2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
4 * This code is licenced under the GPL.
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/delay.h>
21 #include <linux/export.h>
22 #include <linux/bug.h>
23 #include <linux/kthread.h>
24 #include <linux/stop_machine.h>
25 #include <linux/mutex.h>
26 #include <linux/gfp.h>
27 #include <linux/suspend.h>
28 #include <linux/lockdep.h>
29 #include <linux/tick.h>
30 #include <linux/irq.h>
31 #include <linux/nmi.h>
32 #include <linux/smpboot.h>
33 #include <linux/relay.h>
34 #include <linux/slab.h>
35 #include <linux/scs.h>
36 #include <linux/percpu-rwsem.h>
37 #include <linux/cpuset.h>
38 #include <linux/random.h>
39 #include <linux/cc_platform.h>
41 #include <trace/events/power.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/cpuhp.h>
48 * struct cpuhp_cpu_state - Per cpu hotplug state storage
49 * @state: The current cpu state
50 * @target: The target state
51 * @fail: Current CPU hotplug callback state
52 * @thread: Pointer to the hotplug thread
53 * @should_run: Thread should execute
54 * @rollback: Perform a rollback
55 * @single: Single callback invocation
56 * @bringup: Single callback bringup or teardown selector
57 * @node: Remote CPU node; for multi-instance, do a
58 * single entry callback for install/remove
59 * @last: For multi-instance rollback, remember how far we got
60 * @cb_state: The state for a single callback (install/uninstall)
61 * @result: Result of the operation
62 * @ap_sync_state: State for AP synchronization
63 * @done_up: Signal completion to the issuer of the task for cpu-up
64 * @done_down: Signal completion to the issuer of the task for cpu-down
66 struct cpuhp_cpu_state
{
67 enum cpuhp_state state
;
68 enum cpuhp_state target
;
69 enum cpuhp_state fail
;
71 struct task_struct
*thread
;
76 struct hlist_node
*node
;
77 struct hlist_node
*last
;
78 enum cpuhp_state cb_state
;
80 atomic_t ap_sync_state
;
81 struct completion done_up
;
82 struct completion done_down
;
86 static DEFINE_PER_CPU(struct cpuhp_cpu_state
, cpuhp_state
) = {
87 .fail
= CPUHP_INVALID
,
91 cpumask_t cpus_booted_once_mask
;
94 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
95 static struct lockdep_map cpuhp_state_up_map
=
96 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map
);
97 static struct lockdep_map cpuhp_state_down_map
=
98 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map
);
101 static inline void cpuhp_lock_acquire(bool bringup
)
103 lock_map_acquire(bringup
? &cpuhp_state_up_map
: &cpuhp_state_down_map
);
106 static inline void cpuhp_lock_release(bool bringup
)
108 lock_map_release(bringup
? &cpuhp_state_up_map
: &cpuhp_state_down_map
);
112 static inline void cpuhp_lock_acquire(bool bringup
) { }
113 static inline void cpuhp_lock_release(bool bringup
) { }
118 * struct cpuhp_step - Hotplug state machine step
119 * @name: Name of the step
120 * @startup: Startup function of the step
121 * @teardown: Teardown function of the step
122 * @cant_stop: Bringup/teardown can't be stopped at this step
123 * @multi_instance: State has multiple instances which get added afterwards
128 int (*single
)(unsigned int cpu
);
129 int (*multi
)(unsigned int cpu
,
130 struct hlist_node
*node
);
133 int (*single
)(unsigned int cpu
);
134 int (*multi
)(unsigned int cpu
,
135 struct hlist_node
*node
);
138 struct hlist_head list
;
144 static DEFINE_MUTEX(cpuhp_state_mutex
);
145 static struct cpuhp_step cpuhp_hp_states
[];
147 static struct cpuhp_step
*cpuhp_get_step(enum cpuhp_state state
)
149 return cpuhp_hp_states
+ state
;
152 static bool cpuhp_step_empty(bool bringup
, struct cpuhp_step
*step
)
154 return bringup
? !step
->startup
.single
: !step
->teardown
.single
;
158 * cpuhp_invoke_callback - Invoke the callbacks for a given state
159 * @cpu: The cpu for which the callback should be invoked
160 * @state: The state to do callbacks for
161 * @bringup: True if the bringup callback should be invoked
162 * @node: For multi-instance, do a single entry callback for install/remove
163 * @lastp: For multi-instance rollback, remember how far we got
165 * Called from cpu hotplug and from the state register machinery.
167 * Return: %0 on success or a negative errno code
169 static int cpuhp_invoke_callback(unsigned int cpu
, enum cpuhp_state state
,
170 bool bringup
, struct hlist_node
*node
,
171 struct hlist_node
**lastp
)
173 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
174 struct cpuhp_step
*step
= cpuhp_get_step(state
);
175 int (*cbm
)(unsigned int cpu
, struct hlist_node
*node
);
176 int (*cb
)(unsigned int cpu
);
179 if (st
->fail
== state
) {
180 st
->fail
= CPUHP_INVALID
;
184 if (cpuhp_step_empty(bringup
, step
)) {
189 if (!step
->multi_instance
) {
190 WARN_ON_ONCE(lastp
&& *lastp
);
191 cb
= bringup
? step
->startup
.single
: step
->teardown
.single
;
193 trace_cpuhp_enter(cpu
, st
->target
, state
, cb
);
195 trace_cpuhp_exit(cpu
, st
->state
, state
, ret
);
198 cbm
= bringup
? step
->startup
.multi
: step
->teardown
.multi
;
200 /* Single invocation for instance add/remove */
202 WARN_ON_ONCE(lastp
&& *lastp
);
203 trace_cpuhp_multi_enter(cpu
, st
->target
, state
, cbm
, node
);
204 ret
= cbm(cpu
, node
);
205 trace_cpuhp_exit(cpu
, st
->state
, state
, ret
);
209 /* State transition. Invoke on all instances */
211 hlist_for_each(node
, &step
->list
) {
212 if (lastp
&& node
== *lastp
)
215 trace_cpuhp_multi_enter(cpu
, st
->target
, state
, cbm
, node
);
216 ret
= cbm(cpu
, node
);
217 trace_cpuhp_exit(cpu
, st
->state
, state
, ret
);
231 /* Rollback the instances if one failed */
232 cbm
= !bringup
? step
->startup
.multi
: step
->teardown
.multi
;
236 hlist_for_each(node
, &step
->list
) {
240 trace_cpuhp_multi_enter(cpu
, st
->target
, state
, cbm
, node
);
241 ret
= cbm(cpu
, node
);
242 trace_cpuhp_exit(cpu
, st
->state
, state
, ret
);
244 * Rollback must not fail,
252 static bool cpuhp_is_ap_state(enum cpuhp_state state
)
255 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
256 * purposes as that state is handled explicitly in cpu_down.
258 return state
> CPUHP_BRINGUP_CPU
&& state
!= CPUHP_TEARDOWN_CPU
;
261 static inline void wait_for_ap_thread(struct cpuhp_cpu_state
*st
, bool bringup
)
263 struct completion
*done
= bringup
? &st
->done_up
: &st
->done_down
;
264 wait_for_completion(done
);
267 static inline void complete_ap_thread(struct cpuhp_cpu_state
*st
, bool bringup
)
269 struct completion
*done
= bringup
? &st
->done_up
: &st
->done_down
;
274 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
276 static bool cpuhp_is_atomic_state(enum cpuhp_state state
)
278 return CPUHP_AP_IDLE_DEAD
<= state
&& state
< CPUHP_AP_ONLINE
;
281 /* Synchronization state management */
282 enum cpuhp_sync_state
{
285 SYNC_STATE_SHOULD_DIE
,
287 SYNC_STATE_SHOULD_ONLINE
,
291 #ifdef CONFIG_HOTPLUG_CORE_SYNC
293 * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown
294 * @state: The synchronization state to set
296 * No synchronization point. Just update of the synchronization state, but implies
297 * a full barrier so that the AP changes are visible before the control CPU proceeds.
299 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state
)
301 atomic_t
*st
= this_cpu_ptr(&cpuhp_state
.ap_sync_state
);
303 (void)atomic_xchg(st
, state
);
306 void __weak
arch_cpuhp_sync_state_poll(void) { cpu_relax(); }
308 static bool cpuhp_wait_for_sync_state(unsigned int cpu
, enum cpuhp_sync_state state
,
309 enum cpuhp_sync_state next_state
)
311 atomic_t
*st
= per_cpu_ptr(&cpuhp_state
.ap_sync_state
, cpu
);
312 ktime_t now
, end
, start
= ktime_get();
315 end
= start
+ 10ULL * NSEC_PER_SEC
;
317 sync
= atomic_read(st
);
320 if (!atomic_try_cmpxchg(st
, &sync
, next_state
))
327 /* Timeout. Leave the state unchanged */
329 } else if (now
- start
< NSEC_PER_MSEC
) {
330 /* Poll for one millisecond */
331 arch_cpuhp_sync_state_poll();
333 usleep_range(USEC_PER_MSEC
, 2 * USEC_PER_MSEC
);
335 sync
= atomic_read(st
);
339 #else /* CONFIG_HOTPLUG_CORE_SYNC */
340 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state
) { }
341 #endif /* !CONFIG_HOTPLUG_CORE_SYNC */
343 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD
345 * cpuhp_ap_report_dead - Update synchronization state to DEAD
347 * No synchronization point. Just update of the synchronization state.
349 void cpuhp_ap_report_dead(void)
351 cpuhp_ap_update_sync_state(SYNC_STATE_DEAD
);
354 void __weak
arch_cpuhp_cleanup_dead_cpu(unsigned int cpu
) { }
357 * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down
358 * because the AP cannot issue complete() at this stage.
360 static void cpuhp_bp_sync_dead(unsigned int cpu
)
362 atomic_t
*st
= per_cpu_ptr(&cpuhp_state
.ap_sync_state
, cpu
);
363 int sync
= atomic_read(st
);
366 /* CPU can have reported dead already. Don't overwrite that! */
367 if (sync
== SYNC_STATE_DEAD
)
369 } while (!atomic_try_cmpxchg(st
, &sync
, SYNC_STATE_SHOULD_DIE
));
371 if (cpuhp_wait_for_sync_state(cpu
, SYNC_STATE_DEAD
, SYNC_STATE_DEAD
)) {
372 /* CPU reached dead state. Invoke the cleanup function */
373 arch_cpuhp_cleanup_dead_cpu(cpu
);
377 /* No further action possible. Emit message and give up. */
378 pr_err("CPU%u failed to report dead state\n", cpu
);
380 #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */
381 static inline void cpuhp_bp_sync_dead(unsigned int cpu
) { }
382 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */
384 #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL
386 * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive
388 * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits
389 * for the BP to release it.
