1 // SPDX-License-Identifier: GPL-2.0-only
3 * crash.c - kernel crash support code.
4 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/buildid.h>
10 #include <linux/init.h>
11 #include <linux/utsname.h>
12 #include <linux/vmalloc.h>
13 #include <linux/sizes.h>
14 #include <linux/kexec.h>
15 #include <linux/memory.h>
17 #include <linux/cpuhotplug.h>
18 #include <linux/memblock.h>
19 #include <linux/kmemleak.h>
20 #include <linux/crash_core.h>
21 #include <linux/reboot.h>
22 #include <linux/btf.h>
23 #include <linux/objtool.h>
26 #include <asm/sections.h>
28 #include <crypto/sha1.h>
30 #include "kallsyms_internal.h"
31 #include "kexec_internal.h"
33 /* Per cpu memory for storing cpu states in case of system crash. */
34 note_buf_t __percpu
*crash_notes
;
36 #ifdef CONFIG_CRASH_DUMP
38 int kimage_crash_copy_vmcoreinfo(struct kimage
*image
)
40 struct page
*vmcoreinfo_page
;
43 if (!IS_ENABLED(CONFIG_CRASH_DUMP
))
45 if (image
->type
!= KEXEC_TYPE_CRASH
)
49 * For kdump, allocate one vmcoreinfo safe copy from the
50 * crash memory. as we have arch_kexec_protect_crashkres()
51 * after kexec syscall, we naturally protect it from write
52 * (even read) access under kernel direct mapping. But on
53 * the other hand, we still need to operate it when crash
54 * happens to generate vmcoreinfo note, hereby we rely on
55 * vmap for this purpose.
57 vmcoreinfo_page
= kimage_alloc_control_pages(image
, 0);
58 if (!vmcoreinfo_page
) {
59 pr_warn("Could not allocate vmcoreinfo buffer\n");
62 safecopy
= vmap(&vmcoreinfo_page
, 1, VM_MAP
, PAGE_KERNEL
);
64 pr_warn("Could not vmap vmcoreinfo buffer\n");
68 image
->vmcoreinfo_data_copy
= safecopy
;
69 crash_update_vmcoreinfo_safecopy(safecopy
);
76 int kexec_should_crash(struct task_struct
*p
)
79 * If crash_kexec_post_notifiers is enabled, don't run
80 * crash_kexec() here yet, which must be run after panic
81 * notifiers in panic().
83 if (crash_kexec_post_notifiers
)
86 * There are 4 panic() calls in make_task_dead() path, each of which
87 * corresponds to each of these 4 conditions.
89 if (in_interrupt() || !p
->pid
|| is_global_init(p
) || panic_on_oops
)
94 int kexec_crash_loaded(void)
96 return !!kexec_crash_image
;
98 EXPORT_SYMBOL_GPL(kexec_crash_loaded
);
101 * No panic_cpu check version of crash_kexec(). This function is called
102 * only when panic_cpu holds the current CPU number; this is the only CPU
103 * which processes crash_kexec routines.
105 void __noclone
__crash_kexec(struct pt_regs
*regs
)
107 /* Take the kexec_lock here to prevent sys_kexec_load
108 * running on one cpu from replacing the crash kernel
109 * we are using after a panic on a different cpu.
111 * If the crash kernel was not located in a fixed area
112 * of memory the xchg(&kexec_crash_image) would be
113 * sufficient. But since I reuse the memory...
115 if (kexec_trylock()) {
116 if (kexec_crash_image
) {
117 struct pt_regs fixed_regs
;
119 crash_setup_regs(&fixed_regs
, regs
);
120 crash_save_vmcoreinfo();
121 machine_crash_shutdown(&fixed_regs
);
122 machine_kexec(kexec_crash_image
);
127 STACK_FRAME_NON_STANDARD(__crash_kexec
);
129 __bpf_kfunc
void crash_kexec(struct pt_regs
*regs
)
131 int old_cpu
, this_cpu
;
134 * Only one CPU is allowed to execute the crash_kexec() code as with
135 * panic(). Otherwise parallel calls of panic() and crash_kexec()
136 * may stop each other. To exclude them, we use panic_cpu here too.
