab
, " name=");
1532 audit_log_untrustedstring(ab
, n
->name
->name
);
1535 /* name was specified as a relative path and the
1536 * directory component is the cwd
1538 if (context
->pwd
.dentry
&& context
->pwd
.mnt
)
1539 audit_log_d_path(ab
, " name=", &context
->pwd
);
1541 audit_log_format(ab
, " name=(null)");
1544 /* log the name's directory component */
1545 audit_log_format(ab
, " name=");
1546 audit_log_n_untrustedstring(ab
, n
->name
->name
,
1550 audit_log_format(ab
, " name=(null)");
1552 if (n
->ino
!= AUDIT_INO_UNSET
)
1553 audit_log_format(ab
, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1558 from_kuid(&init_user_ns
, n
->uid
),
1559 from_kgid(&init_user_ns
, n
->gid
),
1562 if (lsmprop_is_set(&n
->oprop
)) {
1566 if (security_lsmprop_to_secctx(&n
->oprop
, &ctx
, &len
)) {
1570 audit_log_format(ab
, " obj=%s", ctx
);
1571 security_release_secctx(ctx
, len
);
1575 /* log the audit_names record type */
1577 case AUDIT_TYPE_NORMAL
:
1578 audit_log_format(ab
, " nametype=NORMAL");
1580 case AUDIT_TYPE_PARENT
:
1581 audit_log_format(ab
, " nametype=PARENT");
1583 case AUDIT_TYPE_CHILD_DELETE
:
1584 audit_log_format(ab
, " nametype=DELETE");
1586 case AUDIT_TYPE_CHILD_CREATE
:
1587 audit_log_format(ab
, " nametype=CREATE");
1590 audit_log_format(ab
, " nametype=UNKNOWN");
1594 audit_log_fcaps(ab
, n
);
1598 static void audit_log_proctitle(void)
1602 char *msg
= "(null)";
1603 int len
= strlen(msg
);
1604 struct audit_context
*context
= audit_context();
1605 struct audit_buffer
*ab
;
1607 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_PROCTITLE
);
1609 return; /* audit_panic or being filtered */
1611 audit_log_format(ab
, "proctitle=");
1614 if (!context
->proctitle
.value
) {
1615 buf
= kmalloc(MAX_PROCTITLE_AUDIT_LEN
, GFP_KERNEL
);
1618 /* Historically called this from procfs naming */
1619 res
= get_cmdline(current
, buf
, MAX_PROCTITLE_AUDIT_LEN
);
1624 res
= audit_proctitle_rtrim(buf
, res
);
1629 context
->proctitle
.value
= buf
;
1630 context
->proctitle
.len
= res
;
1632 msg
= context
->proctitle
.value
;
1633 len
= context
->proctitle
.len
;
1635 audit_log_n_untrustedstring(ab
, msg
, len
);
1640 * audit_log_uring - generate a AUDIT_URINGOP record
1641 * @ctx: the audit context
1643 static void audit_log_uring(struct audit_context
*ctx
)
1645 struct audit_buffer
*ab
;
1646 const struct cred
*cred
;
1648 ab
= audit_log_start(ctx
, GFP_ATOMIC
, AUDIT_URINGOP
);
1651 cred
= current_cred();
1652 audit_log_format(ab
, "uring_op=%d", ctx
->uring_op
);
1653 if (ctx
->return_valid
!= AUDITSC_INVALID
)
1654 audit_log_format(ab
, " success=%s exit=%ld",
1655 str_yes_no(ctx
->return_valid
==
1658 audit_log_format(ab
,
1660 " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u"
1661 " fsuid=%u egid=%u sgid=%u fsgid=%u",
1663 task_ppid_nr(current
), task_tgid_nr(current
),
1664 from_kuid(&init_user_ns
, cred
->uid
),
1665 from_kgid(&init_user_ns
, cred
->gid
),
1666 from_kuid(&init_user_ns
, cred
->euid
),
1667 from_kuid(&init_user_ns
, cred
->suid
),
1668 from_kuid(&init_user_ns
, cred
->fsuid
),
1669 from_kgid(&init_user_ns
, cred
->egid
),
1670 from_kgid(&init_user_ns
, cred
->sgid
),
1671 from_kgid(&init_user_ns
, cred
->fsgid
));
1672 audit_log_task_context(ab
);
1673 audit_log_key(ab
, ctx
->filterkey
);
1677 static void audit_log_exit(void)
1679 int i
, call_panic
= 0;
1680 struct audit_context
*context
= audit_context();
1681 struct audit_buffer
*ab
;
1682 struct audit_aux_data
*aux
;
1683 struct audit_names
*n
;
1685 context
->personality
= current
->personality
;
1687 switch (context
->context
) {
1688 case AUDIT_CTX_SYSCALL
:
1689 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SYSCALL
);
1692 audit_log_format(ab
, "arch=%x syscall=%d",
1693 context
->arch
, context
->major
);
1694 if (context
->personality
!= PER_LINUX
)
1695 audit_log_format(ab
, " per=%lx", context
->personality
);
1696 if (context
->return_valid
!= AUDITSC_INVALID
)
1697 audit_log_format(ab
, " success=%s exit=%ld",
1698 str_yes_no(context
->return_valid
==
1700 context
->return_code
);
1701 audit_log_format(ab
,
1702 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1707 context
->name_count
);
1708 audit_log_task_info(ab
);
1709 audit_log_key(ab
, context
->filterkey
);
1712 case AUDIT_CTX_URING
:
1713 audit_log_uring(context
);
1720 for (aux
= context
->aux
; aux
; aux
= aux
->next
) {
1722 ab
= audit_log_start(context
, GFP_KERNEL
, aux
->type
);
1724 continue; /* audit_panic has been called */
1726 switch (aux
->type
) {
1728 case AUDIT_BPRM_FCAPS
: {
1729 struct audit_aux_data_bprm_fcaps
*axs
= (void *)aux
;
1731 audit_log_format(ab
, "fver=%x", axs
->fcap_ver
);
1732 audit_log_cap(ab
, "fp", &axs
->fcap
.permitted
);
1733 audit_log_cap(ab
, "fi", &axs
->fcap
.inheritable
);
1734 audit_log_format(ab
, " fe=%d", axs
->fcap
.fE
);
1735 audit_log_cap(ab
, "old_pp", &axs
->old_pcap
.permitted
);
1736 audit_log_cap(ab
, "old_pi", &axs
->old_pcap
.inheritable
);
1737 audit_log_cap(ab
, "old_pe", &axs
