accel/amdxdna: use modern PM helpers
[drm/drm-misc.git] / kernel / bpf / lpm_trie.c
blobf8bc1e096182309dce779b781bed821661f00115
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Longest prefix match list implementation
5 * Copyright (c) 2016,2017 Daniel Mack
6 * Copyright (c) 2016 David Herrmann
7 */
9 #include <linux/bpf.h>
10 #include <linux/btf.h>
11 #include <linux/err.h>
12 #include <linux/slab.h>
13 #include <linux/spinlock.h>
14 #include <linux/vmalloc.h>
15 #include <net/ipv6.h>
16 #include <uapi/linux/btf.h>
17 #include <linux/btf_ids.h>
18 #include <linux/bpf_mem_alloc.h>
20 /* Intermediate node */
21 #define LPM_TREE_NODE_FLAG_IM BIT(0)
23 struct lpm_trie_node;
25 struct lpm_trie_node {
26 struct lpm_trie_node __rcu *child[2];
27 u32 prefixlen;
28 u32 flags;
29 u8 data[];
32 struct lpm_trie {
33 struct bpf_map map;
34 struct lpm_trie_node __rcu *root;
35 struct bpf_mem_alloc ma;
36 size_t n_entries;
37 size_t max_prefixlen;
38 size_t data_size;
39 raw_spinlock_t lock;
42 /* This trie implements a longest prefix match algorithm that can be used to
43 * match IP addresses to a stored set of ranges.
45 * Data stored in @data of struct bpf_lpm_key and struct lpm_trie_node is
46 * interpreted as big endian, so data[0] stores the most significant byte.
48 * Match ranges are internally stored in instances of struct lpm_trie_node
49 * which each contain their prefix length as well as two pointers that may
50 * lead to more nodes containing more specific matches. Each node also stores
51 * a value that is defined by and returned to userspace via the update_elem
52 * and lookup functions.
54 * For instance, let's start with a trie that was created with a prefix length
55 * of 32, so it can be used for IPv4 addresses, and one single element that
56 * matches 192.168.0.0/16. The data array would hence contain
57 * [0xc0, 0xa8, 0x00, 0x00] in big-endian notation. This documentation will
58 * stick to IP-address notation for readability though.
60 * As the trie is empty initially, the new node (1) will be places as root
61 * node, denoted as (R) in the example below. As there are no other node, both
62 * child pointers are %NULL.
64 * +----------------+
65 * | (1) (R) |
66 * | 192.168.0.0/16 |
67 * | value: 1 |
68 * | [0] [1] |
69 * +----------------+
71 * Next, let's add a new node (2) matching 192.168.0.0/24. As there is already
72 * a node with the same data and a smaller prefix (ie, a less specific one),
73 * node (2) will become a child of (1). In child index depends on the next bit
74 * that is outside of what (1) matches, and that bit is 0, so (2) will be
75 * child[0] of (1):
77 * +----------------+
78 * | (1) (R) |
79 * | 192.168.0.0/16 |
80 * | value: 1 |
81 * | [0] [1] |
82 * +----------------+
83 * |
84 * +----------------+
85 * | (2) |
86 * | 192.168.0.0/24 |
87 * | value: 2 |
88 * | [0] [1] |
89 * +----------------+
91 * The child[1] slot of (1) could be filled with another node which has bit #17
92 * (the next bit after the ones that (1) matches on) set to 1. For instance,
93 * 192.168.128.0/24:
95 * +----------------+
96 * | (1) (R) |
97 * | 192.168.0.0/16 |
98 * | value: 1 |
99 * | [0] [1] |
100 * +----------------+
101 * | |
102 * +----------------+ +------------------+
103 * | (2) | | (3) |
104 * | 192.168.0.0/24 | | 192.168.128.0/24 |
105 * | value: 2 | | value: 3 |
106 * | [0] [1] | | [0] [1] |
107 * +----------------+ +------------------+
109 * Let's add another node (4) to the game for 192.168.1.0/24. In order to place
110 * it, node (1) is looked at first, and because (4) of the semantics laid out
111 * above (bit #17 is 0), it would normally be attached to (1) as child[0].
