1 // SPDX-License-Identifier: GPL-2.0
3 * Performance events core code:
5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
61 #include <asm/irq_regs.h>
63 typedef int (*remote_function_f
)(void *);
65 struct remote_function_call
{
66 struct task_struct
*p
;
67 remote_function_f func
;
72 static void remote_function(void *data
)
74 struct remote_function_call
*tfc
= data
;
75 struct task_struct
*p
= tfc
->p
;
79 if (task_cpu(p
) != smp_processor_id())
83 * Now that we're on right CPU with IRQs disabled, we can test
84 * if we hit the right task without races.
87 tfc
->ret
= -ESRCH
; /* No such (running) process */
92 tfc
->ret
= tfc
->func(tfc
->info
);
96 * task_function_call - call a function on the cpu on which a task runs
97 * @p: the task to evaluate
98 * @func: the function to be called
99 * @info: the function call argument
101 * Calls the function @func when the task is currently running. This might
102 * be on the current CPU, which just calls the function directly. This will
103 * retry due to any failures in smp_call_function_single(), such as if the
104 * task_cpu() goes offline concurrently.
106 * returns @func return value or -ESRCH or -ENXIO when the process isn't running
109 task_function_call(struct task_struct
*p
, remote_function_f func
, void *info
)
111 struct remote_function_call data
= {
120 ret
= smp_call_function_single(task_cpu(p
), remote_function
,
135 * cpu_function_call - call a function on the cpu
136 * @cpu: target cpu to queue this function
137 * @func: the function to be called
138 * @info: the function call argument
140 * Calls the function @func on the remote cpu.
142 * returns: @func return value or -ENXIO when the cpu is offline
144 static int cpu_function_call(int cpu
, remote_function_f func
, void *info
)
146 struct remote_function_call data
= {
150 .ret
= -ENXIO
, /* No such CPU */
153 smp_call_function_single(cpu
, remote_function
, &data
, 1);
159 EVENT_FLEXIBLE
= 0x01,
163 /* see ctx_resched() for details */
167 /* compound helpers */
168 EVENT_ALL
= EVENT_FLEXIBLE
| EVENT_PINNED
,
169 EVENT_TIME_FROZEN
= EVENT_TIME
| EVENT_FROZEN
,
172 static inline void __perf_ctx_lock(struct perf_event_context
*ctx
)
174 raw_spin_lock(&ctx
->lock
);
175 WARN_ON_ONCE(ctx
->is_active
& EVENT_FROZEN
);
178 static void perf_ctx_lock(struct perf_cpu_context
*cpuctx
,
179 struct perf_event_context
*ctx
)
181 __perf_ctx_lock(&cpuctx
->ctx
);
183 __perf_ctx_lock(ctx
);
186 static inline void __perf_ctx_unlock(struct perf_event_context
*ctx
)
189 * If ctx_sched_in() didn't again set any ALL flags, clean up
190 * after ctx_sched_out() by clearing is_active.
192 if (ctx
->is_active
& EVENT_FROZEN
) {
193 if (!(ctx
->is_active
& EVENT_ALL
))
196 ctx
->is_active
&= ~EVENT_FROZEN
;
198 raw_spin_unlock(&ctx
->lock
);
201 static void perf_ctx_unlock(struct perf_cpu_context
*cpuctx
,
202 struct perf_event_context
*ctx
)
205 __perf_ctx_unlock(ctx
);
206 __perf_ctx_unlock(&cpuctx
->ctx
);
209 #define TASK_TOMBSTONE ((void *)-1L)
211 static bool is_kernel_event(struct perf_event
*event
)
213 return READ_ONCE(event
->owner
) == TASK_TOMBSTONE
;
216 static DEFINE_PER_CPU(struct perf_cpu_context
, perf_cpu_context
);
218 struct perf_event_context
*perf_cpu_task_ctx(void)
220 lockdep_assert_irqs_disabled();
221 return this_cpu_ptr(&perf_cpu_context
)->task_ctx
;
225 * On task ctx scheduling...
227 * When !ctx->nr_events a task context will not be scheduled. This means
228 * we can disable the scheduler hooks (for performance) without leaving
229 * pending task ctx state.
231 * This however results in two special cases:
233 * - removing the last event from a task ctx; this is relatively straight
234 * forward and is done in __perf_remove_from_context.
236 * - adding the first event to a task ctx; this is tricky because we cannot
237 * rely on ctx->is_active and therefore cannot use event_function_call().
238 * See perf_install_in_context().
240 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
243 typedef void (*event_f
)(struct perf_event
*, struct perf_cpu_context
*,
244 struct perf_event_context
*, void *);
246 struct event_function_struct
{
247 struct perf_event
*event
;
252 static int event_function(void *info
)
254 struct event_function_struct
*efs
= info
;
255 struct perf_event
*event
= efs
->event
;
256 struct perf_event_context
*ctx
= event
->ctx
;
257 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(&perf_cpu_context
);
258 struct perf_event_context
*task_ctx
= cpuctx
->task_ctx
;
261 lockdep_assert_irqs_disabled();
263 perf_ctx_lock(cpuctx
, task_ctx
);
265 * Since we do the IPI call without holding ctx->lock things can have
266 * changed, double check we hit the task we set out to hit.
269 if (ctx
->task
!= current
) {
275 * We only use event_function_call() on established contexts,
276 * and event_function() is only ever called when active (or
277 * rather, we'll have bailed in task_function_call() or the
278 * above ctx->task != current test), therefore we must have
279 * ctx->is_active here.
281 WARN_ON_ONCE(!ctx
->is_active
);
283 * And since we have ctx->is_active, cpuctx->task_ctx must
286 WARN_ON_ONCE(task_ctx
!= ctx
);
288 WARN_ON_ONCE(&cpuctx
->ctx
!= ctx
);
291 efs
->func(event
, cpuctx
, ctx
, efs
->data
);
293 perf_ctx_unlock(cpuctx
, task_ctx
);
298 static void event_function_call(struct perf_event
*event
, event_f func
, void *data
)
300 struct perf_event_context
*ctx
= event
->ctx
;
301 struct task_struct
*task
= READ_ONCE(ctx
->task
); /* verified in event_function */
302 struct perf_cpu_context
*cpuctx
;
303 struct event_function_struct efs
= {
309 if (!event
->parent
) {
311 * If this is a !child event, we must hold ctx::mutex to
312 * stabilize the event->ctx relation. See
313 * perf_event_ctx_lock().
315 lockdep_assert_held(&ctx
->mutex
);
319 cpu_function_call(event
->cpu
, event_function
, &efs
);
323 if (task
== TASK_TOMBSTONE
)
327 if (!task_function_call(task
, event_function
, &efs
))
331 cpuctx
= this_cpu_ptr(&perf_cpu_context
);
332 perf_ctx_lock(cpuctx
, ctx
);
334 * Reload the task pointer, it might have been changed by
335 * a concurrent perf_event_context_sched_out().
338 if (task
== TASK_TOMBSTONE
)
340 if (ctx
->is_active
) {
341 perf_ctx_unlock(cpuctx
, ctx
);
345 func(event
, NULL
, ctx
, data
);
347 perf_ctx_unlock(cpuctx
, ctx
);
352 * Similar to event_function_call() + event_function(), but hard assumes IRQs
353 * are already disabled and we're on the right CPU.
355 static void event_function_local(struct perf_event
*event
, event_f func
, void *data
)
357 struct perf_event_context
*ctx
= event
->ctx
;
358 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(&perf_cpu_context
);
359 struct task_struct
*task
= READ_ONCE(ctx
->task
);
360 struct perf_event_context
*task_ctx
= NULL
;
362 lockdep_assert_irqs_disabled();
365 if (task
== TASK_TOMBSTONE
)
371 perf_ctx_lock(cpuctx
, task_ctx
);
374 if (task
== TASK_TOMBSTONE
)
379 * We must be either inactive or active and the right task,
380 * otherwise we're screwed, since we cannot IPI to somewhere
383 if (ctx
->is_active
) {
384 if (WARN_ON_ONCE(task
!= current
))
387 if (WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
))
391 WARN_ON_ONCE(&cpuctx
->ctx
!= ctx
);
394 func(event
, cpuctx
, ctx
, data
);
396 perf_ctx_unlock(cpuctx
, task_ctx
);
399 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
400 PERF_FLAG_FD_OUTPUT |\
401 PERF_FLAG_PID_CGROUP |\
402 PERF_FLAG_FD_CLOEXEC)
405 * branch priv levels that need permission checks
407 #define PERF_SAMPLE_BRANCH_PERM_PLM \
408 (PERF_SAMPLE_BRANCH_KERNEL |\
409 PERF_SAMPLE_BRANCH_HV)
412 * perf_sched_events : >0 events exist
415 static void perf_sched_delayed(struct work_struct
*work
);
416 DEFINE_STATIC_KEY_FALSE(perf_sched_events
);
417 static DECLARE_DELAYED_WORK(perf_sched_work
, perf_sched_delayed
);
418 static DEFINE_MUTEX(perf_sched_mutex
);
419 static atomic_t perf_sched_count
;
421 static DEFINE_PER_CPU(struct pmu_event_list
, pmu_sb_events
);
423 static atomic_t nr_mmap_events __read_mostly
;
424 static atomic_t nr_comm_events __read_mostly
;
425 static atomic_t nr_namespaces_events __read_mostly
;
426 static atomic_t nr_task_events __read_mostly
;
427 static atomic_t nr_freq_events __read_mostly
;
428 static atomic_t nr_switch_events __read_mostly
;
429 static atomic_t nr_ksymbol_events __read_mostly
;
430 static atomic_t nr_bpf_events __read_mostly
;
431 static atomic_t nr_cgroup_events __read_mostly
;
432 static atomic_t nr_text_poke_events __read_mostly
;
433 static atomic_t nr_build_id_events __read_mostly
;
435 static LIST_HEAD(pmus
);
436 static DEFINE_MUTEX(pmus_lock
);
437 static struct srcu_struct pmus_srcu
;
438 static cpumask_var_t perf_online_mask
;
439 static cpumask_var_t perf_online_core_mask
;
440 static cpumask_var_t perf_online_die_mask
;
441 static cpumask_var_t perf_online_cluster_mask
;
442 static cpumask_var_t perf_online_pkg_mask
;
443 static cpumask_var_t perf_online_sys_mask
;
444 static struct kmem_cache
*perf_event_cache
;
447 * perf event paranoia level:
448 * -1 - not paranoid at all
449 * 0 - disallow raw tracepoint access for unpriv
450 * 1 - disallow cpu events for unpriv
451 * 2 - disallow kernel profiling for unpriv
453 int sysctl_perf_event_paranoid __read_mostly
= 2;
455 /* Minimum for 512 kiB + 1 user control page */
456 int sysctl_perf_event_mlock __read_mostly
= 512 + (PAGE_SIZE
/ 1024); /* 'free' kiB per user */
459 * max perf event sample rate
461 #define DEFAULT_MAX_SAMPLE_RATE 100000
462 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
463 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
465 int sysctl_perf_event_sample_rate __read_mostly
= DEFAULT_MAX_SAMPLE_RATE
;
467 static int max_samples_per_tick __read_mostly
= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE
, HZ
);
468 static int perf_sample_period_ns __read_mostly
= DEFAULT_SAMPLE_PERIOD_NS
;
470 static int perf_sample_allowed_ns __read_mostly
=
471 DEFAULT_SAMPLE_PERIOD_NS
* DEFAULT_CPU_TIME_MAX_PERCENT
/ 100;
473 static void update_perf_cpu_limits(void)
475 u64 tmp
= perf_sample_period_ns
;
477 tmp
*= sysctl_perf_cpu_time_max_percent
;
478 tmp
= div_u64(tmp
, 100);
482 WRITE_ONCE(perf_sample_allowed_ns
, tmp
);
485 static bool perf_rotate_context(struct perf_cpu_pmu_context
*cpc
);
487 int perf_event_max_sample_rate_handler(const struct ctl_table
*table
, int write
,
488 void *buffer
, size_t *lenp
, loff_t
*ppos
)
491 int perf_cpu
= sysctl_perf_cpu_time_max_percent
;
493 * If throttling is disabled don't allow the write:
495 if (write
&& (perf_cpu
== 100 || perf_cpu
== 0))
498 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
502 max_samples_per_tick
= DIV_ROUND_UP(sysctl_perf_event_sample_rate
, HZ
);
503 perf_sample_period_ns
= NSEC_PER_SEC
/ sysctl_perf_event_sample_rate
;
504 update_perf_cpu_limits();
509 int sysctl_perf_cpu_time_max_percent __read_mostly
= DEFAULT_CPU_TIME_MAX_PERCENT
;
511 int perf_cpu_time_max_percent_handler(const struct ctl_table
*table
, int write
,
512 void *buffer
, size_t *lenp
, loff_t
*ppos
)
514 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
519 if (sysctl_perf_cpu_time_max_percent
== 100 ||
520 sysctl_perf_cpu_time_max_percent
== 0) {
522 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
523 WRITE_ONCE(perf_sample_allowed_ns
, 0);
525 update_perf_cpu_limits();
532 * perf samples are done in some very critical code paths (NMIs).
533 * If they take too much CPU time, the system can lock up and not
534 * get any real work done. This will drop the sample rate when
535 * we detect that events are taking too long.
537 #define NR_ACCUMULATED_SAMPLES 128
538 static DEFINE_PER_CPU(u64
, running_sample_length
);
540 static u64 __report_avg
;
541 static u64 __report_allowed
;
543 static void perf_duration_warn(struct irq_work
*w
)
545 printk_ratelimited(KERN_INFO
546 "perf: interrupt took too long (%lld > %lld), lowering "
547 "kernel.perf_event_max_sample_rate to %d\n",
548 __report_avg
, __report_allowed
,
549 sysctl_perf_event_sample_rate
);
552 static DEFINE_IRQ_WORK(perf_duration_work
, perf_duration_warn
);
554 void perf_sample_event_took(u64 sample_len_ns
)
556 u64 max_len
= READ_ONCE(perf_sample_allowed_ns
);
564 /* Decay the counter by 1 average sample. */
565 running_len
= __this_cpu_read(running_sample_length
);
566 running_len
-= running_len
/NR_ACCUMULATED_SAMPLES
;
567 running_len
+= sample_len_ns
;
568 __this_cpu_write(running_sample_length
, running_len
);
571 * Note: this will be biased artificially low until we have
572 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
573 * from having to maintain a count.
575 avg_len
= running_len
/NR_ACCUMULATED_SAMPLES
;
576 if (avg_len
<= max_len
)
579 __report_avg
= avg_len
;
580 __report_allowed
= max_len
;
583 * Compute a throttle threshold 25% below the current duration.
585 avg_len
+= avg_len
/ 4;
586 max
= (TICK_NSEC
/ 100) * sysctl_perf_cpu_time_max_percent
;
592 WRITE_ONCE(perf_sample_allowed_ns
, avg_len
);
593 WRITE_ONCE(max_samples_per_tick
, max
);
595 sysctl_perf_event_sample_rate
= max
* HZ
;
596 perf_sample_period_ns
= NSEC_PER_SEC
/ sysctl_perf_event_sample_rate
;
598 if (!irq_work_queue(&perf_duration_work
)) {
599 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
600 "kernel.perf_event_max_sample_rate to %d\n",
601 __report_avg
, __report_allowed
,
602 sysctl_perf_event_sample_rate
);
606 static atomic64_t perf_event_id
;
608 static void update_context_time(struct perf_event_context
*ctx
);
609 static u64
perf_event_time(struct perf_event
*event
);
611 void __weak
perf_event_print_debug(void) { }
613 static inline u64
perf_clock(void)
615 return local_clock();
618 static inline u64
perf_event_clock(struct perf_event
*event
)
620 return event
->clock();
624 * State based event timekeeping...
626 * The basic idea is to use event->state to determine which (if any) time
627 * fields to increment with the current delta. This means we only need to
628 * update timestamps when we change state or when they are explicitly requested
631 * Event groups make things a little more complicated, but not terribly so. The
632 * rules for a group are that if the group leader is OFF the entire group is
633 * OFF, irrespective of what the group member states are. This results in
634 * __perf_effective_state().
636 * A further ramification is that when a group leader flips between OFF and
637 * !OFF, we need to update all group member times.
640 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
641 * need to make sure the relevant context time is updated before we try and
642 * update our timestamps.
645 static __always_inline
enum perf_event_state
646 __perf_effective_state(struct perf_event
*event
)
648 struct perf_event
*leader
= event
->group_leader
;
650 if (leader
->state
<= PERF_EVENT_STATE_OFF
)
651 return leader
->state
;
656 static __always_inline
void
657 __perf_update_times(struct perf_event
*event
, u64 now
, u64
*enabled
, u64
*running
)
659 enum perf_event_state state
= __perf_effective_state(event
);
660 u64 delta
= now
- event
->tstamp
;
662 *enabled
= event
->total_time_enabled
;
663 if (state
>= PERF_EVENT_STATE_INACTIVE
)
666 *running
= event
->total_time_running
;
667 if (state
>= PERF_EVENT_STATE_ACTIVE
)
671 static void perf_event_update_time(struct perf_event
*event
)
673 u64 now
= perf_event_time(event
);
675 __perf_update_times(event
, now
, &event
->total_time_enabled
,
676 &event
->total_time_running
);
680 static void perf_event_update_sibling_time(struct perf_event
*leader
)
682 struct perf_event
*sibling
;
684 for_each_sibling_event(sibling
, leader
)
685 perf_event_update_time(sibling
);
689 perf_event_set_state(struct perf_event
*event
, enum perf_event_state state
)
691 if (event
->state
== state
)
694 perf_event_update_time(event
);
696 * If a group leader gets enabled/disabled all its siblings
699 if ((event
->state
< 0) ^ (state
< 0))
700 perf_event_update_sibling_time(event
);
702 WRITE_ONCE(event
->state
, state
);
706 * UP store-release, load-acquire
709 #define __store_release(ptr, val) \
712 WRITE_ONCE(*(ptr), (val)); \
715 #define __load_acquire(ptr) \
717 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \
722 #define for_each_epc(_epc, _ctx, _pmu, _cgroup) \
723 list_for_each_entry(_epc, &((_ctx)->pmu_ctx_list), pmu_ctx_entry) \
724 if (_cgroup && !_epc->nr_cgroups) \
726 else if (_pmu && _epc->pmu != _pmu) \
730 static void perf_ctx_disable(struct perf_event_context
*ctx
, bool cgroup
)
732 struct perf_event_pmu_context
*pmu_ctx
;
734 for_each_epc(pmu_ctx
, ctx
, NULL
, cgroup
)
735 perf_pmu_disable(pmu_ctx
->pmu
);
738 static void perf_ctx_enable(struct perf_event_context
*ctx
, bool cgroup
)
740 struct perf_event_pmu_context
*pmu_ctx
;
742 for_each_epc(pmu_ctx
, ctx
, NULL
, cgroup
)
743 perf_pmu_enable(pmu_ctx
->pmu
);
746 static void ctx_sched_out(struct perf_event_context
*ctx
, struct pmu
*pmu
, enum event_type_t event_type
);
747 static void ctx_sched_in(struct perf_event_context
*ctx
, struct pmu
*pmu
, enum event_type_t event_type
);
749 #ifdef CONFIG_CGROUP_PERF
752 perf_cgroup_match(struct perf_event
*event
)
754 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(&perf_cpu_context
);
756 /* @event doesn't care about cgroup */
760 /* wants specific cgroup scope but @cpuctx isn't associated with any */
765 * Cgroup scoping is recursive. An event enabled for a cgroup is
766 * also enabled for all its descendant cgroups. If @cpuctx's
767 * cgroup is a descendant of @event's (the test covers identity
768 * case), it's a match.
770 return cgroup_is_descendant(cpuctx
->cgrp
->css
.cgroup
,
771 event
->cgrp
->css
.cgroup
);
774 static inline void perf_detach_cgroup(struct perf_event
*event
)
776 css_put(&event
->cgrp
->css
);
780 static inline int is_cgroup_event(struct perf_event
*event
)
782 return event
->cgrp
!= NULL
;
785 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
787 struct perf_cgroup_info
*t
;
789 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
793 static inline u64
perf_cgroup_event_time_now(struct perf_event
*event
, u64 now
)
795 struct perf_cgroup_info
*t
;
797 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
798 if (!__load_acquire(&t
->active
))
800 now
+= READ_ONCE(t
->timeoffset
);
804 static inline void __update_cgrp_time(struct perf_cgroup_info
*info
, u64 now
, bool adv
)
807 info
->time
+= now
- info
->timestamp
;
808 info
->timestamp
= now
;
810 * see update_context_time()
812 WRITE_ONCE(info
->timeoffset
, info
->time
- info
->timestamp
);
815 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
, bool final
)
817 struct perf_cgroup
*cgrp
= cpuctx
->cgrp
;
818 struct cgroup_subsys_state
*css
;
819 struct perf_cgroup_info
*info
;
822 u64 now
= perf_clock();
824 for (css
= &cgrp
->css
; css
; css
= css
->parent
) {
825 cgrp
= container_of(css
, struct perf_cgroup
, css
);
826 info
= this_cpu_ptr(cgrp
->info
);
828 __update_cgrp_time(info
, now
, true);
830 __store_release(&info
->active
, 0);
835 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
837 struct perf_cgroup_info
*info
;
840 * ensure we access cgroup data only when needed and
841 * when we know the cgroup is pinned (css_get)
843 if (!is_cgroup_event(event
))
846 info
= this_cpu_ptr(event
->cgrp
->info
);
848 * Do not update time when cgroup is not active
851 __update_cgrp_time(info
, perf_clock(), true);
855 perf_cgroup_set_timestamp(struct perf_cpu_context
*cpuctx
)
857 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
858 struct perf_cgroup
*cgrp
= cpuctx
->cgrp
;
859 struct perf_cgroup_info
*info
;
860 struct cgroup_subsys_state
*css
;
863 * ctx->lock held by caller
864 * ensure we do not access cgroup data
865 * unless we have the cgroup pinned (css_get)
870 WARN_ON_ONCE(!ctx
->nr_cgroups
);
872 for (css
= &cgrp
->css
; css
; css
= css
->parent
) {
873 cgrp
= container_of(css
, struct perf_cgroup
, css
);
874 info
= this_cpu_ptr(cgrp
->info
);
875 __update_cgrp_time(info
, ctx
->timestamp
, false);
876 __store_release(&info
->active
, 1);
881 * reschedule events based on the cgroup constraint of task.
883 static void perf_cgroup_switch(struct task_struct
*task
)
885 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(&perf_cpu_context
);
886 struct perf_cgroup
*cgrp
;
889 * cpuctx->cgrp is set when the first cgroup event enabled,
890 * and is cleared when the last cgroup event disabled.
892 if (READ_ONCE(cpuctx
->cgrp
) == NULL
)
895 WARN_ON_ONCE(cpuctx
->ctx
.nr_cgroups
== 0);
897 cgrp
= perf_cgroup_from_task(task
, NULL
);
898 if (READ_ONCE(cpuctx
->cgrp
) == cgrp
)
901 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
902 perf_ctx_disable(&cpuctx
->ctx
, true);
904 ctx_sched_out(&cpuctx
->ctx
, NULL
, EVENT_ALL
|EVENT_CGROUP
);
906 * must not be done before ctxswout due
907 * to update_cgrp_time_from_cpuctx() in
912 * set cgrp before ctxsw in to allow
913 * perf_cgroup_set_timestamp() in ctx_sched_in()
914 * to not have to pass task around
916 ctx_sched_in(&cpuctx
->ctx
, NULL
, EVENT_ALL
|EVENT_CGROUP
);
918 perf_ctx_enable(&cpuctx
->ctx
, true);
919 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
922 static int perf_cgroup_ensure_storage(struct perf_event
*event
,
923 struct cgroup_subsys_state
*css
)
925 struct perf_cpu_context
*cpuctx
;
926 struct perf_event
**storage
;
927 int cpu
, heap_size
, ret
= 0;
930 * Allow storage to have sufficient space for an iterator for each
931 * possibly nested cgroup plus an iterator for events with no cgroup.
933 for (heap_size
= 1; css
; css
= css
->parent
)
936 for_each_possible_cpu(cpu
) {
937 cpuctx
= per_cpu_ptr(&perf_cpu_context
, cpu
);
938 if (heap_size
<= cpuctx
->heap_size
)
941 storage
= kmalloc_node(heap_size
* sizeof(struct perf_event
*),
942 GFP_KERNEL
, cpu_to_node(cpu
));
948 raw_spin_lock_irq(&cpuctx
->ctx
.lock
);
949 if (cpuctx
->heap_size
< heap_size
) {
950 swap(cpuctx
->heap
, storage
);
951 if (storage
== cpuctx
->heap_default
)
953 cpuctx
->heap_size
= heap_size
;
955 raw_spin_unlock_irq(&cpuctx
->ctx
.lock
);
963 static inline int perf_cgroup_connect(int fd
, struct perf_event
*event
,
964 struct perf_event_attr
*attr
,
965 struct perf_event
*group_leader
)
967 struct perf_cgroup
*cgrp
;
968 struct cgroup_subsys_state
*css
;
975 css
= css_tryget_online_from_dir(fd_file(f
)->f_path
.dentry
,
976 &perf_event_cgrp_subsys
);
980 ret
= perf_cgroup_ensure_storage(event
, css
);
984 cgrp
= container_of(css
, struct perf_cgroup
, css
);
988 * all events in a group must monitor
989 * the same cgroup because a task belongs
990 * to only one perf cgroup at a time
992 if (group_leader
&& group_leader
->cgrp
!= cgrp
) {
993 perf_detach_cgroup(event
);
1000 perf_cgroup_event_enable(struct perf_event
*event
, struct perf_event_context
*ctx
)
1002 struct perf_cpu_context
*cpuctx
;
1004 if (!is_cgroup_event(event
))
1007 event
->pmu_ctx
->nr_cgroups
++;
1010 * Because cgroup events are always per-cpu events,
1011 * @ctx == &cpuctx->ctx.
1013 cpuctx
= container_of(ctx
, struct perf_cpu_context
, ctx
);
1015 if (ctx
->nr_cgroups
++)
1018 cpuctx
->cgrp
= perf_cgroup_from_task(current
, ctx
);
1022 perf_cgroup_event_disable(struct perf_event
*event
, struct perf_event_context
*ctx
)
1024 struct perf_cpu_context
*cpuctx
;
1026 if (!is_cgroup_event(event
))
1029 event
->pmu_ctx
->nr_cgroups
--;
1032 * Because cgroup events are always per-cpu events,
1033 * @ctx == &cpuctx->ctx.
1035 cpuctx
= container_of(ctx
, struct perf_cpu_context
, ctx
);
1037 if (--ctx
->nr_cgroups
)
1040 cpuctx
->cgrp
= NULL
;
1043 #else /* !CONFIG_CGROUP_PERF */
1046 perf_cgroup_match(struct perf_event
*event
)
1051 static inline void perf_detach_cgroup(struct perf_event
*event
)
1054 static inline int is_cgroup_event(struct perf_event
*event
)
1059 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
1063 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
,
1068 static inline int perf_cgroup_connect(pid_t pid
, struct perf_event
*event
,
1069 struct perf_event_attr
*attr
,
1070 struct perf_event
*group_leader
)
1076 perf_cgroup_set_timestamp(struct perf_cpu_context
*cpuctx
)
1080 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
1085 static inline u64
perf_cgroup_event_time_now(struct perf_event
*event
, u64 now
)
1091 perf_cgroup_event_enable(struct perf_event
*event
, struct perf_event_context
*ctx
)
1096 perf_cgroup_event_disable(struct perf_event
*event
, struct perf_event_context
*ctx
)
1100 static void perf_cgroup_switch(struct task_struct
*task
)
1106 * set default to be dependent on timer tick just
1107 * like original code
1109 #define PERF_CPU_HRTIMER (1000 / HZ)
1111 * function must be called with interrupts disabled
1113 static enum hrtimer_restart
perf_mux_hrtimer_handler(struct hrtimer
*hr
)
1115 struct perf_cpu_pmu_context
*cpc
;
1118 lockdep_assert_irqs_disabled();
1120 cpc
= container_of(hr
, struct perf_cpu_pmu_context
, hrtimer
);
1121 rotations
= perf_rotate_context(cpc
);
1123 raw_spin_lock(&cpc
->hrtimer_lock
);
1125 hrtimer_forward_now(hr
, cpc
->hrtimer_interval
);
1127 cpc
->hrtimer_active
= 0;
1128 raw_spin_unlock(&cpc
->hrtimer_lock
);
1130 return rotations
? HRTIMER_RESTART
: HRTIMER_NORESTART
;
1133 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context
*cpc
, int cpu
)
1135 struct hrtimer
*timer
= &cpc
->hrtimer
;
1136 struct pmu
*pmu
= cpc
->epc
.pmu
;
1140 * check default is sane, if not set then force to
1141 * default interval (1/tick)
1143 interval
= pmu
->hrtimer_interval_ms
;
1145 interval
= pmu
->hrtimer_interval_ms
= PERF_CPU_HRTIMER
;
1147 cpc
->hrtimer_interval
= ns_to_ktime(NSEC_PER_MSEC
* interval
);
1149 raw_spin_lock_init(&cpc
->hrtimer_lock
);
1150 hrtimer_init(timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS_PINNED_HARD
);
1151 timer
->function
= perf_mux_hrtimer_handler
;
1154 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context
*cpc
)
1156 struct hrtimer
*timer
= &cpc
->hrtimer
;
1157 unsigned long flags
;
1159 raw_spin_lock_irqsave(&cpc
->hrtimer_lock
, flags
);
1160 if (!cpc
->hrtimer_active
) {
1161 cpc
->hrtimer_active
= 1;
1162 hrtimer_forward_now(timer
, cpc
->hrtimer_interval
);
1163 hrtimer_start_expires(timer
, HRTIMER_MODE_ABS_PINNED_HARD
);
1165 raw_spin_unlock_irqrestore(&cpc
->hrtimer_lock
, flags
);
1170 static int perf_mux_hrtimer_restart_ipi(void *arg
)
1172 return perf_mux_hrtimer_restart(arg
);
1175 void perf_pmu_disable(struct pmu
*pmu
)
1177 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
1179 pmu
->pmu_disable(pmu
);
1182 void perf_pmu_enable(struct pmu
*pmu
)
1184 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
1186 pmu
->pmu_enable(pmu
);
1189 static void perf_assert_pmu_disabled(struct pmu
*pmu
)
1191 WARN_ON_ONCE(*this_cpu_ptr(pmu
->pmu_disable_count
) == 0);
1194 static void get_ctx(struct perf_event_context
*ctx
)
1196 refcount_inc(&ctx
->refcount
);
1199 static void *alloc_task_ctx_data(struct pmu
*pmu
)
1201 if (pmu
->task_ctx_cache
)
1202 return kmem_cache_zalloc(pmu
->task_ctx_cache
, GFP_KERNEL
);
1207 static void free_task_ctx_data(struct pmu
*pmu
, void *task_ctx_data
)
1209 if (pmu
->task_ctx_cache
&& task_ctx_data
)
1210 kmem_cache_free(pmu
->task_ctx_cache
, task_ctx_data
);
1213 static void free_ctx(struct rcu_head
*head
)
1215 struct perf_event_context
*ctx
;
1217 ctx
= container_of(head
, struct perf_event_context
, rcu_head
);
1221 static void put_ctx(struct perf_event_context
*ctx
)
1223 if (refcount_dec_and_test(&ctx
->refcount
)) {
1224 if (ctx
->parent_ctx
)
1225 put_ctx(ctx
->parent_ctx
);
1226 if (ctx
->task
&& ctx
->task
!= TASK_TOMBSTONE
)
1227 put_task_struct(ctx
->task
);
1228 call_rcu(&ctx
->rcu_head
, free_ctx
);
1233 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1234 * perf_pmu_migrate_context() we need some magic.