->old_pcap
.effective
);
1738 audit_log_cap(ab
, "old_pa", &axs
->old_pcap
.ambient
);
1739 audit_log_cap(ab
, "pp", &axs
->new_pcap
.permitted
);
1740 audit_log_cap(ab
, "pi", &axs
->new_pcap
.inheritable
);
1741 audit_log_cap(ab
, "pe", &axs
->new_pcap
.effective
);
1742 audit_log_cap(ab
, "pa", &axs
->new_pcap
.ambient
);
1743 audit_log_format(ab
, " frootid=%d",
1744 from_kuid(&init_user_ns
,
1753 show_special(context
, &call_panic
);
1755 if (context
->fds
[0] >= 0) {
1756 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_FD_PAIR
);
1758 audit_log_format(ab
, "fd0=%d fd1=%d",
1759 context
->fds
[0], context
->fds
[1]);
1764 if (context
->sockaddr_len
) {
1765 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SOCKADDR
);
1767 audit_log_format(ab
, "saddr=");
1768 audit_log_n_hex(ab
, (void *)context
->sockaddr
,
1769 context
->sockaddr_len
);
1774 for (aux
= context
->aux_pids
; aux
; aux
= aux
->next
) {
1775 struct audit_aux_data_pids
*axs
= (void *)aux
;
1777 for (i
= 0; i
< axs
->pid_count
; i
++)
1778 if (audit_log_pid_context(context
, axs
->target_pid
[i
],
1779 axs
->target_auid
[i
],
1781 axs
->target_sessionid
[i
],
1782 &axs
->target_ref
[i
],
1783 axs
->target_comm
[i
]))
1787 if (context
->target_pid
&&
1788 audit_log_pid_context(context
, context
->target_pid
,
1789 context
->target_auid
, context
->target_uid
,
1790 context
->target_sessionid
,
1791 &context
->target_ref
, context
->target_comm
))
1794 if (context
->pwd
.dentry
&& context
->pwd
.mnt
) {
1795 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_CWD
);
1797 audit_log_d_path(ab
, "cwd=", &context
->pwd
);
1803 list_for_each_entry(n
, &context
->names_list
, list
) {
1806 audit_log_name(context
, n
, NULL
, i
++, &call_panic
);
1809 if (context
->context
== AUDIT_CTX_SYSCALL
)
1810 audit_log_proctitle();
1812 /* Send end of event record to help user space know we are finished */
1813 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EOE
);
1817 audit_panic("error in audit_log_exit()");
1821 * __audit_free - free a per-task audit context
1822 * @tsk: task whose audit context block to free
1824 * Called from copy_process, do_exit, and the io_uring code
1826 void __audit_free(struct task_struct
*tsk
)
1828 struct audit_context
*context
= tsk
->audit_context
;
1833 /* this may generate CONFIG_CHANGE records */
1834 if (!list_empty(&context
->killed_trees
))
1835 audit_kill_trees(context
);
1837 /* We are called either by do_exit() or the fork() error handling code;
1838 * in the former case tsk == current and in the latter tsk is a
1839 * random task_struct that doesn't have any meaningful data we
1840 * need to log via audit_log_exit().
1842 if (tsk
== current
&& !context
->dummy
) {
1843 context
->return_valid
= AUDITSC_INVALID
;
1844 context
->return_code
= 0;
1845 if (context
->context
== AUDIT_CTX_SYSCALL
) {
1846 audit_filter_syscall(tsk
, context
);
1847 audit_filter_inodes(tsk
, context
);
1848 if (context
->current_state
== AUDIT_STATE_RECORD
)
1850 } else if (context
->context
== AUDIT_CTX_URING
) {
1851 /* TODO: verify this case is real and valid */
1852 audit_filter_uring(tsk
, context
);
1853 audit_filter_inodes(tsk
, context
);
1854 if (context
->current_state
== AUDIT_STATE_RECORD
)
1855 audit_log_uring(context
);
1859 audit_set_context(tsk
, NULL
);
1860 audit_free_context(context
);
1864 * audit_return_fixup - fixup the return codes in the audit_context
1865 * @ctx: the audit_context
1866 * @success: true/false value to indicate if the operation succeeded or not
1867 * @code: operation return code
1869 * We need to fixup the return code in the audit logs if the actual return
1870 * codes are later going to be fixed by the arch specific signal handlers.
1872 static void audit_return_fixup(struct audit_context
*ctx
,
1873 int success
, long code
)
1876 * This is actually a test for:
1877 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1878 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1880 * but is faster than a bunch of ||
1882 if (unlikely(code
<= -ERESTARTSYS
) &&
1883 (code
>= -ERESTART_RESTARTBLOCK
) &&
1884 (code
!= -ENOIOCTLCMD
))
1885 ctx
->return_code
= -EINTR
;
1887 ctx
->return_code
= code
;
1888 ctx
->return_valid
= (success
? AUDITSC_SUCCESS
: AUDITSC_FAILURE
);
1892 * __audit_uring_entry - prepare the kernel task's audit context for io_uring
1893 * @op: the io_uring opcode
1895 * This is similar to audit_syscall_entry() but is intended for use by io_uring
1896 * operations. This function should only ever be called from
1897 * audit_uring_entry() as we rely on the audit context checking present in that
1900 void __audit_uring_entry(u8 op
)
1902 struct audit_context
*ctx
= audit_context();
1904 if (ctx
->state
== AUDIT_STATE_DISABLED
)
1908 * NOTE: It's possible that we can be called from the process' context
1909 * before it returns to userspace, and before audit_syscall_exit()
1910 * is called. In this case there is not much to do, just record
1911 * the io_uring details and return.