138 old_cpu
= PANIC_CPU_INVALID
;
139 this_cpu
= raw_smp_processor_id();
141 if (atomic_try_cmpxchg(&panic_cpu
, &old_cpu
, this_cpu
)) {
142 /* This is the 1st CPU which comes here, so go ahead. */
146 * Reset panic_cpu to allow another panic()/crash_kexec()
149 atomic_set(&panic_cpu
, PANIC_CPU_INVALID
);
153 static inline resource_size_t
crash_resource_size(const struct resource
*res
)
155 return !res
->end
? 0 : resource_size(res
);
161 int crash_prepare_elf64_headers(struct crash_mem
*mem
, int need_kernel_map
,
162 void **addr
, unsigned long *sz
)
166 unsigned long nr_cpus
= num_possible_cpus(), nr_phdr
, elf_sz
;
169 unsigned long long notes_addr
;
170 unsigned long mstart
, mend
;
172 /* extra phdr for vmcoreinfo ELF note */
173 nr_phdr
= nr_cpus
+ 1;
174 nr_phdr
+= mem
->nr_ranges
;
177 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
178 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
179 * I think this is required by tools like gdb. So same physical
180 * memory will be mapped in two ELF headers. One will contain kernel
181 * text virtual addresses and other will have __va(physical) addresses.
185 elf_sz
= sizeof(Elf64_Ehdr
) + nr_phdr
* sizeof(Elf64_Phdr
);
186 elf_sz
= ALIGN(elf_sz
, ELF_CORE_HEADER_ALIGN
);
188 buf
= vzalloc(elf_sz
);
192 ehdr
= (Elf64_Ehdr
*)buf
;
193 phdr
= (Elf64_Phdr
*)(ehdr
+ 1);
194 memcpy(ehdr
->e_ident
, ELFMAG
, SELFMAG
);
195 ehdr
->e_ident
[EI_CLASS
] = ELFCLASS64
;
196 ehdr
->e_ident
[EI_DATA
] = ELFDATA2LSB
;
197 ehdr
->e_ident
[EI_VERSION
] = EV_CURRENT
;
198 ehdr
->e_ident
[EI_OSABI
] = ELF_OSABI
;
199 memset(ehdr
->e_ident
+ EI_PAD
, 0, EI_NIDENT
- EI_PAD
);
200 ehdr
->e_type
= ET_CORE
;
201 ehdr
->e_machine
= ELF_ARCH
;
202 ehdr
->e_version
= EV_CURRENT
;
203 ehdr
->e_phoff
= sizeof(Elf64_Ehdr
);
204 ehdr
->e_ehsize
= sizeof(Elf64_Ehdr
);
205 ehdr
->e_phentsize
= sizeof(Elf64_Phdr
);
207 /* Prepare one phdr of type PT_NOTE for each possible CPU */
208 for_each_possible_cpu(cpu
) {
209 phdr
->p_type
= PT_NOTE
;
210 notes_addr
= per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes
, cpu
));
211 phdr
->p_offset
= phdr
->p_paddr
= notes_addr
;
212 phdr
->p_filesz
= phdr
->p_memsz
= sizeof(note_buf_t
);
217 /* Prepare one PT_NOTE header for vmcoreinfo */
218 phdr
->p_type
= PT_NOTE
;
219 phdr
->p_offset
= phdr
->p_paddr
= paddr_vmcoreinfo_note();
220 phdr
->p_filesz
= phdr
->p_memsz
= VMCOREINFO_NOTE_SIZE
;
224 /* Prepare PT_LOAD type program header for kernel text region */
225 if (need_kernel_map
) {
226 phdr
->p_type
= PT_LOAD
;
227 phdr
->p_flags
= PF_R
|PF_W
|PF_X
;
228 phdr
->p_vaddr
= (unsigned long) _text
;
229 phdr
->p_filesz
= phdr
->p_memsz
= _end
- _text
;
230 phdr
->p_offset
= phdr
->p_paddr
= __pa_symbol(_text
);
235 /* Go through all the ranges in mem->ranges[] and prepare phdr */
236 for (i
= 0; i
< mem
->nr_ranges
; i
++) {
237 mstart
= mem
->ranges
[i
].start
;
238 mend
= mem
->ranges
[i
].end
;
240 phdr
->p_type
= PT_LOAD
;
241 phdr
->p_flags
= PF_R
|PF_W
|PF_X
;
242 phdr
->p_offset
= mstart
;
244 phdr
->p_paddr
= mstart