1236 * Those places that change perf_event::ctx will hold both
1237 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1239 * Lock ordering is by mutex address. There are two other sites where
1240 * perf_event_context::mutex nests and those are:
1242 * - perf_event_exit_task_context() [ child , 0 ]
1243 * perf_event_exit_event()
1244 * put_event() [ parent, 1 ]
1246 * - perf_event_init_context() [ parent, 0 ]
1247 * inherit_task_group()
1250 * perf_event_alloc()
1252 * perf_try_init_event() [ child , 1 ]
1254 * While it appears there is an obvious deadlock here -- the parent and child
1255 * nesting levels are inverted between the two. This is in fact safe because
1256 * life-time rules separate them. That is an exiting task cannot fork, and a
1257 * spawning task cannot (yet) exit.
1259 * But remember that these are parent<->child context relations, and
1260 * migration does not affect children, therefore these two orderings should not
1263 * The change in perf_event::ctx does not affect children (as claimed above)
1264 * because the sys_perf_event_open() case will install a new event and break
1265 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1266 * concerned with cpuctx and that doesn't have children.
1268 * The places that change perf_event::ctx will issue:
1270 * perf_remove_from_context();
1271 * synchronize_rcu();
1272 * perf_install_in_context();
1274 * to affect the change. The remove_from_context() + synchronize_rcu() should
1275 * quiesce the event, after which we can install it in the new location. This
1276 * means that only external vectors (perf_fops, prctl) can perturb the event
1277 * while in transit. Therefore all such accessors should also acquire
1278 * perf_event_context::mutex to serialize against this.
1280 * However; because event->ctx can change while we're waiting to acquire
1281 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1286 * task_struct::perf_event_mutex
1287 * perf_event_context::mutex
1288 * perf_event::child_mutex;
1289 * perf_event_context::lock
1291 * perf_event::mmap_mutex
1292 * perf_buffer::aux_mutex
1293 * perf_addr_filters_head::lock
1297 * cpuctx->mutex / perf_event_context::mutex
1299 static struct perf_event_context
*
1300 perf_event_ctx_lock_nested(struct perf_event
*event
, int nesting
)
1302 struct perf_event_context
*ctx
;
1306 ctx
= READ_ONCE(event
->ctx
);
1307 if (!refcount_inc_not_zero(&ctx
->refcount
)) {
1313 mutex_lock_nested(&ctx
->mutex
, nesting
);
1314 if (event
->ctx
!= ctx
) {
1315 mutex_unlock(&ctx
->mutex
);
1323 static inline struct perf_event_context
*
1324 perf_event_ctx_lock(struct perf_event
*event
)
1326 return perf_event_ctx_lock_nested(event
, 0);
1329 static void perf_event_ctx_unlock(struct perf_event
*event
,
1330 struct perf_event_context
*ctx
)
1332 mutex_unlock(&ctx
->mutex
);
1337 * This must be done under the ctx->lock, such as to serialize against
1338 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1339 * calling scheduler related locks and ctx->lock nests inside those.
1341 static __must_check
struct perf_event_context
*
1342 unclone_ctx(struct perf_event_context
*ctx
)
1344 struct perf_event_context
*parent_ctx
= ctx
->parent_ctx
;
1346 lockdep_assert_held(&ctx
->lock
);
1349 ctx
->parent_ctx
= NULL
;
1355 static u32
perf_event_pid_type(struct perf_event
*event
, struct task_struct
*p
,
1360 * only top level events have the pid namespace they were created in
1363 event
= event
->parent
;
1365 nr
= __task_pid_nr_ns(p
, type
, event
->ns
);
1366 /* avoid -1 if it is idle thread or runs in another ns */
1367 if (!nr
&& !pid_alive(p
))
1372 static u32
perf_event_pid(struct perf_event
*event
, struct task_struct
*p
)
1374 return perf_event_pid_type(event
, p
, PIDTYPE_TGID
);
1377 static u32
perf_event_tid(struct perf_event
*event
, struct task_struct
*p
)
1379 return perf_event_pid_type(event
, p
, PIDTYPE_PID
);
1383 * If we inherit events we want to return the parent event id
1386 static u64
primary_event_id(struct perf_event
*event
)
1391 id
= event
->parent
->id
;
1397 * Get the perf_event_context for a task and lock it.
1399 * This has to cope with the fact that until it is locked,
1400 * the context could get moved to another task.
1402 static struct perf_event_context
*
1403 perf_lock_task_context(struct task_struct
*task
, unsigned long *flags
)
1405 struct perf_event_context
*ctx
;
1409 * One of the few rules of preemptible RCU is that one cannot do
1410 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1411 * part of the read side critical section was irqs-enabled -- see
1412 * rcu_read_unlock_special().
1414 * Since ctx->lock nests under rq->lock we must ensure the entire read
1415 * side critical section has interrupts disabled.
1417 local_irq_save(*flags
);
1419 ctx
= rcu_dereference(task
->perf_event_ctxp
);
1422 * If this context is a clone of another, it might
1423 * get swapped for another underneath us by
1424 * perf_event_task_sched_out, though the
1425 * rcu_read_lock() protects us from any context
1426 * getting freed. Lock the context and check if it
1427 * got swapped before we could get the lock, and retry
1428 * if so. If we locked the right context, then it
1429 * can't get swapped on us any more.
1431 raw_spin_lock(&ctx
->lock
);
1432 if (ctx
!= rcu_dereference(task
->perf_event_ctxp
)) {
1433 raw_spin_unlock(&ctx
->lock
);
1435 local_irq_restore(*flags
);
1439 if (ctx
->task
== TASK_TOMBSTONE
||
1440 !refcount_inc_not_zero(&ctx
->refcount
)) {
1441 raw_spin_unlock(&ctx
->lock
);
1444 WARN_ON_ONCE(ctx
->task
!= task
);
1449 local_irq_restore(*flags
);
1454 * Get the context for a task and increment its pin_count so it
1455 * can't get swapped to another task. This also increments its
1456 * reference count so that the context can't get freed.
1458 static struct perf_event_context
*
1459 perf_pin_task_context(struct task_struct
*task
)
1461 struct perf_event_context
*ctx
;
1462 unsigned long flags
;
1464 ctx
= perf_lock_task_context(task
, &flags
);
1467 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1472 static void perf_unpin_context(struct perf_event_context
*ctx
)
1474 unsigned long flags
;
1476 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
1478 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1482 * Update the record of the current time in a context.
1484 static void __update_context_time(struct perf_event_context
*ctx
, bool adv
)
1486 u64 now
= perf_clock();
1488 lockdep_assert_held(&ctx
->lock
);
1491 ctx
->time
+= now
- ctx
->timestamp
;
1492 ctx
->timestamp
= now
;
1495 * The above: time' = time + (now - timestamp), can be re-arranged
1496 * into: time` = now + (time - timestamp), which gives a single value
1497 * offset to compute future time without locks on.
1499 * See perf_event_time_now(), which can be used from NMI context where
1500 * it's (obviously) not possible to acquire ctx->lock in order to read
1501 * both the above values in a consistent manner.
1503 WRITE_ONCE(ctx
->timeoffset
, ctx
->time
- ctx
->timestamp
);
1506 static void update_context_time(struct perf_event_context
*ctx
)
1508 __update_context_time(ctx
, true);
1511 static u64
perf_event_time(struct perf_event
*event
)
1513 struct perf_event_context
*ctx
= event
->ctx
;
1518 if (is_cgroup_event(event
))
1519 return perf_cgroup_event_time(event
);
1524 static u64
perf_event_time_now(struct perf_event
*event
, u64 now
)
1526 struct perf_event_context
*ctx
= event
->ctx
;
1531 if (is_cgroup_event(event
))
1532 return perf_cgroup_event_time_now(event
, now
);
1534 if (!(__load_acquire(&ctx
->is_active
) & EVENT_TIME
))
1537 now
+= READ_ONCE(ctx
->timeoffset
);
1541 static enum event_type_t
get_event_type(struct perf_event
*event
)
1543 struct perf_event_context
*ctx
= event
->ctx
;
1544 enum event_type_t event_type
;
1546 lockdep_assert_held(&ctx
->lock
);
1549 * It's 'group type', really, because if our group leader is
1550 * pinned, so are we.
1552 if (event
->group_leader
!= event
)
1553 event
= event
->group_leader
;
1555 event_type
= event
->attr
.pinned
? EVENT_PINNED
: EVENT_FLEXIBLE
;
1557 event_type
|= EVENT_CPU
;
1563 * Helper function to initialize event group nodes.
1565 static void init_event_group(struct perf_event
*event
)
1567 RB_CLEAR_NODE(&event
->group_node
);
1568 event
->group_index
= 0;
1572 * Extract pinned or flexible groups from the context
1573 * based on event attrs bits.
1575 static struct perf_event_groups
*
1576 get_event_groups(struct perf_event
*event
, struct perf_event_context
*ctx
)
1578 if (event
->attr
.pinned
)
1579 return &ctx
->pinned_groups
;
1581 return &ctx
->flexible_groups
;
1585 * Helper function to initializes perf_event_group trees.
1587 static void perf_event_groups_init(struct perf_event_groups
*groups
)
1589 groups
->tree
= RB_ROOT
;
1593 static inline struct cgroup
*event_cgroup(const struct perf_event
*event
)
1595 struct cgroup
*cgroup
= NULL
;
1597 #ifdef CONFIG_CGROUP_PERF
1599 cgroup
= event
->cgrp
->css
.cgroup
;
1606 * Compare function for event groups;
1608 * Implements complex key that first sorts by CPU and then by virtual index
1609 * which provides ordering when rotating groups for the same CPU.
1611 static __always_inline
int
1612 perf_event_groups_cmp(const int left_cpu
, const struct pmu
*left_pmu
,
1613 const struct cgroup
*left_cgroup
, const u64 left_group_index
,
1614 const struct perf_event
*right
)
1616 if (left_cpu
< right
->cpu
)
1618 if (left_cpu
> right
->cpu
)
1622 if (left_pmu
< right
->pmu_ctx
->pmu
)
1624 if (left_pmu
> right
->pmu_ctx
->pmu
)
1628 #ifdef CONFIG_CGROUP_PERF
1630 const struct cgroup
*right_cgroup
= event_cgroup(right
);
1632 if (left_cgroup
!= right_cgroup
) {
1635 * Left has no cgroup but right does, no
1636 * cgroups come first.
1640 if (!right_cgroup
) {
1642 * Right has no cgroup but left does, no
1643 * cgroups come first.
1647 /* Two dissimilar cgroups, order by id. */
1648 if (cgroup_id(left_cgroup
) < cgroup_id(right_cgroup
))
1656 if (left_group_index
< right
->group_index
)
1658 if (left_group_index
> right
->group_index
)
1664 #define __node_2_pe(node) \
1665 rb_entry((node), struct perf_event, group_node)
1667 static inline bool __group_less(struct rb_node
*a
, const struct rb_node
*b
)
1669 struct perf_event
*e
= __node_2_pe(a
);
1670 return perf_event_groups_cmp(e
->cpu
, e
->pmu_ctx
->pmu
, event_cgroup(e
),
1671 e
->group_index
, __node_2_pe(b
)) < 0;
1674 struct __group_key
{
1677 struct cgroup
*cgroup
;
1680 static inline int __group_cmp(const void *key
, const struct rb_node
*node
)
1682 const struct __group_key
*a
= key
;
1683 const struct perf_event
*b
= __node_2_pe(node
);
1685 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1686 return perf_event_groups_cmp(a
->cpu
, a
->pmu
, a
->cgroup
, b
->group_index
, b
);
1690 __group_cmp_ignore_cgroup(const void *key
, const struct rb_node
*node
)
1692 const struct __group_key
*a
= key
;
1693 const struct perf_event
*b
= __node_2_pe(node
);
1695 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1696 return perf_event_groups_cmp(a
->cpu
, a
->pmu
, event_cgroup(b
),
1701 * Insert @event into @groups' tree; using
1702 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1703 * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1706 perf_event_groups_insert(struct perf_event_groups
*groups
,
1707 struct perf_event
*event
)
1709 event
->group_index
= ++groups
->index
;
1711 rb_add(&event
->group_node
, &groups
->tree
, __group_less
);
1715 * Helper function to insert event into the pinned or flexible groups.
1718 add_event_to_groups(struct perf_event
*event
, struct perf_event_context
*ctx
)
1720 struct perf_event_groups
*groups
;
1722 groups
= get_event_groups(event
, ctx
);
1723 perf_event_groups_insert(groups
, event
);
1727 * Delete a group from a tree.
1730 perf_event_groups_delete(struct perf_event_groups
*groups
,
1731 struct perf_event
*event
)
1733 WARN_ON_ONCE(RB_EMPTY_NODE(&event
->group_node
) ||
1734 RB_EMPTY_ROOT(&groups
->tree
));
1736 rb_erase(&event
->group_node
, &groups
->tree
);
1737 init_event_group(event
);
1741 * Helper function to delete event from its groups.
1744 del_event_from_groups(struct perf_event
*event
, struct perf_event_context
*ctx
)
1746 struct perf_event_groups
*groups
;
1748 groups
= get_event_groups(event
, ctx
);
1749 perf_event_groups_delete(groups
, event
);
1753 * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1755 static struct perf_event
*
1756 perf_event_groups_first(struct perf_event_groups
*groups
, int cpu
,
1757 struct pmu
*pmu
, struct cgroup
*cgrp
)
1759 struct __group_key key
= {
1764 struct rb_node
*node
;
1766 node
= rb_find_first(&key
, &groups
->tree
, __group_cmp
);
1768 return __node_2_pe(node
);
1773 static struct perf_event
*
1774 perf_event_groups_next(struct perf_event
*event
, struct pmu
*pmu
)
1776 struct __group_key key
= {
1779 .cgroup
= event_cgroup(event
),
1781 struct rb_node
*next
;
1783 next
= rb_next_match(&key
, &event
->group_node
, __group_cmp
);
1785 return __node_2_pe(next
);
1790 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \
1791 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \
1792 event; event = perf_event_groups_next(event, pmu))
1795 * Iterate through the whole groups tree.
1797 #define perf_event_groups_for_each(event, groups) \
1798 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1799 typeof(*event), group_node); event; \
1800 event = rb_entry_safe(rb_next(&event->group_node), \
1801 typeof(*event), group_node))
1804 * Does the event attribute request inherit with PERF_SAMPLE_READ
1806 static inline bool has_inherit_and_sample_read(struct perf_event_attr
*attr
)
1808 return attr
->inherit
&& (attr
->sample_type
& PERF_SAMPLE_READ
);
1812 * Add an event from the lists for its context.
1813 * Must be called with ctx->mutex and ctx->lock held.
1816 list_add_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
1818 lockdep_assert_held(&ctx
->lock
);
1820 WARN_ON_ONCE(event
->attach_state
& PERF_ATTACH_CONTEXT
);
1821 event
->attach_state
|= PERF_ATTACH_CONTEXT
;
1823 event
->tstamp
= perf_event_time(event
);
1826 * If we're a stand alone event or group leader, we go to the context
1827 * list, group events are kept attached to the group so that
1828 * perf_group_detach can, at all times, locate all siblings.
1830 if (event
->group_leader
== event
) {
1831 event
->group_caps
= event
->event_caps
;
1832 add_event_to_groups(event
, ctx
);
1835 list_add_rcu(&event
->event_entry
, &ctx
->event_list
);
1837 if (event
->hw
.flags
& PERF_EVENT_FLAG_USER_READ_CNT
)
1839 if (event
->attr
.inherit_stat
)
1841 if (has_inherit_and_sample_read(&event
->attr
))
1842 local_inc(&ctx
->nr_no_switch_fast
);
1844 if (event
->state
> PERF_EVENT_STATE_OFF
)
1845 perf_cgroup_event_enable(event
, ctx
);
1848 event
->pmu_ctx
->nr_events
++;
1852 * Initialize event state based on the perf_event_attr::disabled.
1854 static inline void perf_event__state_init(struct perf_event
*event
)
1856 event
->state
= event
->attr
.disabled
? PERF_EVENT_STATE_OFF
:
1857 PERF_EVENT_STATE_INACTIVE
;
1860 static int __perf_event_read_size(u64 read_format
, int nr_siblings
)
1862 int entry
= sizeof(u64
); /* value */
1866 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1867 size
+= sizeof(u64
);
1869 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1870 size
+= sizeof(u64
);
1872 if (read_format
& PERF_FORMAT_ID
)
1873 entry
+= sizeof(u64
);
1875 if (read_format
& PERF_FORMAT_LOST
)
1876 entry
+= sizeof(u64
);
1878 if (read_format
& PERF_FORMAT_GROUP
) {
1880 size
+= sizeof(u64
);
1884 * Since perf_event_validate_size() limits this to 16k and inhibits
1885 * adding more siblings, this will never overflow.
1887 return size
+ nr
* entry
;
1890 static void __perf_event_header_size(struct perf_event
*event
, u64 sample_type
)
1892 struct perf_sample_data
*data
;
1895 if (sample_type
& PERF_SAMPLE_IP
)
1896 size
+= sizeof(data
->ip
);
1898 if (sample_type
& PERF_SAMPLE_ADDR
)
1899 size
+= sizeof(data
->addr
);
1901 if (sample_type
& PERF_SAMPLE_PERIOD
)
1902 size
+= sizeof(data
->period
);
1904 if (sample_type
& PERF_SAMPLE_WEIGHT_TYPE
)
1905 size
+= sizeof(data
->weight
.full
);
1907 if (sample_type
& PERF_SAMPLE_READ
)
1908 size
+= event
->read_size
;
1910 if (sample_type
& PERF_SAMPLE_DATA_SRC
)
1911 size
+= sizeof(data
->data_src
.val
);
1913 if (sample_type
& PERF_SAMPLE_TRANSACTION
)
1914 size
+= sizeof(data
->txn
);
1916 if (sample_type
& PERF_SAMPLE_PHYS_ADDR
)
1917 size
+= sizeof(data
->phys_addr
);
1919 if (sample_type
& PERF_SAMPLE_CGROUP
)
1920 size
+= sizeof(data
->cgroup
);
1922 if (sample_type
& PERF_SAMPLE_DATA_PAGE_SIZE
)
1923 size
+= sizeof(data
->data_page_size
);
1925 if (sample_type
& PERF_SAMPLE_CODE_PAGE_SIZE
)
1926 size
+= sizeof(data
->code_page_size
);
1928 event
->header_size
= size
;
1932 * Called at perf_event creation and when events are attached/detached from a
1935 static void perf_event__header_size(struct perf_event
*event
)
1938 __perf_event_read_size(event
->attr
.read_format
,
1939 event
->group_leader
->nr_siblings
);
1940 __perf_event_header_size(event
, event
->attr
.sample_type
);
1943 static void perf_event__id_header_size(struct perf_event
*event
)
1945 struct perf_sample_data
*data
;
1946 u64 sample_type
= event
->attr
.sample_type
;
1949 if (sample_type
& PERF_SAMPLE_TID
)
1950 size
+= sizeof(data
->tid_entry
);
1952 if (sample_type
& PERF_SAMPLE_TIME
)
1953 size
+= sizeof(data
->time
);
1955 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
1956 size
+= sizeof(data
->id
);
1958 if (sample_type
& PERF_SAMPLE_ID
)
1959 size
+= sizeof(data
->id
);
1961 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
1962 size
+= sizeof(data
->stream_id
);
1964 if (sample_type
& PERF_SAMPLE_CPU
)
1965 size
+= sizeof(data
->cpu_entry
);
1967 event
->id_header_size
= size
;
1971 * Check that adding an event to the group does not result in anybody
1972 * overflowing the 64k event limit imposed by the output buffer.
1974 * Specifically, check that the read_size for the event does not exceed 16k,
1975 * read_size being the one term that grows with groups size. Since read_size
1976 * depends on per-event read_format, also (re)check the existing events.
1978 * This leaves 48k for the constant size fields and things like callchains,
1979 * branch stacks and register sets.
1981 static bool perf_event_validate_size(struct perf_event
*event
)
1983 struct perf_event
*sibling
, *group_leader
= event
->group_leader
;
1985 if (__perf_event_read_size(event
->attr
.read_format
,
1986 group_leader
->nr_siblings
+ 1) > 16*1024)
1989 if (__perf_event_read_size(group_leader
->attr
.read_format
,
1990 group_leader
->nr_siblings
+ 1) > 16*1024)
1994 * When creating a new group leader, group_leader->ctx is initialized
1995 * after the size has been validated, but we cannot safely use
1996 * for_each_sibling_event() until group_leader->ctx is set. A new group
1997 * leader cannot have any siblings yet, so we can safely skip checking
1998 * the non-existent siblings.
2000 if (event
== group_leader
)
2003 for_each_sibling_event(sibling
, group_leader
) {
2004 if (__perf_event_read_size(sibling
->attr
.read_format
,
2005 group_leader
->nr_siblings
+ 1) > 16*1024)
2012 static void perf_group_attach(struct perf_event
*event
)
2014 struct perf_event
*group_leader
= event
->group_leader
, *pos
;
2016 lockdep_assert_held(&event
->ctx
->lock
);
2019 * We can have double attach due to group movement (move_group) in
2020 * perf_event_open().
2022 if (event
->attach_state
& PERF_ATTACH_GROUP
)
2025 event
->attach_state
|= PERF_ATTACH_GROUP
;
2027 if (group_leader
== event
)
2030 WARN_ON_ONCE(group_leader
->ctx
!= event
->ctx
);
2032 group_leader
->group_caps
&= event
->event_caps
;
2034 list_add_tail(&event
->sibling_list
, &group_leader
->sibling_list
);
2035 group_leader
->nr_siblings
++;
2036 group_leader
->group_generation
++;
2038 perf_event__header_size(group_leader
);
2040 for_each_sibling_event(pos
, group_leader
)
2041 perf_event__header_size(pos
);
2045 * Remove an event from the lists for its context.
2046 * Must be called with ctx->mutex and ctx->lock held.
2049 list_del_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
2051 WARN_ON_ONCE(event
->ctx
!= ctx
);
2052 lockdep_assert_held(&ctx
->lock
);
2055 * We can have double detach due to exit/hot-unplug + close.
2057 if (!(event
->attach_state
& PERF_ATTACH_CONTEXT
))
2060 event
->attach_state
&= ~PERF_ATTACH_CONTEXT
;
2063 if (event
->hw
.flags
& PERF_EVENT_FLAG_USER_READ_CNT
)
2065 if (event
->attr
.inherit_stat
)
2067 if (has_inherit_and_sample_read(&event
->attr
))
2068 local_dec(&ctx
->nr_no_switch_fast
);
2070 list_del_rcu(&event
->event_entry
);
2072 if (event
->group_leader
== event
)
2073 del_event_from_groups(event
, ctx
);
2076 * If event was in error state, then keep it
2077 * that way, otherwise bogus counts will be
2078 * returned on read(). The only way to get out
2079 * of error state is by explicit re-enabling
2082 if (event
->state
> PERF_EVENT_STATE_OFF
) {
2083 perf_cgroup_event_disable(event
, ctx
);
2084 perf_event_set_state(event
, PERF_EVENT_STATE_OFF
);
2088 event
->pmu_ctx
->nr_events
--;
2092 perf_aux_output_match(struct perf_event
*event
, struct perf_event
*aux_event
)
2094 if (!has_aux(aux_event
))
2097 if (!event
->pmu
->aux_output_match
)
2100 return event
->pmu
->aux_output_match(aux_event
);
2103 static void put_event(struct perf_event
*event
);
2104 static void event_sched_out(struct perf_event
*event
,
2105 struct perf_event_context
*ctx
);
2107 static void perf_put_aux_event(struct perf_event
*event
)
2109 struct perf_event_context
*ctx
= event
->ctx
;
2110 struct perf_event
*iter
;
2113 * If event uses aux_event tear down the link
2115 if (event
->aux_event
) {
2116 iter
= event
->aux_event
;
2117 event
->aux_event
= NULL
;
2123 * If the event is an aux_event, tear down all links to
2124 * it from other events.
2126 for_each_sibling_event(iter
, event
->group_leader
) {
2127 if (iter
->aux_event
!= event
)
2130 iter
->aux_event
= NULL
;
2134 * If it's ACTIVE, schedule it out and put it into ERROR
2135 * state so that we don't try to schedule it again. Note
2136 * that perf_event_enable() will clear the ERROR status.
2138 event_sched_out(iter
, ctx
);
2139 perf_event_set_state(event
, PERF_EVENT_STATE_ERROR
);
2143 static bool perf_need_aux_event(struct perf_event
*event
)
2145 return event
->attr
.aux_output
|| has_aux_action(event
);
2148 static int perf_get_aux_event(struct perf_event
*event
,
2149 struct perf_event
*group_leader
)
2152 * Our group leader must be an aux event if we want to be
2153 * an aux_output. This way, the aux event will precede its
2154 * aux_output events in the group, and therefore will always
2161 * aux_output and aux_sample_size are mutually exclusive.
2163 if (event
->attr
.aux_output
&& event
->attr
.aux_sample_size
)
2166 if (event
->attr
.aux_output
&&
2167 !perf_aux_output_match(event
, group_leader
))
2170 if ((event
->attr
.aux_pause
|| event
->attr
.aux_resume
) &&
2171 !(group_leader
->pmu
->capabilities
& PERF_PMU_CAP_AUX_PAUSE
))
2174 if (event
->attr
.aux_sample_size
&& !group_leader
->pmu
->snapshot_aux
)
2177 if (!atomic_long_inc_not_zero(&group_leader
->refcount
))
2181 * Link aux_outputs to their aux event; this is undone in
2182 * perf_group_detach() by perf_put_aux_event(). When the
2183 * group in torn down, the aux_output events loose their
2184 * link to the aux_event and can't schedule any more.
2186 event
->aux_event
= group_leader
;
2191 static inline struct list_head
*get_event_list(struct perf_event
*event
)
2193 return event
->attr
.pinned
? &event
->pmu_ctx
->pinned_active
:
2194 &event
->pmu_ctx
->flexible_active
;
2198 * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2199 * cannot exist on their own, schedule them out and move them into the ERROR
2200 * state. Also see _perf_event_enable(), it will not be able to recover
2203 static inline void perf_remove_sibling_event(struct perf_event
*event
)
2205 event_sched_out(event
, event
->ctx
);
2206 perf_event_set_state(event
, PERF_EVENT_STATE_ERROR
);
2209 static void perf_group_detach(struct perf_event
*event
)
2211 struct perf_event
*leader
= event
->group_leader
;
2212 struct perf_event
*sibling
, *tmp
;
2213 struct perf_event_context
*ctx
= event
->ctx
;
2215 lockdep_assert_held(&ctx
->lock
);
2218 * We can have double detach due to exit/hot-unplug + close.
2220 if (!(event
->attach_state
& PERF_ATTACH_GROUP
))
2223 event
->attach_state
&= ~PERF_ATTACH_GROUP
;
2225 perf_put_aux_event(event
);
2228 * If this is a sibling, remove it from its group.
2230 if (leader
!= event
) {
2231 list_del_init(&event
->sibling_list
);
2232 event
->group_leader
->nr_siblings
--;
2233 event
->group_leader
->group_generation
++;
2238 * If this was a group event with sibling events then
2239 * upgrade the siblings to singleton events by adding them
2240 * to whatever list we are on.
2242 list_for_each_entry_safe(sibling
, tmp
, &event
->sibling_list
, sibling_list
) {
2244 if (sibling
->event_caps
& PERF_EV_CAP_SIBLING
)
2245 perf_remove_sibling_event(sibling
);
2247 sibling
->group_leader
= sibling
;
2248 list_del_init(&sibling
->sibling_list
);
2250 /* Inherit group flags from the previous leader */
2251 sibling
->group_caps
= event
->group_caps
;
2253 if (sibling
->attach_state
& PERF_ATTACH_CONTEXT
) {
2254 add_event_to_groups(sibling
, event
->ctx
);
2256 if (sibling
->state
== PERF_EVENT_STATE_ACTIVE
)
2257 list_add_tail(&sibling
->active_list
, get_event_list(sibling
));
2260 WARN_ON_ONCE(sibling
->ctx
!= event
->ctx
);
2264 for_each_sibling_event(tmp
, leader
)
2265 perf_event__header_size(tmp
);
2267 perf_event__header_size(leader
);
2270 static void sync_child_event(struct perf_event
*child_event
);
2272 static void perf_child_detach(struct perf_event
*event
)
2274 struct perf_event
*parent_event
= event
->parent
;
2276 if (!(event
->attach_state
& PERF_ATTACH_CHILD
))
2279 event
->attach_state
&= ~PERF_ATTACH_CHILD
;
2281 if (WARN_ON_ONCE(!parent_event
))
2284 lockdep_assert_held(&parent_event
->child_mutex
);
2286 sync_child_event(event
);
2287 list_del_init(&event
->child_list
);
2290 static bool is_orphaned_event(struct perf_event
*event
)
2292 return event
->state
== PERF_EVENT_STATE_DEAD
;
2296 event_filter_match(struct perf_event
*event
)
2298 return (event
->cpu
== -1 || event
->cpu
== smp_processor_id()) &&
2299 perf_cgroup_match(event
);
2303 event_sched_out(struct perf_event
*event
, struct perf_event_context
*ctx
)
2305 struct perf_event_pmu_context
*epc
= event
->pmu_ctx
;
2306 struct perf_cpu_pmu_context
*cpc
= this_cpu_ptr(epc
->pmu
->cpu_pmu_context
);
2307 enum perf_event_state state
= PERF_EVENT_STATE_INACTIVE
;
2309 // XXX cpc serialization, probably per-cpu IRQ disabled
2311 WARN_ON_ONCE(event
->ctx
!= ctx
);
2312 lockdep_assert_held(&ctx
->lock
);
2314 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
2318 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2319 * we can schedule events _OUT_ individually through things like
2320 * __perf_remove_from_context().