112 * However, that slot is already allocated, so a new node is needed in between.
113 * That node does not have a value attached to it and it will never be
114 * returned to users as result of a lookup. It is only there to differentiate
115 * the traversal further. It will get a prefix as wide as necessary to
116 * distinguish its two children:
118 * +----------------+
119 * | (1) (R) |
120 * | 192.168.0.0/16 |
121 * | value: 1 |
122 * | [0] [1] |
123 * +----------------+
124 * | |
125 * +----------------+ +------------------+
126 * | (4) (I) | | (3) |
127 * | 192.168.0.0/23 | | 192.168.128.0/24 |
128 * | value: --- | | value: 3 |
129 * | [0] [1] | | [0] [1] |
130 * +----------------+ +------------------+
131 * | |
132 * +----------------+ +----------------+
133 * | (2) | | (5) |
134 * | 192.168.0.0/24 | | 192.168.1.0/24 |
135 * | value: 2 | | value: 5 |
136 * | [0] [1] | | [0] [1] |
137 * +----------------+ +----------------+
139 * 192.168.1.1/32 would be a child of (5) etc.
141 * An intermediate node will be turned into a 'real' node on demand. In the
142 * example above, (4) would be re-used if 192.168.0.0/23 is added to the trie.
144 * A fully populated trie would have a height of 32 nodes, as the trie was
145 * created with a prefix length of 32.
147 * The lookup starts at the root node. If the current node matches and if there
148 * is a child that can be used to become more specific, the trie is traversed
149 * downwards. The last node in the traversal that is a non-intermediate one is
150 * returned.
153 static inline int extract_bit(const u8 *data, size_t index)
155 return !!(data[index / 8] & (1 << (7 - (index % 8))));
159 * __longest_prefix_match() - determine the longest prefix
160 * @trie: The trie to get internal sizes from
161 * @node: The node to operate on
162 * @key: The key to compare to @node
164 * Determine the longest prefix of @node that matches the bits in @key.
166 static __always_inline
167 size_t __longest_prefix_match(const struct lpm_trie *trie,
168 const struct lpm_trie_node *node,
169 const struct bpf_lpm_trie_key_u8 *key)
171 u32 limit = min(node->prefixlen, key->prefixlen);
172 u32 prefixlen = 0, i = 0;
174 BUILD_BUG_ON(offsetof(struct lpm_trie_node, data) % sizeof(u32));
175 BUILD_BUG_ON(offsetof(struct bpf_lpm_trie_key_u8, data) % sizeof(u32));
177 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && defined(CONFIG_64BIT)
179 /* data_size >= 16 has very small probability.
180 * We do not use a loop for optimal code generation.