;
245 phdr
->p_vaddr
= (unsigned long) __va(mstart
);
246 phdr
->p_filesz
= phdr
->p_memsz
= mend
- mstart
+ 1;
249 #ifdef CONFIG_KEXEC_FILE
250 kexec_dprintk("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
251 phdr
, phdr
->p_vaddr
, phdr
->p_paddr
, phdr
->p_filesz
,
252 ehdr
->e_phnum
, phdr
->p_offset
);
262 int crash_exclude_mem_range(struct crash_mem
*mem
,
263 unsigned long long mstart
, unsigned long long mend
)
266 unsigned long long start
, end
, p_start
, p_end
;
268 for (i
= 0; i
< mem
->nr_ranges
; i
++) {
269 start
= mem
->ranges
[i
].start
;
270 end
= mem
->ranges
[i
].end
;
278 * Because the memory ranges in mem->ranges are stored in
279 * ascending order, when we detect `p_end < start`, we can
280 * immediately exit the for loop, as the subsequent memory
281 * ranges will definitely be outside the range we are looking
287 /* Truncate any area outside of range */
293 /* Found completely overlapping range */
294 if (p_start
== start
&& p_end
== end
) {
295 memmove(&mem
->ranges
[i
], &mem
->ranges
[i
+ 1],
296 (mem
->nr_ranges
- (i
+ 1)) * sizeof(mem
->ranges
[i
]));
299 } else if (p_start
> start
&& p_end
< end
) {
300 /* Split original range */
301 if (mem
->nr_ranges
>= mem
->max_nr_ranges
)
304 memmove(&mem
->ranges
[i
+ 2], &mem
->ranges
[i
+ 1],
305 (mem
->nr_ranges
- (i
+ 1)) * sizeof(mem
->ranges
[i
]));
307 mem
->ranges
[i
].end
= p_start
- 1;
308 mem
->ranges
[i
+ 1].start
= p_end
+ 1;
309 mem
->ranges
[i
+ 1].end
= end
;
313 } else if (p_start
!= start
)
314 mem
->ranges
[i
].end
= p_start
- 1;
316 mem
->ranges
[i
].start
= p_end
+ 1;
322 ssize_t
crash_get_memory_size(void)
326 if (!kexec_trylock())
329 size
+= crash_resource_size(&crashk_res
);
330 size
+= crash_resource_size(&crashk_low_res
);
336 static int __crash_shrink_memory(struct resource
*old_res
,
337 unsigned long new_size
)
339 struct resource
*ram_res
;
341 ram_res
= kzalloc(sizeof(*ram_res
), GFP_KERNEL
);
345 ram_res
->start
= old_res
->start
+ new_size
;
346 ram_res
->end
= old_res
->end
;
347 ram_res
->flags
= IORESOURCE_BUSY
| IORESOURCE_SYSTEM_RAM
;
348 ram_res
->name
= "System RAM";
351 release_resource(old_res
);
355 crashk_res
.end
= ram_res
->start
- 1;
358 crash_free_reserved_phys_range(ram_res
->start
, ram_res
->end
);
359 insert_resource(&iomem_resource
, ram_res
);
364 int crash_shrink_memory(unsigned long new_size
)
367 unsigned long old_size
, low_size
;
369 if (!kexec_trylock())
372 if (kexec_crash_image
) {
377 low_size
= crash_resource_size(&crashk_low_res
);
378 old_size
= crash_resource_size(&crashk_res
) + low_size
;
379 new_size
= roundup(new_size
, KEXEC_CRASH_MEM_ALIGN
);
380 if (new_size
>= old_size
) {
381 ret
= (new_size
== old_size
) ? 0 : -EINVAL
;
386 * (low_size > new_size) implies that low_size is greater than zero.
387 * This also means that if low_size is zero, the else branch is taken.
389 * If low_size is greater than 0, (low_size > new_size) indicates that
390 * crashk_low_res also needs to be shrunken. Otherwise, only crashk_res
391 * needs to be shrunken.