2322 list_del_init(&event
->active_list
);
2324 perf_pmu_disable(event
->pmu
);
2326 event
->pmu
->del(event
, 0);
2329 if (event
->pending_disable
) {
2330 event
->pending_disable
= 0;
2331 perf_cgroup_event_disable(event
, ctx
);
2332 state
= PERF_EVENT_STATE_OFF
;
2335 perf_event_set_state(event
, state
);
2337 if (!is_software_event(event
))
2338 cpc
->active_oncpu
--;
2339 if (event
->attr
.freq
&& event
->attr
.sample_freq
) {
2343 if (event
->attr
.exclusive
|| !cpc
->active_oncpu
)
2346 perf_pmu_enable(event
->pmu
);
2350 group_sched_out(struct perf_event
*group_event
, struct perf_event_context
*ctx
)
2352 struct perf_event
*event
;
2354 if (group_event
->state
!= PERF_EVENT_STATE_ACTIVE
)
2357 perf_assert_pmu_disabled(group_event
->pmu_ctx
->pmu
);
2359 event_sched_out(group_event
, ctx
);
2362 * Schedule out siblings (if any):
2364 for_each_sibling_event(event
, group_event
)
2365 event_sched_out(event
, ctx
);
2369 __ctx_time_update(struct perf_cpu_context
*cpuctx
, struct perf_event_context
*ctx
, bool final
)
2371 if (ctx
->is_active
& EVENT_TIME
) {
2372 if (ctx
->is_active
& EVENT_FROZEN
)
2374 update_context_time(ctx
);
2375 update_cgrp_time_from_cpuctx(cpuctx
, final
);
2380 ctx_time_update(struct perf_cpu_context
*cpuctx
, struct perf_event_context
*ctx
)
2382 __ctx_time_update(cpuctx
, ctx
, false);
2386 * To be used inside perf_ctx_lock() / perf_ctx_unlock(). Lasts until perf_ctx_unlock().
2389 ctx_time_freeze(struct perf_cpu_context
*cpuctx
, struct perf_event_context
*ctx
)
2391 ctx_time_update(cpuctx
, ctx
);
2392 if (ctx
->is_active
& EVENT_TIME
)
2393 ctx
->is_active
|= EVENT_FROZEN
;
2397 ctx_time_update_event(struct perf_event_context
*ctx
, struct perf_event
*event
)
2399 if (ctx
->is_active
& EVENT_TIME
) {
2400 if (ctx
->is_active
& EVENT_FROZEN
)
2402 update_context_time(ctx
);
2403 update_cgrp_time_from_event(event
);
2407 #define DETACH_GROUP 0x01UL
2408 #define DETACH_CHILD 0x02UL
2409 #define DETACH_DEAD 0x04UL
2412 * Cross CPU call to remove a performance event
2414 * We disable the event on the hardware level first. After that we
2415 * remove it from the context list.
2418 __perf_remove_from_context(struct perf_event
*event
,
2419 struct perf_cpu_context
*cpuctx
,
2420 struct perf_event_context
*ctx
,
2423 struct perf_event_pmu_context
*pmu_ctx
= event
->pmu_ctx
;
2424 unsigned long flags
= (unsigned long)info
;
2426 ctx_time_update(cpuctx
, ctx
);
2429 * Ensure event_sched_out() switches to OFF, at the very least
2430 * this avoids raising perf_pending_task() at this time.
2432 if (flags
& DETACH_DEAD
)
2433 event
->pending_disable
= 1;
2434 event_sched_out(event
, ctx
);
2435 if (flags
& DETACH_GROUP
)
2436 perf_group_detach(event
);
2437 if (flags
& DETACH_CHILD
)
2438 perf_child_detach(event
);
2439 list_del_event(event
, ctx
);
2440 if (flags
& DETACH_DEAD
)
2441 event
->state
= PERF_EVENT_STATE_DEAD
;
2443 if (!pmu_ctx
->nr_events
) {
2444 pmu_ctx
->rotate_necessary
= 0;
2446 if (ctx
->task
&& ctx
->is_active
) {
2447 struct perf_cpu_pmu_context
*cpc
;
2449 cpc
= this_cpu_ptr(pmu_ctx
->pmu
->cpu_pmu_context
);
2450 WARN_ON_ONCE(cpc
->task_epc
&& cpc
->task_epc
!= pmu_ctx
);
2451 cpc
->task_epc
= NULL
;
2455 if (!ctx
->nr_events
&& ctx
->is_active
) {
2456 if (ctx
== &cpuctx
->ctx
)
2457 update_cgrp_time_from_cpuctx(cpuctx
, true);
2461 WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
);
2462 cpuctx
->task_ctx
= NULL
;
2468 * Remove the event from a task's (or a CPU's) list of events.
2470 * If event->ctx is a cloned context, callers must make sure that
2471 * every task struct that event->ctx->task could possibly point to
2472 * remains valid. This is OK when called from perf_release since
2473 * that only calls us on the top-level context, which can't be a clone.
2474 * When called from perf_event_exit_task, it's OK because the
2475 * context has been detached from its task.
2477 static void perf_remove_from_context(struct perf_event
*event
, unsigned long flags
)
2479 struct perf_event_context
*ctx
= event
->ctx
;
2481 lockdep_assert_held(&ctx
->mutex
);
2484 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2485 * to work in the face of TASK_TOMBSTONE, unlike every other
2486 * event_function_call() user.
2488 raw_spin_lock_irq(&ctx
->lock
);
2489 if (!ctx
->is_active
) {
2490 __perf_remove_from_context(event
, this_cpu_ptr(&perf_cpu_context
),
2491 ctx
, (void *)flags
);
2492 raw_spin_unlock_irq(&ctx
->lock
);
2495 raw_spin_unlock_irq(&ctx
->lock
);
2497 event_function_call(event
, __perf_remove_from_context
, (void *)flags
);
2501 * Cross CPU call to disable a performance event
2503 static void __perf_event_disable(struct perf_event
*event
,
2504 struct perf_cpu_context
*cpuctx
,
2505 struct perf_event_context
*ctx
,
2508 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
2511 perf_pmu_disable(event
->pmu_ctx
->pmu
);
2512 ctx_time_update_event(ctx
, event
);
2514 if (event
== event
->group_leader
)
2515 group_sched_out(event
, ctx
);
2517 event_sched_out(event
, ctx
);
2519 perf_event_set_state(event
, PERF_EVENT_STATE_OFF
);
2520 perf_cgroup_event_disable(event
, ctx
);
2522 perf_pmu_enable(event
->pmu_ctx
->pmu
);
2528 * If event->ctx is a cloned context, callers must make sure that
2529 * every task struct that event->ctx->task could possibly point to
2530 * remains valid. This condition is satisfied when called through
2531 * perf_event_for_each_child or perf_event_for_each because they
2532 * hold the top-level event's child_mutex, so any descendant that
2533 * goes to exit will block in perf_event_exit_event().
2535 * When called from perf_pending_disable it's OK because event->ctx
2536 * is the current context on this CPU and preemption is disabled,
2537 * hence we can't get into perf_event_task_sched_out for this context.
2539 static void _perf_event_disable(struct perf_event
*event
)
2541 struct perf_event_context
*ctx
= event
->ctx
;
2543 raw_spin_lock_irq(&ctx
->lock
);
2544 if (event
->state
<= PERF_EVENT_STATE_OFF
) {
2545 raw_spin_unlock_irq(&ctx
->lock
);
2548 raw_spin_unlock_irq(&ctx
->lock
);
2550 event_function_call(event
, __perf_event_disable
, NULL
);
2553 void perf_event_disable_local(struct perf_event
*event
)
2555 event_function_local(event
, __perf_event_disable
, NULL
);
2559 * Strictly speaking kernel users cannot create groups and therefore this
2560 * interface does not need the perf_event_ctx_lock() magic.
2562 void perf_event_disable(struct perf_event
*event
)
2564 struct perf_event_context
*ctx
;
2566 ctx
= perf_event_ctx_lock(event
);
2567 _perf_event_disable(event
);
2568 perf_event_ctx_unlock(event
, ctx
);
2570 EXPORT_SYMBOL_GPL(perf_event_disable
);
2572 void perf_event_disable_inatomic(struct perf_event
*event
)
2574 event
->pending_disable
= 1;
2575 irq_work_queue(&event
->pending_disable_irq
);
2578 #define MAX_INTERRUPTS (~0ULL)
2580 static void perf_log_throttle(struct perf_event
*event
, int enable
);
2581 static void perf_log_itrace_start(struct perf_event
*event
);
2584 event_sched_in(struct perf_event
*event
, struct perf_event_context
*ctx
)
2586 struct perf_event_pmu_context
*epc
= event
->pmu_ctx
;
2587 struct perf_cpu_pmu_context
*cpc
= this_cpu_ptr(epc
->pmu
->cpu_pmu_context
);
2590 WARN_ON_ONCE(event
->ctx
!= ctx
);
2592 lockdep_assert_held(&ctx
->lock
);
2594 if (event
->state
<= PERF_EVENT_STATE_OFF
)
2597 WRITE_ONCE(event
->oncpu
, smp_processor_id());
2599 * Order event::oncpu write to happen before the ACTIVE state is
2600 * visible. This allows perf_event_{stop,read}() to observe the correct
2601 * ->oncpu if it sees ACTIVE.
2604 perf_event_set_state(event
, PERF_EVENT_STATE_ACTIVE
);
2607 * Unthrottle events, since we scheduled we might have missed several
2608 * ticks already, also for a heavily scheduling task there is little
2609 * guarantee it'll get a tick in a timely manner.
2611 if (unlikely(event
->hw
.interrupts
== MAX_INTERRUPTS
)) {
2612 perf_log_throttle(event
, 1);
2613 event
->hw
.interrupts
= 0;
2616 perf_pmu_disable(event
->pmu
);
2618 perf_log_itrace_start(event
);
2620 if (event
->pmu
->add(event
, PERF_EF_START
)) {
2621 perf_event_set_state(event
, PERF_EVENT_STATE_INACTIVE
);
2627 if (!is_software_event(event
))
2628 cpc
->active_oncpu
++;
2629 if (event
->attr
.freq
&& event
->attr
.sample_freq
) {
2633 if (event
->attr
.exclusive
)
2637 perf_pmu_enable(event
->pmu
);
2643 group_sched_in(struct perf_event
*group_event
, struct perf_event_context
*ctx
)
2645 struct perf_event
*event
, *partial_group
= NULL
;
2646 struct pmu
*pmu
= group_event
->pmu_ctx
->pmu
;
2648 if (group_event
->state
== PERF_EVENT_STATE_OFF
)
2651 pmu
->start_txn(pmu
, PERF_PMU_TXN_ADD
);
2653 if (event_sched_in(group_event
, ctx
))
2657 * Schedule in siblings as one group (if any):
2659 for_each_sibling_event(event
, group_event
) {
2660 if (event_sched_in(event
, ctx
)) {
2661 partial_group
= event
;
2666 if (!pmu
->commit_txn(pmu
))
2671 * Groups can be scheduled in as one unit only, so undo any
2672 * partial group before returning:
2673 * The events up to the failed event are scheduled out normally.
2675 for_each_sibling_event(event
, group_event
) {
2676 if (event
== partial_group
)
2679 event_sched_out(event
, ctx
);
2681 event_sched_out(group_event
, ctx
);
2684 pmu
->cancel_txn(pmu
);
2689 * Work out whether we can put this event group on the CPU now.
2691 static int group_can_go_on(struct perf_event
*event
, int can_add_hw
)
2693 struct perf_event_pmu_context
*epc
= event
->pmu_ctx
;
2694 struct perf_cpu_pmu_context
*cpc
= this_cpu_ptr(epc
->pmu
->cpu_pmu_context
);
2697 * Groups consisting entirely of software events can always go on.
2699 if (event
->group_caps
& PERF_EV_CAP_SOFTWARE
)
2702 * If an exclusive group is already on, no other hardware
2708 * If this group is exclusive and there are already
2709 * events on the CPU, it can't go on.
2711 if (event
->attr
.exclusive
&& !list_empty(get_event_list(event
)))
2714 * Otherwise, try to add it if all previous groups were able
2720 static void add_event_to_ctx(struct perf_event
*event
,
2721 struct perf_event_context
*ctx
)
2723 list_add_event(event
, ctx
);
2724 perf_group_attach(event
);
2727 static void task_ctx_sched_out(struct perf_event_context
*ctx
,
2729 enum event_type_t event_type
)
2731 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(&perf_cpu_context
);
2733 if (!cpuctx
->task_ctx
)
2736 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
2739 ctx_sched_out(ctx
, pmu
, event_type
);
2742 static void perf_event_sched_in(struct perf_cpu_context
*cpuctx
,
2743 struct perf_event_context
*ctx
,
2746 ctx_sched_in(&cpuctx
->ctx
, pmu
, EVENT_PINNED
);
2748 ctx_sched_in(ctx
, pmu
, EVENT_PINNED
);
2749 ctx_sched_in(&cpuctx
->ctx
, pmu
, EVENT_FLEXIBLE
);
2751 ctx_sched_in(ctx
, pmu
, EVENT_FLEXIBLE
);
2755 * We want to maintain the following priority of scheduling:
2756 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2757 * - task pinned (EVENT_PINNED)
2758 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2759 * - task flexible (EVENT_FLEXIBLE).
2761 * In order to avoid unscheduling and scheduling back in everything every
2762 * time an event is added, only do it for the groups of equal priority and
2765 * This can be called after a batch operation on task events, in which case
2766 * event_type is a bit mask of the types of events involved. For CPU events,
2767 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2769 static void ctx_resched(struct perf_cpu_context
*cpuctx
,
2770 struct perf_event_context
*task_ctx
,
2771 struct pmu
*pmu
, enum event_type_t event_type
)
2773 bool cpu_event
= !!(event_type
& EVENT_CPU
);
2774 struct perf_event_pmu_context
*epc
;
2777 * If pinned groups are involved, flexible groups also need to be
2780 if (event_type
& EVENT_PINNED
)
2781 event_type
|= EVENT_FLEXIBLE
;
2783 event_type
&= EVENT_ALL
;
2785 for_each_epc(epc
, &cpuctx
->ctx
, pmu
, false)
2786 perf_pmu_disable(epc
->pmu
);
2789 for_each_epc(epc
, task_ctx
, pmu
, false)
2790 perf_pmu_disable(epc
->pmu
);
2792 task_ctx_sched_out(task_ctx
, pmu
, event_type
);
2796 * Decide which cpu ctx groups to schedule out based on the types
2797 * of events that caused rescheduling:
2798 * - EVENT_CPU: schedule out corresponding groups;
2799 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2800 * - otherwise, do nothing more.
2803 ctx_sched_out(&cpuctx
->ctx
, pmu
, event_type
);
2804 else if (event_type
& EVENT_PINNED
)
2805 ctx_sched_out(&cpuctx
->ctx
, pmu
, EVENT_FLEXIBLE
);
2807 perf_event_sched_in(cpuctx
, task_ctx
, pmu
);
2809 for_each_epc(epc
, &cpuctx
->ctx
, pmu
, false)
2810 perf_pmu_enable(epc
->pmu
);
2813 for_each_epc(epc
, task_ctx
, pmu
, false)
2814 perf_pmu_enable(epc
->pmu
);
2818 void perf_pmu_resched(struct pmu
*pmu
)
2820 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(&perf_cpu_context
);
2821 struct perf_event_context
*task_ctx
= cpuctx
->task_ctx
;
2823 perf_ctx_lock(cpuctx
, task_ctx
);
2824 ctx_resched(cpuctx
, task_ctx
, pmu
, EVENT_ALL
|EVENT_CPU
);
2825 perf_ctx_unlock(cpuctx
, task_ctx
);
2829 * Cross CPU call to install and enable a performance event
2831 * Very similar to remote_function() + event_function() but cannot assume that
2832 * things like ctx->is_active and cpuctx->task_ctx are set.
2834 static int __perf_install_in_context(void *info
)
2836 struct perf_event
*event
= info
;
2837 struct perf_event_context
*ctx
= event
->ctx
;
2838 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(&perf_cpu_context
);
2839 struct perf_event_context
*task_ctx
= cpuctx
->task_ctx
;
2840 bool reprogram
= true;
2843 raw_spin_lock(&cpuctx
->ctx
.lock
);
2845 raw_spin_lock(&ctx
->lock
);
2848 reprogram
= (ctx
->task
== current
);
2851 * If the task is running, it must be running on this CPU,
2852 * otherwise we cannot reprogram things.
2854 * If its not running, we don't care, ctx->lock will
2855 * serialize against it becoming runnable.
2857 if (task_curr(ctx
->task
) && !reprogram
) {
2862 WARN_ON_ONCE(reprogram
&& cpuctx
->task_ctx
&& cpuctx
->task_ctx
!= ctx
);
2863 } else if (task_ctx
) {
2864 raw_spin_lock(&task_ctx
->lock
);
2867 #ifdef CONFIG_CGROUP_PERF
2868 if (event
->state
> PERF_EVENT_STATE_OFF
&& is_cgroup_event(event
)) {
2870 * If the current cgroup doesn't match the event's
2871 * cgroup, we should not try to schedule it.
2873 struct perf_cgroup
*cgrp
= perf_cgroup_from_task(current
, ctx
);
2874 reprogram
= cgroup_is_descendant(cgrp
->css
.cgroup
,
2875 event
->cgrp
->css
.cgroup
);
2880 ctx_time_freeze(cpuctx
, ctx
);
2881 add_event_to_ctx(event
, ctx
);
2882 ctx_resched(cpuctx
, task_ctx
, event
->pmu_ctx
->pmu
,
2883 get_event_type(event
));
2885 add_event_to_ctx(event
, ctx
);
2889 perf_ctx_unlock(cpuctx
, task_ctx
);
2894 static bool exclusive_event_installable(struct perf_event
*event
,
2895 struct perf_event_context
*ctx
);
2898 * Attach a performance event to a context.
2900 * Very similar to event_function_call, see comment there.
2903 perf_install_in_context(struct perf_event_context
*ctx
,
2904 struct perf_event
*event
,
2907 struct task_struct
*task
= READ_ONCE(ctx
->task
);
2909 lockdep_assert_held(&ctx
->mutex
);
2911 WARN_ON_ONCE(!exclusive_event_installable(event
, ctx
));
2913 if (event
->cpu
!= -1)
2914 WARN_ON_ONCE(event
->cpu
!= cpu
);
2917 * Ensures that if we can observe event->ctx, both the event and ctx
2918 * will be 'complete'. See perf_iterate_sb_cpu().
2920 smp_store_release(&event
->ctx
, ctx
);
2923 * perf_event_attr::disabled events will not run and can be initialized
2924 * without IPI. Except when this is the first event for the context, in
2925 * that case we need the magic of the IPI to set ctx->is_active.
2927 * The IOC_ENABLE that is sure to follow the creation of a disabled
2928 * event will issue the IPI and reprogram the hardware.
2930 if (__perf_effective_state(event
) == PERF_EVENT_STATE_OFF
&&
2931 ctx
->nr_events
&& !is_cgroup_event(event
)) {
2932 raw_spin_lock_irq(&ctx
->lock
);
2933 if (ctx
->task
== TASK_TOMBSTONE
) {
2934 raw_spin_unlock_irq(&ctx
->lock
);
2937 add_event_to_ctx(event
, ctx
);
2938 raw_spin_unlock_irq(&ctx
->lock
);
2943 cpu_function_call(cpu
, __perf_install_in_context
, event
);
2948 * Should not happen, we validate the ctx is still alive before calling.
2950 if (WARN_ON_ONCE(task
== TASK_TOMBSTONE
))
2954 * Installing events is tricky because we cannot rely on ctx->is_active
2955 * to be set in case this is the nr_events 0 -> 1 transition.
2957 * Instead we use task_curr(), which tells us if the task is running.
2958 * However, since we use task_curr() outside of rq::lock, we can race
2959 * against the actual state. This means the result can be wrong.
2961 * If we get a false positive, we retry, this is harmless.
2963 * If we get a false negative, things are complicated. If we are after
2964 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2965 * value must be correct. If we're before, it doesn't matter since
2966 * perf_event_context_sched_in() will program the counter.
2968 * However, this hinges on the remote context switch having observed
2969 * our task->perf_event_ctxp[] store, such that it will in fact take
2970 * ctx::lock in perf_event_context_sched_in().
2972 * We do this by task_function_call(), if the IPI fails to hit the task
2973 * we know any future context switch of task must see the
2974 * perf_event_ctpx[] store.
2978 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2979 * task_cpu() load, such that if the IPI then does not find the task
2980 * running, a future context switch of that task must observe the
2985 if (!task_function_call(task
, __perf_install_in_context
, event
))
2988 raw_spin_lock_irq(&ctx
->lock
);
2990 if (WARN_ON_ONCE(task
== TASK_TOMBSTONE
)) {
2992 * Cannot happen because we already checked above (which also
2993 * cannot happen), and we hold ctx->mutex, which serializes us
2994 * against perf_event_exit_task_context().
2996 raw_spin_unlock_irq(&ctx
->lock
);
3000 * If the task is not running, ctx->lock will avoid it becoming so,
3001 * thus we can safely install the event.
3003 if (task_curr(task
)) {
3004 raw_spin_unlock_irq(&ctx
->lock
);
3007 add_event_to_ctx(event
, ctx
);
3008 raw_spin_unlock_irq(&ctx
->lock
);
3012 * Cross CPU call to enable a performance event
3014 static void __perf_event_enable(struct perf_event
*event
,
3015 struct perf_cpu_context
*cpuctx
,
3016 struct perf_event_context
*ctx
,
3019 struct perf_event
*leader
= event
->group_leader
;
3020 struct perf_event_context
*task_ctx
;
3022 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
||
3023 event
->state
<= PERF_EVENT_STATE_ERROR
)
3026 ctx_time_freeze(cpuctx
, ctx
);
3028 perf_event_set_state(event
, PERF_EVENT_STATE_INACTIVE
);
3029 perf_cgroup_event_enable(event
, ctx
);
3031 if (!ctx
->is_active
)
3034 if (!event_filter_match(event
))
3038 * If the event is in a group and isn't the group leader,
3039 * then don't put it on unless the group is on.
3041 if (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
)
3044 task_ctx
= cpuctx
->task_ctx
;
3046 WARN_ON_ONCE(task_ctx
!= ctx
);
3048 ctx_resched(cpuctx
, task_ctx
, event
->pmu_ctx
->pmu
, get_event_type(event
));
3054 * If event->ctx is a cloned context, callers must make sure that
3055 * every task struct that event->ctx->task could possibly point to
3056 * remains valid. This condition is satisfied when called through
3057 * perf_event_for_each_child or perf_event_for_each as described
3058 * for perf_event_disable.
3060 static void _perf_event_enable(struct perf_event
*event
)
3062 struct perf_event_context
*ctx
= event
->ctx
;
3064 raw_spin_lock_irq(&ctx
->lock
);
3065 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
||
3066 event
->state
< PERF_EVENT_STATE_ERROR
) {
3068 raw_spin_unlock_irq(&ctx
->lock
);
3073 * If the event is in error state, clear that first.
3075 * That way, if we see the event in error state below, we know that it
3076 * has gone back into error state, as distinct from the task having
3077 * been scheduled away before the cross-call arrived.
3079 if (event
->state
== PERF_EVENT_STATE_ERROR
) {
3081 * Detached SIBLING events cannot leave ERROR state.
3083 if (event
->event_caps
& PERF_EV_CAP_SIBLING
&&
3084 event
->group_leader
== event
)
3087 event
->state
= PERF_EVENT_STATE_OFF
;
3089 raw_spin_unlock_irq(&ctx
->lock
);
3091 event_function_call(event
, __perf_event_enable
, NULL
);
3095 * See perf_event_disable();
3097 void perf_event_enable(struct perf_event
*event
)
3099 struct perf_event_context
*ctx
;
3101 ctx
= perf_event_ctx_lock(event
);
3102 _perf_event_enable(event
);
3103 perf_event_ctx_unlock(event
, ctx
);
3105 EXPORT_SYMBOL_GPL(perf_event_enable
);
3107 struct stop_event_data
{
3108 struct perf_event
*event
;
3109 unsigned int restart
;
3112 static int __perf_event_stop(void *info
)
3114 struct stop_event_data
*sd
= info
;
3115 struct perf_event
*event
= sd
->event
;
3117 /* if it's already INACTIVE, do nothing */
3118 if (READ_ONCE(event
->state
) != PERF_EVENT_STATE_ACTIVE
)
3121 /* matches smp_wmb() in event_sched_in() */
3125 * There is a window with interrupts enabled before we get here,
3126 * so we need to check again lest we try to stop another CPU's event.
3128 if (READ_ONCE(event
->oncpu
) != smp_processor_id())
3131 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
3134 * May race with the actual stop (through perf_pmu_output_stop()),
3135 * but it is only used for events with AUX ring buffer, and such
3136 * events will refuse to restart because of rb::aux_mmap_count==0,
3137 * see comments in perf_aux_output_begin().
3139 * Since this is happening on an event-local CPU, no trace is lost
3143 event
->pmu
->start(event
, 0);
3148 static int perf_event_stop(struct perf_event
*event
, int restart
)
3150 struct stop_event_data sd
= {
3157 if (READ_ONCE(event
->state
) != PERF_EVENT_STATE_ACTIVE
)
3160 /* matches smp_wmb() in event_sched_in() */
3164 * We only want to restart ACTIVE events, so if the event goes
3165 * inactive here (event->oncpu==-1), there's nothing more to do;
3166 * fall through with ret==-ENXIO.
3168 ret
= cpu_function_call(READ_ONCE(event
->oncpu
),
3169 __perf_event_stop
, &sd
);
3170 } while (ret
== -EAGAIN
);
3176 * In order to contain the amount of racy and tricky in the address filter
3177 * configuration management, it is a two part process:
3179 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3180 * we update the addresses of corresponding vmas in
3181 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
3182 * (p2) when an event is scheduled in (pmu::add), it calls
3183 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3184 * if the generation has changed since the previous call.
3186 * If (p1) happens while the event is active, we restart it to force (p2).
3188 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3189 * pre-existing mappings, called once when new filters arrive via SET_FILTER
3191 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3192 * registered mapping, called for every new mmap(), with mm::mmap_lock down
3194 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3197 void perf_event_addr_filters_sync(struct perf_event
*event
)
3199 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
3201 if (!has_addr_filter(event
))
3204 raw_spin_lock(&ifh
->lock
);
3205 if (event
->addr_filters_gen
!= event
->hw
.addr_filters_gen
) {
3206 event
->pmu
->addr_filters_sync(event
);
3207 event
->hw
.addr_filters_gen
= event
->addr_filters_gen
;
3209 raw_spin_unlock(&ifh
->lock
);
3211 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync
);
3213 static int _perf_event_refresh(struct perf_event
*event
, int refresh
)
3216 * not supported on inherited events
3218 if (event
->attr
.inherit
|| !is_sampling_event(event
))
3221 atomic_add(refresh
, &event
->event_limit
);
3222 _perf_event_enable(event
);
3228 * See perf_event_disable()
3230 int perf_event_refresh(struct perf_event
*event
, int refresh
)
3232 struct perf_event_context
*ctx
;
3235 ctx
= perf_event_ctx_lock(event
);
3236 ret
= _perf_event_refresh(event
, refresh
);
3237 perf_event_ctx_unlock(event
, ctx
);
3241 EXPORT_SYMBOL_GPL(perf_event_refresh
);
3243 static int perf_event_modify_breakpoint(struct perf_event
*bp
,
3244 struct perf_event_attr
*attr
)
3248 _perf_event_disable(bp
);
3250 err
= modify_user_hw_breakpoint_check(bp
, attr
, true);
3252 if (!bp
->attr
.disabled
)
3253 _perf_event_enable(bp
);
3259 * Copy event-type-independent attributes that may be modified.
3261 static void perf_event_modify_copy_attr(struct perf_event_attr
*to
,
3262 const struct perf_event_attr
*from
)
3264 to
->sig_data
= from
->sig_data
;
3267 static int perf_event_modify_attr(struct perf_event
*event
,
3268 struct perf_event_attr
*attr
)
3270 int (*func
)(struct perf_event
*, struct perf_event_attr
*);
3271 struct perf_event
*child
;
3274 if (event
->attr
.type
!= attr
->type
)
3277 switch (event
->attr
.type
) {
3278 case PERF_TYPE_BREAKPOINT
:
3279 func
= perf_event_modify_breakpoint
;
3282 /* Place holder for future additions. */
3286 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
3288 mutex_lock(&event
->child_mutex
);
3290 * Event-type-independent attributes must be copied before event-type
3291 * modification, which will validate that final attributes match the
3292 * source attributes after all relevant attributes have been copied.