391 void cpuhp_ap_sync_alive(void)
393 atomic_t
*st
= this_cpu_ptr(&cpuhp_state
.ap_sync_state
);
395 cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE
);
397 /* Wait for the control CPU to release it. */
398 while (atomic_read(st
) != SYNC_STATE_SHOULD_ONLINE
)
402 static bool cpuhp_can_boot_ap(unsigned int cpu
)
404 atomic_t
*st
= per_cpu_ptr(&cpuhp_state
.ap_sync_state
, cpu
);
405 int sync
= atomic_read(st
);
409 case SYNC_STATE_DEAD
:
410 /* CPU is properly dead */
412 case SYNC_STATE_KICKED
:
413 /* CPU did not come up in previous attempt */
415 case SYNC_STATE_ALIVE
:
416 /* CPU is stuck cpuhp_ap_sync_alive(). */
419 /* CPU failed to report online or dead and is in limbo state. */
423 /* Prepare for booting */
424 if (!atomic_try_cmpxchg(st
, &sync
, SYNC_STATE_KICKED
))
430 void __weak
arch_cpuhp_cleanup_kick_cpu(unsigned int cpu
) { }
433 * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up
434 * because the AP cannot issue complete() so early in the bringup.
436 static int cpuhp_bp_sync_alive(unsigned int cpu
)
440 if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL
))
443 if (!cpuhp_wait_for_sync_state(cpu
, SYNC_STATE_ALIVE
, SYNC_STATE_SHOULD_ONLINE
)) {
444 pr_err("CPU%u failed to report alive state\n", cpu
);
448 /* Let the architecture cleanup the kick alive mechanics. */
449 arch_cpuhp_cleanup_kick_cpu(cpu
);
452 #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */
453 static inline int cpuhp_bp_sync_alive(unsigned int cpu
) { return 0; }
454 static inline bool cpuhp_can_boot_ap(unsigned int cpu
) { return true; }
455 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */
457 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
458 static DEFINE_MUTEX(cpu_add_remove_lock
);
459 bool cpuhp_tasks_frozen
;
460 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen
);
463 * The following two APIs (cpu_maps_update_begin/done) must be used when
464 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
466 void cpu_maps_update_begin(void)
468 mutex_lock(&cpu_add_remove_lock
);
471 void cpu_maps_update_done(void)
473 mutex_unlock(&cpu_add_remove_lock
);
477 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
478 * Should always be manipulated under cpu_add_remove_lock
480 static int cpu_hotplug_disabled
;
482 #ifdef CONFIG_HOTPLUG_CPU
484 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock
);
486 static bool cpu_hotplug_offline_disabled __ro_after_init
;
488 void cpus_read_lock(void)
490 percpu_down_read(&cpu_hotplug_lock
);
492 EXPORT_SYMBOL_GPL(cpus_read_lock
);
494 int cpus_read_trylock(void)
496 return percpu_down_read_trylock(&cpu_hotplug_lock
);
498 EXPORT_SYMBOL_GPL(cpus_read_trylock
);
500 void cpus_read_unlock(void)
502 percpu_up_read(&cpu_hotplug_lock
);
504 EXPORT_SYMBOL_GPL(cpus_read_unlock
);
506 void cpus_write_lock(void)
508 percpu_down_write(&cpu_hotplug_lock
);
511 void cpus_write_unlock(void)
513 percpu_up_write(&cpu_hotplug_lock
);
516 void lockdep_assert_cpus_held(void)
519 * We can't have hotplug operations before userspace starts running,
520 * and some init codepaths will knowingly not take the hotplug lock.
521 * This is all valid, so mute lockdep until it makes sense to report
524 if (system_state
< SYSTEM_RUNNING
)
527 percpu_rwsem_assert_held(&cpu_hotplug_lock
);
530 #ifdef CONFIG_LOCKDEP
531 int lockdep_is_cpus_held(void)
533 return percpu_rwsem_is_held(&cpu_hotplug_lock
);
537 static void lockdep_acquire_cpus_lock(void)
539 rwsem_acquire(&cpu_hotplug_lock
.dep_map
, 0, 0, _THIS_IP_
);
542 static void lockdep_release_cpus_lock(void)
544 rwsem_release(&cpu_hotplug_lock
.dep_map
, _THIS_IP_
);
547 /* Declare CPU offlining not supported */
548 void cpu_hotplug_disable_offlining(void)
550 cpu_maps_update_begin();
551 cpu_hotplug_offline_disabled
= true;
552 cpu_maps_update_done();
556 * Wait for currently running CPU hotplug operations to complete (if any) and
557 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
558 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
559 * hotplug path before performing hotplug operations. So acquiring that lock
560 * guarantees mutual exclusion from any currently running hotplug operations.
562 void cpu_hotplug_disable(void)
564 cpu_maps_update_begin();
565 cpu_hotplug_disabled
++;
566 cpu_maps_update_done();
568 EXPORT_SYMBOL_GPL(cpu_hotplug_disable
);
570 static void __cpu_hotplug_enable(void)
572 if (WARN_ONCE(!cpu_hotplug_disabled
, "Unbalanced cpu hotplug enable\n"))
574 cpu_hotplug_disabled
--;
577 void cpu_hotplug_enable(void)
579 cpu_maps_update_begin();
580 __cpu_hotplug_enable();
581 cpu_maps_update_done();
583 EXPORT_SYMBOL_GPL(cpu_hotplug_enable
);
587 static void lockdep_acquire_cpus_lock(void)
591 static void lockdep_release_cpus_lock(void)
595 #endif /* CONFIG_HOTPLUG_CPU */
598 * Architectures that need SMT-specific errata handling during SMT hotplug
599 * should override this.
601 void __weak
arch_smt_update(void) { }
603 #ifdef CONFIG_HOTPLUG_SMT
605 enum cpuhp_smt_control cpu_smt_control __read_mostly
= CPU_SMT_ENABLED
;
606 static unsigned int cpu_smt_max_threads __ro_after_init
;
607 unsigned int cpu_smt_num_threads __read_mostly
= UINT_MAX
;
609 void __init
cpu_smt_disable(bool force
)
611 if (!cpu_smt_possible())
615 pr_info("SMT: Force disabled\n");
616 cpu_smt_control
= CPU_SMT_FORCE_DISABLED
;
618 pr_info("SMT: disabled\n");
619 cpu_smt_control
= CPU_SMT_DISABLED
;
621 cpu_smt_num_threads
= 1;
625 * The decision whether SMT is supported can only be done after the full
626 * CPU identification. Called from architecture code.
628 void __init
cpu_smt_set_num_threads(unsigned int num_threads
,
629 unsigned int max_threads
)
631 WARN_ON(!num_threads
|| (num_threads
> max_threads
));
633 if (max_threads
== 1)
634 cpu_smt_control
= CPU_SMT_NOT_SUPPORTED
;
636 cpu_smt_max_threads
= max_threads
;
639 * If SMT has been disabled via the kernel command line or SMT is
640 * not supported, set cpu_smt_num_threads to 1 for consistency.
641 * If enabled, take the architecture requested number of threads
642 * to bring up into account.
644 if (cpu_smt_control
!= CPU_SMT_ENABLED
)
645 cpu_smt_num_threads
= 1;
646 else if (num_threads
< cpu_smt_num_threads
)
647 cpu_smt_num_threads
= num_threads
;
650 static int __init
smt_cmdline_disable(char *str
)
652 cpu_smt_disable(str
&& !strcmp(str
, "force"));
655 early_param("nosmt", smt_cmdline_disable
);
658 * For Archicture supporting partial SMT states check if the thread is allowed.
659 * Otherwise this has already been checked through cpu_smt_max_threads when
660 * setting the SMT level.
662 static inline bool cpu_smt_thread_allowed(unsigned int cpu
)
664 #ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC
665 return topology_smt_thread_allowed(cpu
);
671 static inline bool cpu_bootable(unsigned int cpu
)
673 if (cpu_smt_control
== CPU_SMT_ENABLED
&& cpu_smt_thread_allowed(cpu
))
676 /* All CPUs are bootable if controls are not configured */
677 if (cpu_smt_control
== CPU_SMT_NOT_IMPLEMENTED
)
680 /* All CPUs are bootable if CPU is not SMT capable */
681 if (cpu_smt_control
== CPU_SMT_NOT_SUPPORTED
)
684 if (topology_is_primary_thread(cpu
))
688 * On x86 it's required to boot all logical CPUs at least once so
689 * that the init code can get a chance to set CR4.MCE on each
690 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
691 * core will shutdown the machine.
693 return !cpumask_test_cpu(cpu
, &cpus_booted_once_mask
);
696 /* Returns true if SMT is supported and not forcefully (irreversibly) disabled */
697 bool cpu_smt_possible(void)
699 return cpu_smt_control
!= CPU_SMT_FORCE_DISABLED
&&
700 cpu_smt_control
!= CPU_SMT_NOT_SUPPORTED
;
702 EXPORT_SYMBOL_GPL(cpu_smt_possible
);
705 static inline bool cpu_bootable(unsigned int cpu
) { return true; }
708 static inline enum cpuhp_state
709 cpuhp_set_state(int cpu
, struct cpuhp_cpu_state
*st
, enum cpuhp_state target
)
711 enum cpuhp_state prev_state
= st
->state
;
712 bool bringup
= st
->state
< target
;
714 st
->rollback
= false;
719 st
->bringup
= bringup
;
720 if (cpu_dying(cpu
) != !bringup
)
721 set_cpu_dying(cpu
, !bringup
);
727 cpuhp_reset_state(int cpu
, struct cpuhp_cpu_state
*st
,
728 enum cpuhp_state prev_state
)
730 bool bringup
= !st
->bringup
;
732 st
->target
= prev_state
;
735 * Already rolling back. No need invert the bringup value or to change
744 * If we have st->last we need to undo partial multi_instance of this
745 * state first. Otherwise start undo at the previous state.
754 st
->bringup
= bringup
;
755 if (cpu_dying(cpu
) != !bringup
)
756 set_cpu_dying(cpu
, !bringup
);
759 /* Regular hotplug invocation of the AP hotplug thread */
760 static void __cpuhp_kick_ap(struct cpuhp_cpu_state
*st
)
762 if (!st
->single
&& st
->state
== st
->target
)
767 * Make sure the above stores are visible before should_run becomes
768 * true. Paired with the mb() above in cpuhp_thread_fun()
771 st
->should_run
= true;
772 wake_up_process(st
->thread
);
773 wait_for_ap_thread(st
, st
->bringup
);
776 static int cpuhp_kick_ap(int cpu
, struct cpuhp_cpu_state
*st
,
777 enum cpuhp_state target
)
779 enum cpuhp_state prev_state
;
782 prev_state
= cpuhp_set_state(cpu
, st
, target
);
784 if ((ret
= st
->result
)) {
785 cpuhp_reset_state(cpu
, st
, prev_state
);
792 static int bringup_wait_for_ap_online(unsigned int cpu
)
794 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
796 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
797 wait_for_ap_thread(st
, true);
798 if (WARN_ON_ONCE((!cpu_online(cpu
))))
801 /* Unpark the hotplug thread of the target cpu */
802 kthread_unpark(st
->thread
);
805 * SMT soft disabling on X86 requires to bring the CPU out of the
806 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
807 * CPU marked itself as booted_once in notify_cpu_starting() so the
808 * cpu_bootable() check will now return false if this is not the
811 if (!cpu_bootable(cpu
))
816 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
817 static int cpuhp_kick_ap_alive(unsigned int cpu
)
819 if (!cpuhp_can_boot_ap(cpu
))
822 return arch_cpuhp_kick_ap_alive(cpu
, idle_thread_get(cpu
));
825 static int cpuhp_bringup_ap(unsigned int cpu
)
827 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
831 * Some architectures have to walk the irq descriptors to
832 * setup the vector space for the cpu which comes online.