393 if (low_size
> new_size
) {
394 ret
= __crash_shrink_memory(&crashk_res
, 0);
398 ret
= __crash_shrink_memory(&crashk_low_res
, new_size
);
400 ret
= __crash_shrink_memory(&crashk_res
, new_size
- low_size
);
403 /* Swap crashk_res and crashk_low_res if needed */
404 if (!crashk_res
.end
&& crashk_low_res
.end
) {
405 crashk_res
.start
= crashk_low_res
.start
;
406 crashk_res
.end
= crashk_low_res
.end
;
407 release_resource(&crashk_low_res
);
408 crashk_low_res
.start
= 0;
409 crashk_low_res
.end
= 0;
410 insert_resource(&iomem_resource
, &crashk_res
);
418 void crash_save_cpu(struct pt_regs
*regs
, int cpu
)
420 struct elf_prstatus prstatus
;
423 if ((cpu
< 0) || (cpu
>= nr_cpu_ids
))
426 /* Using ELF notes here is opportunistic.
427 * I need a well defined structure format
428 * for the data I pass, and I need tags
429 * on the data to indicate what information I have
430 * squirrelled away. ELF notes happen to provide
431 * all of that, so there is no need to invent something new.
433 buf
= (u32
*)per_cpu_ptr(crash_notes
, cpu
);
436 memset(&prstatus
, 0, sizeof(prstatus
));
437 prstatus
.common
.pr_pid
= current
->pid
;
438 elf_core_copy_regs(&prstatus
.pr_reg
, regs
);
439 buf
= append_elf_note(buf
, KEXEC_CORE_NOTE_NAME
, NT_PRSTATUS
,
440 &prstatus
, sizeof(prstatus
));
446 static int __init
crash_notes_memory_init(void)
448 /* Allocate memory for saving cpu registers. */
452 * crash_notes could be allocated across 2 vmalloc pages when percpu
453 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
454 * pages are also on 2 continuous physical pages. In this case the
455 * 2nd part of crash_notes in 2nd page could be lost since only the
456 * starting address and size of crash_notes are exported through sysfs.
457 * Here round up the size of crash_notes to the nearest power of two
458 * and pass it to __alloc_percpu as align value. This can make sure
459 * crash_notes is allocated inside one physical page.
461 size
= sizeof(note_buf_t
);
462 align
= min(roundup_pow_of_two(sizeof(note_buf_t
)), PAGE_SIZE
);
465 * Break compile if size is bigger than PAGE_SIZE since crash_notes
466 * definitely will be in 2 pages with that.
468 BUILD_BUG_ON(size
> PAGE_SIZE
);
470 crash_notes
= __alloc_percpu(size
, align
);
472 pr_warn("Memory allocation for saving cpu register states failed\n");
477 subsys_initcall(crash_notes_memory_init
);
479 #endif /*CONFIG_CRASH_DUMP*/
481 #ifdef CONFIG_CRASH_HOTPLUG
483 #define pr_fmt(fmt) "crash hp: " fmt
486 * Different than kexec/kdump loading/unloading/jumping/shrinking which
487 * usually rarely happen, there will be many crash hotplug events notified
488 * during one short period, e.g one memory board is hot added and memory
489 * regions are online. So mutex lock __crash_hotplug_lock is used to
490 * serialize the crash hotplug handling specifically.
492 static DEFINE_MUTEX(__crash_hotplug_lock
);
493 #define crash_hotplug_lock() mutex_lock(&__crash_hotplug_lock)
494 #define crash_hotplug_unlock() mutex_unlock(&__crash_hotplug_lock)
497 * This routine utilized when the crash_hotplug sysfs node is read.
498 * It reflects the kernel's ability/permission to update the kdump
501 int crash_check_hotplug_support(void)
505 crash_hotplug_lock();
506 /* Obtain lock while reading crash information */
507 if (!kexec_trylock()) {
508 if (!kexec_in_progress
)
509 pr_info("kexec_trylock() failed, kdump image may be inaccurate\n");
510 crash_hotplug_unlock();
513 if (kexec_crash_image
) {
514 rc
= kexec_crash_image
->hotplug_support
;
516 /* Release lock now that update complete */
518 crash_hotplug_unlock();
524 * To accurately reflect hot un/plug changes of CPU and Memory resources
525 * (including onling and offlining of those resources), the relevant
526 * kexec segments must be updated with latest CPU and Memory resources.