3294 perf_event_modify_copy_attr(&event
->attr
, attr
);
3295 err
= func(event
, attr
);
3298 list_for_each_entry(child
, &event
->child_list
, child_list
) {
3299 perf_event_modify_copy_attr(&child
->attr
, attr
);
3300 err
= func(child
, attr
);
3305 mutex_unlock(&event
->child_mutex
);
3309 static void __pmu_ctx_sched_out(struct perf_event_pmu_context
*pmu_ctx
,
3310 enum event_type_t event_type
)
3312 struct perf_event_context
*ctx
= pmu_ctx
->ctx
;
3313 struct perf_event
*event
, *tmp
;
3314 struct pmu
*pmu
= pmu_ctx
->pmu
;
3316 if (ctx
->task
&& !(ctx
->is_active
& EVENT_ALL
)) {
3317 struct perf_cpu_pmu_context
*cpc
;
3319 cpc
= this_cpu_ptr(pmu
->cpu_pmu_context
);
3320 WARN_ON_ONCE(cpc
->task_epc
&& cpc
->task_epc
!= pmu_ctx
);
3321 cpc
->task_epc
= NULL
;
3324 if (!(event_type
& EVENT_ALL
))
3327 perf_pmu_disable(pmu
);
3328 if (event_type
& EVENT_PINNED
) {
3329 list_for_each_entry_safe(event
, tmp
,
3330 &pmu_ctx
->pinned_active
,
3332 group_sched_out(event
, ctx
);
3335 if (event_type
& EVENT_FLEXIBLE
) {
3336 list_for_each_entry_safe(event
, tmp
,
3337 &pmu_ctx
->flexible_active
,
3339 group_sched_out(event
, ctx
);
3341 * Since we cleared EVENT_FLEXIBLE, also clear
3342 * rotate_necessary, is will be reset by
3343 * ctx_flexible_sched_in() when needed.
3345 pmu_ctx
->rotate_necessary
= 0;
3347 perf_pmu_enable(pmu
);
3351 * Be very careful with the @pmu argument since this will change ctx state.
3352 * The @pmu argument works for ctx_resched(), because that is symmetric in
3353 * ctx_sched_out() / ctx_sched_in() usage and the ctx state ends up invariant.
3355 * However, if you were to be asymmetrical, you could end up with messed up
3356 * state, eg. ctx->is_active cleared even though most EPCs would still actually
3360 ctx_sched_out(struct perf_event_context
*ctx
, struct pmu
*pmu
, enum event_type_t event_type
)
3362 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(&perf_cpu_context
);
3363 struct perf_event_pmu_context
*pmu_ctx
;
3364 int is_active
= ctx
->is_active
;
3365 bool cgroup
= event_type
& EVENT_CGROUP
;
3367 event_type
&= ~EVENT_CGROUP
;
3369 lockdep_assert_held(&ctx
->lock
);
3371 if (likely(!ctx
->nr_events
)) {
3373 * See __perf_remove_from_context().
3375 WARN_ON_ONCE(ctx
->is_active
);
3377 WARN_ON_ONCE(cpuctx
->task_ctx
);
3382 * Always update time if it was set; not only when it changes.
3383 * Otherwise we can 'forget' to update time for any but the last
3384 * context we sched out. For example:
3386 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3387 * ctx_sched_out(.event_type = EVENT_PINNED)
3389 * would only update time for the pinned events.
3391 __ctx_time_update(cpuctx
, ctx
, ctx
== &cpuctx
->ctx
);
3394 * CPU-release for the below ->is_active store,
3395 * see __load_acquire() in perf_event_time_now()
3398 ctx
->is_active
&= ~event_type
;
3400 if (!(ctx
->is_active
& EVENT_ALL
)) {
3402 * For FROZEN, preserve TIME|FROZEN such that perf_event_time_now()
3403 * does not observe a hole. perf_ctx_unlock() will clean up.
3405 if (ctx
->is_active
& EVENT_FROZEN
)
3406 ctx
->is_active
&= EVENT_TIME_FROZEN
;
3412 WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
);
3413 if (!(ctx
->is_active
& EVENT_ALL
))
3414 cpuctx
->task_ctx
= NULL
;
3417 is_active
^= ctx
->is_active
; /* changed bits */
3419 for_each_epc(pmu_ctx
, ctx
, pmu
, cgroup
)
3420 __pmu_ctx_sched_out(pmu_ctx
, is_active
);
3424 * Test whether two contexts are equivalent, i.e. whether they have both been
3425 * cloned from the same version of the same context.
3427 * Equivalence is measured using a generation number in the context that is
3428 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3429 * and list_del_event().
3431 static int context_equiv(struct perf_event_context
*ctx1
,
3432 struct perf_event_context
*ctx2
)
3434 lockdep_assert_held(&ctx1
->lock
);
3435 lockdep_assert_held(&ctx2
->lock
);
3437 /* Pinning disables the swap optimization */
3438 if (ctx1
->pin_count
|| ctx2
->pin_count
)
3441 /* If ctx1 is the parent of ctx2 */
3442 if (ctx1
== ctx2
->parent_ctx
&& ctx1
->generation
== ctx2
->parent_gen
)
3445 /* If ctx2 is the parent of ctx1 */
3446 if (ctx1
->parent_ctx
== ctx2
&& ctx1
->parent_gen
== ctx2
->generation
)
3450 * If ctx1 and ctx2 have the same parent; we flatten the parent
3451 * hierarchy, see perf_event_init_context().
3453 if (ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
&&
3454 ctx1
->parent_gen
== ctx2
->parent_gen
)
3461 static void __perf_event_sync_stat(struct perf_event
*event
,
3462 struct perf_event
*next_event
)
3466 if (!event
->attr
.inherit_stat
)
3470 * Update the event value, we cannot use perf_event_read()
3471 * because we're in the middle of a context switch and have IRQs
3472 * disabled, which upsets smp_call_function_single(), however
3473 * we know the event must be on the current CPU, therefore we
3474 * don't need to use it.
3476 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
3477 event
->pmu
->read(event
);
3479 perf_event_update_time(event
);
3482 * In order to keep per-task stats reliable we need to flip the event
3483 * values when we flip the contexts.
3485 value
= local64_read(&next_event
->count
);
3486 value
= local64_xchg(&event
->count
, value
);
3487 local64_set(&next_event
->count
, value
);
3489 swap(event
->total_time_enabled
, next_event
->total_time_enabled
);
3490 swap(event
->total_time_running
, next_event
->total_time_running
);
3493 * Since we swizzled the values, update the user visible data too.
3495 perf_event_update_userpage(event
);
3496 perf_event_update_userpage(next_event
);
3499 static void perf_event_sync_stat(struct perf_event_context
*ctx
,
3500 struct perf_event_context
*next_ctx
)
3502 struct perf_event
*event
, *next_event
;
3507 update_context_time(ctx
);
3509 event
= list_first_entry(&ctx
->event_list
,
3510 struct perf_event
, event_entry
);
3512 next_event
= list_first_entry(&next_ctx
->event_list
,
3513 struct perf_event
, event_entry
);
3515 while (&event
->event_entry
!= &ctx
->event_list
&&
3516 &next_event
->event_entry
!= &next_ctx
->event_list
) {
3518 __perf_event_sync_stat(event
, next_event
);
3520 event
= list_next_entry(event
, event_entry
);
3521 next_event
= list_next_entry(next_event
, event_entry
);
3525 #define double_list_for_each_entry(pos1, pos2, head1, head2, member) \
3526 for (pos1 = list_first_entry(head1, typeof(*pos1), member), \
3527 pos2 = list_first_entry(head2, typeof(*pos2), member); \
3528 !list_entry_is_head(pos1, head1, member) && \
3529 !list_entry_is_head(pos2, head2, member); \
3530 pos1 = list_next_entry(pos1, member), \
3531 pos2 = list_next_entry(pos2, member))
3533 static void perf_event_swap_task_ctx_data(struct perf_event_context
*prev_ctx
,
3534 struct perf_event_context
*next_ctx
)
3536 struct perf_event_pmu_context
*prev_epc
, *next_epc
;
3538 if (!prev_ctx
->nr_task_data
)
3541 double_list_for_each_entry(prev_epc
, next_epc
,
3542 &prev_ctx
->pmu_ctx_list
, &next_ctx
->pmu_ctx_list
,
3545 if (WARN_ON_ONCE(prev_epc
->pmu
!= next_epc
->pmu
))
3549 * PMU specific parts of task perf context can require
3550 * additional synchronization. As an example of such
3551 * synchronization see implementation details of Intel
3552 * LBR call stack data profiling;
3554 if (prev_epc
->pmu
->swap_task_ctx
)
3555 prev_epc
->pmu
->swap_task_ctx(prev_epc
, next_epc
);
3557 swap(prev_epc
->task_ctx_data
, next_epc
->task_ctx_data
);
3561 static void perf_ctx_sched_task_cb(struct perf_event_context
*ctx
, bool sched_in
)
3563 struct perf_event_pmu_context
*pmu_ctx
;
3564 struct perf_cpu_pmu_context
*cpc
;
3566 list_for_each_entry(pmu_ctx
, &ctx
->pmu_ctx_list
, pmu_ctx_entry
) {
3567 cpc
= this_cpu_ptr(pmu_ctx
->pmu
->cpu_pmu_context
);
3569 if (cpc
->sched_cb_usage
&& pmu_ctx
->pmu
->sched_task
)
3570 pmu_ctx
->pmu
->sched_task(pmu_ctx
, sched_in
);
3575 perf_event_context_sched_out(struct task_struct
*task
, struct task_struct
*next
)
3577 struct perf_event_context
*ctx
= task
->perf_event_ctxp
;
3578 struct perf_event_context
*next_ctx
;
3579 struct perf_event_context
*parent
, *next_parent
;
3586 next_ctx
= rcu_dereference(next
->perf_event_ctxp
);
3590 parent
= rcu_dereference(ctx
->parent_ctx
);
3591 next_parent
= rcu_dereference(next_ctx
->parent_ctx
);
3593 /* If neither context have a parent context; they cannot be clones. */
3594 if (!parent
&& !next_parent
)
3597 if (next_parent
== ctx
|| next_ctx
== parent
|| next_parent
== parent
) {
3599 * Looks like the two contexts are clones, so we might be
3600 * able to optimize the context switch. We lock both
3601 * contexts and check that they are clones under the
3602 * lock (including re-checking that neither has been
3603 * uncloned in the meantime). It doesn't matter which
3604 * order we take the locks because no other cpu could
3605 * be trying to lock both of these tasks.
3607 raw_spin_lock(&ctx
->lock
);
3608 raw_spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
3609 if (context_equiv(ctx
, next_ctx
)) {
3611 perf_ctx_disable(ctx
, false);
3613 /* PMIs are disabled; ctx->nr_no_switch_fast is stable. */
3614 if (local_read(&ctx
->nr_no_switch_fast
) ||
3615 local_read(&next_ctx
->nr_no_switch_fast
)) {
3617 * Must not swap out ctx when there's pending
3618 * events that rely on the ctx->task relation.
3620 * Likewise, when a context contains inherit +
3621 * SAMPLE_READ events they should be switched
3622 * out using the slow path so that they are
3623 * treated as if they were distinct contexts.
3625 raw_spin_unlock(&next_ctx
->lock
);
3630 WRITE_ONCE(ctx
->task
, next
);
3631 WRITE_ONCE(next_ctx
->task
, task
);
3633 perf_ctx_sched_task_cb(ctx
, false);
3634 perf_event_swap_task_ctx_data(ctx
, next_ctx
);
3636 perf_ctx_enable(ctx
, false);
3639 * RCU_INIT_POINTER here is safe because we've not
3640 * modified the ctx and the above modification of
3641 * ctx->task and ctx->task_ctx_data are immaterial
3642 * since those values are always verified under
3643 * ctx->lock which we're now holding.
3645 RCU_INIT_POINTER(task
->perf_event_ctxp
, next_ctx
);
3646 RCU_INIT_POINTER(next
->perf_event_ctxp
, ctx
);
3650 perf_event_sync_stat(ctx
, next_ctx
);
3652 raw_spin_unlock(&next_ctx
->lock
);
3653 raw_spin_unlock(&ctx
->lock
);
3659 raw_spin_lock(&ctx
->lock
);
3660 perf_ctx_disable(ctx
, false);
3663 perf_ctx_sched_task_cb(ctx
, false);
3664 task_ctx_sched_out(ctx
, NULL
, EVENT_ALL
);
3666 perf_ctx_enable(ctx
, false);
3667 raw_spin_unlock(&ctx
->lock
);
3671 static DEFINE_PER_CPU(struct list_head
, sched_cb_list
);
3672 static DEFINE_PER_CPU(int, perf_sched_cb_usages
);
3674 void perf_sched_cb_dec(struct pmu
*pmu
)
3676 struct perf_cpu_pmu_context
*cpc
= this_cpu_ptr(pmu
->cpu_pmu_context
);
3678 this_cpu_dec(perf_sched_cb_usages
);
3681 if (!--cpc
->sched_cb_usage
)
3682 list_del(&cpc
->sched_cb_entry
);
3686 void perf_sched_cb_inc(struct pmu
*pmu
)
3688 struct perf_cpu_pmu_context
*cpc
= this_cpu_ptr(pmu
->cpu_pmu_context
);
3690 if (!cpc
->sched_cb_usage
++)
3691 list_add(&cpc
->sched_cb_entry
, this_cpu_ptr(&sched_cb_list
));
3694 this_cpu_inc(perf_sched_cb_usages
);
3698 * This function provides the context switch callback to the lower code
3699 * layer. It is invoked ONLY when the context switch callback is enabled.
3701 * This callback is relevant even to per-cpu events; for example multi event
3702 * PEBS requires this to provide PID/TID information. This requires we flush
3703 * all queued PEBS records before we context switch to a new task.
3705 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context
*cpc
, bool sched_in
)
3707 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(&perf_cpu_context
);
3712 /* software PMUs will not have sched_task */
3713 if (WARN_ON_ONCE(!pmu
->sched_task
))
3716 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
3717 perf_pmu_disable(pmu
);
3719 pmu
->sched_task(cpc
->task_epc
, sched_in
);
3721 perf_pmu_enable(pmu
);
3722 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
3725 static void perf_pmu_sched_task(struct task_struct
*prev
,
3726 struct task_struct
*next
,
3729 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(&perf_cpu_context
);
3730 struct perf_cpu_pmu_context
*cpc
;
3732 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3733 if (prev
== next
|| cpuctx
->task_ctx
)
3736 list_for_each_entry(cpc
, this_cpu_ptr(&sched_cb_list
), sched_cb_entry
)
3737 __perf_pmu_sched_task(cpc
, sched_in
);
3740 static void perf_event_switch(struct task_struct
*task
,
3741 struct task_struct
*next_prev
, bool sched_in
);
3744 * Called from scheduler to remove the events of the current task,
3745 * with interrupts disabled.
3747 * We stop each event and update the event value in event->count.
3749 * This does not protect us against NMI, but disable()
3750 * sets the disabled bit in the control field of event _before_
3751 * accessing the event control register. If a NMI hits, then it will
3752 * not restart the event.
3754 void __perf_event_task_sched_out(struct task_struct
*task
,
3755 struct task_struct
*next
)
3757 if (__this_cpu_read(perf_sched_cb_usages
))
3758 perf_pmu_sched_task(task
, next
, false);
3760 if (atomic_read(&nr_switch_events
))
3761 perf_event_switch(task
, next
, false);
3763 perf_event_context_sched_out(task
, next
);
3766 * if cgroup events exist on this CPU, then we need
3767 * to check if we have to switch out PMU state.
3768 * cgroup event are system-wide mode only
3770 perf_cgroup_switch(next
);
3773 static bool perf_less_group_idx(const void *l
, const void *r
, void __always_unused
*args
)
3775 const struct perf_event
*le
= *(const struct perf_event
**)l
;
3776 const struct perf_event
*re
= *(const struct perf_event
**)r
;
3778 return le
->group_index
< re
->group_index
;
3781 DEFINE_MIN_HEAP(struct perf_event
*, perf_event_min_heap
);
3783 static const struct min_heap_callbacks perf_min_heap
= {
3784 .less
= perf_less_group_idx
,
3788 static void __heap_add(struct perf_event_min_heap
*heap
, struct perf_event
*event
)
3790 struct perf_event
**itrs
= heap
->data
;
3793 itrs
[heap
->nr
] = event
;
3798 static void __link_epc(struct perf_event_pmu_context
*pmu_ctx
)
3800 struct perf_cpu_pmu_context
*cpc
;
3802 if (!pmu_ctx
->ctx
->task
)
3805 cpc
= this_cpu_ptr(pmu_ctx
->pmu
->cpu_pmu_context
);
3806 WARN_ON_ONCE(cpc
->task_epc
&& cpc
->task_epc
!= pmu_ctx
);
3807 cpc
->task_epc
= pmu_ctx
;
3810 static noinline
int visit_groups_merge(struct perf_event_context
*ctx
,
3811 struct perf_event_groups
*groups
, int cpu
,
3813 int (*func
)(struct perf_event
*, void *),
3816 #ifdef CONFIG_CGROUP_PERF
3817 struct cgroup_subsys_state
*css
= NULL
;
3819 struct perf_cpu_context
*cpuctx
= NULL
;
3820 /* Space for per CPU and/or any CPU event iterators. */
3821 struct perf_event
*itrs
[2];
3822 struct perf_event_min_heap event_heap
;
3823 struct perf_event
**evt
;
3826 if (pmu
->filter
&& pmu
->filter(pmu
, cpu
))
3830 cpuctx
= this_cpu_ptr(&perf_cpu_context
);
3831 event_heap
= (struct perf_event_min_heap
){
3832 .data
= cpuctx
->heap
,
3834 .size
= cpuctx
->heap_size
,
3837 lockdep_assert_held(&cpuctx
->ctx
.lock
);
3839 #ifdef CONFIG_CGROUP_PERF
3841 css
= &cpuctx
->cgrp
->css
;
3844 event_heap
= (struct perf_event_min_heap
){
3847 .size
= ARRAY_SIZE(itrs
),
3849 /* Events not within a CPU context may be on any CPU. */
3850 __heap_add(&event_heap
, perf_event_groups_first(groups
, -1, pmu
, NULL
));
3852 evt
= event_heap
.data
;
3854 __heap_add(&event_heap
, perf_event_groups_first(groups
, cpu
, pmu
, NULL
));
3856 #ifdef CONFIG_CGROUP_PERF
3857 for (; css
; css
= css
->parent
)
3858 __heap_add(&event_heap
, perf_event_groups_first(groups
, cpu
, pmu
, css
->cgroup
));
3861 if (event_heap
.nr
) {
3862 __link_epc((*evt
)->pmu_ctx
);
3863 perf_assert_pmu_disabled((*evt
)->pmu_ctx
->pmu
);
3866 min_heapify_all_inline(&event_heap
, &perf_min_heap
, NULL
);
3868 while (event_heap
.nr
) {
3869 ret
= func(*evt
, data
);
3873 *evt
= perf_event_groups_next(*evt
, pmu
);
3875 min_heap_sift_down_inline(&event_heap
, 0, &perf_min_heap
, NULL
);
3877 min_heap_pop_inline(&event_heap
, &perf_min_heap
, NULL
);
3884 * Because the userpage is strictly per-event (there is no concept of context,
3885 * so there cannot be a context indirection), every userpage must be updated
3886 * when context time starts :-(
3888 * IOW, we must not miss EVENT_TIME edges.
3890 static inline bool event_update_userpage(struct perf_event
*event
)
3892 if (likely(!atomic_read(&event
->mmap_count
)))
3895 perf_event_update_time(event
);
3896 perf_event_update_userpage(event
);
3901 static inline void group_update_userpage(struct perf_event
*group_event
)
3903 struct perf_event
*event
;
3905 if (!event_update_userpage(group_event
))
3908 for_each_sibling_event(event
, group_event
)
3909 event_update_userpage(event
);
3912 static int merge_sched_in(struct perf_event
*event
, void *data
)
3914 struct perf_event_context
*ctx
= event
->ctx
;
3915 int *can_add_hw
= data
;
3917 if (event
->state
<= PERF_EVENT_STATE_OFF
)
3920 if (!event_filter_match(event
))
3923 if (group_can_go_on(event
, *can_add_hw
)) {
3924 if (!group_sched_in(event
, ctx
))
3925 list_add_tail(&event
->active_list
, get_event_list(event
));
3928 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
3930 if (event
->attr
.pinned
) {
3931 perf_cgroup_event_disable(event
, ctx
);
3932 perf_event_set_state(event
, PERF_EVENT_STATE_ERROR
);
3934 struct perf_cpu_pmu_context
*cpc
;
3936 event
->pmu_ctx
->rotate_necessary
= 1;
3937 cpc
= this_cpu_ptr(event
->pmu_ctx
->pmu
->cpu_pmu_context
);
3938 perf_mux_hrtimer_restart(cpc
);
3939 group_update_userpage(event
);
3946 static void pmu_groups_sched_in(struct perf_event_context
*ctx
,
3947 struct perf_event_groups
*groups
,
3951 visit_groups_merge(ctx
, groups
, smp_processor_id(), pmu
,
3952 merge_sched_in
, &can_add_hw
);
3955 static void __pmu_ctx_sched_in(struct perf_event_pmu_context
*pmu_ctx
,
3956 enum event_type_t event_type
)
3958 struct perf_event_context
*ctx
= pmu_ctx
->ctx
;
3960 if (event_type
& EVENT_PINNED
)
3961 pmu_groups_sched_in(ctx
, &ctx
->pinned_groups
, pmu_ctx
->pmu
);
3962 if (event_type
& EVENT_FLEXIBLE
)
3963 pmu_groups_sched_in(ctx
, &ctx
->flexible_groups
, pmu_ctx
->pmu
);
3967 ctx_sched_in(struct perf_event_context
*ctx
, struct pmu
*pmu
, enum event_type_t event_type
)
3969 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(&perf_cpu_context
);
3970 struct perf_event_pmu_context
*pmu_ctx
;
3971 int is_active
= ctx
->is_active
;
3972 bool cgroup
= event_type
& EVENT_CGROUP
;
3974 event_type
&= ~EVENT_CGROUP
;
3976 lockdep_assert_held(&ctx
->lock
);
3978 if (likely(!ctx
->nr_events
))
3981 if (!(is_active
& EVENT_TIME
)) {
3982 /* start ctx time */
3983 __update_context_time(ctx
, false);
3984 perf_cgroup_set_timestamp(cpuctx
);
3986 * CPU-release for the below ->is_active store,
3987 * see __load_acquire() in perf_event_time_now()
3992 ctx
->is_active
|= (event_type
| EVENT_TIME
);
3994 if (!(is_active
& EVENT_ALL
))
3995 cpuctx
->task_ctx
= ctx
;
3997 WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
);
4000 is_active
^= ctx
->is_active
; /* changed bits */
4003 * First go through the list and put on any pinned groups
4004 * in order to give them the best chance of going on.
4006 if (is_active
& EVENT_PINNED
) {
4007 for_each_epc(pmu_ctx
, ctx
, pmu
, cgroup
)
4008 __pmu_ctx_sched_in(pmu_ctx
, EVENT_PINNED
);
4011 /* Then walk through the lower prio flexible groups */
4012 if (is_active
& EVENT_FLEXIBLE
) {
4013 for_each_epc(pmu_ctx
, ctx
, pmu
, cgroup
)
4014 __pmu_ctx_sched_in(pmu_ctx
, EVENT_FLEXIBLE
);
4018 static void perf_event_context_sched_in(struct task_struct
*task
)
4020 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(&perf_cpu_context
);
4021 struct perf_event_context
*ctx
;
4024 ctx
= rcu_dereference(task
->perf_event_ctxp
);
4028 if (cpuctx
->task_ctx
== ctx
) {
4029 perf_ctx_lock(cpuctx
, ctx
);
4030 perf_ctx_disable(ctx
, false);
4032 perf_ctx_sched_task_cb(ctx
, true);
4034 perf_ctx_enable(ctx
, false);
4035 perf_ctx_unlock(cpuctx
, ctx
);
4039 perf_ctx_lock(cpuctx
, ctx
);
4041 * We must check ctx->nr_events while holding ctx->lock, such
4042 * that we serialize against perf_install_in_context().
4044 if (!ctx
->nr_events
)
4047 perf_ctx_disable(ctx
, false);
4049 * We want to keep the following priority order:
4050 * cpu pinned (that don't need to move), task pinned,
4051 * cpu flexible, task flexible.
4053 * However, if task's ctx is not carrying any pinned
4054 * events, no need to flip the cpuctx's events around.
4056 if (!RB_EMPTY_ROOT(&ctx
->pinned_groups
.tree
)) {
4057 perf_ctx_disable(&cpuctx
->ctx
, false);
4058 ctx_sched_out(&cpuctx
->ctx
, NULL
, EVENT_FLEXIBLE
);
4061 perf_event_sched_in(cpuctx
, ctx
, NULL
);
4063 perf_ctx_sched_task_cb(cpuctx
->task_ctx
, true);
4065 if (!RB_EMPTY_ROOT(&ctx
->pinned_groups
.tree
))
4066 perf_ctx_enable(&cpuctx
->ctx
, false);
4068 perf_ctx_enable(ctx
, false);
4071 perf_ctx_unlock(cpuctx
, ctx
);
4077 * Called from scheduler to add the events of the current task
4078 * with interrupts disabled.
4080 * We restore the event value and then enable it.
4082 * This does not protect us against NMI, but enable()
4083 * sets the enabled bit in the control field of event _before_
4084 * accessing the event control register. If a NMI hits, then it will
4085 * keep the event running.
4087 void __perf_event_task_sched_in(struct task_struct
*prev
,
4088 struct task_struct
*task
)
4090 perf_event_context_sched_in(task
);
4092 if (atomic_read(&nr_switch_events
))
4093 perf_event_switch(task
, prev
, true);
4095 if (__this_cpu_read(perf_sched_cb_usages
))
4096 perf_pmu_sched_task(prev
, task
, true);
4099 static u64
perf_calculate_period(struct perf_event
*event
, u64 nsec
, u64 count
)
4101 u64 frequency
= event
->attr
.sample_freq
;
4102 u64 sec
= NSEC_PER_SEC
;
4103 u64 divisor
, dividend
;
4105 int count_fls
, nsec_fls
, frequency_fls
, sec_fls
;
4107 count_fls
= fls64(count
);
4108 nsec_fls
= fls64(nsec
);
4109 frequency_fls
= fls64(frequency
);
4113 * We got @count in @nsec, with a target of sample_freq HZ
4114 * the target period becomes:
4117 * period = -------------------
4118 * @nsec * sample_freq
4123 * Reduce accuracy by one bit such that @a and @b converge
4124 * to a similar magnitude.
4126 #define REDUCE_FLS(a, b) \
4128 if (a##_fls > b##_fls) { \
4138 * Reduce accuracy until either term fits in a u64, then proceed with
4139 * the other, so that finally we can do a u64/u64 division.
4141 while (count_fls
+ sec_fls
> 64 && nsec_fls
+ frequency_fls
> 64) {
4142 REDUCE_FLS(nsec
, frequency
);
4143 REDUCE_FLS(sec
, count
);
4146 if (count_fls
+ sec_fls
> 64) {
4147 divisor
= nsec
* frequency
;
4149 while (count_fls
+ sec_fls
> 64) {
4150 REDUCE_FLS(count
, sec
);
4154 dividend
= count
* sec
;
4156 dividend
= count
* sec
;
4158 while (nsec_fls
+ frequency_fls
> 64) {
4159 REDUCE_FLS(nsec
, frequency
);
4163 divisor
= nsec
* frequency
;
4169 return div64_u64(dividend
, divisor
);
4172 static DEFINE_PER_CPU(int, perf_throttled_count
);
4173 static DEFINE_PER_CPU(u64
, perf_throttled_seq
);
4175 static void perf_adjust_period(struct perf_event
*event
, u64 nsec
, u64 count
, bool disable
)
4177 struct hw_perf_event
*hwc
= &event
->hw
;
4178 s64 period
, sample_period
;
4181 period
= perf_calculate_period(event
, nsec
, count
);
4183 delta
= (s64
)(period
- hwc
->sample_period
);
4188 delta
/= 8; /* low pass filter */
4190 sample_period
= hwc
->sample_period
+ delta
;
4195 hwc
->sample_period
= sample_period
;
4197 if (local64_read(&hwc
->period_left
) > 8*sample_period
) {
4199 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
4201 local64_set(&hwc
->period_left
, 0);
4204 event
->pmu
->start(event
, PERF_EF_RELOAD
);
4208 static void perf_adjust_freq_unthr_events(struct list_head
*event_list
)
4210 struct perf_event
*event
;
4211 struct hw_perf_event
*hwc
;
4212 u64 now
, period
= TICK_NSEC
;
4215 list_for_each_entry(event
, event_list
, active_list
) {
4216 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
4219 // XXX use visit thingy to avoid the -1,cpu match
4220 if (!event_filter_match(event
))
4225 if (hwc
->interrupts
== MAX_INTERRUPTS
) {
4226 hwc
->interrupts
= 0;
4227 perf_log_throttle(event
, 1);
4228 if (!event
->attr
.freq
|| !event
->attr
.sample_freq
)
4229 event
->pmu
->start(event
, 0);
4232 if (!event
->attr
.freq
|| !event
->attr
.sample_freq
)
4236 * stop the event and update event->count
4238 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
4240 now
= local64_read(&event
->count
);
4241 delta
= now
- hwc
->freq_count_stamp
;
4242 hwc
->freq_count_stamp
= now
;
4246 * reload only if value has changed
4247 * we have stopped the event so tell that
4248 * to perf_adjust_period() to avoid stopping it
4252 perf_adjust_period(event
, period
, delta
, false);
4254 event
->pmu
->start(event
, delta
> 0 ? PERF_EF_RELOAD
: 0);
4259 * combine freq adjustment with unthrottling to avoid two passes over the
4260 * events. At the same time, make sure, having freq events does not change
4261 * the rate of unthrottling as that would introduce bias.