833 * Prevent irq alloc/free across the bringup.
837 ret
= cpuhp_bp_sync_alive(cpu
);
841 ret
= bringup_wait_for_ap_online(cpu
);
847 if (st
->target
<= CPUHP_AP_ONLINE_IDLE
)
850 return cpuhp_kick_ap(cpu
, st
, st
->target
);
857 static int bringup_cpu(unsigned int cpu
)
859 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
860 struct task_struct
*idle
= idle_thread_get(cpu
);
863 if (!cpuhp_can_boot_ap(cpu
))
867 * Some architectures have to walk the irq descriptors to
868 * setup the vector space for the cpu which comes online.
870 * Prevent irq alloc/free across the bringup by acquiring the
871 * sparse irq lock. Hold it until the upcoming CPU completes the
872 * startup in cpuhp_online_idle() which allows to avoid
873 * intermediate synchronization points in the architecture code.
877 ret
= __cpu_up(cpu
, idle
);
881 ret
= cpuhp_bp_sync_alive(cpu
);
885 ret
= bringup_wait_for_ap_online(cpu
);
891 if (st
->target
<= CPUHP_AP_ONLINE_IDLE
)
894 return cpuhp_kick_ap(cpu
, st
, st
->target
);
902 static int finish_cpu(unsigned int cpu
)
904 struct task_struct
*idle
= idle_thread_get(cpu
);
905 struct mm_struct
*mm
= idle
->active_mm
;
908 * idle_task_exit() will have switched to &init_mm, now
909 * clean up any remaining active_mm state.
912 idle
->active_mm
= &init_mm
;
918 * Hotplug state machine related functions
922 * Get the next state to run. Empty ones will be skipped. Returns true if a
925 * st->state will be modified ahead of time, to match state_to_run, as if it
928 static bool cpuhp_next_state(bool bringup
,
929 enum cpuhp_state
*state_to_run
,
930 struct cpuhp_cpu_state
*st
,
931 enum cpuhp_state target
)
935 if (st
->state
>= target
)
938 *state_to_run
= ++st
->state
;
940 if (st
->state
<= target
)
943 *state_to_run
= st
->state
--;
946 if (!cpuhp_step_empty(bringup
, cpuhp_get_step(*state_to_run
)))
953 static int __cpuhp_invoke_callback_range(bool bringup
,
955 struct cpuhp_cpu_state
*st
,
956 enum cpuhp_state target
,
959 enum cpuhp_state state
;
962 while (cpuhp_next_state(bringup
, &state
, st
, target
)) {
965 err
= cpuhp_invoke_callback(cpu
, state
, bringup
, NULL
, NULL
);
970 pr_warn("CPU %u %s state %s (%d) failed (%d)\n",
971 cpu
, bringup
? "UP" : "DOWN",
972 cpuhp_get_step(st
->state
)->name
,
984 static inline int cpuhp_invoke_callback_range(bool bringup
,
986 struct cpuhp_cpu_state
*st
,
987 enum cpuhp_state target
)
989 return __cpuhp_invoke_callback_range(bringup
, cpu
, st
, target
, false);
992 static inline void cpuhp_invoke_callback_range_nofail(bool bringup
,
994 struct cpuhp_cpu_state
*st
,
995 enum cpuhp_state target
)
997 __cpuhp_invoke_callback_range(bringup
, cpu
, st
, target
, true);
1000 static inline bool can_rollback_cpu(struct cpuhp_cpu_state
*st
)
1002 if (IS_ENABLED(CONFIG_HOTPLUG_CPU
))
1005 * When CPU hotplug is disabled, then taking the CPU down is not
1006 * possible because takedown_cpu() and the architecture and
1007 * subsystem specific mechanisms are not available. So the CPU
1008 * which would be completely unplugged again needs to stay around
1009 * in the current state.
1011 return st
->state
<= CPUHP_BRINGUP_CPU
;
1014 static int cpuhp_up_callbacks(unsigned int cpu
, struct cpuhp_cpu_state
*st
,
1015 enum cpuhp_state target
)
1017 enum cpuhp_state prev_state
= st
->state
;
1020 ret
= cpuhp_invoke_callback_range(true, cpu
, st
, target
);
1022 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
1023 ret
, cpu
, cpuhp_get_step(st
->state
)->name
,
1026 cpuhp_reset_state(cpu
, st
, prev_state
);
1027 if (can_rollback_cpu(st
))
1028 WARN_ON(cpuhp_invoke_callback_range(false, cpu
, st
,
1035 * The cpu hotplug threads manage the bringup and teardown of the cpus
1037 static int cpuhp_should_run(unsigned int cpu
)
1039 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
1041 return st
->should_run
;
1045 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
1046 * callbacks when a state gets [un]installed at runtime.
1048 * Each invocation of this function by the smpboot thread does a single AP
1051 * It has 3 modes of operation:
1052 * - single: runs st->cb_state
1053 * - up: runs ++st->state, while st->state < st->target
1054 * - down: runs st->state--, while st->state > st->target
1056 * When complete or on error, should_run is cleared and the completion is fired.
1058 static void cpuhp_thread_fun(unsigned int cpu
)
1060 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
1061 bool bringup
= st
->bringup
;
1062 enum cpuhp_state state
;
1064 if (WARN_ON_ONCE(!st
->should_run
))
1068 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
1069 * that if we see ->should_run we also see the rest of the state.
1074 * The BP holds the hotplug lock, but we're now running on the AP,
1075 * ensure that anybody asserting the lock is held, will actually find
1078 lockdep_acquire_cpus_lock();
1079 cpuhp_lock_acquire(bringup
);
1082 state
= st
->cb_state
;
1083 st
->should_run
= false;
1085 st
->should_run
= cpuhp_next_state(bringup
, &state
, st
, st
->target
);
1086 if (!st
->should_run
)
1090 WARN_ON_ONCE(!cpuhp_is_ap_state(state
));
1092 if (cpuhp_is_atomic_state(state
)) {
1093 local_irq_disable();
1094 st
->result
= cpuhp_invoke_callback(cpu
, state
, bringup
, st
->node
, &st
->last
);
1098 * STARTING/DYING must not fail!
1100 WARN_ON_ONCE(st
->result
);
1102 st
->result
= cpuhp_invoke_callback(cpu
, state
, bringup
, st
->node
, &st
->last
);
1107 * If we fail on a rollback, we're up a creek without no
1108 * paddle, no way forward, no way back. We loose, thanks for
1111 WARN_ON_ONCE(st
->rollback
);
1112 st
->should_run
= false;
1116 cpuhp_lock_release(bringup
);
1117 lockdep_release_cpus_lock();
1119 if (!st
->should_run
)
1120 complete_ap_thread(st
, bringup
);
1123 /* Invoke a single callback on a remote cpu */
1125 cpuhp_invoke_ap_callback(int cpu
, enum cpuhp_state state
, bool bringup
,
1126 struct hlist_node
*node
)
1128 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1131 if (!cpu_online(cpu
))
1134 cpuhp_lock_acquire(false);
1135 cpuhp_lock_release(false);
1137 cpuhp_lock_acquire(true);
1138 cpuhp_lock_release(true);
1141 * If we are up and running, use the hotplug thread. For early calls
1142 * we invoke the thread function directly.
1145 return cpuhp_invoke_callback(cpu
, state
, bringup
, node
, NULL
);
1147 st
->rollback
= false;
1151 st
->bringup
= bringup
;
1152 st
->cb_state
= state
;
1155 __cpuhp_kick_ap(st
);
1158 * If we failed and did a partial, do a rollback.
1160 if ((ret
= st
->result
) && st
->last
) {
1161 st
->rollback
= true;
1162 st
->bringup
= !bringup
;
1164 __cpuhp_kick_ap(st
);
1168 * Clean up the leftovers so the next hotplug operation wont use stale
1171 st
->node
= st
->last
= NULL
;
1175 static int cpuhp_kick_ap_work(unsigned int cpu
)
1177 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1178 enum cpuhp_state prev_state
= st
->state
;
1181 cpuhp_lock_acquire(false);
1182 cpuhp_lock_release(false);
1184 cpuhp_lock_acquire(true);
1185 cpuhp_lock_release(true);
1187 trace_cpuhp_enter(cpu
, st
->target
, prev_state
, cpuhp_kick_ap_work
);
1188 ret
= cpuhp_kick_ap(cpu
, st
, st
->target
);
1189 trace_cpuhp_exit(cpu
, st
->state
, prev_state
, ret
);
1194 static struct smp_hotplug_thread cpuhp_threads
= {
1195 .store
= &cpuhp_state
.thread
,
1196 .thread_should_run
= cpuhp_should_run
,
1197 .thread_fn
= cpuhp_thread_fun
,
1198 .thread_comm
= "cpuhp/%u",
1199 .selfparking
= true,
1202 static __init
void cpuhp_init_state(void)
1204 struct cpuhp_cpu_state
*st
;
1207 for_each_possible_cpu(cpu
) {
1208 st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1209 init_completion(&st
->done_up
);
1210 init_completion(&st
->done_down
);
1214 void __init
cpuhp_threads_init(void)
1217 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads
));
1218 kthread_unpark(this_cpu_read(cpuhp_state
.thread
));
1221 #ifdef CONFIG_HOTPLUG_CPU
1222 #ifndef arch_clear_mm_cpumask_cpu
1223 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
1227 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
1230 * This function walks all processes, finds a valid mm struct for each one and
1231 * then clears a corresponding bit in mm's cpumask. While this all sounds
1232 * trivial, there are various non-obvious corner cases, which this function
1233 * tries to solve in a safe manner.
1235 * Also note that the function uses a somewhat relaxed locking scheme, so it may
1236 * be called only for an already offlined CPU.
1238 void clear_tasks_mm_cpumask(int cpu
)
1240 struct task_struct
*p
;
1243 * This function is called after the cpu is taken down and marked
1244 * offline, so its not like new tasks will ever get this cpu set in
1245 * their mm mask. -- Peter Zijlstra
1246 * Thus, we may use rcu_read_lock() here, instead of grabbing
1247 * full-fledged tasklist_lock.
1249 WARN_ON(cpu_online(cpu
));
1251 for_each_process(p
) {
1252 struct task_struct
*t
;
1255 * Main thread might exit, but other threads may still have
1256 * a valid mm. Find one.
1258 t
= find_lock_task_mm(p
);
1261 arch_clear_mm_cpumask_cpu(cpu
, t
->mm
);
1267 /* Take this CPU down. */
1268 static int take_cpu_down(void *_param
)
1270 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
1271 enum cpuhp_state target
= max((int)st
->target
, CPUHP_AP_OFFLINE
);
1272 int err
, cpu
= smp_processor_id();
1274 /* Ensure this CPU doesn't handle any more interrupts. */
1275 err
= __cpu_disable();
1280 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1281 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1283 WARN_ON(st
->state
!= (CPUHP_TEARDOWN_CPU
- 1));
1286 * Invoke the former CPU_DYING callbacks. DYING must not fail!
1288 cpuhp_invoke_callback_range_nofail(false, cpu
, st
, target
);
1290 /* Park the stopper thread */
1291 stop_machine_park(cpu
);
1295 static int takedown_cpu(unsigned int cpu
)
1297 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1300 /* Park the smpboot threads */
1301 kthread_park(st
->thread
);
1304 * Prevent irq alloc/free while the dying cpu reorganizes the
1305 * interrupt affinities.