1914 if (ctx
->context
== AUDIT_CTX_SYSCALL
)
1917 ctx
->dummy
= !audit_n_rules
;
1918 if (!ctx
->dummy
&& ctx
->state
== AUDIT_STATE_BUILD
)
1921 ctx
->context
= AUDIT_CTX_URING
;
1922 ctx
->current_state
= ctx
->state
;
1923 ktime_get_coarse_real_ts64(&ctx
->ctime
);
1927 * __audit_uring_exit - wrap up the kernel task's audit context after io_uring
1928 * @success: true/false value to indicate if the operation succeeded or not
1929 * @code: operation return code
1931 * This is similar to audit_syscall_exit() but is intended for use by io_uring
1932 * operations. This function should only ever be called from
1933 * audit_uring_exit() as we rely on the audit context checking present in that
1936 void __audit_uring_exit(int success
, long code
)
1938 struct audit_context
*ctx
= audit_context();
1941 if (ctx
->context
!= AUDIT_CTX_URING
)
1946 audit_return_fixup(ctx
, success
, code
);
1947 if (ctx
->context
== AUDIT_CTX_SYSCALL
) {
1949 * NOTE: See the note in __audit_uring_entry() about the case
1950 * where we may be called from process context before we
1951 * return to userspace via audit_syscall_exit(). In this
1952 * case we simply emit a URINGOP record and bail, the
1953 * normal syscall exit handling will take care of
1955 * It is also worth mentioning that when we are called,
1956 * the current process creds may differ from the creds
1957 * used during the normal syscall processing; keep that
1958 * in mind if/when we move the record generation code.
1962 * We need to filter on the syscall info here to decide if we
1963 * should emit a URINGOP record. I know it seems odd but this
1964 * solves the problem where users have a filter to block *all*
1965 * syscall records in the "exit" filter; we want to preserve
1966 * the behavior here.
1968 audit_filter_syscall(current
, ctx
);
1969 if (ctx
->current_state
!= AUDIT_STATE_RECORD
)
1970 audit_filter_uring(current
, ctx
);
1971 audit_filter_inodes(current
, ctx
);
1972 if (ctx
->current_state
!= AUDIT_STATE_RECORD
)
1975 audit_log_uring(ctx
);
1979 /* this may generate CONFIG_CHANGE records */
1980 if (!list_empty(&ctx
->killed_trees
))
1981 audit_kill_trees(ctx
);
1983 /* run through both filters to ensure we set the filterkey properly */
1984 audit_filter_uring(current
, ctx
);
1985 audit_filter_inodes(current
, ctx
);
1986 if (ctx
->current_state
!= AUDIT_STATE_RECORD
)
1991 audit_reset_context(ctx
);
1995 * __audit_syscall_entry - fill in an audit record at syscall entry
1996 * @major: major syscall type (function)
1997 * @a1: additional syscall register 1
1998 * @a2: additional syscall register 2
1999 * @a3: additional syscall register 3
2000 * @a4: additional syscall register 4
2002 * Fill in audit context at syscall entry. This only happens if the
2003 * audit context was created when the task was created and the state or
2004 * filters demand the audit context be built. If the state from the
2005 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
2006 * then the record will be written at syscall exit time (otherwise, it
2007 * will only be written if another part of the kernel requests that it
2010 void __audit_syscall_entry(int major
, unsigned long a1
, unsigned long a2
,
2011 unsigned long a3
, unsigned long a4
)
2013 struct audit_context
*context
= audit_context();
2014 enum audit_state state
;
2016 if (!audit_enabled
|| !context
)
2019 WARN_ON(context
->context
!= AUDIT_CTX_UNUSED
);
2020 WARN_ON(context
->name_count
);
2021 if (context
->context
!= AUDIT_CTX_UNUSED
|| context
->name_count
) {
2022 audit_panic("unrecoverable error in audit_syscall_entry()");
2026 state
= context
->state
;
2027 if (state
== AUDIT_STATE_DISABLED
)
2030 context
->dummy
= !audit_n_rules
;
2031 if (!context
->dummy
&& state
== AUDIT_STATE_BUILD
) {
2033 if (auditd_test_task(current
))
2037 context
->arch
= syscall_get_arch(current
);
2038 context
->major
= major
;
2039 context
->argv
[0] = a1
;
2040 context
->argv
[1] = a2
;
2041 context
->argv
[2] = a3
;
2042 context
->argv
[3] = a4
;
2043 context
->context
= AUDIT_CTX_SYSCALL
;
2044 context
->current_state
= state
;
2045 ktime_get_coarse_real_ts64(&context
->ctime
);
2049 * __audit_syscall_exit - deallocate audit context after a system call
2050 * @success: success value of the syscall
2051 * @return_code: return value of the syscall
2053 * Tear down after system call. If the audit context has been marked as
2054 * auditable (either because of the AUDIT_STATE_RECORD state from
2055 * filtering, or because some other part of the kernel wrote an audit
2056 * message), then write out the syscall information. In call cases,
2057 * free the names stored from getname().