4264 perf_adjust_freq_unthr_context(struct perf_event_context
*ctx
, bool unthrottle
)
4266 struct perf_event_pmu_context
*pmu_ctx
;
4269 * only need to iterate over all events iff:
4270 * - context have events in frequency mode (needs freq adjust)
4271 * - there are events to unthrottle on this cpu
4273 if (!(ctx
->nr_freq
|| unthrottle
))
4276 raw_spin_lock(&ctx
->lock
);
4278 list_for_each_entry(pmu_ctx
, &ctx
->pmu_ctx_list
, pmu_ctx_entry
) {
4279 if (!(pmu_ctx
->nr_freq
|| unthrottle
))
4281 if (!perf_pmu_ctx_is_active(pmu_ctx
))
4283 if (pmu_ctx
->pmu
->capabilities
& PERF_PMU_CAP_NO_INTERRUPT
)
4286 perf_pmu_disable(pmu_ctx
->pmu
);
4287 perf_adjust_freq_unthr_events(&pmu_ctx
->pinned_active
);
4288 perf_adjust_freq_unthr_events(&pmu_ctx
->flexible_active
);
4289 perf_pmu_enable(pmu_ctx
->pmu
);
4292 raw_spin_unlock(&ctx
->lock
);
4296 * Move @event to the tail of the @ctx's elegible events.
4298 static void rotate_ctx(struct perf_event_context
*ctx
, struct perf_event
*event
)
4301 * Rotate the first entry last of non-pinned groups. Rotation might be
4302 * disabled by the inheritance code.
4304 if (ctx
->rotate_disable
)
4307 perf_event_groups_delete(&ctx
->flexible_groups
, event
);
4308 perf_event_groups_insert(&ctx
->flexible_groups
, event
);
4311 /* pick an event from the flexible_groups to rotate */
4312 static inline struct perf_event
*
4313 ctx_event_to_rotate(struct perf_event_pmu_context
*pmu_ctx
)
4315 struct perf_event
*event
;
4316 struct rb_node
*node
;
4317 struct rb_root
*tree
;
4318 struct __group_key key
= {
4319 .pmu
= pmu_ctx
->pmu
,
4322 /* pick the first active flexible event */
4323 event
= list_first_entry_or_null(&pmu_ctx
->flexible_active
,
4324 struct perf_event
, active_list
);
4328 /* if no active flexible event, pick the first event */
4329 tree
= &pmu_ctx
->ctx
->flexible_groups
.tree
;
4331 if (!pmu_ctx
->ctx
->task
) {
4332 key
.cpu
= smp_processor_id();
4334 node
= rb_find_first(&key
, tree
, __group_cmp_ignore_cgroup
);
4336 event
= __node_2_pe(node
);
4341 node
= rb_find_first(&key
, tree
, __group_cmp_ignore_cgroup
);
4343 event
= __node_2_pe(node
);
4347 key
.cpu
= smp_processor_id();
4348 node
= rb_find_first(&key
, tree
, __group_cmp_ignore_cgroup
);
4350 event
= __node_2_pe(node
);
4354 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4355 * finds there are unschedulable events, it will set it again.
4357 pmu_ctx
->rotate_necessary
= 0;
4362 static bool perf_rotate_context(struct perf_cpu_pmu_context
*cpc
)
4364 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(&perf_cpu_context
);
4365 struct perf_event_pmu_context
*cpu_epc
, *task_epc
= NULL
;
4366 struct perf_event
*cpu_event
= NULL
, *task_event
= NULL
;
4367 int cpu_rotate
, task_rotate
;
4371 * Since we run this from IRQ context, nobody can install new
4372 * events, thus the event count values are stable.
4375 cpu_epc
= &cpc
->epc
;
4377 task_epc
= cpc
->task_epc
;
4379 cpu_rotate
= cpu_epc
->rotate_necessary
;
4380 task_rotate
= task_epc
? task_epc
->rotate_necessary
: 0;
4382 if (!(cpu_rotate
|| task_rotate
))
4385 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
4386 perf_pmu_disable(pmu
);
4389 task_event
= ctx_event_to_rotate(task_epc
);
4391 cpu_event
= ctx_event_to_rotate(cpu_epc
);
4394 * As per the order given at ctx_resched() first 'pop' task flexible
4395 * and then, if needed CPU flexible.
4397 if (task_event
|| (task_epc
&& cpu_event
)) {
4398 update_context_time(task_epc
->ctx
);
4399 __pmu_ctx_sched_out(task_epc
, EVENT_FLEXIBLE
);
4403 update_context_time(&cpuctx
->ctx
);
4404 __pmu_ctx_sched_out(cpu_epc
, EVENT_FLEXIBLE
);
4405 rotate_ctx(&cpuctx
->ctx
, cpu_event
);
4406 __pmu_ctx_sched_in(cpu_epc
, EVENT_FLEXIBLE
);
4410 rotate_ctx(task_epc
->ctx
, task_event
);
4412 if (task_event
|| (task_epc
&& cpu_event
))
4413 __pmu_ctx_sched_in(task_epc
, EVENT_FLEXIBLE
);
4415 perf_pmu_enable(pmu
);
4416 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
4421 void perf_event_task_tick(void)
4423 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(&perf_cpu_context
);
4424 struct perf_event_context
*ctx
;
4427 lockdep_assert_irqs_disabled();
4429 __this_cpu_inc(perf_throttled_seq
);
4430 throttled
= __this_cpu_xchg(perf_throttled_count
, 0);
4431 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS
);
4433 perf_adjust_freq_unthr_context(&cpuctx
->ctx
, !!throttled
);
4436 ctx
= rcu_dereference(current
->perf_event_ctxp
);
4438 perf_adjust_freq_unthr_context(ctx
, !!throttled
);
4442 static int event_enable_on_exec(struct perf_event
*event
,
4443 struct perf_event_context
*ctx
)
4445 if (!event
->attr
.enable_on_exec
)
4448 event
->attr
.enable_on_exec
= 0;
4449 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
4452 perf_event_set_state(event
, PERF_EVENT_STATE_INACTIVE
);
4458 * Enable all of a task's events that have been marked enable-on-exec.
4459 * This expects task == current.
4461 static void perf_event_enable_on_exec(struct perf_event_context
*ctx
)
4463 struct perf_event_context
*clone_ctx
= NULL
;
4464 enum event_type_t event_type
= 0;
4465 struct perf_cpu_context
*cpuctx
;
4466 struct perf_event
*event
;
4467 unsigned long flags
;
4470 local_irq_save(flags
);
4471 if (WARN_ON_ONCE(current
->perf_event_ctxp
!= ctx
))
4474 if (!ctx
->nr_events
)
4477 cpuctx
= this_cpu_ptr(&perf_cpu_context
);
4478 perf_ctx_lock(cpuctx
, ctx
);
4479 ctx_time_freeze(cpuctx
, ctx
);
4481 list_for_each_entry(event
, &ctx
->event_list
, event_entry
) {
4482 enabled
|= event_enable_on_exec(event
, ctx
);
4483 event_type
|= get_event_type(event
);
4487 * Unclone and reschedule this context if we enabled any event.
4490 clone_ctx
= unclone_ctx(ctx
);
4491 ctx_resched(cpuctx
, ctx
, NULL
, event_type
);
4493 perf_ctx_unlock(cpuctx
, ctx
);
4496 local_irq_restore(flags
);
4502 static void perf_remove_from_owner(struct perf_event
*event
);
4503 static void perf_event_exit_event(struct perf_event
*event
,
4504 struct perf_event_context
*ctx
);
4507 * Removes all events from the current task that have been marked
4508 * remove-on-exec, and feeds their values back to parent events.
4510 static void perf_event_remove_on_exec(struct perf_event_context
*ctx
)
4512 struct perf_event_context
*clone_ctx
= NULL
;
4513 struct perf_event
*event
, *next
;
4514 unsigned long flags
;
4515 bool modified
= false;
4517 mutex_lock(&ctx
->mutex
);
4519 if (WARN_ON_ONCE(ctx
->task
!= current
))
4522 list_for_each_entry_safe(event
, next
, &ctx
->event_list
, event_entry
) {
4523 if (!event
->attr
.remove_on_exec
)
4526 if (!is_kernel_event(event
))
4527 perf_remove_from_owner(event
);
4531 perf_event_exit_event(event
, ctx
);
4534 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
4536 clone_ctx
= unclone_ctx(ctx
);
4537 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
4540 mutex_unlock(&ctx
->mutex
);
4546 struct perf_read_data
{
4547 struct perf_event
*event
;
4552 static inline const struct cpumask
*perf_scope_cpu_topology_cpumask(unsigned int scope
, int cpu
);
4554 static int __perf_event_read_cpu(struct perf_event
*event
, int event_cpu
)
4556 int local_cpu
= smp_processor_id();
4557 u16 local_pkg
, event_pkg
;
4559 if ((unsigned)event_cpu
>= nr_cpu_ids
)
4562 if (event
->group_caps
& PERF_EV_CAP_READ_SCOPE
) {
4563 const struct cpumask
*cpumask
= perf_scope_cpu_topology_cpumask(event
->pmu
->scope
, event_cpu
);
4565 if (cpumask
&& cpumask_test_cpu(local_cpu
, cpumask
))
4569 if (event
->group_caps
& PERF_EV_CAP_READ_ACTIVE_PKG
) {
4570 event_pkg
= topology_physical_package_id(event_cpu
);
4571 local_pkg
= topology_physical_package_id(local_cpu
);
4573 if (event_pkg
== local_pkg
)
4581 * Cross CPU call to read the hardware event
4583 static void __perf_event_read(void *info
)
4585 struct perf_read_data
*data
= info
;
4586 struct perf_event
*sub
, *event
= data
->event
;
4587 struct perf_event_context
*ctx
= event
->ctx
;
4588 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(&perf_cpu_context
);
4589 struct pmu
*pmu
= event
->pmu
;
4592 * If this is a task context, we need to check whether it is
4593 * the current task context of this cpu. If not it has been
4594 * scheduled out before the smp call arrived. In that case
4595 * event->count would have been updated to a recent sample
4596 * when the event was scheduled out.
4598 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
4601 raw_spin_lock(&ctx
->lock
);
4602 ctx_time_update_event(ctx
, event
);
4604 perf_event_update_time(event
);
4606 perf_event_update_sibling_time(event
);
4608 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
4617 pmu
->start_txn(pmu
, PERF_PMU_TXN_READ
);
4621 for_each_sibling_event(sub
, event
) {
4622 if (sub
->state
== PERF_EVENT_STATE_ACTIVE
) {
4624 * Use sibling's PMU rather than @event's since
4625 * sibling could be on different (eg: software) PMU.
4627 sub
->pmu
->read(sub
);
4631 data
->ret
= pmu
->commit_txn(pmu
);
4634 raw_spin_unlock(&ctx
->lock
);
4637 static inline u64
perf_event_count(struct perf_event
*event
, bool self
)
4640 return local64_read(&event
->count
);
4642 return local64_read(&event
->count
) + atomic64_read(&event
->child_count
);
4645 static void calc_timer_values(struct perf_event
*event
,
4652 *now
= perf_clock();
4653 ctx_time
= perf_event_time_now(event
, *now
);
4654 __perf_update_times(event
, ctx_time
, enabled
, running
);
4658 * NMI-safe method to read a local event, that is an event that
4660 * - either for the current task, or for this CPU
4661 * - does not have inherit set, for inherited task events
4662 * will not be local and we cannot read them atomically
4663 * - must not have a pmu::count method
4665 int perf_event_read_local(struct perf_event
*event
, u64
*value
,
4666 u64
*enabled
, u64
*running
)
4668 unsigned long flags
;
4674 * Disabling interrupts avoids all counter scheduling (context
4675 * switches, timer based rotation and IPIs).
4677 local_irq_save(flags
);
4680 * It must not be an event with inherit set, we cannot read
4681 * all child counters from atomic context.
4683 if (event
->attr
.inherit
) {
4688 /* If this is a per-task event, it must be for current */
4689 if ((event
->attach_state
& PERF_ATTACH_TASK
) &&
4690 event
->hw
.target
!= current
) {
4696 * Get the event CPU numbers, and adjust them to local if the event is
4697 * a per-package event that can be read locally
4699 event_oncpu
= __perf_event_read_cpu(event
, event
->oncpu
);
4700 event_cpu
= __perf_event_read_cpu(event
, event
->cpu
);
4702 /* If this is a per-CPU event, it must be for this CPU */
4703 if (!(event
->attach_state
& PERF_ATTACH_TASK
) &&
4704 event_cpu
!= smp_processor_id()) {
4709 /* If this is a pinned event it must be running on this CPU */
4710 if (event
->attr
.pinned
&& event_oncpu
!= smp_processor_id()) {
4716 * If the event is currently on this CPU, its either a per-task event,
4717 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4720 if (event_oncpu
== smp_processor_id())
4721 event
->pmu
->read(event
);
4723 *value
= local64_read(&event
->count
);
4724 if (enabled
|| running
) {
4725 u64 __enabled
, __running
, __now
;
4727 calc_timer_values(event
, &__now
, &__enabled
, &__running
);
4729 *enabled
= __enabled
;
4731 *running
= __running
;
4734 local_irq_restore(flags
);
4739 static int perf_event_read(struct perf_event
*event
, bool group
)
4741 enum perf_event_state state
= READ_ONCE(event
->state
);
4742 int event_cpu
, ret
= 0;
4745 * If event is enabled and currently active on a CPU, update the
4746 * value in the event structure:
4749 if (state
== PERF_EVENT_STATE_ACTIVE
) {
4750 struct perf_read_data data
;
4753 * Orders the ->state and ->oncpu loads such that if we see
4754 * ACTIVE we must also see the right ->oncpu.
4756 * Matches the smp_wmb() from event_sched_in().
4760 event_cpu
= READ_ONCE(event
->oncpu
);
4761 if ((unsigned)event_cpu
>= nr_cpu_ids
)
4764 data
= (struct perf_read_data
){
4771 event_cpu
= __perf_event_read_cpu(event
, event_cpu
);
4774 * Purposely ignore the smp_call_function_single() return
4777 * If event_cpu isn't a valid CPU it means the event got
4778 * scheduled out and that will have updated the event count.
4780 * Therefore, either way, we'll have an up-to-date event count
4783 (void)smp_call_function_single(event_cpu
, __perf_event_read
, &data
, 1);
4787 } else if (state
== PERF_EVENT_STATE_INACTIVE
) {
4788 struct perf_event_context
*ctx
= event
->ctx
;
4789 unsigned long flags
;
4791 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
4792 state
= event
->state
;
4793 if (state
!= PERF_EVENT_STATE_INACTIVE
) {
4794 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
4799 * May read while context is not active (e.g., thread is
4800 * blocked), in that case we cannot update context time
4802 ctx_time_update_event(ctx
, event
);
4804 perf_event_update_time(event
);
4806 perf_event_update_sibling_time(event
);
4807 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
4814 * Initialize the perf_event context in a task_struct:
4816 static void __perf_event_init_context(struct perf_event_context
*ctx
)
4818 raw_spin_lock_init(&ctx
->lock
);
4819 mutex_init(&ctx
->mutex
);
4820 INIT_LIST_HEAD(&ctx
->pmu_ctx_list
);
4821 perf_event_groups_init(&ctx
->pinned_groups
);
4822 perf_event_groups_init(&ctx
->flexible_groups
);
4823 INIT_LIST_HEAD(&ctx
->event_list
);
4824 refcount_set(&ctx
->refcount
, 1);
4828 __perf_init_event_pmu_context(struct perf_event_pmu_context
*epc
, struct pmu
*pmu
)
4831 INIT_LIST_HEAD(&epc
->pmu_ctx_entry
);
4832 INIT_LIST_HEAD(&epc
->pinned_active
);
4833 INIT_LIST_HEAD(&epc
->flexible_active
);
4834 atomic_set(&epc
->refcount
, 1);
4837 static struct perf_event_context
*
4838 alloc_perf_context(struct task_struct
*task
)
4840 struct perf_event_context
*ctx
;
4842 ctx
= kzalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
4846 __perf_event_init_context(ctx
);
4848 ctx
->task
= get_task_struct(task
);
4853 static struct task_struct
*
4854 find_lively_task_by_vpid(pid_t vpid
)
4856 struct task_struct
*task
;
4862 task
= find_task_by_vpid(vpid
);
4864 get_task_struct(task
);
4868 return ERR_PTR(-ESRCH
);
4874 * Returns a matching context with refcount and pincount.
4876 static struct perf_event_context
*
4877 find_get_context(struct task_struct
*task
, struct perf_event
*event
)
4879 struct perf_event_context
*ctx
, *clone_ctx
= NULL
;
4880 struct perf_cpu_context
*cpuctx
;
4881 unsigned long flags
;
4885 /* Must be root to operate on a CPU event: */
4886 err
= perf_allow_cpu(&event
->attr
);
4888 return ERR_PTR(err
);
4890 cpuctx
= per_cpu_ptr(&perf_cpu_context
, event
->cpu
);
4893 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
4895 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
4902 ctx
= perf_lock_task_context(task
, &flags
);
4904 clone_ctx
= unclone_ctx(ctx
);
4907 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
4912 ctx
= alloc_perf_context(task
);
4918 mutex_lock(&task
->perf_event_mutex
);
4920 * If it has already passed perf_event_exit_task().
4921 * we must see PF_EXITING, it takes this mutex too.
4923 if (task
->flags
& PF_EXITING
)
4925 else if (task
->perf_event_ctxp
)
4930 rcu_assign_pointer(task
->perf_event_ctxp
, ctx
);
4932 mutex_unlock(&task
->perf_event_mutex
);
4934 if (unlikely(err
)) {
4946 return ERR_PTR(err
);
4949 static struct perf_event_pmu_context
*
4950 find_get_pmu_context(struct pmu
*pmu
, struct perf_event_context
*ctx
,
4951 struct perf_event
*event
)
4953 struct perf_event_pmu_context
*new = NULL
, *epc
;
4954 void *task_ctx_data
= NULL
;
4958 * perf_pmu_migrate_context() / __perf_pmu_install_event()
4959 * relies on the fact that find_get_pmu_context() cannot fail
4962 struct perf_cpu_pmu_context
*cpc
;
4964 cpc
= per_cpu_ptr(pmu
->cpu_pmu_context
, event
->cpu
);
4966 raw_spin_lock_irq(&ctx
->lock
);
4968 atomic_set(&epc
->refcount
, 1);
4970 list_add(&epc
->pmu_ctx_entry
, &ctx
->pmu_ctx_list
);
4973 WARN_ON_ONCE(epc
->ctx
!= ctx
);
4974 atomic_inc(&epc
->refcount
);
4976 raw_spin_unlock_irq(&ctx
->lock
);
4980 new = kzalloc(sizeof(*epc
), GFP_KERNEL
);
4982 return ERR_PTR(-ENOMEM
);
4984 if (event
->attach_state
& PERF_ATTACH_TASK_DATA
) {
4985 task_ctx_data
= alloc_task_ctx_data(pmu
);
4986 if (!task_ctx_data
) {
4988 return ERR_PTR(-ENOMEM
);
4992 __perf_init_event_pmu_context(new, pmu
);
4997 * lockdep_assert_held(&ctx->mutex);
4999 * can't because perf_event_init_task() doesn't actually hold the
5003 raw_spin_lock_irq(&ctx
->lock
);
5004 list_for_each_entry(epc
, &ctx
->pmu_ctx_list
, pmu_ctx_entry
) {
5005 if (epc
->pmu
== pmu
) {
5006 WARN_ON_ONCE(epc
->ctx
!= ctx
);
5007 atomic_inc(&epc
->refcount
);
5015 list_add(&epc
->pmu_ctx_entry
, &ctx
->pmu_ctx_list
);
5019 if (task_ctx_data
&& !epc
->task_ctx_data
) {
5020 epc
->task_ctx_data
= task_ctx_data
;
5021 task_ctx_data
= NULL
;
5022 ctx
->nr_task_data
++;
5024 raw_spin_unlock_irq(&ctx
->lock
);
5026 free_task_ctx_data(pmu
, task_ctx_data
);
5032 static void get_pmu_ctx(struct perf_event_pmu_context
*epc
)
5034 WARN_ON_ONCE(!atomic_inc_not_zero(&epc
->refcount
));
5037 static void free_epc_rcu(struct rcu_head
*head
)
5039 struct perf_event_pmu_context
*epc
= container_of(head
, typeof(*epc
), rcu_head
);
5041 kfree(epc
->task_ctx_data
);
5045 static void put_pmu_ctx(struct perf_event_pmu_context
*epc
)
5047 struct perf_event_context
*ctx
= epc
->ctx
;
5048 unsigned long flags
;
5053 * lockdep_assert_held(&ctx->mutex);
5055 * can't because of the call-site in _free_event()/put_event()
5056 * which isn't always called under ctx->mutex.
5058 if (!atomic_dec_and_raw_lock_irqsave(&epc
->refcount
, &ctx
->lock
, flags
))
5061 WARN_ON_ONCE(list_empty(&epc
->pmu_ctx_entry
));
5063 list_del_init(&epc
->pmu_ctx_entry
);
5066 WARN_ON_ONCE(!list_empty(&epc
->pinned_active
));
5067 WARN_ON_ONCE(!list_empty(&epc
->flexible_active
));
5069 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
5074 call_rcu(&epc
->rcu_head
, free_epc_rcu
);
5077 static void perf_event_free_filter(struct perf_event
*event
);
5079 static void free_event_rcu(struct rcu_head
*head
)
5081 struct perf_event
*event
= container_of(head
, typeof(*event
), rcu_head
);
5084 put_pid_ns(event
->ns
);
5085 perf_event_free_filter(event
);
5086 kmem_cache_free(perf_event_cache
, event
);
5089 static void ring_buffer_attach(struct perf_event
*event
,
5090 struct perf_buffer
*rb
);
5092 static void detach_sb_event(struct perf_event
*event
)
5094 struct pmu_event_list
*pel
= per_cpu_ptr(&pmu_sb_events
, event
->cpu
);
5096 raw_spin_lock(&pel
->lock
);
5097 list_del_rcu(&event
->sb_list
);
5098 raw_spin_unlock(&pel
->lock
);
5101 static bool is_sb_event(struct perf_event
*event
)
5103 struct perf_event_attr
*attr
= &event
->attr
;
5108 if (event
->attach_state
& PERF_ATTACH_TASK
)
5111 if (attr
->mmap
|| attr
->mmap_data
|| attr
->mmap2
||
5112 attr
->comm
|| attr
->comm_exec
||
5113 attr
->task
|| attr
->ksymbol
||
5114 attr
->context_switch
|| attr
->text_poke
||
5120 static void unaccount_pmu_sb_event(struct perf_event
*event
)
5122 if (is_sb_event(event
))
5123 detach_sb_event(event
);
5126 #ifdef CONFIG_NO_HZ_FULL
5127 static DEFINE_SPINLOCK(nr_freq_lock
);
5130 static void unaccount_freq_event_nohz(void)
5132 #ifdef CONFIG_NO_HZ_FULL
5133 spin_lock(&nr_freq_lock
);
5134 if (atomic_dec_and_test(&nr_freq_events
))
5135 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS
);
5136 spin_unlock(&nr_freq_lock
);
5140 static void unaccount_freq_event(void)
5142 if (tick_nohz_full_enabled())
5143 unaccount_freq_event_nohz();
5145 atomic_dec(&nr_freq_events
);
5148 static void unaccount_event(struct perf_event
*event
)
5155 if (event
->attach_state
& (PERF_ATTACH_TASK
| PERF_ATTACH_SCHED_CB
))
5157 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
5158 atomic_dec(&nr_mmap_events
);
5159 if (event
->attr
.build_id
)
5160 atomic_dec(&nr_build_id_events
);
5161 if (event
->attr
.comm
)
5162 atomic_dec(&nr_comm_events
);
5163 if (event
->attr
.namespaces
)
5164 atomic_dec(&nr_namespaces_events
);
5165 if (event
->attr
.cgroup
)
5166 atomic_dec(&nr_cgroup_events
);
5167 if (event
->attr
.task
)
5168 atomic_dec(&nr_task_events
);
5169 if (event
->attr
.freq
)
5170 unaccount_freq_event();
5171 if (event
->attr
.context_switch
) {
5173 atomic_dec(&nr_switch_events
);
5175 if (is_cgroup_event(event
))
5177 if (has_branch_stack(event
))
5179 if (event
->attr
.ksymbol
)
5180 atomic_dec(&nr_ksymbol_events
);
5181 if (event
->attr
.bpf_event
)
5182 atomic_dec(&nr_bpf_events
);
5183 if (event
->attr
.text_poke
)
5184 atomic_dec(&nr_text_poke_events
);
5187 if (!atomic_add_unless(&perf_sched_count
, -1, 1))
5188 schedule_delayed_work(&perf_sched_work
, HZ
);
5191 unaccount_pmu_sb_event(event
);
5194 static void perf_sched_delayed(struct work_struct
*work
)
5196 mutex_lock(&perf_sched_mutex
);
5197 if (atomic_dec_and_test(&perf_sched_count
))
5198 static_branch_disable(&perf_sched_events
);
5199 mutex_unlock(&perf_sched_mutex
);
5203 * The following implement mutual exclusion of events on "exclusive" pmus
5204 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5205 * at a time, so we disallow creating events that might conflict, namely:
5207 * 1) cpu-wide events in the presence of per-task events,
5208 * 2) per-task events in the presence of cpu-wide events,
5209 * 3) two matching events on the same perf_event_context.
5211 * The former two cases are handled in the allocation path (perf_event_alloc(),
5212 * _free_event()), the latter -- before the first perf_install_in_context().
5214 static int exclusive_event_init(struct perf_event
*event
)
5216 struct pmu
*pmu
= event
->pmu
;
5218 if (!is_exclusive_pmu(pmu
))
5222 * Prevent co-existence of per-task and cpu-wide events on the
5223 * same exclusive pmu.
5225 * Negative pmu::exclusive_cnt means there are cpu-wide
5226 * events on this "exclusive" pmu, positive means there are
5229 * Since this is called in perf_event_alloc() path, event::ctx
5230 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5231 * to mean "per-task event", because unlike other attach states it
5232 * never gets cleared.
5234 if (event
->attach_state
& PERF_ATTACH_TASK
) {
5235 if (!atomic_inc_unless_negative(&pmu
->exclusive_cnt
))
5238 if (!atomic_dec_unless_positive(&pmu
->exclusive_cnt
))
5245 static void exclusive_event_destroy(struct perf_event
*event
)
5247 struct pmu
*pmu
= event
->pmu
;
5249 if (!is_exclusive_pmu(pmu
))
5252 /* see comment in exclusive_event_init() */
5253 if (event
->attach_state
& PERF_ATTACH_TASK
)
5254 atomic_dec(&pmu
->exclusive_cnt
);
5256 atomic_inc(&pmu
->exclusive_cnt
);
5259 static bool exclusive_event_match(struct perf_event
*e1
, struct perf_event
*e2
)
5261 if ((e1
->pmu
== e2
->pmu
) &&
5262 (e1
->cpu
== e2
->cpu
||
5269 static bool exclusive_event_installable(struct perf_event
*event
,
5270 struct perf_event_context
*ctx
)
5272 struct perf_event
*iter_event
;
5273 struct pmu
*pmu
= event
->pmu
;
5275 lockdep_assert_held(&ctx
->mutex
);
5277 if (!is_exclusive_pmu(pmu
))
5280 list_for_each_entry(iter_event
, &ctx
->event_list
, event_entry
) {
5281 if (exclusive_event_match(iter_event
, event
))
5288 static void perf_addr_filters_splice(struct perf_event
*event
,
5289 struct list_head
*head
);
5291 static void perf_pending_task_sync(struct perf_event
*event
)
5293 struct callback_head
*head
= &event
->pending_task
;
5295 if (!event
->pending_work
)
5298 * If the task is queued to the current task's queue, we
5299 * obviously can't wait for it to complete. Simply cancel it.
5301 if (task_work_cancel(current
, head
)) {
5302 event
->pending_work
= 0;
5303 local_dec(&event
->ctx
->nr_no_switch_fast
);
5308 * All accesses related to the event are within the same RCU section in
5309 * perf_pending_task(). The RCU grace period before the event is freed
5310 * will make sure all those accesses are complete by then.
5312 rcuwait_wait_event(&event
->pending_work_wait
, !event
->pending_work
, TASK_UNINTERRUPTIBLE
);
5315 static void _free_event(struct perf_event
*event
)
5317 irq_work_sync(&event
->pending_irq
);
5318 irq_work_sync(&event
->pending_disable_irq
);
5319 perf_pending_task_sync(event
);
5321 unaccount_event(event
);
5323 security_perf_event_free(event
);
5327 * Can happen when we close an event with re-directed output.
5329 * Since we have a 0 refcount, perf_mmap_close() will skip
5330 * over us; possibly making our ring_buffer_put() the last.
5332 mutex_lock(&event
->mmap_mutex
);
5333 ring_buffer_attach(event
, NULL
);
5334 mutex_unlock(&event
->mmap_mutex
);
5337 if (is_cgroup_event(event
))
5338 perf_detach_cgroup(event
);
5340 if (!event
->parent
) {
5341 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
)
5342 put_callchain_buffers();
5345 perf_event_free_bpf_prog(event
);
5346 perf_addr_filters_splice(event
, NULL
);
5347 kfree(event
->addr_filter_ranges
);
5350 event
->destroy(event
);
5353 * Must be after ->destroy(), due to uprobe_perf_close() using
5356 if (event
->hw
.target
)
5357 put_task_struct(event
->hw
.target
);
5360 put_pmu_ctx(event
->pmu_ctx
);
5363 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5364 * all task references must be cleaned up.
5367 put_ctx(event
->ctx
);
5369 exclusive_event_destroy(event
);
5370 module_put(event
->pmu
->module
);
5372 call_rcu(&event
->rcu_head
, free_event_rcu
);
5376 * Used to free events which have a known refcount of 1, such as in error paths
5377 * where the event isn't exposed yet and inherited events.
5379 static void free_event(struct perf_event
*event
)
5381 if (WARN(atomic_long_cmpxchg(&event
->refcount
, 1, 0) != 1,
5382 "unexpected event refcount: %ld; ptr=%p\n",
5383 atomic_long_read(&event
->refcount
), event
)) {
5384 /* leak to avoid use-after-free */
5392 * Remove user event from the owner task.
5394 static void perf_remove_from_owner(struct perf_event
*event
)
5396 struct task_struct
*owner
;
5400 * Matches the smp_store_release() in perf_event_exit_task(). If we
5401 * observe !owner it means the list deletion is complete and we can
5402 * indeed free this event, otherwise we need to serialize on
5403 * owner->perf_event_mutex.