1310 * So now all preempt/rcu users must observe !cpu_active().
1312 err
= stop_machine_cpuslocked(take_cpu_down
, NULL
, cpumask_of(cpu
));
1314 /* CPU refused to die */
1315 irq_unlock_sparse();
1316 /* Unpark the hotplug thread so we can rollback there */
1317 kthread_unpark(st
->thread
);
1320 BUG_ON(cpu_online(cpu
));
1323 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1324 * all runnable tasks from the CPU, there's only the idle task left now
1325 * that the migration thread is done doing the stop_machine thing.
1327 * Wait for the stop thread to go away.
1329 wait_for_ap_thread(st
, false);
1330 BUG_ON(st
->state
!= CPUHP_AP_IDLE_DEAD
);
1332 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
1333 irq_unlock_sparse();
1335 hotplug_cpu__broadcast_tick_pull(cpu
);
1336 /* This actually kills the CPU. */
1339 cpuhp_bp_sync_dead(cpu
);
1341 lockdep_cleanup_dead_cpu(cpu
, idle_thread_get(cpu
));
1344 * Callbacks must be re-integrated right away to the RCU state machine.
1345 * Otherwise an RCU callback could block a further teardown function
1346 * waiting for its completion.
1348 rcutree_migrate_callbacks(cpu
);
1353 static void cpuhp_complete_idle_dead(void *arg
)
1355 struct cpuhp_cpu_state
*st
= arg
;
1357 complete_ap_thread(st
, false);
1360 void cpuhp_report_idle_dead(void)
1362 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
1364 BUG_ON(st
->state
!= CPUHP_AP_OFFLINE
);
1365 tick_assert_timekeeping_handover();
1366 rcutree_report_cpu_dead();
1367 st
->state
= CPUHP_AP_IDLE_DEAD
;
1369 * We cannot call complete after rcutree_report_cpu_dead() so we delegate it
1372 smp_call_function_single(cpumask_first(cpu_online_mask
),
1373 cpuhp_complete_idle_dead
, st
, 0);
1376 static int cpuhp_down_callbacks(unsigned int cpu
, struct cpuhp_cpu_state
*st
,
1377 enum cpuhp_state target
)
1379 enum cpuhp_state prev_state
= st
->state
;
1382 ret
= cpuhp_invoke_callback_range(false, cpu
, st
, target
);
1384 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1385 ret
, cpu
, cpuhp_get_step(st
->state
)->name
,
1388 cpuhp_reset_state(cpu
, st
, prev_state
);
1390 if (st
->state
< prev_state
)
1391 WARN_ON(cpuhp_invoke_callback_range(true, cpu
, st
,
1398 /* Requires cpu_add_remove_lock to be held */
1399 static int __ref
_cpu_down(unsigned int cpu
, int tasks_frozen
,
1400 enum cpuhp_state target
)
1402 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1403 int prev_state
, ret
= 0;
1405 if (num_online_cpus() == 1)
1408 if (!cpu_present(cpu
))
1413 cpuhp_tasks_frozen
= tasks_frozen
;
1415 prev_state
= cpuhp_set_state(cpu
, st
, target
);
1417 * If the current CPU state is in the range of the AP hotplug thread,
1418 * then we need to kick the thread.
1420 if (st
->state
> CPUHP_TEARDOWN_CPU
) {
1421 st
->target
= max((int)target
, CPUHP_TEARDOWN_CPU
);
1422 ret
= cpuhp_kick_ap_work(cpu
);
1424 * The AP side has done the error rollback already. Just
1425 * return the error code..
1431 * We might have stopped still in the range of the AP hotplug
1432 * thread. Nothing to do anymore.
1434 if (st
->state
> CPUHP_TEARDOWN_CPU
)
1437 st
->target
= target
;
1440 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1441 * to do the further cleanups.
1443 ret
= cpuhp_down_callbacks(cpu
, st
, target
);
1444 if (ret
&& st
->state
< prev_state
) {
1445 if (st
->state
== CPUHP_TEARDOWN_CPU
) {
1446 cpuhp_reset_state(cpu
, st
, prev_state
);
1447 __cpuhp_kick_ap(st
);
1449 WARN(1, "DEAD callback error for CPU%d", cpu
);
1454 cpus_write_unlock();
1456 * Do post unplug cleanup. This is still protected against
1457 * concurrent CPU hotplug via cpu_add_remove_lock.
1459 lockup_detector_cleanup();
1464 struct cpu_down_work
{
1466 enum cpuhp_state target
;
1469 static long __cpu_down_maps_locked(void *arg
)
1471 struct cpu_down_work
*work
= arg
;
1473 return _cpu_down(work
->cpu
, 0, work
->target
);
1476 static int cpu_down_maps_locked(unsigned int cpu
, enum cpuhp_state target
)
1478 struct cpu_down_work work
= { .cpu
= cpu
, .target
= target
, };
1481 * If the platform does not support hotplug, report it explicitly to
1482 * differentiate it from a transient offlining failure.
1484 if (cpu_hotplug_offline_disabled
)
1486 if (cpu_hotplug_disabled
)
1490 * Ensure that the control task does not run on the to be offlined
1491 * CPU to prevent a deadlock against cfs_b->period_timer.
1492 * Also keep at least one housekeeping cpu onlined to avoid generating
1493 * an empty sched_domain span.
1495 for_each_cpu_and(cpu
, cpu_online_mask
, housekeeping_cpumask(HK_TYPE_DOMAIN
)) {
1496 if (cpu
!= work
.cpu
)
1497 return work_on_cpu(cpu
, __cpu_down_maps_locked
, &work
);
1502 static int cpu_down(unsigned int cpu
, enum cpuhp_state target
)
1506 cpu_maps_update_begin();
1507 err
= cpu_down_maps_locked(cpu
, target
);
1508 cpu_maps_update_done();
1513 * cpu_device_down - Bring down a cpu device
1514 * @dev: Pointer to the cpu device to offline
1516 * This function is meant to be used by device core cpu subsystem only.
1518 * Other subsystems should use remove_cpu() instead.
1520 * Return: %0 on success or a negative errno code
1522 int cpu_device_down(struct device
*dev
)
1524 return cpu_down(dev
->id
, CPUHP_OFFLINE
);
1527 int remove_cpu(unsigned int cpu
)
1531 lock_device_hotplug();
1532 ret
= device_offline(get_cpu_device(cpu
));
1533 unlock_device_hotplug();
1537 EXPORT_SYMBOL_GPL(remove_cpu
);
1539 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu
)
1544 cpu_maps_update_begin();
1547 * Make certain the cpu I'm about to reboot on is online.
1549 * This is inline to what migrate_to_reboot_cpu() already do.
1551 if (!cpu_online(primary_cpu
))
1552 primary_cpu
= cpumask_first(cpu_online_mask
);
1554 for_each_online_cpu(cpu
) {
1555 if (cpu
== primary_cpu
)
1558 error
= cpu_down_maps_locked(cpu
, CPUHP_OFFLINE
);
1560 pr_err("Failed to offline CPU%d - error=%d",
1567 * Ensure all but the reboot CPU are offline.
1569 BUG_ON(num_online_cpus() > 1);
1572 * Make sure the CPUs won't be enabled by someone else after this
1573 * point. Kexec will reboot to a new kernel shortly resetting
1574 * everything along the way.
1576 cpu_hotplug_disabled
++;
1578 cpu_maps_update_done();
1582 #define takedown_cpu NULL
1583 #endif /*CONFIG_HOTPLUG_CPU*/
1586 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1587 * @cpu: cpu that just started
1589 * It must be called by the arch code on the new cpu, before the new cpu
1590 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1592 void notify_cpu_starting(unsigned int cpu
)
1594 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1595 enum cpuhp_state target
= min((int)st
->target
, CPUHP_AP_ONLINE
);
1597 rcutree_report_cpu_starting(cpu
); /* Enables RCU usage on this CPU. */
1598 cpumask_set_cpu(cpu
, &cpus_booted_once_mask
);
1601 * STARTING must not fail!
1603 cpuhp_invoke_callback_range_nofail(true, cpu
, st
, target
);
1607 * Called from the idle task. Wake up the controlling task which brings the
1608 * hotplug thread of the upcoming CPU up and then delegates the rest of the
1609 * online bringup to the hotplug thread.
1611 void cpuhp_online_idle(enum cpuhp_state state
)
1613 struct cpuhp_cpu_state
*st
= this_cpu_ptr(&cpuhp_state
);
1615 /* Happens for the boot cpu */
1616 if (state
!= CPUHP_AP_ONLINE_IDLE
)
1619 cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE
);
1622 * Unpark the stopper thread before we start the idle loop (and start
1623 * scheduling); this ensures the stopper task is always available.
1625 stop_machine_unpark(smp_processor_id());
1627 st
->state
= CPUHP_AP_ONLINE_IDLE
;
1628 complete_ap_thread(st
, true);
1631 /* Requires cpu_add_remove_lock to be held */
1632 static int _cpu_up(unsigned int cpu
, int tasks_frozen
, enum cpuhp_state target
)
1634 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1635 struct task_struct
*idle
;
1640 if (!cpu_present(cpu
)) {
1646 * The caller of cpu_up() might have raced with another
1647 * caller. Nothing to do.
1649 if (st
->state
>= target
)
1652 if (st
->state
== CPUHP_OFFLINE
) {
1653 /* Let it fail before we try to bring the cpu up */
1654 idle
= idle_thread_get(cpu
);
1656 ret
= PTR_ERR(idle
);
1661 * Reset stale stack state from the last time this CPU was online.
1663 scs_task_reset(idle
);
1664 kasan_unpoison_task_stack(idle
);
1667 cpuhp_tasks_frozen
= tasks_frozen
;
1669 cpuhp_set_state(cpu
, st
, target
);
1671 * If the current CPU state is in the range of the AP hotplug thread,
1672 * then we need to kick the thread once more.
1674 if (st
->state
> CPUHP_BRINGUP_CPU
) {
1675 ret
= cpuhp_kick_ap_work(cpu
);
1677 * The AP side has done the error rollback already. Just
1678 * return the error code..
1685 * Try to reach the target state. We max out on the BP at
1686 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1687 * responsible for bringing it up to the target state.
1689 target
= min((int)target
, CPUHP_BRINGUP_CPU
);
1690 ret
= cpuhp_up_callbacks(cpu
, st
, target
);
1692 cpus_write_unlock();
1697 static int cpu_up(unsigned int cpu
, enum cpuhp_state target
)
1701 if (!cpu_possible(cpu
)) {
1702 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1707 err
= try_online_node(cpu_to_node(cpu
));
1711 cpu_maps_update_begin();
1713 if (cpu_hotplug_disabled
) {
1717 if (!cpu_bootable(cpu
)) {
1722 err
= _cpu_up(cpu
, 0, target
);
1724 cpu_maps_update_done();
1729 * cpu_device_up - Bring up a cpu device
1730 * @dev: Pointer to the cpu device to online
1732 * This function is meant to be used by device core cpu subsystem only.
1734 * Other subsystems should use add_cpu() instead.