2059 void __audit_syscall_exit(int success
, long return_code
)
2061 struct audit_context
*context
= audit_context();
2063 if (!context
|| context
->dummy
||
2064 context
->context
!= AUDIT_CTX_SYSCALL
)
2067 /* this may generate CONFIG_CHANGE records */
2068 if (!list_empty(&context
->killed_trees
))
2069 audit_kill_trees(context
);
2071 audit_return_fixup(context
, success
, return_code
);
2072 /* run through both filters to ensure we set the filterkey properly */
2073 audit_filter_syscall(current
, context
);
2074 audit_filter_inodes(current
, context
);
2075 if (context
->current_state
!= AUDIT_STATE_RECORD
)
2081 audit_reset_context(context
);
2084 static inline void handle_one(const struct inode
*inode
)
2086 struct audit_context
*context
;
2087 struct audit_tree_refs
*p
;
2088 struct audit_chunk
*chunk
;
2091 if (likely(!inode
->i_fsnotify_marks
))
2093 context
= audit_context();
2095 count
= context
->tree_count
;
2097 chunk
= audit_tree_lookup(inode
);
2101 if (likely(put_tree_ref(context
, chunk
)))
2103 if (unlikely(!grow_tree_refs(context
))) {
2104 pr_warn("out of memory, audit has lost a tree reference\n");
2105 audit_set_auditable(context
);
2106 audit_put_chunk(chunk
);
2107 unroll_tree_refs(context
, p
, count
);
2110 put_tree_ref(context
, chunk
);
2113 static void handle_path(const struct dentry
*dentry
)
2115 struct audit_context
*context
;
2116 struct audit_tree_refs
*p
;
2117 const struct dentry
*d
, *parent
;
2118 struct audit_chunk
*drop
;
2122 context
= audit_context();
2124 count
= context
->tree_count
;
2129 seq
= read_seqbegin(&rename_lock
);
2131 struct inode
*inode
= d_backing_inode(d
);
2133 if (inode
&& unlikely(inode
->i_fsnotify_marks
)) {
2134 struct audit_chunk
*chunk
;
2136 chunk
= audit_tree_lookup(inode
);
2138 if (unlikely(!put_tree_ref(context
, chunk
))) {
2144 parent
= d
->d_parent
;
2149 if (unlikely(read_seqretry(&rename_lock
, seq
) || drop
)) { /* in this order */
2152 /* just a race with rename */
2153 unroll_tree_refs(context
, p
, count
);
2156 audit_put_chunk(drop
);
2157 if (grow_tree_refs(context
)) {
2158 /* OK, got more space */
2159 unroll_tree_refs(context
, p
, count
);
2163 pr_warn("out of memory, audit has lost a tree reference\n");
2164 unroll_tree_refs(context
, p
, count
);
2165 audit_set_auditable(context
);
2171 static struct audit_names
*audit_alloc_name(struct audit_context
*context
,
2174 struct audit_names
*aname
;
2176 if (context
->name_count
< AUDIT_NAMES
) {
2177 aname
= &context
->preallocated_names
[context
->name_count
];
2178 memset(aname
, 0, sizeof(*aname
));
2180 aname
= kzalloc(sizeof(*aname
), GFP_NOFS
);
2183 aname
->should_free
= true;
2186 aname
->ino
= AUDIT_INO_UNSET
;
2188 list_add_tail(&aname
->list
, &context
->names_list
);
2190 context
->name_count
++;
2191 if (!context
->pwd
.dentry
)
2192 get_fs_pwd(current
->fs
, &context
->pwd
);
2197 * __audit_reusename - fill out filename with info from existing entry
2198 * @uptr: userland ptr to pathname
2200 * Search the audit_names list for the current audit context. If there is an
2201 * existing entry with a matching "uptr" then return the filename
2202 * associated with that audit_name. If not, return NULL.
2205 __audit_reusename(const __user
char *uptr
)
2207 struct audit_context
*context
= audit_context();
2208 struct audit_names
*n
;
2210 list_for_each_entry(n
, &context
->names_list
, list
) {
2213 if (n
->name
->uptr
== uptr
) {
2214 atomic_inc(&n
->name
->refcnt
);
2222 * __audit_getname - add a name to the list
2223 * @name: name to add
2225 * Add a name to the list of audit names for this context.
2226 * Called from fs/namei.c:getname().
2228 void __audit_getname(struct filename
*name
)
2230 struct audit_context
*context
= audit_context();
2231 struct audit_names
*n
;
2233 if (context
->context
== AUDIT_CTX_UNUSED
)
2236 n
= audit_alloc_name(context
, AUDIT_TYPE_UNKNOWN
);
2241 n
->name_len
= AUDIT_NAME_FULL
;
2243 atomic_inc(&name
->refcnt
);
2246 static inline int audit_copy_fcaps(struct audit_names
*name
,
2247 const struct dentry
*dentry
)
2249 struct cpu_vfs_cap_data caps
;
2255 rc
= get_vfs_caps_from_disk(&nop_mnt_idmap
, dentry
, &caps
);
2259 name
->fcap
.permitted
= caps
.permitted
;
2260 name
->fcap
.inheritable
= caps
.inheritable
;
2261 name
->fcap
.fE
= !!(caps
.magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
);
2262 name
->fcap
.rootid
= caps
.rootid
;
2263 name
->fcap_ver
= (caps
.magic_etc
& VFS_CAP_REVISION_MASK
) >>
2264 VFS_CAP_REVISION_SHIFT
;
2269 /* Copy inode data into an audit_names. */
2270 static void audit_copy_inode(struct audit_names
*name
,
2271 const struct dentry
*dentry
,
2272 struct inode
*inode
, unsigned int flags
)
2274 name
->ino
= inode
->i_ino
;
2275 name
->dev
= inode
->i_sb
->s_dev
;
2276 name
->mode
= inode
->i_mode
;
2277 name
->uid
= inode
->i_uid
;
2278 name
->gid
= inode
->i_gid
;
2279 name
->rdev
= inode
->i_rdev
;
2280 security_inode_getlsmprop(inode
, &name
->oprop
);
2281 if (flags
& AUDIT_INODE_NOEVAL
) {
2282 name
->fcap_ver
= -1;
2285 audit_copy_fcaps(name
, dentry
);
2289 * __audit_inode - store the inode and device from a lookup
2290 * @name: name being audited
2291 * @dentry: dentry being audited
2292 * @flags: attributes for this particular entry
2294 void __audit_inode(struct filename
*name
, const struct dentry
*dentry
,
2297 struct audit_context
*context
= audit_context();
2298 struct inode
*inode
= d_backing_inode(dentry
);
2299 struct audit_names
*n
;
2300 bool parent
= flags
& AUDIT_INODE_PARENT
;
2301 struct audit_entry
*e
;
2302 struct list_head
*list
= &audit_filter_list
[AUDIT_FILTER_FS
];
2305 if (context
->context
== AUDIT_CTX_UNUSED
)
2309 list_for_each_entry_rcu(e
, list
, list
) {
2310 for (i
= 0; i
< e
->rule
.field_count
; i
++) {
2311 struct audit_field
*f
= &e
->rule
.fields
[i
];
2313 if (f
->type
== AUDIT_FSTYPE
2314 && audit_comparator(inode
->i_sb
->s_magic
,
2316 && e
->rule
.action
== AUDIT_NEVER
) {
2328 * If we have a pointer to an audit_names entry already, then we can
2329 * just use it directly if the type is correct.