182 if (trie->data_size >= 8) {
183 u64 diff = be64_to_cpu(*(__be64 *)node->data ^
184 *(__be64 *)key->data);
186 prefixlen = 64 - fls64(diff);
187 if (prefixlen >= limit)
188 return limit;
189 if (diff)
190 return prefixlen;
191 i = 8;
193 #endif
195 while (trie->data_size >= i + 4) {
196 u32 diff = be32_to_cpu(*(__be32 *)&node->data[i] ^
197 *(__be32 *)&key->data[i]);
199 prefixlen += 32 - fls(diff);
200 if (prefixlen >= limit)
201 return limit;
202 if (diff)
203 return prefixlen;
204 i += 4;
207 if (trie->data_size >= i + 2) {
208 u16 diff = be16_to_cpu(*(__be16 *)&node->data[i] ^
209 *(__be16 *)&key->data[i]);
211 prefixlen += 16 - fls(diff);
212 if (prefixlen >= limit)
213 return limit;
214 if (diff)
215 return prefixlen;
216 i += 2;
219 if (trie->data_size >= i + 1) {
220 prefixlen += 8 - fls(node->data[i] ^ key->data[i]);
222 if (prefixlen >= limit)
223 return limit;
226 return prefixlen;
229 static size_t longest_prefix_match(const struct lpm_trie *trie,
230 const struct lpm_trie_node *node,
231 const struct bpf_lpm_trie_key_u8 *key)
233 return __longest_prefix_match(trie, node, key);
236 /* Called from syscall or from eBPF program */
237 static void *trie_lookup_elem(struct bpf_map *map, void *_key)
239 struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
240 struct lpm_trie_node *node, *found = NULL;
241 struct bpf_lpm_trie_key_u8 *key = _key;
243 if (key->prefixlen > trie->max_prefixlen)
244 return NULL;
246 /* Start walking the trie from the root node ... */
248 for (node = rcu_dereference_check(trie->root, rcu_read_lock_bh_held());
249 node;) {
250 unsigned int next_bit;
251 size_t matchlen;
253 /* Determine the longest prefix of @node that matches @key.
254 * If it's the maximum possible prefix for this trie, we have
255 * an exact match and can return it directly.
257 matchlen = __longest_prefix_match(trie, node, key);
258 if (matchlen == trie->max_prefixlen) {
259 found = node;
260 break;
263 /* If the number of bits that match is smaller than the prefix
264 * length of @node, bail out and return the node we have seen
265 * last in the traversal (ie, the parent).
267 if (matchlen < node->prefixlen)
268 break;
270 /* Consider this node as return candidate unless it is an
271 * artificially added intermediate one.
273 if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
274 found = node;
276 /* If the node match is fully satisfied, let's see if we can
277 * become more specific. Determine the next bit in the key and
278 * traverse down.
280 next_bit = extract_bit(key->data, node->prefixlen);
281 node = rcu_dereference_check(node->child[next_bit],
282 rcu_read_lock_bh_held());
285 if (!found)
286 return NULL;
288 return found->data + trie->data_size;
291 static struct lpm_trie_node *lpm_trie_node_alloc(struct lpm_trie *trie,
292 const void *value,
293 bool disable_migration)
295 struct lpm_trie_node *node;
297 if (disable_migration)
298 migrate_disable();
299 node = bpf_mem_cache_alloc(&trie->ma);
300 if (disable_migration)
301 migrate_enable();
303 if (!node)
304 return NULL;
306 node->flags = 0;
308 if (value)
309 memcpy(node->data + trie->data_size, value,
310 trie->map.value_size);
312 return node;
315 static int trie_check_add_elem(struct lpm_trie *trie, u64 flags)
317 if (flags == BPF_EXIST)
318 return -ENOENT;
319 if (trie->n_entries == trie->map.max_entries)
320 return -ENOSPC;
321 trie->n_entries++;
322 return 0;
325 /* Called from syscall or from eBPF program */
326 static long trie_update_elem(struct bpf_map *map,
327 void *_key, void *value, u64 flags)
329 struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
330 struct lpm_trie_node *node, *im_node, *new_node;
331 struct lpm_trie_node *free_node = NULL;
332 struct lpm_trie_node __rcu **slot;
333 struct bpf_lpm_trie_key_u8 *key = _key;
334 unsigned long irq_flags;
335 unsigned int next_bit;
336 size_t matchlen = 0;
337 int ret = 0;
339 if (unlikely(flags > BPF_EXIST))
340 return -EINVAL;
342 if (key->prefixlen > trie->max_prefixlen)
343 return -EINVAL;
345 /* Allocate and fill a new node. Need to disable migration before
346 * invoking bpf_mem_cache_alloc().