528 * Architectures must ensure two things for all segments that need
529 * updating during hotplug events:
531 * 1. Segments must be large enough to accommodate a growing number of
533 * 2. Exclude the segments from SHA verification.
535 * For example, on most architectures, the elfcorehdr (which is passed
536 * to the crash kernel via the elfcorehdr= parameter) must include the
537 * new list of CPUs and memory. To make changes to the elfcorehdr, it
538 * should be large enough to permit a growing number of CPU and Memory
539 * resources. One can estimate the elfcorehdr memory size based on
540 * NR_CPUS_DEFAULT and CRASH_MAX_MEMORY_RANGES. The elfcorehdr is
541 * excluded from SHA verification by default if the architecture
542 * supports crash hotplug.
544 static void crash_handle_hotplug_event(unsigned int hp_action
, unsigned int cpu
, void *arg
)
546 struct kimage
*image
;
548 crash_hotplug_lock();
549 /* Obtain lock while changing crash information */
550 if (!kexec_trylock()) {
551 if (!kexec_in_progress
)
552 pr_info("kexec_trylock() failed, kdump image may be inaccurate\n");
553 crash_hotplug_unlock();
557 /* Check kdump is not loaded */
558 if (!kexec_crash_image
)
561 image
= kexec_crash_image
;
563 /* Check that kexec segments update is permitted */
564 if (!image
->hotplug_support
)
567 if (hp_action
== KEXEC_CRASH_HP_ADD_CPU
||
568 hp_action
== KEXEC_CRASH_HP_REMOVE_CPU
)
569 pr_debug("hp_action %u, cpu %u\n", hp_action
, cpu
);
571 pr_debug("hp_action %u\n", hp_action
);
574 * The elfcorehdr_index is set to -1 when the struct kimage
575 * is allocated. Find the segment containing the elfcorehdr,
576 * if not already found.
578 if (image
->elfcorehdr_index
< 0) {
583 for (n
= 0; n
< image
->nr_segments
; n
++) {
584 mem
= image
->segment
[n
].mem
;
585 ptr
= kmap_local_page(pfn_to_page(mem
>> PAGE_SHIFT
));
587 /* The segment containing elfcorehdr */
588 if (memcmp(ptr
, ELFMAG
, SELFMAG
) == 0)
589 image
->elfcorehdr_index
= (int)n
;
595 if (image
->elfcorehdr_index
< 0) {
596 pr_err("unable to locate elfcorehdr segment");
600 /* Needed in order for the segments to be updated */
601 arch_kexec_unprotect_crashkres();
603 /* Differentiate between normal load and hotplug update */
604 image
->hp_action
= hp_action
;
606 /* Now invoke arch-specific update handler */
607 arch_crash_handle_hotplug_event(image
, arg
);
609 /* No longer handling a hotplug event */
610 image
->hp_action
= KEXEC_CRASH_HP_NONE
;
611 image
->elfcorehdr_updated
= true;
613 /* Change back to read-only */
614 arch_kexec_protect_crashkres();
616 /* Errors in the callback is not a reason to rollback state */
618 /* Release lock now that update complete */
620 crash_hotplug_unlock();
623 static int crash_memhp_notifier(struct notifier_block
*nb
, unsigned long val
, void *arg
)
627 crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_MEMORY
,
628 KEXEC_CRASH_HP_INVALID_CPU
, arg
);
632 crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_MEMORY
,
633 KEXEC_CRASH_HP_INVALID_CPU
, arg
);
639 static struct notifier_block crash_memhp_nb
= {
640 .notifier_call
= crash_memhp_notifier
,
644 static int crash_cpuhp_online(unsigned int cpu
)
646 crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_CPU
, cpu
, NULL
);
650 static int crash_cpuhp_offline(unsigned int cpu
)
652 crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_CPU
, cpu
, NULL
);
656 static int __init
crash_hotplug_init(void)
660 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG
))
661 register_memory_notifier(&crash_memhp_nb
);
663 if (IS_ENABLED(CONFIG_HOTPLUG_CPU
)) {
664 result
= cpuhp_setup_state_nocalls(CPUHP_BP_PREPARE_DYN
,
665 "crash/cpuhp", crash_cpuhp_online
, crash_cpuhp_offline
);
671 subsys_initcall(crash_hotplug_init
);