2334 if (n
->type
== AUDIT_TYPE_PARENT
||
2335 n
->type
== AUDIT_TYPE_UNKNOWN
)
2338 if (n
->type
!= AUDIT_TYPE_PARENT
)
2343 list_for_each_entry_reverse(n
, &context
->names_list
, list
) {
2345 /* valid inode number, use that for the comparison */
2346 if (n
->ino
!= inode
->i_ino
||
2347 n
->dev
!= inode
->i_sb
->s_dev
)
2349 } else if (n
->name
) {
2350 /* inode number has not been set, check the name */
2351 if (strcmp(n
->name
->name
, name
->name
))
2354 /* no inode and no name (?!) ... this is odd ... */
2357 /* match the correct record type */
2359 if (n
->type
== AUDIT_TYPE_PARENT
||
2360 n
->type
== AUDIT_TYPE_UNKNOWN
)
2363 if (n
->type
!= AUDIT_TYPE_PARENT
)
2369 /* unable to find an entry with both a matching name and type */
2370 n
= audit_alloc_name(context
, AUDIT_TYPE_UNKNOWN
);
2375 atomic_inc(&name
->refcnt
);
2380 n
->name_len
= n
->name
? parent_len(n
->name
->name
) : AUDIT_NAME_FULL
;
2381 n
->type
= AUDIT_TYPE_PARENT
;
2382 if (flags
& AUDIT_INODE_HIDDEN
)
2385 n
->name_len
= AUDIT_NAME_FULL
;
2386 n
->type
= AUDIT_TYPE_NORMAL
;
2388 handle_path(dentry
);
2389 audit_copy_inode(n
, dentry
, inode
, flags
& AUDIT_INODE_NOEVAL
);
2392 void __audit_file(const struct file
*file
)
2394 __audit_inode(NULL
, file
->f_path
.dentry
, 0);
2398 * __audit_inode_child - collect inode info for created/removed objects
2399 * @parent: inode of dentry parent
2400 * @dentry: dentry being audited
2401 * @type: AUDIT_TYPE_* value that we're looking for
2403 * For syscalls that create or remove filesystem objects, audit_inode
2404 * can only collect information for the filesystem object's parent.
2405 * This call updates the audit context with the child's information.
2406 * Syscalls that create a new filesystem object must be hooked after
2407 * the object is created. Syscalls that remove a filesystem object
2408 * must be hooked prior, in order to capture the target inode during
2409 * unsuccessful attempts.
2411 void __audit_inode_child(struct inode
*parent
,
2412 const struct dentry
*dentry
,
2413 const unsigned char type
)
2415 struct audit_context
*context
= audit_context();
2416 struct inode
*inode
= d_backing_inode(dentry
);
2417 const struct qstr
*dname
= &dentry
->d_name
;
2418 struct audit_names
*n
, *found_parent
= NULL
, *found_child
= NULL
;
2419 struct audit_entry
*e
;
2420 struct list_head
*list
= &audit_filter_list
[AUDIT_FILTER_FS
];
2423 if (context
->context
== AUDIT_CTX_UNUSED
)
2427 list_for_each_entry_rcu(e
, list
, list
) {
2428 for (i
= 0; i
< e
->rule
.field_count
; i
++) {
2429 struct audit_field
*f
= &e
->rule
.fields
[i
];
2431 if (f
->type
== AUDIT_FSTYPE
2432 && audit_comparator(parent
->i_sb
->s_magic
,
2434 && e
->rule
.action
== AUDIT_NEVER
) {
2445 /* look for a parent entry first */
2446 list_for_each_entry(n
, &context
->names_list
, list
) {
2448 (n
->type
!= AUDIT_TYPE_PARENT
&&
2449 n
->type
!= AUDIT_TYPE_UNKNOWN
))
2452 if (n
->ino
== parent
->i_ino
&& n
->dev
== parent
->i_sb
->s_dev
&&
2453 !audit_compare_dname_path(dname
,
2454 n
->name
->name
, n
->name_len
)) {
2455 if (n
->type
== AUDIT_TYPE_UNKNOWN
)
2456 n
->type
= AUDIT_TYPE_PARENT
;
2464 /* is there a matching child entry? */
2465 list_for_each_entry(n
, &context
->names_list
, list
) {
2466 /* can only match entries that have a name */
2468 (n
->type
!= type
&& n
->type
!= AUDIT_TYPE_UNKNOWN
))
2471 if (!strcmp(dname
->name
, n
->name
->name
) ||
2472 !audit_compare_dname_path(dname
, n
->name
->name
,
2474 found_parent
->name_len
:
2476 if (n
->type
== AUDIT_TYPE_UNKNOWN
)
2483 if (!found_parent
) {
2484 /* create a new, "anonymous" parent record */
2485 n
= audit_alloc_name(context
, AUDIT_TYPE_PARENT
);
2488 audit_copy_inode(n
, NULL
, parent
, 0);
2492 found_child
= audit_alloc_name(context
, type
);
2496 /* Re-use the name belonging to the slot for a matching parent
2497 * directory. All names for this context are relinquished in
2498 * audit_free_names() */
2500 found_child
->name
= found_parent
->name
;
2501 found_child
->name_len
= AUDIT_NAME_FULL
;
2502 atomic_inc(&found_child
->name
->refcnt
);
2507 audit_copy_inode(found_child
, dentry
, inode
, 0);
2509 found_child
->ino
= AUDIT_INO_UNSET
;
2511 EXPORT_SYMBOL_GPL(__audit_inode_child
);
2514 * auditsc_get_stamp - get local copies of audit_context values
2515 * @ctx: audit_context for the task
2516 * @t: timespec64 to store time recorded in the audit_context
2517 * @serial: serial value that is recorded in the audit_context
2519 * Also sets the context as auditable.