1736 * Return: %0 on success or a negative errno code
1738 int cpu_device_up(struct device
*dev
)
1740 return cpu_up(dev
->id
, CPUHP_ONLINE
);
1743 int add_cpu(unsigned int cpu
)
1747 lock_device_hotplug();
1748 ret
= device_online(get_cpu_device(cpu
));
1749 unlock_device_hotplug();
1753 EXPORT_SYMBOL_GPL(add_cpu
);
1756 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1757 * @sleep_cpu: The cpu we hibernated on and should be brought up.
1759 * On some architectures like arm64, we can hibernate on any CPU, but on
1760 * wake up the CPU we hibernated on might be offline as a side effect of
1761 * using maxcpus= for example.
1763 * Return: %0 on success or a negative errno code
1765 int bringup_hibernate_cpu(unsigned int sleep_cpu
)
1769 if (!cpu_online(sleep_cpu
)) {
1770 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1771 ret
= cpu_up(sleep_cpu
, CPUHP_ONLINE
);
1773 pr_err("Failed to bring hibernate-CPU up!\n");
1780 static void __init
cpuhp_bringup_mask(const struct cpumask
*mask
, unsigned int ncpus
,
1781 enum cpuhp_state target
)
1785 for_each_cpu(cpu
, mask
) {
1786 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
1788 if (cpu_up(cpu
, target
) && can_rollback_cpu(st
)) {
1790 * If this failed then cpu_up() might have only
1791 * rolled back to CPUHP_BP_KICK_AP for the final
1792 * online. Clean it up. NOOP if already rolled back.
1794 WARN_ON(cpuhp_invoke_callback_range(false, cpu
, st
, CPUHP_OFFLINE
));
1802 #ifdef CONFIG_HOTPLUG_PARALLEL
1803 static bool __cpuhp_parallel_bringup __ro_after_init
= true;
1805 static int __init
parallel_bringup_parse_param(char *arg
)
1807 return kstrtobool(arg
, &__cpuhp_parallel_bringup
);
1809 early_param("cpuhp.parallel", parallel_bringup_parse_param
);
1811 #ifdef CONFIG_HOTPLUG_SMT
1812 static inline bool cpuhp_smt_aware(void)
1814 return cpu_smt_max_threads
> 1;
1817 static inline const struct cpumask
*cpuhp_get_primary_thread_mask(void)
1819 return cpu_primary_thread_mask
;
1822 static inline bool cpuhp_smt_aware(void)
1826 static inline const struct cpumask
*cpuhp_get_primary_thread_mask(void)
1828 return cpu_none_mask
;
1832 bool __weak
arch_cpuhp_init_parallel_bringup(void)
1838 * On architectures which have enabled parallel bringup this invokes all BP
1839 * prepare states for each of the to be onlined APs first. The last state
1840 * sends the startup IPI to the APs. The APs proceed through the low level
1841 * bringup code in parallel and then wait for the control CPU to release
1842 * them one by one for the final onlining procedure.
1844 * This avoids waiting for each AP to respond to the startup IPI in
1845 * CPUHP_BRINGUP_CPU.
1847 static bool __init
cpuhp_bringup_cpus_parallel(unsigned int ncpus
)
1849 const struct cpumask
*mask
= cpu_present_mask
;
1851 if (__cpuhp_parallel_bringup
)
1852 __cpuhp_parallel_bringup
= arch_cpuhp_init_parallel_bringup();
1853 if (!__cpuhp_parallel_bringup
)
1856 if (cpuhp_smt_aware()) {
1857 const struct cpumask
*pmask
= cpuhp_get_primary_thread_mask();
1858 static struct cpumask tmp_mask __initdata
;
1861 * X86 requires to prevent that SMT siblings stopped while
1862 * the primary thread does a microcode update for various
1863 * reasons. Bring the primary threads up first.
1865 cpumask_and(&tmp_mask
, mask
, pmask
);
1866 cpuhp_bringup_mask(&tmp_mask
, ncpus
, CPUHP_BP_KICK_AP
);
1867 cpuhp_bringup_mask(&tmp_mask
, ncpus
, CPUHP_ONLINE
);
1868 /* Account for the online CPUs */
1869 ncpus
-= num_online_cpus();
1872 /* Create the mask for secondary CPUs */
1873 cpumask_andnot(&tmp_mask
, mask
, pmask
);
1877 /* Bring the not-yet started CPUs up */
1878 cpuhp_bringup_mask(mask
, ncpus
, CPUHP_BP_KICK_AP
);
1879 cpuhp_bringup_mask(mask
, ncpus
, CPUHP_ONLINE
);
1883 static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus
) { return false; }
1884 #endif /* CONFIG_HOTPLUG_PARALLEL */
1886 void __init
bringup_nonboot_cpus(unsigned int max_cpus
)
1891 /* Try parallel bringup optimization if enabled */
1892 if (cpuhp_bringup_cpus_parallel(max_cpus
))
1895 /* Full per CPU serialized bringup */
1896 cpuhp_bringup_mask(cpu_present_mask
, max_cpus
, CPUHP_ONLINE
);
1899 #ifdef CONFIG_PM_SLEEP_SMP
1900 static cpumask_var_t frozen_cpus
;
1902 int freeze_secondary_cpus(int primary
)
1906 cpu_maps_update_begin();
1907 if (primary
== -1) {
1908 primary
= cpumask_first(cpu_online_mask
);
1909 if (!housekeeping_cpu(primary
, HK_TYPE_TIMER
))
1910 primary
= housekeeping_any_cpu(HK_TYPE_TIMER
);
1912 if (!cpu_online(primary
))
1913 primary
= cpumask_first(cpu_online_mask
);
1917 * We take down all of the non-boot CPUs in one shot to avoid races
1918 * with the userspace trying to use the CPU hotplug at the same time
1920 cpumask_clear(frozen_cpus
);
1922 pr_info("Disabling non-boot CPUs ...\n");
1923 for (cpu
= nr_cpu_ids
- 1; cpu
>= 0; cpu
--) {
1924 if (!cpu_online(cpu
) || cpu
== primary
)
1927 if (pm_wakeup_pending()) {
1928 pr_info("Wakeup pending. Abort CPU freeze\n");
1933 trace_suspend_resume(TPS("CPU_OFF"), cpu
, true);
1934 error
= _cpu_down(cpu
, 1, CPUHP_OFFLINE
);
1935 trace_suspend_resume(TPS("CPU_OFF"), cpu
, false);
1937 cpumask_set_cpu(cpu
, frozen_cpus
);
1939 pr_err("Error taking CPU%d down: %d\n", cpu
, error
);
1945 BUG_ON(num_online_cpus() > 1);
1947 pr_err("Non-boot CPUs are not disabled\n");
1950 * Make sure the CPUs won't be enabled by someone else. We need to do
1951 * this even in case of failure as all freeze_secondary_cpus() users are
1952 * supposed to do thaw_secondary_cpus() on the failure path.
1954 cpu_hotplug_disabled
++;
1956 cpu_maps_update_done();
1960 void __weak
arch_thaw_secondary_cpus_begin(void)
1964 void __weak
arch_thaw_secondary_cpus_end(void)
1968 void thaw_secondary_cpus(void)
1972 /* Allow everyone to use the CPU hotplug again */
1973 cpu_maps_update_begin();
1974 __cpu_hotplug_enable();
1975 if (cpumask_empty(frozen_cpus
))
1978 pr_info("Enabling non-boot CPUs ...\n");
1980 arch_thaw_secondary_cpus_begin();
1982 for_each_cpu(cpu
, frozen_cpus
) {
1983 trace_suspend_resume(TPS("CPU_ON"), cpu
, true);
1984 error
= _cpu_up(cpu
, 1, CPUHP_ONLINE
);
1985 trace_suspend_resume(TPS("CPU_ON"), cpu
, false);
1987 pr_info("CPU%d is up\n", cpu
);
1990 pr_warn("Error taking CPU%d up: %d\n", cpu
, error
);
1993 arch_thaw_secondary_cpus_end();
1995 cpumask_clear(frozen_cpus
);
1997 cpu_maps_update_done();
2000 static int __init
alloc_frozen_cpus(void)
2002 if (!alloc_cpumask_var(&frozen_cpus
, GFP_KERNEL
|__GFP_ZERO
))
2006 core_initcall(alloc_frozen_cpus
);
2009 * When callbacks for CPU hotplug notifications are being executed, we must
2010 * ensure that the state of the system with respect to the tasks being frozen
2011 * or not, as reported by the notification, remains unchanged *throughout the
2012 * duration* of the execution of the callbacks.
2013 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
2015 * This synchronization is implemented by mutually excluding regular CPU
2016 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
2017 * Hibernate notifications.
2020 cpu_hotplug_pm_callback(struct notifier_block
*nb
,
2021 unsigned long action
, void *ptr
)
2025 case PM_SUSPEND_PREPARE
:
2026 case PM_HIBERNATION_PREPARE
:
2027 cpu_hotplug_disable();
2030 case PM_POST_SUSPEND
:
2031 case PM_POST_HIBERNATION
:
2032 cpu_hotplug_enable();
2043 static int __init
cpu_hotplug_pm_sync_init(void)
2046 * cpu_hotplug_pm_callback has higher priority than x86
2047 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
2048 * to disable cpu hotplug to avoid cpu hotplug race.
2050 pm_notifier(cpu_hotplug_pm_callback
, 0);
2053 core_initcall(cpu_hotplug_pm_sync_init
);
2055 #endif /* CONFIG_PM_SLEEP_SMP */
2059 #endif /* CONFIG_SMP */
2061 /* Boot processor state steps */
2062 static struct cpuhp_step cpuhp_hp_states
[] = {
2065 .startup
.single
= NULL
,
2066 .teardown
.single
= NULL
,
2069 [CPUHP_CREATE_THREADS
]= {
2070 .name
= "threads:prepare",
2071 .startup
.single
= smpboot_create_threads
,
2072 .teardown
.single
= NULL
,
2075 [CPUHP_PERF_PREPARE
] = {
2076 .name
= "perf:prepare",
2077 .startup
.single
= perf_event_init_cpu
,
2078 .teardown
.single
= perf_event_exit_cpu
,
2080 [CPUHP_RANDOM_PREPARE
] = {
2081 .name
= "random:prepare",
2082 .startup
.single
= random_prepare_cpu
,
2083 .teardown
.single
= NULL
,
2085 [CPUHP_WORKQUEUE_PREP
] = {
2086 .name
= "workqueue:prepare",
2087 .startup
.single
= workqueue_prepare_cpu
,
2088 .teardown
.single
= NULL
,
2090 [CPUHP_HRTIMERS_PREPARE
] = {
2091 .name
= "hrtimers:prepare",
2092 .startup
.single
= hrtimers_prepare_cpu
,
2093 .teardown
.single
= NULL
,
2095 [CPUHP_SMPCFD_PREPARE
] = {
2096 .name
= "smpcfd:prepare",
2097 .startup
.single
= smpcfd_prepare_cpu
,
2098 .teardown
.single
= smpcfd_dead_cpu
,
2100 [CPUHP_RELAY_PREPARE
] = {
2101 .name
= "relay:prepare",
2102 .startup
.single
= relay_prepare_cpu
,
2103 .teardown
.single
= NULL
,
2105 [CPUHP_RCUTREE_PREP
] = {
2106 .name
= "RCU/tree:prepare",
2107 .startup
.single
= rcutree_prepare_cpu
,
2108 .teardown
.single
= rcutree_dead_cpu
,
2111 * On the tear-down path, timers_dead_cpu() must be invoked
2112 * before blk_mq_queue_reinit_notify() from notify_dead(),
2113 * otherwise a RCU stall occurs.