348 new_node = lpm_trie_node_alloc(trie, value, true);
349 if (!new_node)
350 return -ENOMEM;
352 raw_spin_lock_irqsave(&trie->lock, irq_flags);
354 new_node->prefixlen = key->prefixlen;
355 RCU_INIT_POINTER(new_node->child[0], NULL);
356 RCU_INIT_POINTER(new_node->child[1], NULL);
357 memcpy(new_node->data, key->data, trie->data_size);
359 /* Now find a slot to attach the new node. To do that, walk the tree
360 * from the root and match as many bits as possible for each node until
361 * we either find an empty slot or a slot that needs to be replaced by
362 * an intermediate node.
364 slot = &trie->root;
366 while ((node = rcu_dereference_protected(*slot,
367 lockdep_is_held(&trie->lock)))) {
368 matchlen = longest_prefix_match(trie, node, key);
370 if (node->prefixlen != matchlen ||
371 node->prefixlen == key->prefixlen)
372 break;
374 next_bit = extract_bit(key->data, node->prefixlen);
375 slot = &node->child[next_bit];
378 /* If the slot is empty (a free child pointer or an empty root),
379 * simply assign the @new_node to that slot and be done.
381 if (!node) {
382 ret = trie_check_add_elem(trie, flags);
383 if (ret)
384 goto out;
386 rcu_assign_pointer(*slot, new_node);
387 goto out;
390 /* If the slot we picked already exists, replace it with @new_node
391 * which already has the correct data array set.
393 if (node->prefixlen == matchlen) {
394 if (!(node->flags & LPM_TREE_NODE_FLAG_IM)) {
395 if (flags == BPF_NOEXIST) {
396 ret = -EEXIST;
397 goto out;
399 } else {
400 ret = trie_check_add_elem(trie, flags);
401 if (ret)
402 goto out;
405 new_node->child[0] = node->child[0];
406 new_node->child[1] = node->child[1];
408 rcu_assign_pointer(*slot, new_node);
409 free_node = node;
411 goto out;
414 ret = trie_check_add_elem(trie, flags);
415 if (ret)
416 goto out;
418 /* If the new node matches the prefix completely, it must be inserted
419 * as an ancestor. Simply insert it between @node and *@slot.
421 if (matchlen == key->prefixlen) {
422 next_bit = extract_bit(node->data, matchlen);
423 rcu_assign_pointer(new_node->child[next_bit], node);
424 rcu_assign_pointer(*slot, new_node);
425 goto out;
428 /* migration is disabled within the locked scope */
429 im_node = lpm_trie_node_alloc(trie, NULL, false);
430 if (!im_node) {
431 trie->n_entries--;
432 ret = -ENOMEM;
433 goto out;
436 im_node->prefixlen = matchlen;
437 im_node->flags |= LPM_TREE_NODE_FLAG_IM;
438 memcpy(im_node->data, node->data, trie->data_size);
440 /* Now determine which child to install in which slot */
441 if (extract_bit(key->data, matchlen)) {
442 rcu_assign_pointer(im_node->child[0], node);
443 rcu_assign_pointer(im_node->child[1], new_node);
444 } else {
445 rcu_assign_pointer(im_node->child[0], new_node);
446 rcu_assign_pointer(im_node->child[1], node);
449 /* Finally, assign the intermediate node to the determined slot */
450 rcu_assign_pointer(*slot, im_node);
452 out:
453 raw_spin_unlock_irqrestore(&trie->lock, irq_flags);
455 migrate_disable();
456 if (ret)
457 bpf_mem_cache_free(&trie->ma, new_node);
458 bpf_mem_cache_free_rcu(&trie->ma, free_node);
459 migrate_enable();
461 return ret;
464 /* Called from syscall or from eBPF program */
465 static long trie_delete_elem(struct bpf_map *map, void *_key)
467 struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
468 struct lpm_trie_node *free_node = NULL, *free_parent = NULL;
469 struct bpf_lpm_trie_key_u8 *key = _key;
470 struct lpm_trie_node __rcu **trim, **trim2;
471 struct lpm_trie_node *node, *parent;
472 unsigned long irq_flags;
473 unsigned int next_bit;
474 size_t matchlen = 0;
475 int ret = 0;
477 if (key->prefixlen > trie->max_prefixlen)
478 return -EINVAL;
480 raw_spin_lock_irqsave(&trie->lock, irq_flags);
482 /* Walk the tree looking for an exact key/length match and keeping
483 * track of the path we traverse. We will need to know the node
484 * we wish to delete, and the slot that points to the node we want
485 * to delete. We may also need to know the nodes parent and the
486 * slot that contains it.