2521 int auditsc_get_stamp(struct audit_context
*ctx
,
2522 struct timespec64
*t
, unsigned int *serial
)
2524 if (ctx
->context
== AUDIT_CTX_UNUSED
)
2527 ctx
->serial
= audit_serial();
2528 t
->tv_sec
= ctx
->ctime
.tv_sec
;
2529 t
->tv_nsec
= ctx
->ctime
.tv_nsec
;
2530 *serial
= ctx
->serial
;
2533 ctx
->current_state
= AUDIT_STATE_RECORD
;
2539 * __audit_mq_open - record audit data for a POSIX MQ open
2542 * @attr: queue attributes
2545 void __audit_mq_open(int oflag
, umode_t mode
, struct mq_attr
*attr
)
2547 struct audit_context
*context
= audit_context();
2550 memcpy(&context
->mq_open
.attr
, attr
, sizeof(struct mq_attr
));
2552 memset(&context
->mq_open
.attr
, 0, sizeof(struct mq_attr
));
2554 context
->mq_open
.oflag
= oflag
;
2555 context
->mq_open
.mode
= mode
;
2557 context
->type
= AUDIT_MQ_OPEN
;
2561 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2562 * @mqdes: MQ descriptor
2563 * @msg_len: Message length
2564 * @msg_prio: Message priority
2565 * @abs_timeout: Message timeout in absolute time
2568 void __audit_mq_sendrecv(mqd_t mqdes
, size_t msg_len
, unsigned int msg_prio
,
2569 const struct timespec64
*abs_timeout
)
2571 struct audit_context
*context
= audit_context();
2572 struct timespec64
*p
= &context
->mq_sendrecv
.abs_timeout
;
2575 memcpy(p
, abs_timeout
, sizeof(*p
));
2577 memset(p
, 0, sizeof(*p
));
2579 context
->mq_sendrecv
.mqdes
= mqdes
;
2580 context
->mq_sendrecv
.msg_len
= msg_len
;
2581 context
->mq_sendrecv
.msg_prio
= msg_prio
;
2583 context
->type
= AUDIT_MQ_SENDRECV
;
2587 * __audit_mq_notify - record audit data for a POSIX MQ notify
2588 * @mqdes: MQ descriptor
2589 * @notification: Notification event
2593 void __audit_mq_notify(mqd_t mqdes
, const struct sigevent
*notification
)
2595 struct audit_context
*context
= audit_context();
2598 context
->mq_notify
.sigev_signo
= notification
->sigev_signo
;
2600 context
->mq_notify
.sigev_signo
= 0;
2602 context
->mq_notify
.mqdes
= mqdes
;
2603 context
->type
= AUDIT_MQ_NOTIFY
;
2607 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2608 * @mqdes: MQ descriptor
2612 void __audit_mq_getsetattr(mqd_t mqdes
, struct mq_attr
*mqstat
)
2614 struct audit_context
*context
= audit_context();
2616 context
->mq_getsetattr
.mqdes
= mqdes
;
2617 context
->mq_getsetattr
.mqstat
= *mqstat
;
2618 context
->type
= AUDIT_MQ_GETSETATTR
;
2622 * __audit_ipc_obj - record audit data for ipc object
2623 * @ipcp: ipc permissions
2626 void __audit_ipc_obj(struct kern_ipc_perm
*ipcp
)
2628 struct audit_context
*context
= audit_context();
2630 context
->ipc
.uid
= ipcp
->uid
;
2631 context
->ipc
.gid
= ipcp
->gid
;
2632 context
->ipc
.mode
= ipcp
->mode
;
2633 context
->ipc
.has_perm
= 0;
2634 security_ipc_getlsmprop(ipcp
, &context
->ipc
.oprop
);
2635 context
->type
= AUDIT_IPC
;
2639 * __audit_ipc_set_perm - record audit data for new ipc permissions
2640 * @qbytes: msgq bytes
2641 * @uid: msgq user id
2642 * @gid: msgq group id
2643 * @mode: msgq mode (permissions)
2645 * Called only after audit_ipc_obj().
2647 void __audit_ipc_set_perm(unsigned long qbytes
, uid_t uid
, gid_t gid
, umode_t mode
)
2649 struct audit_context
*context
= audit_context();
2651 context
->ipc
.qbytes
= qbytes
;
2652 context
->ipc
.perm_uid
= uid
;
2653 context
->ipc
.perm_gid
= gid
;
2654 context
->ipc
.perm_mode
= mode
;
2655 context
->ipc
.has_perm
= 1;
2658 void __audit_bprm(struct linux_binprm
*bprm
)
2660 struct audit_context
*context
= audit_context();
2662 context
->type
= AUDIT_EXECVE
;
2663 context
->execve
.argc
= bprm
->argc
;
2668 * __audit_socketcall - record audit data for sys_socketcall
2669 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2673 int __audit_socketcall(int nargs
, unsigned long *args
)
2675 struct audit_context
*context
= audit_context();
2677 if (nargs
<= 0 || nargs
> AUDITSC_ARGS
|| !args
)
2679 context
->type
= AUDIT_SOCKETCALL
;
2680 context
->socketcall
.nargs
= nargs
;
2681 memcpy(context
->socketcall
.args
, args
, nargs
* sizeof(unsigned long));
2686 * __audit_fd_pair - record audit data for pipe and socketpair
2687 * @fd1: the first file descriptor
2688 * @fd2: the second file descriptor
2691 void __audit_fd_pair(int fd1
, int fd2
)
2693 struct audit_context
*context
= audit_context();
2695 context
->fds
[0] = fd1
;
2696 context
->fds
[1] = fd2
;
2700 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2701 * @len: data length in user space
2702 * @a: data address in kernel space
2704 * Returns 0 for success or NULL context or < 0 on error.