2115 [CPUHP_TIMERS_PREPARE
] = {
2116 .name
= "timers:prepare",
2117 .startup
.single
= timers_prepare_cpu
,
2118 .teardown
.single
= timers_dead_cpu
,
2121 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
2123 * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until
2124 * the next step will release it.
2126 [CPUHP_BP_KICK_AP
] = {
2127 .name
= "cpu:kick_ap",
2128 .startup
.single
= cpuhp_kick_ap_alive
,
2132 * Waits for the AP to reach cpuhp_ap_sync_alive() and then
2133 * releases it for the complete bringup.
2135 [CPUHP_BRINGUP_CPU
] = {
2136 .name
= "cpu:bringup",
2137 .startup
.single
= cpuhp_bringup_ap
,
2138 .teardown
.single
= finish_cpu
,
2143 * All-in-one CPU bringup state which includes the kick alive.
2145 [CPUHP_BRINGUP_CPU
] = {
2146 .name
= "cpu:bringup",
2147 .startup
.single
= bringup_cpu
,
2148 .teardown
.single
= finish_cpu
,
2152 /* Final state before CPU kills itself */
2153 [CPUHP_AP_IDLE_DEAD
] = {
2154 .name
= "idle:dead",
2157 * Last state before CPU enters the idle loop to die. Transient state
2158 * for synchronization.
2160 [CPUHP_AP_OFFLINE
] = {
2161 .name
= "ap:offline",
2164 /* First state is scheduler control. Interrupts are disabled */
2165 [CPUHP_AP_SCHED_STARTING
] = {
2166 .name
= "sched:starting",
2167 .startup
.single
= sched_cpu_starting
,
2168 .teardown
.single
= sched_cpu_dying
,
2170 [CPUHP_AP_RCUTREE_DYING
] = {
2171 .name
= "RCU/tree:dying",
2172 .startup
.single
= NULL
,
2173 .teardown
.single
= rcutree_dying_cpu
,
2175 [CPUHP_AP_SMPCFD_DYING
] = {
2176 .name
= "smpcfd:dying",
2177 .startup
.single
= NULL
,
2178 .teardown
.single
= smpcfd_dying_cpu
,
2180 [CPUHP_AP_HRTIMERS_DYING
] = {
2181 .name
= "hrtimers:dying",
2182 .startup
.single
= NULL
,
2183 .teardown
.single
= hrtimers_cpu_dying
,
2185 [CPUHP_AP_TICK_DYING
] = {
2186 .name
= "tick:dying",
2187 .startup
.single
= NULL
,
2188 .teardown
.single
= tick_cpu_dying
,
2190 /* Entry state on starting. Interrupts enabled from here on. Transient
2191 * state for synchronsization */
2192 [CPUHP_AP_ONLINE
] = {
2193 .name
= "ap:online",
2196 * Handled on control processor until the plugged processor manages
2199 [CPUHP_TEARDOWN_CPU
] = {
2200 .name
= "cpu:teardown",
2201 .startup
.single
= NULL
,
2202 .teardown
.single
= takedown_cpu
,
2206 [CPUHP_AP_SCHED_WAIT_EMPTY
] = {
2207 .name
= "sched:waitempty",
2208 .startup
.single
= NULL
,
2209 .teardown
.single
= sched_cpu_wait_empty
,
2212 /* Handle smpboot threads park/unpark */
2213 [CPUHP_AP_SMPBOOT_THREADS
] = {
2214 .name
= "smpboot/threads:online",
2215 .startup
.single
= smpboot_unpark_threads
,
2216 .teardown
.single
= smpboot_park_threads
,
2218 [CPUHP_AP_IRQ_AFFINITY_ONLINE
] = {
2219 .name
= "irq/affinity:online",
2220 .startup
.single
= irq_affinity_online_cpu
,
2221 .teardown
.single
= NULL
,
2223 [CPUHP_AP_PERF_ONLINE
] = {
2224 .name
= "perf:online",
2225 .startup
.single
= perf_event_init_cpu
,
2226 .teardown
.single
= perf_event_exit_cpu
,
2228 [CPUHP_AP_WATCHDOG_ONLINE
] = {
2229 .name
= "lockup_detector:online",
2230 .startup
.single
= lockup_detector_online_cpu
,
2231 .teardown
.single
= lockup_detector_offline_cpu
,
2233 [CPUHP_AP_WORKQUEUE_ONLINE
] = {
2234 .name
= "workqueue:online",
2235 .startup
.single
= workqueue_online_cpu
,
2236 .teardown
.single
= workqueue_offline_cpu
,
2238 [CPUHP_AP_RANDOM_ONLINE
] = {
2239 .name
= "random:online",
2240 .startup
.single
= random_online_cpu
,
2241 .teardown
.single
= NULL
,
2243 [CPUHP_AP_RCUTREE_ONLINE
] = {
2244 .name
= "RCU/tree:online",
2245 .startup
.single
= rcutree_online_cpu
,
2246 .teardown
.single
= rcutree_offline_cpu
,
2250 * The dynamically registered state space is here
2254 /* Last state is scheduler control setting the cpu active */
2255 [CPUHP_AP_ACTIVE
] = {
2256 .name
= "sched:active",
2257 .startup
.single
= sched_cpu_activate
,
2258 .teardown
.single
= sched_cpu_deactivate
,
2262 /* CPU is fully up and running. */
2265 .startup
.single
= NULL
,
2266 .teardown
.single
= NULL
,
2270 /* Sanity check for callbacks */
2271 static int cpuhp_cb_check(enum cpuhp_state state
)
2273 if (state
<= CPUHP_OFFLINE
|| state
>= CPUHP_ONLINE
)
2279 * Returns a free for dynamic slot assignment of the Online state. The states
2280 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
2281 * by having no name assigned.
2283 static int cpuhp_reserve_state(enum cpuhp_state state
)
2285 enum cpuhp_state i
, end
;
2286 struct cpuhp_step
*step
;
2289 case CPUHP_AP_ONLINE_DYN
:
2290 step
= cpuhp_hp_states
+ CPUHP_AP_ONLINE_DYN
;
2291 end
= CPUHP_AP_ONLINE_DYN_END
;
2293 case CPUHP_BP_PREPARE_DYN
:
2294 step
= cpuhp_hp_states
+ CPUHP_BP_PREPARE_DYN
;
2295 end
= CPUHP_BP_PREPARE_DYN_END
;
2301 for (i
= state
; i
<= end
; i
++, step
++) {
2305 WARN(1, "No more dynamic states available for CPU hotplug\n");
2309 static int cpuhp_store_callbacks(enum cpuhp_state state
, const char *name
,
2310 int (*startup
)(unsigned int cpu
),
2311 int (*teardown
)(unsigned int cpu
),
2312 bool multi_instance
)
2314 /* (Un)Install the callbacks for further cpu hotplug operations */
2315 struct cpuhp_step
*sp
;
2319 * If name is NULL, then the state gets removed.
2321 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
2322 * the first allocation from these dynamic ranges, so the removal
2323 * would trigger a new allocation and clear the wrong (already
2324 * empty) state, leaving the callbacks of the to be cleared state
2325 * dangling, which causes wreckage on the next hotplug operation.
2327 if (name
&& (state
== CPUHP_AP_ONLINE_DYN
||
2328 state
== CPUHP_BP_PREPARE_DYN
)) {
2329 ret
= cpuhp_reserve_state(state
);
2334 sp
= cpuhp_get_step(state
);
2335 if (name
&& sp
->name
)
2338 sp
->startup
.single
= startup
;
2339 sp
->teardown
.single
= teardown
;
2341 sp
->multi_instance
= multi_instance
;
2342 INIT_HLIST_HEAD(&sp
->list
);
2346 static void *cpuhp_get_teardown_cb(enum cpuhp_state state
)
2348 return cpuhp_get_step(state
)->teardown
.single
;
2352 * Call the startup/teardown function for a step either on the AP or
2353 * on the current CPU.
2355 static int cpuhp_issue_call(int cpu
, enum cpuhp_state state
, bool bringup
,
2356 struct hlist_node
*node
)
2358 struct cpuhp_step
*sp
= cpuhp_get_step(state
);
2362 * If there's nothing to do, we done.
2363 * Relies on the union for multi_instance.
2365 if (cpuhp_step_empty(bringup
, sp
))
2368 * The non AP bound callbacks can fail on bringup. On teardown
2369 * e.g. module removal we crash for now.
2372 if (cpuhp_is_ap_state(state
))
2373 ret
= cpuhp_invoke_ap_callback(cpu
, state
, bringup
, node
);
2375 ret
= cpuhp_invoke_callback(cpu
, state
, bringup
, node
, NULL
);
2377 ret
= cpuhp_invoke_callback(cpu
, state
, bringup
, node
, NULL
);
2379 BUG_ON(ret
&& !bringup
);
2384 * Called from __cpuhp_setup_state on a recoverable failure.
2386 * Note: The teardown callbacks for rollback are not allowed to fail!
2388 static void cpuhp_rollback_install(int failedcpu
, enum cpuhp_state state
,
2389 struct hlist_node
*node
)
2393 /* Roll back the already executed steps on the other cpus */
2394 for_each_present_cpu(cpu
) {
2395 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
2396 int cpustate
= st
->state
;
2398 if (cpu
>= failedcpu
)
2401 /* Did we invoke the startup call on that cpu ? */
2402 if (cpustate
>= state
)
2403 cpuhp_issue_call(cpu
, state
, false, node
);
2407 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state
,
2408 struct hlist_node
*node
,
2411 struct cpuhp_step
*sp
;
2415 lockdep_assert_cpus_held();
2417 sp
= cpuhp_get_step(state
);
2418 if (sp
->multi_instance
== false)
2421 mutex_lock(&cpuhp_state_mutex
);
2423 if (!invoke
|| !sp
->startup
.multi
)
2427 * Try to call the startup callback for each present cpu
2428 * depending on the hotplug state of the cpu.
2430 for_each_present_cpu(cpu
) {
2431 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
2432 int cpustate
= st
->state
;
2434 if (cpustate
< state
)
2437 ret
= cpuhp_issue_call(cpu
, state
, true, node
);
2439 if (sp
->teardown
.multi
)
2440 cpuhp_rollback_install(cpu
, state
, node
);
2446 hlist_add_head(node
, &sp
->list
);
2448 mutex_unlock(&cpuhp_state_mutex
);
2452 int __cpuhp_state_add_instance(enum cpuhp_state state
, struct hlist_node
*node
,
2458 ret
= __cpuhp_state_add_instance_cpuslocked(state
, node
, invoke
);
2462 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance
);
2465 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2466 * @state: The state to setup
2467 * @name: Name of the step
2468 * @invoke: If true, the startup function is invoked for cpus where
2469 * cpu state >= @state
2470 * @startup: startup callback function
2471 * @teardown: teardown callback function
2472 * @multi_instance: State is set up for multiple instances which get
2475 * The caller needs to hold cpus read locked while calling this function.