488 trim = &trie->root;
489 trim2 = trim;
490 parent = NULL;
491 while ((node = rcu_dereference_protected(
492 *trim, lockdep_is_held(&trie->lock)))) {
493 matchlen = longest_prefix_match(trie, node, key);
495 if (node->prefixlen != matchlen ||
496 node->prefixlen == key->prefixlen)
497 break;
499 parent = node;
500 trim2 = trim;
501 next_bit = extract_bit(key->data, node->prefixlen);
502 trim = &node->child[next_bit];
505 if (!node || node->prefixlen != key->prefixlen ||
506 node->prefixlen != matchlen ||
507 (node->flags & LPM_TREE_NODE_FLAG_IM)) {
508 ret = -ENOENT;
509 goto out;
512 trie->n_entries--;
514 /* If the node we are removing has two children, simply mark it
515 * as intermediate and we are done.
517 if (rcu_access_pointer(node->child[0]) &&
518 rcu_access_pointer(node->child[1])) {
519 node->flags |= LPM_TREE_NODE_FLAG_IM;
520 goto out;
523 /* If the parent of the node we are about to delete is an intermediate
524 * node, and the deleted node doesn't have any children, we can delete
525 * the intermediate parent as well and promote its other child
526 * up the tree. Doing this maintains the invariant that all
527 * intermediate nodes have exactly 2 children and that there are no
528 * unnecessary intermediate nodes in the tree.
530 if (parent && (parent->flags & LPM_TREE_NODE_FLAG_IM) &&
531 !node->child[0] && !node->child[1]) {
532 if (node == rcu_access_pointer(parent->child[0]))
533 rcu_assign_pointer(
534 *trim2, rcu_access_pointer(parent->child[1]));
535 else
536 rcu_assign_pointer(
537 *trim2, rcu_access_pointer(parent->child[0]));
538 free_parent = parent;
539 free_node = node;
540 goto out;
543 /* The node we are removing has either zero or one child. If there
544 * is a child, move it into the removed node's slot then delete
545 * the node. Otherwise just clear the slot and delete the node.
547 if (node->child[0])
548 rcu_assign_pointer(*trim, rcu_access_pointer(node->child[0]));
549 else if (node->child[1])
550 rcu_assign_pointer(*trim, rcu_access_pointer(node->child[1]));
551 else
552 RCU_INIT_POINTER(*trim, NULL);
553 free_node = node;
555 out:
556 raw_spin_unlock_irqrestore(&trie->lock, irq_flags);
558 migrate_disable();
559 bpf_mem_cache_free_rcu(&trie->ma, free_parent);
560 bpf_mem_cache_free_rcu(&trie->ma, free_node);
561 migrate_enable();
563 return ret;
566 #define LPM_DATA_SIZE_MAX 256
567 #define LPM_DATA_SIZE_MIN 1
569 #define LPM_VAL_SIZE_MAX (KMALLOC_MAX_SIZE - LPM_DATA_SIZE_MAX - \
570 sizeof(struct lpm_trie_node))
571 #define LPM_VAL_SIZE_MIN 1
573 #define LPM_KEY_SIZE(X) (sizeof(struct bpf_lpm_trie_key_u8) + (X))
574 #define LPM_KEY_SIZE_MAX LPM_KEY_SIZE(LPM_DATA_SIZE_MAX)
575 #define LPM_KEY_SIZE_MIN LPM_KEY_SIZE(LPM_DATA_SIZE_MIN)
577 #define LPM_CREATE_FLAG_MASK (BPF_F_NO_PREALLOC | BPF_F_NUMA_NODE | \
578 BPF_F_ACCESS_MASK)
580 static struct bpf_map *trie_alloc(union bpf_attr *attr)