2706 int __audit_sockaddr(int len
, void *a
)
2708 struct audit_context
*context
= audit_context();
2710 if (!context
->sockaddr
) {
2711 void *p
= kmalloc(sizeof(struct sockaddr_storage
), GFP_KERNEL
);
2715 context
->sockaddr
= p
;
2718 context
->sockaddr_len
= len
;
2719 memcpy(context
->sockaddr
, a
, len
);
2723 void __audit_ptrace(struct task_struct
*t
)
2725 struct audit_context
*context
= audit_context();
2727 context
->target_pid
= task_tgid_nr(t
);
2728 context
->target_auid
= audit_get_loginuid(t
);
2729 context
->target_uid
= task_uid(t
);
2730 context
->target_sessionid
= audit_get_sessionid(t
);
2731 strscpy(context
->target_comm
, t
->comm
);
2732 security_task_getlsmprop_obj(t
, &context
->target_ref
);
2736 * audit_signal_info_syscall - record signal info for syscalls
2737 * @t: task being signaled
2739 * If the audit subsystem is being terminated, record the task (pid)
2740 * and uid that is doing that.
2742 int audit_signal_info_syscall(struct task_struct
*t
)
2744 struct audit_aux_data_pids
*axp
;
2745 struct audit_context
*ctx
= audit_context();
2746 kuid_t t_uid
= task_uid(t
);
2748 if (!audit_signals
|| audit_dummy_context())
2751 /* optimize the common case by putting first signal recipient directly
2752 * in audit_context */
2753 if (!ctx
->target_pid
) {
2754 ctx
->target_pid
= task_tgid_nr(t
);
2755 ctx
->target_auid
= audit_get_loginuid(t
);
2756 ctx
->target_uid
= t_uid
;
2757 ctx
->target_sessionid
= audit_get_sessionid(t
);
2758 strscpy(ctx
->target_comm
, t
->comm
);
2759 security_task_getlsmprop_obj(t
, &ctx
->target_ref
);
2763 axp
= (void *)ctx
->aux_pids
;
2764 if (!axp
|| axp
->pid_count
== AUDIT_AUX_PIDS
) {
2765 axp
= kzalloc(sizeof(*axp
), GFP_ATOMIC
);
2769 axp
->d
.type
= AUDIT_OBJ_PID
;
2770 axp
->d
.next
= ctx
->aux_pids
;
2771 ctx
->aux_pids
= (void *)axp
;
2773 BUG_ON(axp
->pid_count
>= AUDIT_AUX_PIDS
);
2775 axp
->target_pid
[axp
->pid_count
] = task_tgid_nr(t
);
2776 axp
->target_auid
[axp
->pid_count
] = audit_get_loginuid(t
);
2777 axp
->target_uid
[axp
->pid_count
] = t_uid
;
2778 axp
->target_sessionid
[axp
->pid_count
] = audit_get_sessionid(t
);
2779 security_task_getlsmprop_obj(t
, &axp
->target_ref
[axp
->pid_count
]);
2780 strscpy(axp
->target_comm
[axp
->pid_count
], t
->comm
);
2787 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2788 * @bprm: pointer to the bprm being processed
2789 * @new: the proposed new credentials
2790 * @old: the old credentials
2792 * Simply check if the proc already has the caps given by the file and if not
2793 * store the priv escalation info for later auditing at the end of the syscall
2797 int __audit_log_bprm_fcaps(struct linux_binprm
*bprm
,
2798 const struct cred
*new, const struct cred
*old
)
2800 struct audit_aux_data_bprm_fcaps
*ax
;
2801 struct audit_context
*context
= audit_context();
2802 struct cpu_vfs_cap_data vcaps
;
2804 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2808 ax
->d
.type
= AUDIT_BPRM_FCAPS
;
2809 ax
->d
.next
= context
->aux
;
2810 context
->aux
= (void *)ax
;
2812 get_vfs_caps_from_disk(&nop_mnt_idmap
,
2813 bprm
->file
->f_path
.dentry
, &vcaps
);
2815 ax
->fcap
.permitted
= vcaps
.permitted
;
2816 ax
->fcap
.inheritable
= vcaps
.inheritable
;
2817 ax
->fcap
.fE
= !!(vcaps
.magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
);
2818 ax
->fcap
.rootid
= vcaps
.rootid
;
2819 ax
->fcap_ver
= (vcaps
.magic_etc
& VFS_CAP_REVISION_MASK
) >> VFS_CAP_REVISION_SHIFT
;
2821 ax
->old_pcap
.permitted
= old
->cap_permitted
;
2822 ax
->old_pcap
.inheritable
= old
->cap_inheritable
;
2823 ax
->old_pcap
.effective
= old
->cap_effective
;
2824 ax
->old_pcap
.ambient
= old
->cap_ambient
;
2826 ax
->new_pcap
.permitted
= new->cap_permitted
;
2827 ax
->new_pcap
.inheritable
= new->cap_inheritable
;
2828 ax
->new_pcap
.effective
= new->cap_effective
;
2829 ax
->new_pcap
.ambient
= new->cap_ambient
;
2834 * __audit_log_capset - store information about the arguments to the capset syscall
2835 * @new: the new credentials
2836 * @old: the old (current) credentials
2838 * Record the arguments userspace sent to sys_capset for later printing by the
2839 * audit system if applicable
2841 void __audit_log_capset(const struct cred
*new, const struct cred
*old
)
2843 struct audit_context
*context
= audit_context();
2845 context
->capset
.pid
= task_tgid_nr(current
);
2846 context
->capset
.cap
.effective
= new->cap_effective
;
2847 context
->capset
.cap
.inheritable
= new->cap_effective
;
2848 context
->capset
.cap
.permitted
= new->cap_permitted
;
2849 context
->capset
.cap
.ambient
= new->cap_ambient
;
2850 context
->type
= AUDIT_CAPSET
;
2853 void __audit_mmap_fd(int fd
, int flags
)
2855 struct audit_context
*context
= audit_context();
2857 context
->mmap
.fd
= fd
;
2858 context
->mmap
.flags
= flags
;
2859 context
->type
= AUDIT_MMAP
;
2862 void __audit_openat2_how(struct open_how
*how
)
2864 struct audit_context
*context
= audit_context();
2866 context
->openat2