5405 owner
= READ_ONCE(event
->owner
);
5408 * Since delayed_put_task_struct() also drops the last
5409 * task reference we can safely take a new reference
5410 * while holding the rcu_read_lock().
5412 get_task_struct(owner
);
5418 * If we're here through perf_event_exit_task() we're already
5419 * holding ctx->mutex which would be an inversion wrt. the
5420 * normal lock order.
5422 * However we can safely take this lock because its the child
5425 mutex_lock_nested(&owner
->perf_event_mutex
, SINGLE_DEPTH_NESTING
);
5428 * We have to re-check the event->owner field, if it is cleared
5429 * we raced with perf_event_exit_task(), acquiring the mutex
5430 * ensured they're done, and we can proceed with freeing the
5434 list_del_init(&event
->owner_entry
);
5435 smp_store_release(&event
->owner
, NULL
);
5437 mutex_unlock(&owner
->perf_event_mutex
);
5438 put_task_struct(owner
);
5442 static void put_event(struct perf_event
*event
)
5444 if (!atomic_long_dec_and_test(&event
->refcount
))
5451 * Kill an event dead; while event:refcount will preserve the event
5452 * object, it will not preserve its functionality. Once the last 'user'
5453 * gives up the object, we'll destroy the thing.
5455 int perf_event_release_kernel(struct perf_event
*event
)
5457 struct perf_event_context
*ctx
= event
->ctx
;
5458 struct perf_event
*child
, *tmp
;
5459 LIST_HEAD(free_list
);
5462 * If we got here through err_alloc: free_event(event); we will not
5463 * have attached to a context yet.
5466 WARN_ON_ONCE(event
->attach_state
&
5467 (PERF_ATTACH_CONTEXT
|PERF_ATTACH_GROUP
));
5471 if (!is_kernel_event(event
))
5472 perf_remove_from_owner(event
);
5474 ctx
= perf_event_ctx_lock(event
);
5475 WARN_ON_ONCE(ctx
->parent_ctx
);
5478 * Mark this event as STATE_DEAD, there is no external reference to it
5481 * Anybody acquiring event->child_mutex after the below loop _must_
5482 * also see this, most importantly inherit_event() which will avoid
5483 * placing more children on the list.
5485 * Thus this guarantees that we will in fact observe and kill _ALL_
5488 perf_remove_from_context(event
, DETACH_GROUP
|DETACH_DEAD
);
5490 perf_event_ctx_unlock(event
, ctx
);
5493 mutex_lock(&event
->child_mutex
);
5494 list_for_each_entry(child
, &event
->child_list
, child_list
) {
5498 * Cannot change, child events are not migrated, see the
5499 * comment with perf_event_ctx_lock_nested().
5501 ctx
= READ_ONCE(child
->ctx
);
5503 * Since child_mutex nests inside ctx::mutex, we must jump
5504 * through hoops. We start by grabbing a reference on the ctx.
5506 * Since the event cannot get freed while we hold the
5507 * child_mutex, the context must also exist and have a !0
5513 * Now that we have a ctx ref, we can drop child_mutex, and
5514 * acquire ctx::mutex without fear of it going away. Then we
5515 * can re-acquire child_mutex.
5517 mutex_unlock(&event
->child_mutex
);
5518 mutex_lock(&ctx
->mutex
);
5519 mutex_lock(&event
->child_mutex
);
5522 * Now that we hold ctx::mutex and child_mutex, revalidate our
5523 * state, if child is still the first entry, it didn't get freed
5524 * and we can continue doing so.
5526 tmp
= list_first_entry_or_null(&event
->child_list
,
5527 struct perf_event
, child_list
);
5529 perf_remove_from_context(child
, DETACH_GROUP
);
5530 list_move(&child
->child_list
, &free_list
);
5532 * This matches the refcount bump in inherit_event();
5533 * this can't be the last reference.
5537 var
= &ctx
->refcount
;
5540 mutex_unlock(&event
->child_mutex
);
5541 mutex_unlock(&ctx
->mutex
);
5546 * If perf_event_free_task() has deleted all events from the
5547 * ctx while the child_mutex got released above, make sure to
5548 * notify about the preceding put_ctx().
5550 smp_mb(); /* pairs with wait_var_event() */
5555 mutex_unlock(&event
->child_mutex
);
5557 list_for_each_entry_safe(child
, tmp
, &free_list
, child_list
) {
5558 void *var
= &child
->ctx
->refcount
;
5560 list_del(&child
->child_list
);
5564 * Wake any perf_event_free_task() waiting for this event to be
5567 smp_mb(); /* pairs with wait_var_event() */
5572 put_event(event
); /* Must be the 'last' reference */
5575 EXPORT_SYMBOL_GPL(perf_event_release_kernel
);
5578 * Called when the last reference to the file is gone.
5580 static int perf_release(struct inode
*inode
, struct file
*file
)
5582 perf_event_release_kernel(file
->private_data
);
5586 static u64
__perf_event_read_value(struct perf_event
*event
, u64
*enabled
, u64
*running
)
5588 struct perf_event
*child
;
5594 mutex_lock(&event
->child_mutex
);
5596 (void)perf_event_read(event
, false);
5597 total
+= perf_event_count(event
, false);
5599 *enabled
+= event
->total_time_enabled
+
5600 atomic64_read(&event
->child_total_time_enabled
);
5601 *running
+= event
->total_time_running
+
5602 atomic64_read(&event
->child_total_time_running
);
5604 list_for_each_entry(child
, &event
->child_list
, child_list
) {
5605 (void)perf_event_read(child
, false);
5606 total
+= perf_event_count(child
, false);
5607 *enabled
+= child
->total_time_enabled
;
5608 *running
+= child
->total_time_running
;
5610 mutex_unlock(&event
->child_mutex
);
5615 u64
perf_event_read_value(struct perf_event
*event
, u64
*enabled
, u64
*running
)
5617 struct perf_event_context
*ctx
;
5620 ctx
= perf_event_ctx_lock(event
);
5621 count
= __perf_event_read_value(event
, enabled
, running
);
5622 perf_event_ctx_unlock(event
, ctx
);
5626 EXPORT_SYMBOL_GPL(perf_event_read_value
);
5628 static int __perf_read_group_add(struct perf_event
*leader
,
5629 u64 read_format
, u64
*values
)
5631 struct perf_event_context
*ctx
= leader
->ctx
;
5632 struct perf_event
*sub
, *parent
;
5633 unsigned long flags
;
5634 int n
= 1; /* skip @nr */
5637 ret
= perf_event_read(leader
, true);
5641 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
5643 * Verify the grouping between the parent and child (inherited)
5644 * events is still in tact.
5647 * - leader->ctx->lock pins leader->sibling_list
5648 * - parent->child_mutex pins parent->child_list
5649 * - parent->ctx->mutex pins parent->sibling_list
5651 * Because parent->ctx != leader->ctx (and child_list nests inside
5652 * ctx->mutex), group destruction is not atomic between children, also
5653 * see perf_event_release_kernel(). Additionally, parent can grow the
5656 * Therefore it is possible to have parent and child groups in a
5657 * different configuration and summing over such a beast makes no sense
5662 parent
= leader
->parent
;
5664 (parent
->group_generation
!= leader
->group_generation
||
5665 parent
->nr_siblings
!= leader
->nr_siblings
)) {
5671 * Since we co-schedule groups, {enabled,running} times of siblings
5672 * will be identical to those of the leader, so we only publish one
5675 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
5676 values
[n
++] += leader
->total_time_enabled
+
5677 atomic64_read(&leader
->child_total_time_enabled
);
5680 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
5681 values
[n
++] += leader
->total_time_running
+
5682 atomic64_read(&leader
->child_total_time_running
);
5686 * Write {count,id} tuples for every sibling.
5688 values
[n
++] += perf_event_count(leader
, false);
5689 if (read_format
& PERF_FORMAT_ID
)
5690 values
[n
++] = primary_event_id(leader
);
5691 if (read_format
& PERF_FORMAT_LOST
)
5692 values
[n
++] = atomic64_read(&leader
->lost_samples
);
5694 for_each_sibling_event(sub
, leader
) {
5695 values
[n
++] += perf_event_count(sub
, false);
5696 if (read_format
& PERF_FORMAT_ID
)
5697 values
[n
++] = primary_event_id(sub
);
5698 if (read_format
& PERF_FORMAT_LOST
)
5699 values
[n
++] = atomic64_read(&sub
->lost_samples
);
5703 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
5707 static int perf_read_group(struct perf_event
*event
,
5708 u64 read_format
, char __user
*buf
)
5710 struct perf_event
*leader
= event
->group_leader
, *child
;
5711 struct perf_event_context
*ctx
= leader
->ctx
;
5715 lockdep_assert_held(&ctx
->mutex
);
5717 values
= kzalloc(event
->read_size
, GFP_KERNEL
);
5721 values
[0] = 1 + leader
->nr_siblings
;
5723 mutex_lock(&leader
->child_mutex
);
5725 ret
= __perf_read_group_add(leader
, read_format
, values
);
5729 list_for_each_entry(child
, &leader
->child_list
, child_list
) {
5730 ret
= __perf_read_group_add(child
, read_format
, values
);
5735 mutex_unlock(&leader
->child_mutex
);
5737 ret
= event
->read_size
;
5738 if (copy_to_user(buf
, values
, event
->read_size
))
5743 mutex_unlock(&leader
->child_mutex
);
5749 static int perf_read_one(struct perf_event
*event
,
5750 u64 read_format
, char __user
*buf
)
5752 u64 enabled
, running
;
5756 values
[n
++] = __perf_event_read_value(event
, &enabled
, &running
);
5757 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
5758 values
[n
++] = enabled
;
5759 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
5760 values
[n
++] = running
;
5761 if (read_format
& PERF_FORMAT_ID
)
5762 values
[n
++] = primary_event_id(event
);
5763 if (read_format
& PERF_FORMAT_LOST
)
5764 values
[n
++] = atomic64_read(&event
->lost_samples
);
5766 if (copy_to_user(buf
, values
, n
* sizeof(u64
)))
5769 return n
* sizeof(u64
);
5772 static bool is_event_hup(struct perf_event
*event
)
5776 if (event
->state
> PERF_EVENT_STATE_EXIT
)
5779 mutex_lock(&event
->child_mutex
);
5780 no_children
= list_empty(&event
->child_list
);
5781 mutex_unlock(&event
->child_mutex
);
5786 * Read the performance event - simple non blocking version for now
5789 __perf_read(struct perf_event
*event
, char __user
*buf
, size_t count
)
5791 u64 read_format
= event
->attr
.read_format
;
5795 * Return end-of-file for a read on an event that is in
5796 * error state (i.e. because it was pinned but it couldn't be
5797 * scheduled on to the CPU at some point).
5799 if (event
->state
== PERF_EVENT_STATE_ERROR
)
5802 if (count
< event
->read_size
)
5805 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
5806 if (read_format
& PERF_FORMAT_GROUP
)
5807 ret
= perf_read_group(event
, read_format
, buf
);
5809 ret
= perf_read_one(event
, read_format
, buf
);
5815 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
5817 struct perf_event
*event
= file
->private_data
;
5818 struct perf_event_context
*ctx
;
5821 ret
= security_perf_event_read(event
);
5825 ctx
= perf_event_ctx_lock(event
);
5826 ret
= __perf_read(event
, buf
, count
);
5827 perf_event_ctx_unlock(event
, ctx
);
5832 static __poll_t
perf_poll(struct file
*file
, poll_table
*wait
)
5834 struct perf_event
*event
= file
->private_data
;
5835 struct perf_buffer
*rb
;
5836 __poll_t events
= EPOLLHUP
;
5838 poll_wait(file
, &event
->waitq
, wait
);
5840 if (is_event_hup(event
))
5844 * Pin the event->rb by taking event->mmap_mutex; otherwise
5845 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5847 mutex_lock(&event
->mmap_mutex
);
5850 events
= atomic_xchg(&rb
->poll
, 0);
5851 mutex_unlock(&event
->mmap_mutex
);
5855 static void _perf_event_reset(struct perf_event
*event
)
5857 (void)perf_event_read(event
, false);
5858 local64_set(&event
->count
, 0);
5859 perf_event_update_userpage(event
);
5862 /* Assume it's not an event with inherit set. */
5863 u64
perf_event_pause(struct perf_event
*event
, bool reset
)
5865 struct perf_event_context
*ctx
;
5868 ctx
= perf_event_ctx_lock(event
);
5869 WARN_ON_ONCE(event
->attr
.inherit
);
5870 _perf_event_disable(event
);
5871 count
= local64_read(&event
->count
);
5873 local64_set(&event
->count
, 0);
5874 perf_event_ctx_unlock(event
, ctx
);
5878 EXPORT_SYMBOL_GPL(perf_event_pause
);
5881 * Holding the top-level event's child_mutex means that any
5882 * descendant process that has inherited this event will block
5883 * in perf_event_exit_event() if it goes to exit, thus satisfying the
5884 * task existence requirements of perf_event_enable/disable.
5886 static void perf_event_for_each_child(struct perf_event
*event
,
5887 void (*func
)(struct perf_event
*))
5889 struct perf_event
*child
;
5891 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
5893 mutex_lock(&event
->child_mutex
);
5895 list_for_each_entry(child
, &event
->child_list
, child_list
)
5897 mutex_unlock(&event
->child_mutex
);
5900 static void perf_event_for_each(struct perf_event
*event
,
5901 void (*func
)(struct perf_event
*))
5903 struct perf_event_context
*ctx
= event
->ctx
;
5904 struct perf_event
*sibling
;
5906 lockdep_assert_held(&ctx
->mutex
);
5908 event
= event
->group_leader
;
5910 perf_event_for_each_child(event
, func
);
5911 for_each_sibling_event(sibling
, event
)
5912 perf_event_for_each_child(sibling
, func
);
5915 static void __perf_event_period(struct perf_event
*event
,
5916 struct perf_cpu_context
*cpuctx
,
5917 struct perf_event_context
*ctx
,
5920 u64 value
= *((u64
*)info
);
5923 if (event
->attr
.freq
) {
5924 event
->attr
.sample_freq
= value
;
5926 event
->attr
.sample_period
= value
;
5927 event
->hw
.sample_period
= value
;
5930 active
= (event
->state
== PERF_EVENT_STATE_ACTIVE
);
5932 perf_pmu_disable(event
->pmu
);
5934 * We could be throttled; unthrottle now to avoid the tick
5935 * trying to unthrottle while we already re-started the event.
5937 if (event
->hw
.interrupts
== MAX_INTERRUPTS
) {
5938 event
->hw
.interrupts
= 0;
5939 perf_log_throttle(event
, 1);
5941 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
5944 local64_set(&event
->hw
.period_left
, 0);
5947 event
->pmu
->start(event
, PERF_EF_RELOAD
);
5948 perf_pmu_enable(event
->pmu
);
5952 static int perf_event_check_period(struct perf_event
*event
, u64 value
)
5954 return event
->pmu
->check_period(event
, value
);
5957 static int _perf_event_period(struct perf_event
*event
, u64 value
)
5959 if (!is_sampling_event(event
))
5965 if (event
->attr
.freq
&& value
> sysctl_perf_event_sample_rate
)
5968 if (perf_event_check_period(event
, value
))
5971 if (!event
->attr
.freq
&& (value
& (1ULL << 63)))
5974 event_function_call(event
, __perf_event_period
, &value
);
5979 int perf_event_period(struct perf_event
*event
, u64 value
)
5981 struct perf_event_context
*ctx
;
5984 ctx
= perf_event_ctx_lock(event
);
5985 ret
= _perf_event_period(event
, value
);
5986 perf_event_ctx_unlock(event
, ctx
);
5990 EXPORT_SYMBOL_GPL(perf_event_period
);
5992 static const struct file_operations perf_fops
;
5994 static inline bool is_perf_file(struct fd f
)
5996 return !fd_empty(f
) && fd_file(f
)->f_op
== &perf_fops
;
5999 static int perf_event_set_output(struct perf_event
*event
,
6000 struct perf_event
*output_event
);
6001 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
);
6002 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
6003 struct perf_event_attr
*attr
);
6005 static long _perf_ioctl(struct perf_event
*event
, unsigned int cmd
, unsigned long arg
)
6007 void (*func
)(struct perf_event
*);
6011 case PERF_EVENT_IOC_ENABLE
:
6012 func
= _perf_event_enable
;
6014 case PERF_EVENT_IOC_DISABLE
:
6015 func
= _perf_event_disable
;
6017 case PERF_EVENT_IOC_RESET
:
6018 func
= _perf_event_reset
;
6021 case PERF_EVENT_IOC_REFRESH
:
6022 return _perf_event_refresh(event
, arg
);
6024 case PERF_EVENT_IOC_PERIOD
:
6028 if (copy_from_user(&value
, (u64 __user
*)arg
, sizeof(value
)))
6031 return _perf_event_period(event
, value
);
6033 case PERF_EVENT_IOC_ID
:
6035 u64 id
= primary_event_id(event
);
6037 if (copy_to_user((void __user
*)arg
, &id
, sizeof(id
)))
6042 case PERF_EVENT_IOC_SET_OUTPUT
:
6044 CLASS(fd
, output
)(arg
); // arg == -1 => empty
6045 struct perf_event
*output_event
= NULL
;
6047 if (!is_perf_file(output
))
6049 output_event
= fd_file(output
)->private_data
;
6051 return perf_event_set_output(event
, output_event
);
6054 case PERF_EVENT_IOC_SET_FILTER
:
6055 return perf_event_set_filter(event
, (void __user
*)arg
);
6057 case PERF_EVENT_IOC_SET_BPF
:
6059 struct bpf_prog
*prog
;
6062 prog
= bpf_prog_get(arg
);
6064 return PTR_ERR(prog
);
6066 err
= perf_event_set_bpf_prog(event
, prog
, 0);
6075 case PERF_EVENT_IOC_PAUSE_OUTPUT
: {
6076 struct perf_buffer
*rb
;
6079 rb
= rcu_dereference(event
->rb
);
6080 if (!rb
|| !rb
->nr_pages
) {
6084 rb_toggle_paused(rb
, !!arg
);
6089 case PERF_EVENT_IOC_QUERY_BPF
:
6090 return perf_event_query_prog_array(event
, (void __user
*)arg
);
6092 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES
: {
6093 struct perf_event_attr new_attr
;
6094 int err
= perf_copy_attr((struct perf_event_attr __user
*)arg
,
6100 return perf_event_modify_attr(event
, &new_attr
);
6106 if (flags
& PERF_IOC_FLAG_GROUP
)
6107 perf_event_for_each(event
, func
);
6109 perf_event_for_each_child(event
, func
);
6114 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
6116 struct perf_event
*event
= file
->private_data
;
6117 struct perf_event_context
*ctx
;
6120 /* Treat ioctl like writes as it is likely a mutating operation. */
6121 ret
= security_perf_event_write(event
);
6125 ctx
= perf_event_ctx_lock(event
);
6126 ret
= _perf_ioctl(event
, cmd
, arg
);
6127 perf_event_ctx_unlock(event
, ctx
);
6132 #ifdef CONFIG_COMPAT
6133 static long perf_compat_ioctl(struct file
*file
, unsigned int cmd
,
6136 switch (_IOC_NR(cmd
)) {
6137 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER
):
6138 case _IOC_NR(PERF_EVENT_IOC_ID
):
6139 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF
):
6140 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES
):
6141 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6142 if (_IOC_SIZE(cmd
) == sizeof(compat_uptr_t
)) {
6143 cmd
&= ~IOCSIZE_MASK
;
6144 cmd
|= sizeof(void *) << IOCSIZE_SHIFT
;
6148 return perf_ioctl(file
, cmd
, arg
);
6151 # define perf_compat_ioctl NULL
6154 int perf_event_task_enable(void)
6156 struct perf_event_context
*ctx
;
6157 struct perf_event
*event
;
6159 mutex_lock(¤t
->perf_event_mutex
);
6160 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
) {
6161 ctx
= perf_event_ctx_lock(event
);
6162 perf_event_for_each_child(event
, _perf_event_enable
);
6163 perf_event_ctx_unlock(event
, ctx
);
6165 mutex_unlock(¤t
->perf_event_mutex
);
6170 int perf_event_task_disable(void)
6172 struct perf_event_context
*ctx
;
6173 struct perf_event
*event
;
6175 mutex_lock(¤t
->perf_event_mutex
);
6176 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
) {
6177 ctx
= perf_event_ctx_lock(event
);
6178 perf_event_for_each_child(event
, _perf_event_disable
);
6179 perf_event_ctx_unlock(event
, ctx
);
6181 mutex_unlock(¤t
->perf_event_mutex
);
6186 static int perf_event_index(struct perf_event
*event
)
6188 if (event
->hw
.state
& PERF_HES_STOPPED
)
6191 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
6194 return event
->pmu
->event_idx(event
);
6197 static void perf_event_init_userpage(struct perf_event
*event
)
6199 struct perf_event_mmap_page
*userpg
;
6200 struct perf_buffer
*rb
;
6203 rb
= rcu_dereference(event
->rb
);
6207 userpg
= rb
->user_page
;
6209 /* Allow new userspace to detect that bit 0 is deprecated */
6210 userpg
->cap_bit0_is_deprecated
= 1;
6211 userpg
->size
= offsetof(struct perf_event_mmap_page
, __reserved
);
6212 userpg
->data_offset
= PAGE_SIZE
;
6213 userpg
->data_size
= perf_data_size(rb
);
6219 void __weak
arch_perf_update_userpage(
6220 struct perf_event
*event
, struct perf_event_mmap_page
*userpg
, u64 now
)
6225 * Callers need to ensure there can be no nesting of this function, otherwise
6226 * the seqlock logic goes bad. We can not serialize this because the arch
6227 * code calls this from NMI context.
6229 void perf_event_update_userpage(struct perf_event
*event
)
6231 struct perf_event_mmap_page
*userpg
;
6232 struct perf_buffer
*rb
;
6233 u64 enabled
, running
, now
;
6236 rb
= rcu_dereference(event
->rb
);
6241 * compute total_time_enabled, total_time_running
6242 * based on snapshot values taken when the event
6243 * was last scheduled in.
6245 * we cannot simply called update_context_time()
6246 * because of locking issue as we can be called in
6249 calc_timer_values(event
, &now
, &enabled
, &running
);
6251 userpg
= rb
->user_page
;
6253 * Disable preemption to guarantee consistent time stamps are stored to
6259 userpg
->index
= perf_event_index(event
);
6260 userpg
->offset
= perf_event_count(event
, false);
6262 userpg
->offset
-= local64_read(&event
->hw
.prev_count
);
6264 userpg
->time_enabled
= enabled
+
6265 atomic64_read(&event
->child_total_time_enabled
);
6267 userpg
->time_running
= running
+
6268 atomic64_read(&event
->child_total_time_running
);
6270 arch_perf_update_userpage(event
, userpg
, now
);
6278 EXPORT_SYMBOL_GPL(perf_event_update_userpage
);
6280 static vm_fault_t
perf_mmap_fault(struct vm_fault
*vmf
)
6282 struct perf_event
*event
= vmf
->vma
->vm_file
->private_data
;
6283 struct perf_buffer
*rb
;
6284 vm_fault_t ret
= VM_FAULT_SIGBUS
;
6286 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
6287 if (vmf
->pgoff
== 0)
6293 rb
= rcu_dereference(event
->rb
);
6297 if (vmf
->pgoff
&& (vmf
->flags
& FAULT_FLAG_WRITE
))
6300 vmf
->page
= perf_mmap_to_page(rb
, vmf
->pgoff
);
6304 get_page(vmf
->page
);
6305 vmf
->page
->mapping
= vmf
->vma
->vm_file
->f_mapping
;
6306 vmf
->page
->index
= vmf
->pgoff
;
6315 static void ring_buffer_attach(struct perf_event
*event
,
6316 struct perf_buffer
*rb
)
6318 struct perf_buffer
*old_rb
= NULL
;
6319 unsigned long flags
;
6321 WARN_ON_ONCE(event
->parent
);
6325 * Should be impossible, we set this when removing
6326 * event->rb_entry and wait/clear when adding event->rb_entry.
6328 WARN_ON_ONCE(event
->rcu_pending
);
6331 spin_lock_irqsave(&old_rb
->event_lock
, flags
);
6332 list_del_rcu(&event
->rb_entry
);
6333 spin_unlock_irqrestore(&old_rb
->event_lock
, flags
);
6335 event
->rcu_batches
= get_state_synchronize_rcu();
6336 event
->rcu_pending
= 1;
6340 if (event
->rcu_pending
) {
6341 cond_synchronize_rcu(event
->rcu_batches
);
6342 event
->rcu_pending
= 0;
6345 spin_lock_irqsave(&rb
->event_lock
, flags
);
6346 list_add_rcu(&event
->rb_entry
, &rb
->event_list
);
6347 spin_unlock_irqrestore(&rb
->event_lock
, flags
);
6351 * Avoid racing with perf_mmap_close(AUX): stop the event
6352 * before swizzling the event::rb pointer; if it's getting
6353 * unmapped, its aux_mmap_count will be 0 and it won't
6354 * restart. See the comment in __perf_pmu_output_stop().
6356 * Data will inevitably be lost when set_output is done in
6357 * mid-air, but then again, whoever does it like this is
6358 * not in for the data anyway.
6361 perf_event_stop(event
, 0);
6363 rcu_assign_pointer(event
->rb
, rb
);
6366 ring_buffer_put(old_rb
);
6368 * Since we detached before setting the new rb, so that we
6369 * could attach the new rb, we could have missed a wakeup.
6372 wake_up_all(&event
->waitq
);
6376 static void ring_buffer_wakeup(struct perf_event
*event
)
6378 struct perf_buffer
*rb
;
6381 event
= event
->parent
;
6384 rb
= rcu_dereference(event
->rb
);
6386 list_for_each_entry_rcu(event
, &rb
->event_list
, rb_entry
)
6387 wake_up_all(&event
->waitq
);
6392 struct perf_buffer
*ring_buffer_get(struct perf_event
*event
)
6394 struct perf_buffer
*rb
;
6397 event
= event
->parent
;
6400 rb
= rcu_dereference(event
->rb
);
6402 if (!refcount_inc_not_zero(&rb
->refcount
))
6410 void ring_buffer_put(struct perf_buffer
*rb
)
6412 if (!refcount_dec_and_test(&rb
->refcount
))
6415 WARN_ON_ONCE(!list_empty(&rb
->event_list
));
6417 call_rcu(&rb
->rcu_head
, rb_free_rcu
);
6420 static void perf_mmap_open(struct vm_area_struct
*vma
)
6422 struct perf_event
*event
= vma
->vm_file
->private_data
;
6424 atomic_inc(&event
->mmap_count
);
6425 atomic_inc(&event
->rb
->mmap_count
);
6428 atomic_inc(&event
->rb
->aux_mmap_count
);
6430 if (event
->pmu
->event_mapped
)
6431 event
->pmu
->event_mapped(event
, vma
->vm_mm
);
6434 static void perf_pmu_output_stop(struct perf_event
*event
);
6437 * A buffer can be mmap()ed multiple times; either directly through the same
6438 * event, or through other events by use of perf_event_set_output().
6440 * In order to undo the VM accounting done by perf_mmap() we need to destroy
6441 * the buffer here, where we still have a VM context. This means we need
6442 * to detach all events redirecting to us.
6444 static void perf_mmap_close(struct vm_area_struct
*vma
)
6446 struct perf_event
*event
= vma
->vm_file
->private_data
;
6447 struct perf_buffer
*rb
= ring_buffer_get(event
);
6448 struct user_struct
*mmap_user
= rb
->mmap_user
;
6449 int mmap_locked
= rb
->mmap_locked
;
6450 unsigned long size
= perf_data_size(rb
);
6451 bool detach_rest
= false;
6453 if (event
->pmu
->event_unmapped
)
6454 event
->pmu
->event_unmapped(event
, vma
->vm_mm
);
6457 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex
6458 * to avoid complications.
6460 if (rb_has_aux(rb
) && vma
->vm_pgoff
== rb
->aux_pgoff
&&
6461 atomic_dec_and_mutex_lock(&rb
->aux_mmap_count
, &rb
->aux_mutex
)) {
6463 * Stop all AUX events that are writing to this buffer,
6464 * so that we can free its AUX pages and corresponding PMU
6465 * data. Note that after rb::aux_mmap_count dropped to zero,
6466 * they won't start any more (see perf_aux_output_begin()).
6468 perf_pmu_output_stop(event
);
6470 /* now it's safe to free the pages */
6471 atomic_long_sub(rb
->aux_nr_pages
- rb
->aux_mmap_locked
, &mmap_user
->locked_vm
);
6472 atomic64_sub(rb
->aux_mmap_locked
, &vma
->vm_mm
->pinned_vm
);
6474 /* this has to be the last one */
6476 WARN_ON_ONCE(refcount_read(&rb
->aux_refcount
));
6478 mutex_unlock(&rb
->aux_mutex
);
6481 if (atomic_dec_and_test(&rb
->mmap_count
))
6484 if (!atomic_dec_and_mutex_lock(&event
->mmap_count
, &event
->mmap_mutex
))
6487 ring_buffer_attach(event
, NULL
);
6488 mutex_unlock(&event
->mmap_mutex
);
6490 /* If there's still other mmap()s of this buffer, we're done. */
6495 * No other mmap()s, detach from all other events that might redirect
6496 * into the now unreachable buffer. Somewhat complicated by the
6497 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6501 list_for_each_entry_rcu(event
, &rb
->event_list
, rb_entry
) {
6502 if (!atomic_long_inc_not_zero(&event
->refcount
)) {
6504 * This event is en-route to free_event() which will
6505 * detach it and remove it from the list.
6511 mutex_lock(&event
->mmap_mutex
);
6513 * Check we didn't race with perf_event_set_output() which can
6514 * swizzle the rb from under us while we were waiting to
6515 * acquire mmap_mutex.
6517 * If we find a different rb; ignore this event, a next
6518 * iteration will no longer find it on the list. We have to
6519 * still restart the iteration to make sure we're not now
6520 * iterating the wrong list.