582 struct lpm_trie *trie;
583 size_t leaf_size;
584 int err;
586 /* check sanity of attributes */
587 if (attr->max_entries == 0 ||
588 !(attr->map_flags & BPF_F_NO_PREALLOC) ||
589 attr->map_flags & ~LPM_CREATE_FLAG_MASK ||
590 !bpf_map_flags_access_ok(attr->map_flags) ||
591 attr->key_size < LPM_KEY_SIZE_MIN ||
592 attr->key_size > LPM_KEY_SIZE_MAX ||
593 attr->value_size < LPM_VAL_SIZE_MIN ||
594 attr->value_size > LPM_VAL_SIZE_MAX)
595 return ERR_PTR(-EINVAL);
597 trie = bpf_map_area_alloc(sizeof(*trie), NUMA_NO_NODE);
598 if (!trie)
599 return ERR_PTR(-ENOMEM);
601 /* copy mandatory map attributes */
602 bpf_map_init_from_attr(&trie->map, attr);
603 trie->data_size = attr->key_size -
604 offsetof(struct bpf_lpm_trie_key_u8, data);
605 trie->max_prefixlen = trie->data_size * 8;
607 raw_spin_lock_init(&trie->lock);
609 /* Allocate intermediate and leaf nodes from the same allocator */
610 leaf_size = sizeof(struct lpm_trie_node) + trie->data_size +
611 trie->map.value_size;
612 err = bpf_mem_alloc_init(&trie->ma, leaf_size, false);
613 if (err)
614 goto free_out;
615 return &trie->map;
617 free_out:
618 bpf_map_area_free(trie);
619 return ERR_PTR(err);
622 static void trie_free(struct bpf_map *map)
624 struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
625 struct lpm_trie_node __rcu **slot;
626 struct lpm_trie_node *node;
628 /* Always start at the root and walk down to a node that has no
629 * children. Then free that node, nullify its reference in the parent
630 * and start over.
633 for (;;) {
634 slot = &trie->root;
636 for (;;) {
637 node = rcu_dereference_protected(*slot, 1);
638 if (!node)
639 goto out;
641 if (rcu_access_pointer(node->child[0])) {
642 slot = &node->child[0];
643 continue;
646 if (rcu_access_pointer(node->child[1])) {
647 slot = &node->child[1];
648 continue;
651 /* No bpf program may access the map, so freeing the
652 * node without waiting for the extra RCU GP.
654 bpf_mem_cache_raw_free(node);
655 RCU_INIT_POINTER(*slot, NULL);
656 break;
660 out:
661 bpf_mem_alloc_destroy(&trie->ma);
662 bpf_map_area_free(trie);
665 static int trie_get_next_key(struct bpf_map *map, void *_key, void *_next_key)
667 struct lpm_trie_node *node, *next_node = NULL, *parent, *search_root;
668 struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
669 struct bpf_lpm_trie_key_u8 *key = _key, *next_key = _next_key;
670 struct lpm_trie_node **node_stack = NULL;
671 int err = 0, stack_ptr = -1;
672 unsigned int next_bit;
673 size_t matchlen = 0;
675 /* The get_next_key follows postorder. For the 4 node example in
676 * the top of this file, the trie_get_next_key() returns the following
677 * one after another:
678 * 192.168.0.0/24
679 * 192.168.1.0/24
680 * 192.168.128.0/24
681 * 192.168.0.0/16
683 * The idea is to return more specific keys before less specific ones.