.flags
= how
->flags
;
2867 context
->openat2
.mode
= how
->mode
;
2868 context
->openat2
.resolve
= how
->resolve
;
2869 context
->type
= AUDIT_OPENAT2
;
2872 void __audit_log_kern_module(char *name
)
2874 struct audit_context
*context
= audit_context();
2876 context
->module
.name
= kstrdup(name
, GFP_KERNEL
);
2877 if (!context
->module
.name
)
2878 audit_log_lost("out of memory in __audit_log_kern_module");
2879 context
->type
= AUDIT_KERN_MODULE
;
2882 void __audit_fanotify(u32 response
, struct fanotify_response_info_audit_rule
*friar
)
2884 /* {subj,obj}_trust values are {0,1,2}: no,yes,unknown */
2885 switch (friar
->hdr
.type
) {
2886 case FAN_RESPONSE_INFO_NONE
:
2887 audit_log(audit_context(), GFP_KERNEL
, AUDIT_FANOTIFY
,
2888 "resp=%u fan_type=%u fan_info=0 subj_trust=2 obj_trust=2",
2889 response
, FAN_RESPONSE_INFO_NONE
);
2891 case FAN_RESPONSE_INFO_AUDIT_RULE
:
2892 audit_log(audit_context(), GFP_KERNEL
, AUDIT_FANOTIFY
,
2893 "resp=%u fan_type=%u fan_info=%X subj_trust=%u obj_trust=%u",
2894 response
, friar
->hdr
.type
, friar
->rule_number
,
2895 friar
->subj_trust
, friar
->obj_trust
);
2899 void __audit_tk_injoffset(struct timespec64 offset
)
2901 struct audit_context
*context
= audit_context();
2903 /* only set type if not already set by NTP */
2905 context
->type
= AUDIT_TIME_INJOFFSET
;
2906 memcpy(&context
->time
.tk_injoffset
, &offset
, sizeof(offset
));
2909 void __audit_ntp_log(const struct audit_ntp_data
*ad
)
2911 struct audit_context
*context
= audit_context();
2914 for (type
= 0; type
< AUDIT_NTP_NVALS
; type
++)
2915 if (ad
->vals
[type
].newval
!= ad
->vals
[type
].oldval
) {
2916 /* unconditionally set type, overwriting TK */
2917 context
->type
= AUDIT_TIME_ADJNTPVAL
;
2918 memcpy(&context
->time
.ntp_data
, ad
, sizeof(*ad
));
2923 void __audit_log_nfcfg(const char *name
, u8 af
, unsigned int nentries
,
2924 enum audit_nfcfgop op
, gfp_t gfp
)
2926 struct audit_buffer
*ab
;
2927 char comm
[sizeof(current
->comm
)];
2929 ab
= audit_log_start(audit_context(), gfp
, AUDIT_NETFILTER_CFG
);
2932 audit_log_format(ab
, "table=%s family=%u entries=%u op=%s",
2933 name
, af
, nentries
, audit_nfcfgs
[op
].s
);
2935 audit_log_format(ab
, " pid=%u", task_tgid_nr(current
));
2936 audit_log_task_context(ab
); /* subj= */
2937 audit_log_format(ab
, " comm=");
2938 audit_log_untrustedstring(ab
, get_task_comm(comm
, current
));
2941 EXPORT_SYMBOL_GPL(__audit_log_nfcfg
);
2943 static void audit_log_task(struct audit_buffer
*ab
)
2947 unsigned int sessionid
;
2948 char comm
[sizeof(current
->comm
)];
2950 auid
= audit_get_loginuid(current
);
2951 sessionid
= audit_get_sessionid(current
);
2952 current_uid_gid(&uid
, &gid
);
2954 audit_log_format(ab
, "auid=%u uid=%u gid=%u ses=%u",
2955 from_kuid(&init_user_ns
, auid
),
2956 from_kuid(&init_user_ns
, uid
),
2957 from_kgid(&init_user_ns
, gid
),
2959 audit_log_task_context(ab
);
2960 audit_log_format(ab
, " pid=%d comm=", task_tgid_nr(current
));
2961 audit_log_untrustedstring(ab
, get_task_comm(comm
, current
));
2962 audit_log_d_path_exe(ab
, current
->mm
);
2966 * audit_core_dumps - record information about processes that end abnormally
2967 * @signr: signal value
2969 * If a process ends with a core dump, something fishy is going on and we
2970 * should record the event for investigation.
2972 void audit_core_dumps(long signr
)
2974 struct audit_buffer
*ab
;
2979 if (signr
== SIGQUIT
) /* don't care for those */
2982 ab
= audit_log_start(audit_context(), GFP_KERNEL
, AUDIT_ANOM_ABEND
);
2986 audit_log_format(ab
, " sig=%ld res=1", signr
);
2991 * audit_seccomp - record information about a seccomp action
2992 * @syscall: syscall number
2993 * @signr: signal value
2994 * @code: the seccomp action
2996 * Record the information associated with a seccomp action. Event filtering for
2997 * seccomp actions that are not to be logged is done in seccomp_log().
2998 * Therefore, this function forces auditing independent of the audit_enabled
2999 * and dummy context state because seccomp actions should be logged even when
3000 * audit is not in use.
3002 void audit_seccomp(unsigned long syscall
, long signr
, int code
)
3004 struct audit_buffer
*ab
;
3006 ab
= audit_log_start(audit_context(), GFP_KERNEL
, AUDIT_SECCOMP
);
3010 audit_log_format(ab
, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
3011 signr
, syscall_get_arch(current
), syscall
,
3012 in_compat_syscall(), KSTK_EIP(current
), code
);
3016 void audit_seccomp_actions_logged(const char *names
, const char *old_names
,
3019 struct audit_buffer
*ab
;
3024 ab
= audit_log_start(audit_context(), GFP_KERNEL
,
3025 AUDIT_CONFIG_CHANGE
);
3029 audit_log_format(ab
,
3030 "op=seccomp-logging actions=%s old-actions=%s res=%d",
3031 names
, old_names
, res
);
3035 struct list_head
*audit_killed_trees(void)
3037 struct audit_context
*ctx
= audit_context();
3038 if (likely(!ctx
|| ctx
->context
== AUDIT_CTX_UNUSED
))
3040 return &ctx
->killed_trees
;