6522 if (event
->rb
== rb
)
6523 ring_buffer_attach(event
, NULL
);
6525 mutex_unlock(&event
->mmap_mutex
);
6529 * Restart the iteration; either we're on the wrong list or
6530 * destroyed its integrity by doing a deletion.
6537 * It could be there's still a few 0-ref events on the list; they'll
6538 * get cleaned up by free_event() -- they'll also still have their
6539 * ref on the rb and will free it whenever they are done with it.
6541 * Aside from that, this buffer is 'fully' detached and unmapped,
6542 * undo the VM accounting.
6545 atomic_long_sub((size
>> PAGE_SHIFT
) + 1 - mmap_locked
,
6546 &mmap_user
->locked_vm
);
6547 atomic64_sub(mmap_locked
, &vma
->vm_mm
->pinned_vm
);
6548 free_uid(mmap_user
);
6551 ring_buffer_put(rb
); /* could be last */
6554 static const struct vm_operations_struct perf_mmap_vmops
= {
6555 .open
= perf_mmap_open
,
6556 .close
= perf_mmap_close
, /* non mergeable */
6557 .fault
= perf_mmap_fault
,
6558 .page_mkwrite
= perf_mmap_fault
,
6561 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
6563 struct perf_event
*event
= file
->private_data
;
6564 unsigned long user_locked
, user_lock_limit
;
6565 struct user_struct
*user
= current_user();
6566 struct mutex
*aux_mutex
= NULL
;
6567 struct perf_buffer
*rb
= NULL
;
6568 unsigned long locked
, lock_limit
;
6569 unsigned long vma_size
;
6570 unsigned long nr_pages
;
6571 long user_extra
= 0, extra
= 0;
6572 int ret
= 0, flags
= 0;
6575 * Don't allow mmap() of inherited per-task counters. This would
6576 * create a performance issue due to all children writing to the
6579 if (event
->cpu
== -1 && event
->attr
.inherit
)
6582 if (!(vma
->vm_flags
& VM_SHARED
))
6585 ret
= security_perf_event_read(event
);
6589 vma_size
= vma
->vm_end
- vma
->vm_start
;
6591 if (vma
->vm_pgoff
== 0) {
6592 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
6595 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6596 * mapped, all subsequent mappings should have the same size
6597 * and offset. Must be above the normal perf buffer.
6599 u64 aux_offset
, aux_size
;
6604 nr_pages
= vma_size
/ PAGE_SIZE
;
6605 if (nr_pages
> INT_MAX
)
6608 mutex_lock(&event
->mmap_mutex
);
6615 aux_mutex
= &rb
->aux_mutex
;
6616 mutex_lock(aux_mutex
);
6618 aux_offset
= READ_ONCE(rb
->user_page
->aux_offset
);
6619 aux_size
= READ_ONCE(rb
->user_page
->aux_size
);
6621 if (aux_offset
< perf_data_size(rb
) + PAGE_SIZE
)
6624 if (aux_offset
!= vma
->vm_pgoff
<< PAGE_SHIFT
)
6627 /* already mapped with a different offset */
6628 if (rb_has_aux(rb
) && rb
->aux_pgoff
!= vma
->vm_pgoff
)
6631 if (aux_size
!= vma_size
|| aux_size
!= nr_pages
* PAGE_SIZE
)
6634 /* already mapped with a different size */
6635 if (rb_has_aux(rb
) && rb
->aux_nr_pages
!= nr_pages
)
6638 if (!is_power_of_2(nr_pages
))
6641 if (!atomic_inc_not_zero(&rb
->mmap_count
))
6644 if (rb_has_aux(rb
)) {
6645 atomic_inc(&rb
->aux_mmap_count
);
6650 atomic_set(&rb
->aux_mmap_count
, 1);
6651 user_extra
= nr_pages
;
6657 * If we have rb pages ensure they're a power-of-two number, so we
6658 * can do bitmasks instead of modulo.
6660 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
6663 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
6666 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
6668 mutex_lock(&event
->mmap_mutex
);
6670 if (data_page_nr(event
->rb
) != nr_pages
) {
6675 if (!atomic_inc_not_zero(&event
->rb
->mmap_count
)) {
6677 * Raced against perf_mmap_close(); remove the
6678 * event and try again.
6680 ring_buffer_attach(event
, NULL
);
6681 mutex_unlock(&event
->mmap_mutex
);
6688 user_extra
= nr_pages
+ 1;
6691 user_lock_limit
= sysctl_perf_event_mlock
>> (PAGE_SHIFT
- 10);
6694 * Increase the limit linearly with more CPUs:
6696 user_lock_limit
*= num_online_cpus();
6698 user_locked
= atomic_long_read(&user
->locked_vm
);
6701 * sysctl_perf_event_mlock may have changed, so that
6702 * user->locked_vm > user_lock_limit
6704 if (user_locked
> user_lock_limit
)
6705 user_locked
= user_lock_limit
;
6706 user_locked
+= user_extra
;
6708 if (user_locked
> user_lock_limit
) {
6710 * charge locked_vm until it hits user_lock_limit;
6711 * charge the rest from pinned_vm
6713 extra
= user_locked
- user_lock_limit
;
6714 user_extra
-= extra
;
6717 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
6718 lock_limit
>>= PAGE_SHIFT
;
6719 locked
= atomic64_read(&vma
->vm_mm
->pinned_vm
) + extra
;
6721 if ((locked
> lock_limit
) && perf_is_paranoid() &&
6722 !capable(CAP_IPC_LOCK
)) {
6727 WARN_ON(!rb
&& event
->rb
);
6729 if (vma
->vm_flags
& VM_WRITE
)
6730 flags
|= RING_BUFFER_WRITABLE
;
6733 rb
= rb_alloc(nr_pages
,
6734 event
->attr
.watermark
? event
->attr
.wakeup_watermark
: 0,
6742 atomic_set(&rb
->mmap_count
, 1);
6743 rb
->mmap_user
= get_current_user();
6744 rb
->mmap_locked
= extra
;
6746 ring_buffer_attach(event
, rb
);
6748 perf_event_update_time(event
);
6749 perf_event_init_userpage(event
);
6750 perf_event_update_userpage(event
);
6752 ret
= rb_alloc_aux(rb
, event
, vma
->vm_pgoff
, nr_pages
,
6753 event
->attr
.aux_watermark
, flags
);
6755 rb
->aux_mmap_locked
= extra
;
6760 atomic_long_add(user_extra
, &user
->locked_vm
);
6761 atomic64_add(extra
, &vma
->vm_mm
->pinned_vm
);
6763 atomic_inc(&event
->mmap_count
);
6765 atomic_dec(&rb
->mmap_count
);
6769 mutex_unlock(aux_mutex
);
6770 mutex_unlock(&event
->mmap_mutex
);
6773 * Since pinned accounting is per vm we cannot allow fork() to copy our
6776 vm_flags_set(vma
, VM_DONTCOPY
| VM_DONTEXPAND
| VM_DONTDUMP
);
6777 vma
->vm_ops
= &perf_mmap_vmops
;
6779 if (event
->pmu
->event_mapped
)
6780 event
->pmu
->event_mapped(event
, vma
->vm_mm
);
6785 static int perf_fasync(int fd
, struct file
*filp
, int on
)
6787 struct inode
*inode
= file_inode(filp
);
6788 struct perf_event
*event
= filp
->private_data
;
6792 retval
= fasync_helper(fd
, filp
, on
, &event
->fasync
);
6793 inode_unlock(inode
);
6801 static const struct file_operations perf_fops
= {
6802 .release
= perf_release
,
6805 .unlocked_ioctl
= perf_ioctl
,
6806 .compat_ioctl
= perf_compat_ioctl
,
6808 .fasync
= perf_fasync
,
6814 * If there's data, ensure we set the poll() state and publish everything
6815 * to user-space before waking everybody up.
6818 void perf_event_wakeup(struct perf_event
*event
)
6820 ring_buffer_wakeup(event
);
6822 if (event
->pending_kill
) {
6823 kill_fasync(perf_event_fasync(event
), SIGIO
, event
->pending_kill
);
6824 event
->pending_kill
= 0;
6828 static void perf_sigtrap(struct perf_event
*event
)
6831 * We'd expect this to only occur if the irq_work is delayed and either
6832 * ctx->task or current has changed in the meantime. This can be the
6833 * case on architectures that do not implement arch_irq_work_raise().
6835 if (WARN_ON_ONCE(event
->ctx
->task
!= current
))
6839 * Both perf_pending_task() and perf_pending_irq() can race with the
6842 if (current
->flags
& PF_EXITING
)
6845 send_sig_perf((void __user
*)event
->pending_addr
,
6846 event
->orig_type
, event
->attr
.sig_data
);
6850 * Deliver the pending work in-event-context or follow the context.
6852 static void __perf_pending_disable(struct perf_event
*event
)
6854 int cpu
= READ_ONCE(event
->oncpu
);
6857 * If the event isn't running; we done. event_sched_out() will have
6858 * taken care of things.
6864 * Yay, we hit home and are in the context of the event.
6866 if (cpu
== smp_processor_id()) {
6867 if (event
->pending_disable
) {
6868 event
->pending_disable
= 0;
6869 perf_event_disable_local(event
);
6877 * perf_event_disable_inatomic()
6878 * @pending_disable = CPU-A;
6882 * @pending_disable = -1;
6885 * perf_event_disable_inatomic()
6886 * @pending_disable = CPU-B;
6887 * irq_work_queue(); // FAILS
6890 * perf_pending_disable()
6892 * But the event runs on CPU-B and wants disabling there.
6894 irq_work_queue_on(&event
->pending_disable_irq
, cpu
);
6897 static void perf_pending_disable(struct irq_work
*entry
)
6899 struct perf_event
*event
= container_of(entry
, struct perf_event
, pending_disable_irq
);
6903 * If we 'fail' here, that's OK, it means recursion is already disabled
6904 * and we won't recurse 'further'.
6906 rctx
= perf_swevent_get_recursion_context();
6907 __perf_pending_disable(event
);
6909 perf_swevent_put_recursion_context(rctx
);
6912 static void perf_pending_irq(struct irq_work
*entry
)
6914 struct perf_event
*event
= container_of(entry
, struct perf_event
, pending_irq
);
6918 * If we 'fail' here, that's OK, it means recursion is already disabled
6919 * and we won't recurse 'further'.
6921 rctx
= perf_swevent_get_recursion_context();
6924 * The wakeup isn't bound to the context of the event -- it can happen
6925 * irrespective of where the event is.
6927 if (event
->pending_wakeup
) {
6928 event
->pending_wakeup
= 0;
6929 perf_event_wakeup(event
);
6933 perf_swevent_put_recursion_context(rctx
);
6936 static void perf_pending_task(struct callback_head
*head
)
6938 struct perf_event
*event
= container_of(head
, struct perf_event
, pending_task
);
6942 * All accesses to the event must belong to the same implicit RCU read-side
6943 * critical section as the ->pending_work reset. See comment in
6944 * perf_pending_task_sync().
6948 * If we 'fail' here, that's OK, it means recursion is already disabled
6949 * and we won't recurse 'further'.
6951 rctx
= perf_swevent_get_recursion_context();
6953 if (event
->pending_work
) {
6954 event
->pending_work
= 0;
6955 perf_sigtrap(event
);
6956 local_dec(&event
->ctx
->nr_no_switch_fast
);
6957 rcuwait_wake_up(&event
->pending_work_wait
);
6962 perf_swevent_put_recursion_context(rctx
);
6965 #ifdef CONFIG_GUEST_PERF_EVENTS
6966 struct perf_guest_info_callbacks __rcu
*perf_guest_cbs
;
6968 DEFINE_STATIC_CALL_RET0(__perf_guest_state
, *perf_guest_cbs
->state
);
6969 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip
, *perf_guest_cbs
->get_ip
);
6970 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr
, *perf_guest_cbs
->handle_intel_pt_intr
);
6972 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
6974 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs
)))
6977 rcu_assign_pointer(perf_guest_cbs
, cbs
);
6978 static_call_update(__perf_guest_state
, cbs
->state
);
6979 static_call_update(__perf_guest_get_ip
, cbs
->get_ip
);
6981 /* Implementing ->handle_intel_pt_intr is optional. */
6982 if (cbs
->handle_intel_pt_intr
)
6983 static_call_update(__perf_guest_handle_intel_pt_intr
,
6984 cbs
->handle_intel_pt_intr
);
6986 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks
);
6988 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
6990 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs
) != cbs
))
6993 rcu_assign_pointer(perf_guest_cbs
, NULL
);
6994 static_call_update(__perf_guest_state
, (void *)&__static_call_return0
);
6995 static_call_update(__perf_guest_get_ip
, (void *)&__static_call_return0
);
6996 static_call_update(__perf_guest_handle_intel_pt_intr
,
6997 (void *)&__static_call_return0
);
7000 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks
);
7003 static bool should_sample_guest(struct perf_event
*event
)
7005 return !event
->attr
.exclude_guest
&& perf_guest_state();
7008 unsigned long perf_misc_flags(struct perf_event
*event
,
7009 struct pt_regs
*regs
)
7011 if (should_sample_guest(event
))
7012 return perf_arch_guest_misc_flags(regs
);
7014 return perf_arch_misc_flags(regs
);
7017 unsigned long perf_instruction_pointer(struct perf_event
*event
,
7018 struct pt_regs
*regs
)
7020 if (should_sample_guest(event
))
7021 return perf_guest_get_ip();
7023 return perf_arch_instruction_pointer(regs
);
7027 perf_output_sample_regs(struct perf_output_handle
*handle
,
7028 struct pt_regs
*regs
, u64 mask
)
7031 DECLARE_BITMAP(_mask
, 64);
7033 bitmap_from_u64(_mask
, mask
);
7034 for_each_set_bit(bit
, _mask
, sizeof(mask
) * BITS_PER_BYTE
) {
7037 val
= perf_reg_value(regs
, bit
);
7038 perf_output_put(handle
, val
);
7042 static void perf_sample_regs_user(struct perf_regs
*regs_user
,
7043 struct pt_regs
*regs
)
7045 if (user_mode(regs
)) {
7046 regs_user
->abi
= perf_reg_abi(current
);
7047 regs_user
->regs
= regs
;
7048 } else if (!(current
->flags
& PF_KTHREAD
)) {
7049 perf_get_regs_user(regs_user
, regs
);
7051 regs_user
->abi
= PERF_SAMPLE_REGS_ABI_NONE
;
7052 regs_user
->regs
= NULL
;
7056 static void perf_sample_regs_intr(struct perf_regs
*regs_intr
,
7057 struct pt_regs
*regs
)
7059 regs_intr
->regs
= regs
;
7060 regs_intr
->abi
= perf_reg_abi(current
);
7065 * Get remaining task size from user stack pointer.
7067 * It'd be better to take stack vma map and limit this more
7068 * precisely, but there's no way to get it safely under interrupt,
7069 * so using TASK_SIZE as limit.
7071 static u64
perf_ustack_task_size(struct pt_regs
*regs
)
7073 unsigned long addr
= perf_user_stack_pointer(regs
);
7075 if (!addr
|| addr
>= TASK_SIZE
)
7078 return TASK_SIZE
- addr
;
7082 perf_sample_ustack_size(u16 stack_size
, u16 header_size
,
7083 struct pt_regs
*regs
)
7087 /* No regs, no stack pointer, no dump. */
7092 * Check if we fit in with the requested stack size into the:
7094 * If we don't, we limit the size to the TASK_SIZE.
7096 * - remaining sample size
7097 * If we don't, we customize the stack size to
7098 * fit in to the remaining sample size.
7101 task_size
= min((u64
) USHRT_MAX
, perf_ustack_task_size(regs
));
7102 stack_size
= min(stack_size
, (u16
) task_size
);
7104 /* Current header size plus static size and dynamic size. */
7105 header_size
+= 2 * sizeof(u64
);
7107 /* Do we fit in with the current stack dump size? */
7108 if ((u16
) (header_size
+ stack_size
) < header_size
) {
7110 * If we overflow the maximum size for the sample,
7111 * we customize the stack dump size to fit in.
7113 stack_size
= USHRT_MAX
- header_size
- sizeof(u64
);
7114 stack_size
= round_up(stack_size
, sizeof(u64
));
7121 perf_output_sample_ustack(struct perf_output_handle
*handle
, u64 dump_size
,
7122 struct pt_regs
*regs
)
7124 /* Case of a kernel thread, nothing to dump */
7127 perf_output_put(handle
, size
);
7136 * - the size requested by user or the best one we can fit
7137 * in to the sample max size
7139 * - user stack dump data
7141 * - the actual dumped size
7145 perf_output_put(handle
, dump_size
);
7148 sp
= perf_user_stack_pointer(regs
);
7149 rem
= __output_copy_user(handle
, (void *) sp
, dump_size
);
7150 dyn_size
= dump_size
- rem
;
7152 perf_output_skip(handle
, rem
);
7155 perf_output_put(handle
, dyn_size
);
7159 static unsigned long perf_prepare_sample_aux(struct perf_event
*event
,
7160 struct perf_sample_data
*data
,
7163 struct perf_event
*sampler
= event
->aux_event
;
7164 struct perf_buffer
*rb
;
7171 if (WARN_ON_ONCE(READ_ONCE(sampler
->state
) != PERF_EVENT_STATE_ACTIVE
))
7174 if (WARN_ON_ONCE(READ_ONCE(sampler
->oncpu
) != smp_processor_id()))
7177 rb
= ring_buffer_get(sampler
);
7182 * If this is an NMI hit inside sampling code, don't take
7183 * the sample. See also perf_aux_sample_output().
7185 if (READ_ONCE(rb
->aux_in_sampling
)) {
7188 size
= min_t(size_t, size
, perf_aux_size(rb
));
7189 data
->aux_size
= ALIGN(size
, sizeof(u64
));
7191 ring_buffer_put(rb
);
7194 return data
->aux_size
;
7197 static long perf_pmu_snapshot_aux(struct perf_buffer
*rb
,
7198 struct perf_event
*event
,
7199 struct perf_output_handle
*handle
,
7202 unsigned long flags
;
7206 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7207 * paths. If we start calling them in NMI context, they may race with
7208 * the IRQ ones, that is, for example, re-starting an event that's just
7209 * been stopped, which is why we're using a separate callback that
7210 * doesn't change the event state.
7212 * IRQs need to be disabled to prevent IPIs from racing with us.
7214 local_irq_save(flags
);
7216 * Guard against NMI hits inside the critical section;
7217 * see also perf_prepare_sample_aux().
7219 WRITE_ONCE(rb
->aux_in_sampling
, 1);
7222 ret
= event
->pmu
->snapshot_aux(event
, handle
, size
);
7225 WRITE_ONCE(rb
->aux_in_sampling
, 0);
7226 local_irq_restore(flags
);
7231 static void perf_aux_sample_output(struct perf_event
*event
,
7232 struct perf_output_handle
*handle
,
7233 struct perf_sample_data
*data
)
7235 struct perf_event
*sampler
= event
->aux_event
;
7236 struct perf_buffer
*rb
;
7240 if (WARN_ON_ONCE(!sampler
|| !data
->aux_size
))
7243 rb
= ring_buffer_get(sampler
);
7247 size
= perf_pmu_snapshot_aux(rb
, sampler
, handle
, data
->aux_size
);
7250 * An error here means that perf_output_copy() failed (returned a
7251 * non-zero surplus that it didn't copy), which in its current
7252 * enlightened implementation is not possible. If that changes, we'd
7255 if (WARN_ON_ONCE(size
< 0))
7259 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7260 * perf_prepare_sample_aux(), so should not be more than that.
7262 pad
= data
->aux_size
- size
;
7263 if (WARN_ON_ONCE(pad
>= sizeof(u64
)))
7268 perf_output_copy(handle
, &zero
, pad
);
7272 ring_buffer_put(rb
);
7276 * A set of common sample data types saved even for non-sample records
7277 * when event->attr.sample_id_all is set.
7279 #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \
7280 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \
7281 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7283 static void __perf_event_header__init_id(struct perf_sample_data
*data
,
7284 struct perf_event
*event
,
7287 data
->type
= event
->attr
.sample_type
;
7288 data
->sample_flags
|= data
->type
& PERF_SAMPLE_ID_ALL
;
7290 if (sample_type
& PERF_SAMPLE_TID
) {
7291 /* namespace issues */
7292 data
->tid_entry
.pid
= perf_event_pid(event
, current
);
7293 data
->tid_entry
.tid
= perf_event_tid(event
, current
);
7296 if (sample_type
& PERF_SAMPLE_TIME
)
7297 data
->time
= perf_event_clock(event
);
7299 if (sample_type
& (PERF_SAMPLE_ID
| PERF_SAMPLE_IDENTIFIER
))
7300 data
->id
= primary_event_id(event
);
7302 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
7303 data
->stream_id
= event
->id
;
7305 if (sample_type
& PERF_SAMPLE_CPU
) {
7306 data
->cpu_entry
.cpu
= raw_smp_processor_id();
7307 data
->cpu_entry
.reserved
= 0;
7311 void perf_event_header__init_id(struct perf_event_header
*header
,
7312 struct perf_sample_data
*data
,
7313 struct perf_event
*event
)
7315 if (event
->attr
.sample_id_all
) {
7316 header
->size
+= event
->id_header_size
;
7317 __perf_event_header__init_id(data
, event
, event
->attr
.sample_type
);
7321 static void __perf_event__output_id_sample(struct perf_output_handle
*handle
,
7322 struct perf_sample_data
*data
)
7324 u64 sample_type
= data
->type
;
7326 if (sample_type
& PERF_SAMPLE_TID
)
7327 perf_output_put(handle
, data
->tid_entry
);
7329 if (sample_type
& PERF_SAMPLE_TIME
)
7330 perf_output_put(handle
, data
->time
);
7332 if (sample_type
& PERF_SAMPLE_ID
)
7333 perf_output_put(handle
, data
->id
);
7335 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
7336 perf_output_put(handle
, data
->stream_id
);
7338 if (sample_type
& PERF_SAMPLE_CPU
)
7339 perf_output_put(handle
, data
->cpu_entry
);
7341 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
7342 perf_output_put(handle
, data
->id
);
7345 void perf_event__output_id_sample(struct perf_event
*event
,
7346 struct perf_output_handle
*handle
,
7347 struct perf_sample_data
*sample
)
7349 if (event
->attr
.sample_id_all
)
7350 __perf_event__output_id_sample(handle
, sample
);
7353 static void perf_output_read_one(struct perf_output_handle
*handle
,
7354 struct perf_event
*event
,
7355 u64 enabled
, u64 running
)
7357 u64 read_format
= event
->attr
.read_format
;
7361 values
[n
++] = perf_event_count(event
, has_inherit_and_sample_read(&event
->attr
));
7362 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
7363 values
[n
++] = enabled
+
7364 atomic64_read(&event
->child_total_time_enabled
);
7366 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
7367 values
[n
++] = running
+
7368 atomic64_read(&event
->child_total_time_running
);
7370 if (read_format
& PERF_FORMAT_ID
)
7371 values
[n
++] = primary_event_id(event
);
7372 if (read_format
& PERF_FORMAT_LOST
)
7373 values
[n
++] = atomic64_read(&event
->lost_samples
);
7375 __output_copy(handle
, values
, n
* sizeof(u64
));
7378 static void perf_output_read_group(struct perf_output_handle
*handle
,
7379 struct perf_event
*event
,
7380 u64 enabled
, u64 running
)
7382 struct perf_event
*leader
= event
->group_leader
, *sub
;
7383 u64 read_format
= event
->attr
.read_format
;
7384 unsigned long flags
;
7387 bool self
= has_inherit_and_sample_read(&event
->attr
);
7390 * Disabling interrupts avoids all counter scheduling
7391 * (context switches, timer based rotation and IPIs).
7393 local_irq_save(flags
);
7395 values
[n
++] = 1 + leader
->nr_siblings
;
7397 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
7398 values
[n
++] = enabled
;
7400 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
7401 values
[n
++] = running
;
7403 if ((leader
!= event
) &&
7404 (leader
->state
== PERF_EVENT_STATE_ACTIVE
))
7405 leader
->pmu
->read(leader
);
7407 values
[n
++] = perf_event_count(leader
, self
);
7408 if (read_format
& PERF_FORMAT_ID
)
7409 values
[n
++] = primary_event_id(leader
);
7410 if (read_format
& PERF_FORMAT_LOST
)
7411 values
[n
++] = atomic64_read(&leader
->lost_samples
);
7413 __output_copy(handle
, values
, n
* sizeof(u64
));
7415 for_each_sibling_event(sub
, leader
) {
7418 if ((sub
!= event
) &&
7419 (sub
->state
== PERF_EVENT_STATE_ACTIVE
))
7420 sub
->pmu
->read(sub
);
7422 values
[n
++] = perf_event_count(sub
, self
);
7423 if (read_format
& PERF_FORMAT_ID
)
7424 values
[n
++] = primary_event_id(sub
);
7425 if (read_format
& PERF_FORMAT_LOST
)
7426 values
[n
++] = atomic64_read(&sub
->lost_samples
);
7428 __output_copy(handle
, values
, n
* sizeof(u64
));
7431 local_irq_restore(flags
);
7434 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7435 PERF_FORMAT_TOTAL_TIME_RUNNING)
7438 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7440 * The problem is that its both hard and excessively expensive to iterate the
7441 * child list, not to mention that its impossible to IPI the children running
7442 * on another CPU, from interrupt/NMI context.
7444 * Instead the combination of PERF_SAMPLE_READ and inherit will track per-thread
7445 * counts rather than attempting to accumulate some value across all children on
7448 static void perf_output_read(struct perf_output_handle
*handle
,
7449 struct perf_event
*event
)
7451 u64 enabled
= 0, running
= 0, now
;
7452 u64 read_format
= event
->attr
.read_format
;
7455 * compute total_time_enabled, total_time_running
7456 * based on snapshot values taken when the event
7457 * was last scheduled in.
7459 * we cannot simply called update_context_time()
7460 * because of locking issue as we are called in
7463 if (read_format
& PERF_FORMAT_TOTAL_TIMES
)
7464 calc_timer_values(event
, &now
, &enabled
, &running
);
7466 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
)
7467 perf_output_read_group(handle
, event
, enabled
, running
);
7469 perf_output_read_one(handle
, event
, enabled
, running
);
7472 void perf_output_sample(struct perf_output_handle
*handle
,
7473 struct perf_event_header
*header
,
7474 struct perf_sample_data
*data
,
7475 struct perf_event
*event
)
7477 u64 sample_type
= data
->type
;
7479 perf_output_put(handle
, *header
);
7481 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
7482 perf_output_put(handle
, data
->id
);
7484 if (sample_type
& PERF_SAMPLE_IP
)
7485 perf_output_put(handle
, data
->ip
);
7487 if (sample_type
& PERF_SAMPLE_TID
)
7488 perf_output_put(handle
, data
->tid_entry
);
7490 if (sample_type
& PERF_SAMPLE_TIME
)
7491 perf_output_put(handle
, data
->time
);
7493 if (sample_type
& PERF_SAMPLE_ADDR
)
7494 perf_output_put(handle
, data
->addr
);
7496 if (sample_type
& PERF_SAMPLE_ID
)
7497 perf_output_put(handle
, data
->id
);
7499 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
7500 perf_output_put(handle
, data
->stream_id
);
7502 if (sample_type
& PERF_SAMPLE_CPU
)
7503 perf_output_put(handle
, data
->cpu_entry
);
7505 if (sample_type
& PERF_SAMPLE_PERIOD
)
7506 perf_output_put(handle
, data
->period
);
7508 if (sample_type
& PERF_SAMPLE_READ
)
7509 perf_output_read(handle
, event
);
7511 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
7514 size
+= data
->callchain
->nr
;
7515 size
*= sizeof(u64
);
7516 __output_copy(handle
, data
->callchain
, size
);
7519 if (sample_type
& PERF_SAMPLE_RAW
) {
7520 struct perf_raw_record
*raw
= data
->raw
;
7523 struct perf_raw_frag
*frag
= &raw
->frag
;
7525 perf_output_put(handle
, raw
->size
);
7528 __output_custom(handle
, frag
->copy
,
7529 frag
->data
, frag
->size
);
7531 __output_copy(handle
, frag
->data
,
7534 if (perf_raw_frag_last(frag
))
7539 __output_skip(handle
, NULL
, frag
->pad
);
7545 .size
= sizeof(u32
),
7548 perf_output_put(handle
, raw
);
7552 if (sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
7553 if (data
->br_stack
) {
7556 size
= data
->br_stack
->nr
7557 * sizeof(struct perf_branch_entry
);
7559 perf_output_put(handle
, data
->br_stack
->nr
);
7560 if (branch_sample_hw_index(event
))
7561 perf_output_put(handle
, data
->br_stack
->hw_idx
);
7562 perf_output_copy(handle
, data
->br_stack
->entries
, size
);
7564 * Add the extension space which is appended
7565 * right after the struct perf_branch_stack.