686 /* Empty trie */
687 search_root = rcu_dereference(trie->root);
688 if (!search_root)
689 return -ENOENT;
691 /* For invalid key, find the leftmost node in the trie */
692 if (!key || key->prefixlen > trie->max_prefixlen)
693 goto find_leftmost;
695 node_stack = kmalloc_array(trie->max_prefixlen + 1,
696 sizeof(struct lpm_trie_node *),
697 GFP_ATOMIC | __GFP_NOWARN);
698 if (!node_stack)
699 return -ENOMEM;
701 /* Try to find the exact node for the given key */
702 for (node = search_root; node;) {
703 node_stack[++stack_ptr] = node;
704 matchlen = longest_prefix_match(trie, node, key);
705 if (node->prefixlen != matchlen ||
706 node->prefixlen == key->prefixlen)
707 break;
709 next_bit = extract_bit(key->data, node->prefixlen);
710 node = rcu_dereference(node->child[next_bit]);
712 if (!node || node->prefixlen != matchlen ||
713 (node->flags & LPM_TREE_NODE_FLAG_IM))
714 goto find_leftmost;
716 /* The node with the exactly-matching key has been found,
717 * find the first node in postorder after the matched node.
719 node = node_stack[stack_ptr];
720 while (stack_ptr > 0) {
721 parent = node_stack[stack_ptr - 1];
722 if (rcu_dereference(parent->child[0]) == node) {
723 search_root = rcu_dereference(parent->child[1]);
724 if (search_root)
725 goto find_leftmost;
727 if (!(parent->flags & LPM_TREE_NODE_FLAG_IM)) {
728 next_node = parent;
729 goto do_copy;
732 node = parent;
733 stack_ptr--;
736 /* did not find anything */
737 err = -ENOENT;
738 goto free_stack;
740 find_leftmost:
741 /* Find the leftmost non-intermediate node, all intermediate nodes
742 * have exact two children, so this function will never return NULL.
744 for (node = search_root; node;) {
745 if (node->flags & LPM_TREE_NODE_FLAG_IM) {
746 node = rcu_dereference(node->child[0]);
747 } else {
748 next_node = node;
749 node = rcu_dereference(node->child[0]);
750 if (!node)
751 node = rcu_dereference(next_node->child[1]);
754 do_copy:
755 next_key->prefixlen = next_node->prefixlen;
756 memcpy((void *)next_key + offsetof(struct bpf_lpm_trie_key_u8, data),
757 next_node->data, trie->data_size);
758 free_stack:
759 kfree(node_stack);
760 return err;
763 static int trie_check_btf(const struct bpf_map *map,
764 const struct btf *btf,
765 const struct btf_type *key_type,
766 const struct btf_type *value_type)
768 /* Keys must have struct bpf_lpm_trie_key_u8 embedded. */
769 return BTF_INFO_KIND(key_type->info) != BTF_KIND_STRUCT ?
770 -EINVAL : 0;
773 static u64 trie_mem_usage(const struct bpf_map *map)
775 struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
776 u64 elem_size;
778 elem_size = sizeof(struct lpm_trie_node) + trie->data_size +
779 trie->map.value_size;
780 return elem_size * READ_ONCE(trie->n_entries);
783 BTF_ID_LIST_SINGLE(trie_map_btf_ids, struct, lpm_trie)
784 const struct bpf_map_ops trie_map_ops = {
785 .map_meta_equal = bpf_map_meta_equal,
786 .map_alloc = trie_alloc,
787 .map_free = trie_free,
788 .map_get_next_key = trie_get_next_key,
789 .map_lookup_elem = trie_lookup_elem,
790 .map_update_elem = trie_update_elem,
791 .map_delete_elem = trie_delete_elem,
792 .map_lookup_batch = generic_map_lookup_batch,
793 .map_update_batch = generic_map_update_batch,
794 .map_delete_batch = generic_map_delete_batch,
795 .map_check_btf = trie_check_btf,
796 .map_mem_usage = trie_mem_usage,
797 .map_btf_id = &trie_map_btf_ids[0],