2478 * Positive state number if @state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN;
2479 * 0 for all other states
2480 * On failure: proper (negative) error code
2482 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state
,
2483 const char *name
, bool invoke
,
2484 int (*startup
)(unsigned int cpu
),
2485 int (*teardown
)(unsigned int cpu
),
2486 bool multi_instance
)
2491 lockdep_assert_cpus_held();
2493 if (cpuhp_cb_check(state
) || !name
)
2496 mutex_lock(&cpuhp_state_mutex
);
2498 ret
= cpuhp_store_callbacks(state
, name
, startup
, teardown
,
2501 dynstate
= state
== CPUHP_AP_ONLINE_DYN
|| state
== CPUHP_BP_PREPARE_DYN
;
2502 if (ret
> 0 && dynstate
) {
2507 if (ret
|| !invoke
|| !startup
)
2511 * Try to call the startup callback for each present cpu
2512 * depending on the hotplug state of the cpu.
2514 for_each_present_cpu(cpu
) {
2515 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
2516 int cpustate
= st
->state
;
2518 if (cpustate
< state
)
2521 ret
= cpuhp_issue_call(cpu
, state
, true, NULL
);
2524 cpuhp_rollback_install(cpu
, state
, NULL
);
2525 cpuhp_store_callbacks(state
, NULL
, NULL
, NULL
, false);
2530 mutex_unlock(&cpuhp_state_mutex
);
2532 * If the requested state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN,
2533 * return the dynamically allocated state in case of success.
2535 if (!ret
&& dynstate
)
2539 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked
);
2541 int __cpuhp_setup_state(enum cpuhp_state state
,
2542 const char *name
, bool invoke
,
2543 int (*startup
)(unsigned int cpu
),
2544 int (*teardown
)(unsigned int cpu
),
2545 bool multi_instance
)
2550 ret
= __cpuhp_setup_state_cpuslocked(state
, name
, invoke
, startup
,
2551 teardown
, multi_instance
);
2555 EXPORT_SYMBOL(__cpuhp_setup_state
);
2557 int __cpuhp_state_remove_instance(enum cpuhp_state state
,
2558 struct hlist_node
*node
, bool invoke
)
2560 struct cpuhp_step
*sp
= cpuhp_get_step(state
);
2563 BUG_ON(cpuhp_cb_check(state
));
2565 if (!sp
->multi_instance
)
2569 mutex_lock(&cpuhp_state_mutex
);
2571 if (!invoke
|| !cpuhp_get_teardown_cb(state
))
2574 * Call the teardown callback for each present cpu depending
2575 * on the hotplug state of the cpu. This function is not
2576 * allowed to fail currently!
2578 for_each_present_cpu(cpu
) {
2579 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
2580 int cpustate
= st
->state
;
2582 if (cpustate
>= state
)
2583 cpuhp_issue_call(cpu
, state
, false, node
);
2588 mutex_unlock(&cpuhp_state_mutex
);
2593 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance
);
2596 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2597 * @state: The state to remove
2598 * @invoke: If true, the teardown function is invoked for cpus where
2599 * cpu state >= @state
2601 * The caller needs to hold cpus read locked while calling this function.
2602 * The teardown callback is currently not allowed to fail. Think
2603 * about module removal!
2605 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state
, bool invoke
)
2607 struct cpuhp_step
*sp
= cpuhp_get_step(state
);
2610 BUG_ON(cpuhp_cb_check(state
));
2612 lockdep_assert_cpus_held();
2614 mutex_lock(&cpuhp_state_mutex
);
2615 if (sp
->multi_instance
) {
2616 WARN(!hlist_empty(&sp
->list
),
2617 "Error: Removing state %d which has instances left.\n",
2622 if (!invoke
|| !cpuhp_get_teardown_cb(state
))
2626 * Call the teardown callback for each present cpu depending
2627 * on the hotplug state of the cpu. This function is not
2628 * allowed to fail currently!
2630 for_each_present_cpu(cpu
) {
2631 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, cpu
);
2632 int cpustate
= st
->state
;
2634 if (cpustate
>= state
)
2635 cpuhp_issue_call(cpu
, state
, false, NULL
);
2638 cpuhp_store_callbacks(state
, NULL
, NULL
, NULL
, false);
2639 mutex_unlock(&cpuhp_state_mutex
);
2641 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked
);
2643 void __cpuhp_remove_state(enum cpuhp_state state
, bool invoke
)
2646 __cpuhp_remove_state_cpuslocked(state
, invoke
);
2649 EXPORT_SYMBOL(__cpuhp_remove_state
);
2651 #ifdef CONFIG_HOTPLUG_SMT
2652 static void cpuhp_offline_cpu_device(unsigned int cpu
)
2654 struct device
*dev
= get_cpu_device(cpu
);
2656 dev
->offline
= true;
2657 /* Tell user space about the state change */
2658 kobject_uevent(&dev
->kobj
, KOBJ_OFFLINE
);
2661 static void cpuhp_online_cpu_device(unsigned int cpu
)
2663 struct device
*dev
= get_cpu_device(cpu
);
2665 dev
->offline
= false;
2666 /* Tell user space about the state change */
2667 kobject_uevent(&dev
->kobj
, KOBJ_ONLINE
);
2670 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval
)
2674 cpu_maps_update_begin();
2675 for_each_online_cpu(cpu
) {
2676 if (topology_is_primary_thread(cpu
))
2679 * Disable can be called with CPU_SMT_ENABLED when changing
2680 * from a higher to lower number of SMT threads per core.
2682 if (ctrlval
== CPU_SMT_ENABLED
&& cpu_smt_thread_allowed(cpu
))
2684 ret
= cpu_down_maps_locked(cpu
, CPUHP_OFFLINE
);
2688 * As this needs to hold the cpu maps lock it's impossible
2689 * to call device_offline() because that ends up calling
2690 * cpu_down() which takes cpu maps lock. cpu maps lock
2691 * needs to be held as this might race against in kernel
2692 * abusers of the hotplug machinery (thermal management).
2694 * So nothing would update device:offline state. That would
2695 * leave the sysfs entry stale and prevent onlining after
2696 * smt control has been changed to 'off' again. This is
2697 * called under the sysfs hotplug lock, so it is properly
2698 * serialized against the regular offline usage.
2700 cpuhp_offline_cpu_device(cpu
);
2703 cpu_smt_control
= ctrlval
;
2704 cpu_maps_update_done();
2708 /* Check if the core a CPU belongs to is online */
2709 #if !defined(topology_is_core_online)
2710 static inline bool topology_is_core_online(unsigned int cpu
)
2716 int cpuhp_smt_enable(void)
2720 cpu_maps_update_begin();
2721 cpu_smt_control
= CPU_SMT_ENABLED
;
2722 for_each_present_cpu(cpu
) {
2723 /* Skip online CPUs and CPUs on offline nodes */
2724 if (cpu_online(cpu
) || !node_online(cpu_to_node(cpu
)))
2726 if (!cpu_smt_thread_allowed(cpu
) || !topology_is_core_online(cpu
))
2728 ret
= _cpu_up(cpu
, 0, CPUHP_ONLINE
);
2731 /* See comment in cpuhp_smt_disable() */
2732 cpuhp_online_cpu_device(cpu
);
2734 cpu_maps_update_done();
2739 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2740 static ssize_t
state_show(struct device
*dev
,
2741 struct device_attribute
*attr
, char *buf
)
2743 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
2745 return sprintf(buf
, "%d\n", st
->state
);
2747 static DEVICE_ATTR_RO(state
);
2749 static ssize_t
target_store(struct device
*dev
, struct device_attribute
*attr
,
2750 const char *buf
, size_t count
)
2752 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
2753 struct cpuhp_step
*sp
;
2756 ret
= kstrtoint(buf
, 10, &target
);
2760 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2761 if (target
< CPUHP_OFFLINE
|| target
> CPUHP_ONLINE
)
2764 if (target
!= CPUHP_OFFLINE
&& target
!= CPUHP_ONLINE
)
2768 ret
= lock_device_hotplug_sysfs();
2772 mutex_lock(&cpuhp_state_mutex
);
2773 sp
= cpuhp_get_step(target
);
2774 ret
= !sp
->name
|| sp
->cant_stop
? -EINVAL
: 0;
2775 mutex_unlock(&cpuhp_state_mutex
);
2779 if (st
->state
< target
)
2780 ret
= cpu_up(dev
->id
, target
);
2781 else if (st
->state
> target
)
2782 ret
= cpu_down(dev
->id
, target
);
2783 else if (WARN_ON(st
->target
!= target
))
2784 st
->target
= target
;
2786 unlock_device_hotplug();
2787 return ret
? ret
: count
;
2790 static ssize_t
target_show(struct device
*dev
,
2791 struct device_attribute
*attr
, char *buf
)
2793 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
2795 return sprintf(buf
, "%d\n", st
->target
);
2797 static DEVICE_ATTR_RW(target
);
2799 static ssize_t
fail_store(struct device
*dev
, struct device_attribute
*attr
,
2800 const char *buf
, size_t count
)
2802 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
2803 struct cpuhp_step
*sp
;
2806 ret
= kstrtoint(buf
, 10, &fail
);
2810 if (fail
== CPUHP_INVALID
) {
2815 if (fail
< CPUHP_OFFLINE
|| fail
> CPUHP_ONLINE
)
2819 * Cannot fail STARTING/DYING callbacks.
2821 if (cpuhp_is_atomic_state(fail
))
2825 * DEAD callbacks cannot fail...
2826 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2827 * triggering STARTING callbacks, a failure in this state would
2830 if (fail
<= CPUHP_BRINGUP_CPU
&& st
->state
> CPUHP_BRINGUP_CPU
)
2834 * Cannot fail anything that doesn't have callbacks.
2836 mutex_lock(&cpuhp_state_mutex
);
2837 sp
= cpuhp_get_step(fail
);
2838 if (!sp
->startup
.single
&& !sp
->teardown
.single
)
2840 mutex_unlock(&cpuhp_state_mutex
);
2849 static ssize_t
fail_show(struct device
*dev
,
2850 struct device_attribute
*attr
, char *buf
)
2852 struct cpuhp_cpu_state
*st
= per_cpu_ptr(&cpuhp_state
, dev
->id
);
2854 return sprintf(buf
, "%d\n", st
->fail
);
2857 static DEVICE_ATTR_RW(fail
);
2859 static struct attribute
*cpuhp_cpu_attrs
[] = {
2860 &dev_attr_state
.attr
,
2861 &dev_attr_target
.attr
,
2862 &dev_attr_fail
.attr
,
2866 static const struct attribute_group cpuhp_cpu_attr_group
= {
2867 .attrs
= cpuhp_cpu_attrs
,
2871 static ssize_t
states_show(struct device
*dev
,
2872 struct device_attribute
*attr
, char *buf
)
2874 ssize_t cur
, res
= 0;
2877 mutex_lock(&cpuhp_state_mutex
);
2878 for (i
= CPUHP_OFFLINE
; i
<= CPUHP_ONLINE
; i
++) {
2879 struct cpuhp_step
*sp
= cpuhp_get_step(i
);
2882 cur
= sprintf(buf
, "%3d: %s\n", i
, sp
->name
);
2887 mutex_unlock(&cpuhp_state_mutex
);
2890 static DEVICE_ATTR_RO(states
);
2892 static struct attribute
*cpuhp_cpu_root_attrs
[] = {
2893 &dev_attr_states
.attr
,
2897 static const struct attribute_group cpuhp_cpu_root_attr_group
= {
2898 .attrs
= cpuhp_cpu_root_attrs
,
2902 #ifdef CONFIG_HOTPLUG_SMT
2904 static bool cpu_smt_num_threads_valid(unsigned int threads
)
2906 if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC
))
2907 return threads
>= 1 && threads
<= cpu_smt_max_threads
;
2908 return threads
== 1 || threads
== cpu_smt_max_threads
;
2912 __store_smt_control(struct device
*dev
, struct device_attribute
*attr
,
2913 const char *buf
, size_t count
)
2915 int ctrlval
, ret
, num_threads
, orig_threads
;
2918 if (cpu_smt_control
== CPU_SMT_FORCE_DISABLED
)
2921 if (cpu_smt_control
== CPU_SMT_NOT_SUPPORTED
)
2924 if (sysfs_streq(buf
, "on")) {
2925 ctrlval
= CPU_SMT_ENABLED
;
2926 num_threads
= cpu_smt_max_threads
;
2927 } else if (sysfs_streq(buf
, "off")) {
2928 ctrlval
= CPU_SMT_DISABLED
;
2930 } else if (sysfs_streq(buf
, "forceoff")) {
2931 ctrlval
= CPU_SMT_FORCE_DISABLED
;
2933 } else if (kstrtoint(buf
, 10, &num_threads
) == 0) {
2934 if (num_threads
== 1)
2935 ctrlval
= CPU_SMT_DISABLED
;
2936 else if (cpu_smt_num_threads_valid(num_threads
))
2937 ctrlval
= CPU_SMT_ENABLED
;
2944 ret
= lock_device_hotplug_sysfs();
2948 orig_threads
= cpu_smt_num_threads
;
2949 cpu_smt_num_threads
= num_threads
;
2951 force_off
= ctrlval
!= cpu_smt_control
&& ctrlval
== CPU_SMT_FORCE_DISABLED
;
2953 if (num_threads
> orig_threads
)
2954 ret
= cpuhp_smt_enable();
2955 else if (num_threads
< orig_threads
|| force_off
)
2956 ret
= cpuhp_smt_disable(ctrlval
);
2958 unlock_device_hotplug();
2959 return ret
? ret
: count
;
2962 #else /* !CONFIG_HOTPLUG_SMT */
2964 __store_smt_control(struct device
*dev
, struct device_attribute
*attr
,
2965 const char *buf
, size_t count
)
2969 #endif /* CONFIG_HOTPLUG_SMT */
2971 static const char *smt_states
[] = {
2972 [CPU_SMT_ENABLED
] = "on",
2973 [CPU_SMT_DISABLED
] = "off",
2974 [CPU_SMT_FORCE_DISABLED
] = "forceoff",
2975 [CPU_SMT_NOT_SUPPORTED
] = "notsupported",
2976 [CPU_SMT_NOT_IMPLEMENTED
] = "notimplemented",
2979 static ssize_t
control_show(struct device
*dev
,
2980 struct device_attribute
*attr
, char *buf
)
2982 const char *state
= smt_states
[cpu_smt_control
];
2984 #ifdef CONFIG_HOTPLUG_SMT
2986 * If SMT is enabled but not all threads are enabled then show the
2987 * number of threads. If all threads are enabled show "on". Otherwise
2988 * show the state name.
2990 if (cpu_smt_control
== CPU_SMT_ENABLED
&&
2991 cpu_smt_num_threads
!= cpu_smt_max_threads
)
2992 return sysfs_emit(buf
, "%d\n", cpu_smt_num_threads
);
2995 return sysfs_emit(buf
, "%s\n", state
);
2998 static ssize_t
control_store(struct device
*dev
, struct device_attribute
*attr
,
2999 const char *buf
, size_t count
)
3001 return __store_smt_control(dev
, attr
, buf
, count
);
3003 static DEVICE_ATTR_RW(control
);
3005 static ssize_t
active_show(struct device
*dev
,
3006 struct device_attribute
*attr
, char *buf
)
3008 return sysfs_emit(buf
, "%d\n", sched_smt_active());
3010 static DEVICE_ATTR_RO(active
);
3012 static struct attribute
*cpuhp_smt_attrs
[] = {
3013 &dev_attr_control
.attr
,
3014 &dev_attr_active
.attr
,
3018 static const struct attribute_group cpuhp_smt_attr_group
= {
3019 .attrs
= cpuhp_smt_attrs
,
3023 static int __init
cpu_smt_sysfs_init(void)
3025 struct device
*dev_root
;
3028 dev_root
= bus_get_dev_root(&cpu_subsys
);
3030 ret
= sysfs_create_group(&dev_root
->kobj
, &cpuhp_smt_attr_group
);
3031 put_device(dev_root
);
3036 static int __init
cpuhp_sysfs_init(void)
3038 struct device
*dev_root
;
3041 ret
= cpu_smt_sysfs_init();
3045 dev_root
= bus_get_dev_root(&cpu_subsys
);
3047 ret
= sysfs_create_group(&dev_root
->kobj
, &cpuhp_cpu_root_attr_group
);
3048 put_device(dev_root
);
3053 for_each_possible_cpu(cpu
) {
3054 struct device
*dev
= get_cpu_device(cpu
);
3058 ret
= sysfs_create_group(&dev
->kobj
, &cpuhp_cpu_attr_group
);
3064 device_initcall(cpuhp_sysfs_init
);
3065 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
3068 * cpu_bit_bitmap[] is a special, "compressed" data structure that
3069 * represents all NR_CPUS bits binary values of 1<<nr.
3071 * It is used by cpumask_of() to get a constant address to a CPU
3072 * mask value that has a single bit set only.
3075 /* cpu_bit_bitmap[0] is empty - so we can back into it */
3076 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
3077 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
3078 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
3079 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
3081 const unsigned long cpu_bit_bitmap
[BITS_PER_LONG
+1][BITS_TO_LONGS(NR_CPUS
)] = {
3083 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
3084 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
3085 #if BITS_PER_LONG > 32
3086 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
3087 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
3090 EXPORT_SYMBOL_GPL(cpu_bit_bitmap
);
3092 const DECLARE_BITMAP(cpu_all_bits
, NR_CPUS
) = CPU_BITS_ALL
;
3093 EXPORT_SYMBOL(cpu_all_bits
);
3095 #ifdef CONFIG_INIT_ALL_POSSIBLE
3096 struct cpumask __cpu_possible_mask __ro_after_init
3099 struct cpumask __cpu_possible_mask __ro_after_init
;
3101 EXPORT_SYMBOL(__cpu_possible_mask
);
3103 struct cpumask __cpu_online_mask __read_mostly
;
3104 EXPORT_SYMBOL(__cpu_online_mask
);
3106 struct cpumask __cpu_enabled_mask __read_mostly
;
3107 EXPORT_SYMBOL(__cpu_enabled_mask
);
3109 struct cpumask __cpu_present_mask __read_mostly
;
3110 EXPORT_SYMBOL(__cpu_present_mask
);
3112 struct cpumask __cpu_active_mask __read_mostly
;
3113 EXPORT_SYMBOL(__cpu_active_mask
);
3115 struct cpumask __cpu_dying_mask __read_mostly
;
3116 EXPORT_SYMBOL(__cpu_dying_mask
);
3118 atomic_t __num_online_cpus __read_mostly
;
3119 EXPORT_SYMBOL(__num_online_cpus
);
3121 void init_cpu_present(const struct cpumask
*src
)
3123 cpumask_copy(&__cpu_present_mask
, src
);
3126 void init_cpu_possible(const struct cpumask
*src
)
3128 cpumask_copy(&__cpu_possible_mask
, src
);
3131 void init_cpu_online(const struct cpumask
*src
)
3133 cpumask_copy(&__cpu_online_mask
, src
);
3136 void set_cpu_online(unsigned int cpu
, bool online
)
3139 * atomic_inc/dec() is required to handle the horrid abuse of this
3140 * function by the reboot and kexec code which invoke it from
3141 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
3142 * regular CPU hotplug is properly serialized.
3144 * Note, that the fact that __num_online_cpus is of type atomic_t
3145 * does not protect readers which are not serialized against
3146 * concurrent hotplug operations.
3149 if (!cpumask_test_and_set_cpu(cpu
, &__cpu_online_mask
))
3150 atomic_inc(&__num_online_cpus
);
3152 if (cpumask_test_and_clear_cpu(cpu
, &__cpu_online_mask
))
3153 atomic_dec(&__num_online_cpus
);
3158 * Activate the first processor.
3160 void __init
boot_cpu_init(void)
3162 int cpu
= smp_processor_id();
3164 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
3165 set_cpu_online(cpu
, true);
3166 set_cpu_active(cpu
, true);
3167 set_cpu_present(cpu
, true);
3168 set_cpu_possible(cpu
, true);
3171 __boot_cpu_id
= cpu
;
3176 * Must be called _AFTER_ setting up the per_cpu areas
3178 void __init
boot_cpu_hotplug_init(void)
3181 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask
);
3182 atomic_set(this_cpu_ptr(&cpuhp_state
.ap_sync_state
), SYNC_STATE_ONLINE
);
3184 this_cpu_write(cpuhp_state
.state
, CPUHP_ONLINE
);
3185 this_cpu_write(cpuhp_state
.target
, CPUHP_ONLINE
);
3188 #ifdef CONFIG_CPU_MITIGATIONS
3190 * These are used for a global "mitigations=" cmdline option for toggling
3191 * optional CPU mitigations.
3193 enum cpu_mitigations
{
3194 CPU_MITIGATIONS_OFF
,
3195 CPU_MITIGATIONS_AUTO
,
3196 CPU_MITIGATIONS_AUTO_NOSMT
,
3199 static enum cpu_mitigations cpu_mitigations __ro_after_init
= CPU_MITIGATIONS_AUTO
;
3201 static int __init
mitigations_parse_cmdline(char *arg
)
3203 if (!strcmp(arg
, "off"))
3204 cpu_mitigations
= CPU_MITIGATIONS_OFF
;
3205 else if (!strcmp(arg
, "auto"))
3206 cpu_mitigations
= CPU_MITIGATIONS_AUTO
;
3207 else if (!strcmp(arg
, "auto,nosmt"))
3208 cpu_mitigations
= CPU_MITIGATIONS_AUTO_NOSMT
;
3210 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
3216 /* mitigations=off */
3217 bool cpu_mitigations_off(void)
3219 return cpu_mitigations
== CPU_MITIGATIONS_OFF
;
3221 EXPORT_SYMBOL_GPL(cpu_mitigations_off
);
3223 /* mitigations=auto,nosmt */
3224 bool cpu_mitigations_auto_nosmt(void)
3226 return cpu_mitigations
== CPU_MITIGATIONS_AUTO_NOSMT
;
3228 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt
);
3230 static int __init
mitigations_parse_cmdline(char *arg
)
3232 pr_crit("Kernel compiled without mitigations, ignoring 'mitigations'; system may still be vulnerable\n");
3236 early_param("mitigations", mitigations_parse_cmdline
);