7567 if (data
->br_stack_cntr
) {
7568 size
= data
->br_stack
->nr
* sizeof(u64
);
7569 perf_output_copy(handle
, data
->br_stack_cntr
, size
);
7573 * we always store at least the value of nr
7576 perf_output_put(handle
, nr
);
7580 if (sample_type
& PERF_SAMPLE_REGS_USER
) {
7581 u64 abi
= data
->regs_user
.abi
;
7584 * If there are no regs to dump, notice it through
7585 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7587 perf_output_put(handle
, abi
);
7590 u64 mask
= event
->attr
.sample_regs_user
;
7591 perf_output_sample_regs(handle
,
7592 data
->regs_user
.regs
,
7597 if (sample_type
& PERF_SAMPLE_STACK_USER
) {
7598 perf_output_sample_ustack(handle
,
7599 data
->stack_user_size
,
7600 data
->regs_user
.regs
);
7603 if (sample_type
& PERF_SAMPLE_WEIGHT_TYPE
)
7604 perf_output_put(handle
, data
->weight
.full
);
7606 if (sample_type
& PERF_SAMPLE_DATA_SRC
)
7607 perf_output_put(handle
, data
->data_src
.val
);
7609 if (sample_type
& PERF_SAMPLE_TRANSACTION
)
7610 perf_output_put(handle
, data
->txn
);
7612 if (sample_type
& PERF_SAMPLE_REGS_INTR
) {
7613 u64 abi
= data
->regs_intr
.abi
;
7615 * If there are no regs to dump, notice it through
7616 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7618 perf_output_put(handle
, abi
);
7621 u64 mask
= event
->attr
.sample_regs_intr
;
7623 perf_output_sample_regs(handle
,
7624 data
->regs_intr
.regs
,
7629 if (sample_type
& PERF_SAMPLE_PHYS_ADDR
)
7630 perf_output_put(handle
, data
->phys_addr
);
7632 if (sample_type
& PERF_SAMPLE_CGROUP
)
7633 perf_output_put(handle
, data
->cgroup
);
7635 if (sample_type
& PERF_SAMPLE_DATA_PAGE_SIZE
)
7636 perf_output_put(handle
, data
->data_page_size
);
7638 if (sample_type
& PERF_SAMPLE_CODE_PAGE_SIZE
)
7639 perf_output_put(handle
, data
->code_page_size
);
7641 if (sample_type
& PERF_SAMPLE_AUX
) {
7642 perf_output_put(handle
, data
->aux_size
);
7645 perf_aux_sample_output(event
, handle
, data
);
7648 if (!event
->attr
.watermark
) {
7649 int wakeup_events
= event
->attr
.wakeup_events
;
7651 if (wakeup_events
) {
7652 struct perf_buffer
*rb
= handle
->rb
;
7653 int events
= local_inc_return(&rb
->events
);
7655 if (events
>= wakeup_events
) {
7656 local_sub(wakeup_events
, &rb
->events
);
7657 local_inc(&rb
->wakeup
);
7663 static u64
perf_virt_to_phys(u64 virt
)
7670 if (virt
>= TASK_SIZE
) {
7671 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7672 if (virt_addr_valid((void *)(uintptr_t)virt
) &&
7673 !(virt
>= VMALLOC_START
&& virt
< VMALLOC_END
))
7674 phys_addr
= (u64
)virt_to_phys((void *)(uintptr_t)virt
);
7677 * Walking the pages tables for user address.
7678 * Interrupts are disabled, so it prevents any tear down
7679 * of the page tables.
7680 * Try IRQ-safe get_user_page_fast_only first.
7681 * If failed, leave phys_addr as 0.
7683 if (current
->mm
!= NULL
) {
7686 pagefault_disable();
7687 if (get_user_page_fast_only(virt
, 0, &p
)) {
7688 phys_addr
= page_to_phys(p
) + virt
% PAGE_SIZE
;
7699 * Return the pagetable size of a given virtual address.
7701 static u64
perf_get_pgtable_size(struct mm_struct
*mm
, unsigned long addr
)
7705 #ifdef CONFIG_HAVE_GUP_FAST
7712 pgdp
= pgd_offset(mm
, addr
);
7713 pgd
= READ_ONCE(*pgdp
);
7718 return pgd_leaf_size(pgd
);
7720 p4dp
= p4d_offset_lockless(pgdp
, pgd
, addr
);
7721 p4d
= READ_ONCE(*p4dp
);
7722 if (!p4d_present(p4d
))
7726 return p4d_leaf_size(p4d
);
7728 pudp
= pud_offset_lockless(p4dp
, p4d
, addr
);
7729 pud
= READ_ONCE(*pudp
);
7730 if (!pud_present(pud
))
7734 return pud_leaf_size(pud
);
7736 pmdp
= pmd_offset_lockless(pudp
, pud
, addr
);
7738 pmd
= pmdp_get_lockless(pmdp
);
7739 if (!pmd_present(pmd
))
7743 return pmd_leaf_size(pmd
);
7745 ptep
= pte_offset_map(&pmd
, addr
);
7749 pte
= ptep_get_lockless(ptep
);
7750 if (pte_present(pte
))
7751 size
= __pte_leaf_size(pmd
, pte
);
7753 #endif /* CONFIG_HAVE_GUP_FAST */
7758 static u64
perf_get_page_size(unsigned long addr
)
7760 struct mm_struct
*mm
;
7761 unsigned long flags
;
7768 * Software page-table walkers must disable IRQs,
7769 * which prevents any tear down of the page tables.
7771 local_irq_save(flags
);
7776 * For kernel threads and the like, use init_mm so that
7777 * we can find kernel memory.
7782 size
= perf_get_pgtable_size(mm
, addr
);
7784 local_irq_restore(flags
);
7789 static struct perf_callchain_entry __empty_callchain
= { .nr
= 0, };
7791 struct perf_callchain_entry
*
7792 perf_callchain(struct perf_event
*event
, struct pt_regs
*regs
)
7794 bool kernel
= !event
->attr
.exclude_callchain_kernel
;
7795 bool user
= !event
->attr
.exclude_callchain_user
;
7796 /* Disallow cross-task user callchains. */
7797 bool crosstask
= event
->ctx
->task
&& event
->ctx
->task
!= current
;
7798 const u32 max_stack
= event
->attr
.sample_max_stack
;
7799 struct perf_callchain_entry
*callchain
;
7801 if (!kernel
&& !user
)
7802 return &__empty_callchain
;
7804 callchain
= get_perf_callchain(regs
, 0, kernel
, user
,
7805 max_stack
, crosstask
, true);
7806 return callchain
?: &__empty_callchain
;
7809 static __always_inline u64
__cond_set(u64 flags
, u64 s
, u64 d
)
7811 return d
* !!(flags
& s
);
7814 void perf_prepare_sample(struct perf_sample_data
*data
,
7815 struct perf_event
*event
,
7816 struct pt_regs
*regs
)
7818 u64 sample_type
= event
->attr
.sample_type
;
7819 u64 filtered_sample_type
;
7822 * Add the sample flags that are dependent to others. And clear the
7823 * sample flags that have already been done by the PMU driver.
7825 filtered_sample_type
= sample_type
;
7826 filtered_sample_type
|= __cond_set(sample_type
, PERF_SAMPLE_CODE_PAGE_SIZE
,
7828 filtered_sample_type
|= __cond_set(sample_type
, PERF_SAMPLE_DATA_PAGE_SIZE
|
7829 PERF_SAMPLE_PHYS_ADDR
, PERF_SAMPLE_ADDR
);
7830 filtered_sample_type
|= __cond_set(sample_type
, PERF_SAMPLE_STACK_USER
,
7831 PERF_SAMPLE_REGS_USER
);
7832 filtered_sample_type
&= ~data
->sample_flags
;
7834 if (filtered_sample_type
== 0) {
7835 /* Make sure it has the correct data->type for output */
7836 data
->type
= event
->attr
.sample_type
;
7840 __perf_event_header__init_id(data
, event
, filtered_sample_type
);
7842 if (filtered_sample_type
& PERF_SAMPLE_IP
) {
7843 data
->ip
= perf_instruction_pointer(event
, regs
);
7844 data
->sample_flags
|= PERF_SAMPLE_IP
;
7847 if (filtered_sample_type
& PERF_SAMPLE_CALLCHAIN
)
7848 perf_sample_save_callchain(data
, event
, regs
);
7850 if (filtered_sample_type
& PERF_SAMPLE_RAW
) {
7852 data
->dyn_size
+= sizeof(u64
);
7853 data
->sample_flags
|= PERF_SAMPLE_RAW
;
7856 if (filtered_sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
7857 data
->br_stack
= NULL
;
7858 data
->dyn_size
+= sizeof(u64
);
7859 data
->sample_flags
|= PERF_SAMPLE_BRANCH_STACK
;
7862 if (filtered_sample_type
& PERF_SAMPLE_REGS_USER
)
7863 perf_sample_regs_user(&data
->regs_user
, regs
);
7866 * It cannot use the filtered_sample_type here as REGS_USER can be set
7867 * by STACK_USER (using __cond_set() above) and we don't want to update
7868 * the dyn_size if it's not requested by users.
7870 if ((sample_type
& ~data
->sample_flags
) & PERF_SAMPLE_REGS_USER
) {
7871 /* regs dump ABI info */
7872 int size
= sizeof(u64
);
7874 if (data
->regs_user
.regs
) {
7875 u64 mask
= event
->attr
.sample_regs_user
;
7876 size
+= hweight64(mask
) * sizeof(u64
);
7879 data
->dyn_size
+= size
;
7880 data
->sample_flags
|= PERF_SAMPLE_REGS_USER
;
7883 if (filtered_sample_type
& PERF_SAMPLE_STACK_USER
) {
7885 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7886 * processed as the last one or have additional check added
7887 * in case new sample type is added, because we could eat
7888 * up the rest of the sample size.
7890 u16 stack_size
= event
->attr
.sample_stack_user
;
7891 u16 header_size
= perf_sample_data_size(data
, event
);
7892 u16 size
= sizeof(u64
);
7894 stack_size
= perf_sample_ustack_size(stack_size
, header_size
,
7895 data
->regs_user
.regs
);
7898 * If there is something to dump, add space for the dump
7899 * itself and for the field that tells the dynamic size,
7900 * which is how many have been actually dumped.
7903 size
+= sizeof(u64
) + stack_size
;
7905 data
->stack_user_size
= stack_size
;
7906 data
->dyn_size
+= size
;
7907 data
->sample_flags
|= PERF_SAMPLE_STACK_USER
;
7910 if (filtered_sample_type
& PERF_SAMPLE_WEIGHT_TYPE
) {
7911 data
->weight
.full
= 0;
7912 data
->sample_flags
|= PERF_SAMPLE_WEIGHT_TYPE
;
7915 if (filtered_sample_type
& PERF_SAMPLE_DATA_SRC
) {
7916 data
->data_src
.val
= PERF_MEM_NA
;
7917 data
->sample_flags
|= PERF_SAMPLE_DATA_SRC
;
7920 if (filtered_sample_type
& PERF_SAMPLE_TRANSACTION
) {
7922 data
->sample_flags
|= PERF_SAMPLE_TRANSACTION
;
7925 if (filtered_sample_type
& PERF_SAMPLE_ADDR
) {
7927 data
->sample_flags
|= PERF_SAMPLE_ADDR
;
7930 if (filtered_sample_type
& PERF_SAMPLE_REGS_INTR
) {
7931 /* regs dump ABI info */
7932 int size
= sizeof(u64
);
7934 perf_sample_regs_intr(&data
->regs_intr
, regs
);
7936 if (data
->regs_intr
.regs
) {
7937 u64 mask
= event
->attr
.sample_regs_intr
;
7939 size
+= hweight64(mask
) * sizeof(u64
);
7942 data
->dyn_size
+= size
;
7943 data
->sample_flags
|= PERF_SAMPLE_REGS_INTR
;
7946 if (filtered_sample_type
& PERF_SAMPLE_PHYS_ADDR
) {
7947 data
->phys_addr
= perf_virt_to_phys(data
->addr
);
7948 data
->sample_flags
|= PERF_SAMPLE_PHYS_ADDR
;
7951 #ifdef CONFIG_CGROUP_PERF
7952 if (filtered_sample_type
& PERF_SAMPLE_CGROUP
) {
7953 struct cgroup
*cgrp
;
7955 /* protected by RCU */
7956 cgrp
= task_css_check(current
, perf_event_cgrp_id
, 1)->cgroup
;
7957 data
->cgroup
= cgroup_id(cgrp
);
7958 data
->sample_flags
|= PERF_SAMPLE_CGROUP
;
7963 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7964 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7965 * but the value will not dump to the userspace.
7967 if (filtered_sample_type
& PERF_SAMPLE_DATA_PAGE_SIZE
) {
7968 data
->data_page_size
= perf_get_page_size(data
->addr
);
7969 data
->sample_flags
|= PERF_SAMPLE_DATA_PAGE_SIZE
;
7972 if (filtered_sample_type
& PERF_SAMPLE_CODE_PAGE_SIZE
) {
7973 data
->code_page_size
= perf_get_page_size(data
->ip
);
7974 data
->sample_flags
|= PERF_SAMPLE_CODE_PAGE_SIZE
;
7977 if (filtered_sample_type
& PERF_SAMPLE_AUX
) {
7979 u16 header_size
= perf_sample_data_size(data
, event
);
7981 header_size
+= sizeof(u64
); /* size */
7984 * Given the 16bit nature of header::size, an AUX sample can
7985 * easily overflow it, what with all the preceding sample bits.
7986 * Make sure this doesn't happen by using up to U16_MAX bytes
7987 * per sample in total (rounded down to 8 byte boundary).
7989 size
= min_t(size_t, U16_MAX
- header_size
,
7990 event
->attr
.aux_sample_size
);
7991 size
= rounddown(size
, 8);
7992 size
= perf_prepare_sample_aux(event
, data
, size
);
7994 WARN_ON_ONCE(size
+ header_size
> U16_MAX
);
7995 data
->dyn_size
+= size
+ sizeof(u64
); /* size above */
7996 data
->sample_flags
|= PERF_SAMPLE_AUX
;
8000 void perf_prepare_header(struct perf_event_header
*header
,
8001 struct perf_sample_data
*data
,
8002 struct perf_event
*event
,
8003 struct pt_regs
*regs
)
8005 header
->type
= PERF_RECORD_SAMPLE
;
8006 header
->size
= perf_sample_data_size(data
, event
);
8007 header
->misc
= perf_misc_flags(event
, regs
);
8010 * If you're adding more sample types here, you likely need to do
8011 * something about the overflowing header::size, like repurpose the
8012 * lowest 3 bits of size, which should be always zero at the moment.
8013 * This raises a more important question, do we really need 512k sized
8014 * samples and why, so good argumentation is in order for whatever you
8017 WARN_ON_ONCE(header
->size
& 7);
8020 static void __perf_event_aux_pause(struct perf_event
*event
, bool pause
)
8023 if (!event
->hw
.aux_paused
) {
8024 event
->hw
.aux_paused
= 1;
8025 event
->pmu
->stop(event
, PERF_EF_PAUSE
);
8028 if (event
->hw
.aux_paused
) {
8029 event
->hw
.aux_paused
= 0;
8030 event
->pmu
->start(event
, PERF_EF_RESUME
);
8035 static void perf_event_aux_pause(struct perf_event
*event
, bool pause
)
8037 struct perf_buffer
*rb
;
8039 if (WARN_ON_ONCE(!event
))
8042 rb
= ring_buffer_get(event
);
8046 scoped_guard (irqsave
) {
8048 * Guard against self-recursion here. Another event could trip
8049 * this same from NMI context.
8051 if (READ_ONCE(rb
->aux_in_pause_resume
))
8054 WRITE_ONCE(rb
->aux_in_pause_resume
, 1);
8056 __perf_event_aux_pause(event
, pause
);
8058 WRITE_ONCE(rb
->aux_in_pause_resume
, 0);
8060 ring_buffer_put(rb
);
8063 static __always_inline
int
8064 __perf_event_output(struct perf_event
*event
,
8065 struct perf_sample_data
*data
,
8066 struct pt_regs
*regs
,
8067 int (*output_begin
)(struct perf_output_handle
*,
8068 struct perf_sample_data
*,
8069 struct perf_event
*,
8072 struct perf_output_handle handle
;
8073 struct perf_event_header header
;
8076 /* protect the callchain buffers */
8079 perf_prepare_sample(data
, event
, regs
);
8080 perf_prepare_header(&header
, data
, event
, regs
);
8082 err
= output_begin(&handle
, data
, event
, header
.size
);
8086 perf_output_sample(&handle
, &header
, data
, event
);
8088 perf_output_end(&handle
);
8096 perf_event_output_forward(struct perf_event
*event
,
8097 struct perf_sample_data
*data
,
8098 struct pt_regs
*regs
)
8100 __perf_event_output(event
, data
, regs
, perf_output_begin_forward
);
8104 perf_event_output_backward(struct perf_event
*event
,
8105 struct perf_sample_data
*data
,
8106 struct pt_regs
*regs
)
8108 __perf_event_output(event
, data
, regs
, perf_output_begin_backward
);
8112 perf_event_output(struct perf_event
*event
,
8113 struct perf_sample_data
*data
,
8114 struct pt_regs
*regs
)
8116 return __perf_event_output(event
, data
, regs
, perf_output_begin
);
8123 struct perf_read_event
{
8124 struct perf_event_header header
;
8131 perf_event_read_event(struct perf_event
*event
,
8132 struct task_struct
*task
)
8134 struct perf_output_handle handle
;
8135 struct perf_sample_data sample
;
8136 struct perf_read_event read_event
= {
8138 .type
= PERF_RECORD_READ
,
8140 .size
= sizeof(read_event
) + event
->read_size
,
8142 .pid
= perf_event_pid(event
, task
),
8143 .tid
= perf_event_tid(event
, task
),
8147 perf_event_header__init_id(&read_event
.header
, &sample
, event
);
8148 ret
= perf_output_begin(&handle
, &sample
, event
, read_event
.header
.size
);
8152 perf_output_put(&handle
, read_event
);
8153 perf_output_read(&handle
, event
);
8154 perf_event__output_id_sample(event
, &handle
, &sample
);
8156 perf_output_end(&handle
);
8159 typedef void (perf_iterate_f
)(struct perf_event
*event
, void *data
);
8162 perf_iterate_ctx(struct perf_event_context
*ctx
,
8163 perf_iterate_f output
,
8164 void *data
, bool all
)
8166 struct perf_event
*event
;
8168 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
8170 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
8172 if (!event_filter_match(event
))
8176 output(event
, data
);
8180 static void perf_iterate_sb_cpu(perf_iterate_f output
, void *data
)
8182 struct pmu_event_list
*pel
= this_cpu_ptr(&pmu_sb_events
);
8183 struct perf_event
*event
;
8185 list_for_each_entry_rcu(event
, &pel
->list
, sb_list
) {
8187 * Skip events that are not fully formed yet; ensure that
8188 * if we observe event->ctx, both event and ctx will be
8189 * complete enough. See perf_install_in_context().
8191 if (!smp_load_acquire(&event
->ctx
))
8194 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
8196 if (!event_filter_match(event
))
8198 output(event
, data
);
8203 * Iterate all events that need to receive side-band events.
8205 * For new callers; ensure that account_pmu_sb_event() includes
8206 * your event, otherwise it might not get delivered.
8209 perf_iterate_sb(perf_iterate_f output
, void *data
,
8210 struct perf_event_context
*task_ctx
)
8212 struct perf_event_context
*ctx
;
8218 * If we have task_ctx != NULL we only notify the task context itself.
8219 * The task_ctx is set only for EXIT events before releasing task
8223 perf_iterate_ctx(task_ctx
, output
, data
, false);
8227 perf_iterate_sb_cpu(output
, data
);
8229 ctx
= rcu_dereference(current
->perf_event_ctxp
);
8231 perf_iterate_ctx(ctx
, output
, data
, false);
8238 * Clear all file-based filters at exec, they'll have to be
8239 * re-instated when/if these objects are mmapped again.
8241 static void perf_event_addr_filters_exec(struct perf_event
*event
, void *data
)
8243 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
8244 struct perf_addr_filter
*filter
;
8245 unsigned int restart
= 0, count
= 0;
8246 unsigned long flags
;
8248 if (!has_addr_filter(event
))
8251 raw_spin_lock_irqsave(&ifh
->lock
, flags
);
8252 list_for_each_entry(filter
, &ifh
->list
, entry
) {
8253 if (filter
->path
.dentry
) {
8254 event
->addr_filter_ranges
[count
].start
= 0;
8255 event
->addr_filter_ranges
[count
].size
= 0;
8263 event
->addr_filters_gen
++;
8264 raw_spin_unlock_irqrestore(&ifh
->lock
, flags
);
8267 perf_event_stop(event
, 1);
8270 void perf_event_exec(void)
8272 struct perf_event_context
*ctx
;
8274 ctx
= perf_pin_task_context(current
);
8278 perf_event_enable_on_exec(ctx
);
8279 perf_event_remove_on_exec(ctx
);
8280 perf_iterate_ctx(ctx
, perf_event_addr_filters_exec
, NULL
, true);
8282 perf_unpin_context(ctx
);
8286 struct remote_output
{
8287 struct perf_buffer
*rb
;
8291 static void __perf_event_output_stop(struct perf_event
*event
, void *data
)
8293 struct perf_event
*parent
= event
->parent
;
8294 struct remote_output
*ro
= data
;
8295 struct perf_buffer
*rb
= ro
->rb
;
8296 struct stop_event_data sd
= {
8300 if (!has_aux(event
))
8307 * In case of inheritance, it will be the parent that links to the
8308 * ring-buffer, but it will be the child that's actually using it.
8310 * We are using event::rb to determine if the event should be stopped,
8311 * however this may race with ring_buffer_attach() (through set_output),
8312 * which will make us skip the event that actually needs to be stopped.
8313 * So ring_buffer_attach() has to stop an aux event before re-assigning
8316 if (rcu_dereference(parent
->rb
) == rb
)
8317 ro
->err
= __perf_event_stop(&sd
);
8320 static int __perf_pmu_output_stop(void *info
)
8322 struct perf_event
*event
= info
;
8323 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(&perf_cpu_context
);
8324 struct remote_output ro
= {
8329 perf_iterate_ctx(&cpuctx
->ctx
, __perf_event_output_stop
, &ro
, false);
8330 if (cpuctx
->task_ctx
)
8331 perf_iterate_ctx(cpuctx
->task_ctx
, __perf_event_output_stop
,
8338 static void perf_pmu_output_stop(struct perf_event
*event
)
8340 struct perf_event
*iter
;
8345 list_for_each_entry_rcu(iter
, &event
->rb
->event_list
, rb_entry
) {
8347 * For per-CPU events, we need to make sure that neither they
8348 * nor their children are running; for cpu==-1 events it's
8349 * sufficient to stop the event itself if it's active, since
8350 * it can't have children.
8354 cpu
= READ_ONCE(iter
->oncpu
);
8359 err
= cpu_function_call(cpu
, __perf_pmu_output_stop
, event
);
8360 if (err
== -EAGAIN
) {
8369 * task tracking -- fork/exit
8371 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8374 struct perf_task_event
{
8375 struct task_struct
*task
;
8376 struct perf_event_context
*task_ctx
;
8379 struct perf_event_header header
;
8389 static int perf_event_task_match(struct perf_event
*event
)
8391 return event
->attr
.comm
|| event
->attr
.mmap
||
8392 event
->attr
.mmap2
|| event
->attr
.mmap_data
||
8396 static void perf_event_task_output(struct perf_event
*event
,
8399 struct perf_task_event
*task_event
= data
;
8400 struct perf_output_handle handle
;
8401 struct perf_sample_data sample
;
8402 struct task_struct
*task
= task_event
->task
;
8403 int ret
, size
= task_event
->event_id
.header
.size
;
8405 if (!perf_event_task_match(event
))
8408 perf_event_header__init_id(&task_event
->event_id
.header
, &sample
, event
);
8410 ret
= perf_output_begin(&handle
, &sample
, event
,
8411 task_event
->event_id
.header
.size
);
8415 task_event
->event_id
.pid
= perf_event_pid(event
, task
);
8416 task_event
->event_id
.tid
= perf_event_tid(event
, task
);
8418 if (task_event
->event_id
.header
.type
== PERF_RECORD_EXIT
) {
8419 task_event
->event_id
.ppid
= perf_event_pid(event
,
8421 task_event
->event_id
.ptid
= perf_event_pid(event
,
8423 } else { /* PERF_RECORD_FORK */
8424 task_event
->event_id
.ppid
= perf_event_pid(event
, current
);
8425 task_event
->event_id
.ptid
= perf_event_tid(event
, current
);
8428 task_event
->event_id
.time
= perf_event_clock(event
);
8430 perf_output_put(&handle
, task_event
->event_id
);
8432 perf_event__output_id_sample(event
, &handle
, &sample
);
8434 perf_output_end(&handle
);
8436 task_event
->event_id
.header
.size
= size
;
8439 static void perf_event_task(struct task_struct
*task
,
8440 struct perf_event_context
*task_ctx
,
8443 struct perf_task_event task_event
;
8445 if (!atomic_read(&nr_comm_events
) &&
8446 !atomic_read(&nr_mmap_events
) &&
8447 !atomic_read(&nr_task_events
))
8450 task_event
= (struct perf_task_event
){
8452 .task_ctx
= task_ctx
,
8455 .type
= new ? PERF_RECORD_FORK
: PERF_RECORD_EXIT
,
8457 .size
= sizeof(task_event
.event_id
),
8467 perf_iterate_sb(perf_event_task_output
,
8472 void perf_event_fork(struct task_struct
*task
)
8474 perf_event_task(task
, NULL
, 1);
8475 perf_event_namespaces(task
);
8482 struct perf_comm_event
{
8483 struct task_struct
*task
;
8488 struct perf_event_header header
;
8495 static int perf_event_comm_match(struct perf_event
*event
)
8497 return event
->attr
.comm
;
8500 static void perf_event_comm_output(struct perf_event
*event
,
8503 struct perf_comm_event
*comm_event
= data
;
8504 struct perf_output_handle handle
;
8505 struct perf_sample_data sample
;
8506 int size
= comm_event
->event_id
.header
.size
;
8509 if (!perf_event_comm_match(event
))
8512 perf_event_header__init_id(&comm_event
->event_id
.header
, &sample
, event
);
8513 ret
= perf_output_begin(&handle
, &sample
, event
,
8514 comm_event
->event_id
.header
.size
);
8519 comm_event
->event_id
.pid
= perf_event_pid(event
, comm_event
->task
);
8520 comm_event
->event_id
.tid
= perf_event_tid(event
, comm_event
->task
);
8522 perf_output_put(&handle
, comm_event
->event_id
);
8523 __output_copy(&handle
, comm_event
->comm
,
8524 comm_event
->comm_size
);
8526 perf_event__output_id_sample(event
, &handle
, &sample
);
8528 perf_output_end(&handle
);
8530 comm_event
->event_id
.header
.size
= size
;
8533 static void perf_event_comm_event(struct perf_comm_event
*comm_event
)
8535 char comm
[TASK_COMM_LEN
];
8538 memset(comm
, 0, sizeof(comm
));
8539 strscpy(comm
, comm_event
->task
->comm
, sizeof(comm
));
8540 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
8542 comm_event
->comm
= comm
;
8543 comm_event
->comm_size
= size
;
8545 comm_event
->event_id
.header
.size
= sizeof(comm_event
->event_id
) + size
;
8547 perf_iterate_sb(perf_event_comm_output
,
8552 void perf_event_comm(struct task_struct
*task
, bool exec
)
8554 struct perf_comm_event comm_event
;
8556 if (!atomic_read(&nr_comm_events
))
8559 comm_event
= (struct perf_comm_event
){
8565 .type
= PERF_RECORD_COMM
,
8566 .misc
= exec
? PERF_RECORD_MISC_COMM_EXEC
: 0,
8574 perf_event_comm_event(&comm_event
);
8578 * namespaces tracking
8581 struct perf_namespaces_event
{
8582 struct task_struct
*task
;
8585 struct perf_event_header header
;
8590 struct perf_ns_link_info link_info
[NR_NAMESPACES
];
8594 static int perf_event_namespaces_match(struct perf_event
*event
)
8596 return event
->attr
.namespaces
;
8599 static void perf_event_namespaces_output(struct perf_event
*event
,
8602 struct perf_namespaces_event
*namespaces_event
= data
;
8603 struct perf_output_handle handle
;
8604 struct perf_sample_data sample
;
8605 u16 header_size
= namespaces_event
->event_id
.header
.size
;
8608 if (!perf_event_namespaces_match(event
))
8611 perf_event_header__init_id(&namespaces_event
->event_id
.header
,
8613 ret
= perf_output_begin(&handle
, &sample
, event
,
8614 namespaces_event
->event_id
.header
.size
);
8618 namespaces_event
->event_id
.pid
= perf_event_pid(event
,
8619 namespaces_event
->task
);
8620 namespaces_event
->event_id
.tid
= perf_event_tid(event
,
8621 namespaces_event
->task
);
8623 perf_output_put(&handle
, namespaces_event
->event_id
);
8625 perf_event__output_id_sample(event
, &handle
, &sample
);
8627 perf_output_end(&handle
);
8629 namespaces_event
->event_id
.header
.size
= header_size
;
8632 static void perf_fill_ns_link_info(struct perf_ns_link_info
*ns_link_info
,
8633 struct task_struct
*task
,
8634 const struct proc_ns_operations
*ns_ops
)
8636 struct path ns_path
;
8637 struct inode
*ns_inode
;
8640 error
= ns_get_path(&ns_path
, task
, ns_ops
);
8642 ns_inode
= ns_path
.dentry
->d_inode
;
8643 ns_link_info
->dev
= new_encode_dev(ns_inode
->i_sb
->s_dev
);
8644 ns_link_info
->ino
= ns_inode
->i_ino
;
8649 void perf_event_namespaces(struct task_struct
*task
)
8651 struct perf_namespaces_event namespaces_event
;
8652 struct perf_ns_link_info
*ns_link_info
;
8654 if (!atomic_read(&nr_namespaces_events
))
8657 namespaces_event
= (struct perf_namespaces_event
){
8661 .type
= PERF_RECORD_NAMESPACES
,
8663 .size
= sizeof(namespaces_event
.event_id
),
8667 .nr_namespaces
= NR_NAMESPACES
,
8668 /* .link_info[NR_NAMESPACES] */
8672 ns_link_info
= namespaces_event
.event_id
.link_info
;
8674 perf_fill_ns_link_info(&ns_link_info
[MNT_NS_INDEX
],
8675 task
, &mntns_operations
);
8677 #ifdef CONFIG_USER_NS
8678 perf_fill_ns_link_info(&ns_link_info
[USER_NS_INDEX
],
8679 task
, &userns_operations
);
8681 #ifdef CONFIG_NET_NS
8682 perf_fill_ns_link_info(&ns_link_info
[NET_NS_INDEX
],
8683 task
, &netns_operations
);
8685 #ifdef CONFIG_UTS_NS
8686 perf_fill_ns_link_info(&ns_link_info
[UTS_NS_INDEX
],
8687 task
, &utsns_operations
);
8689 #ifdef CONFIG_IPC_NS
8690 perf_fill_ns_link_info(&ns_link_info
[IPC_NS_INDEX
],
8691 task
, &ipcns_operations
);
8693 #ifdef CONFIG_PID_NS
8694 perf_fill_ns_link_info(&ns_link_info
[PID_NS_INDEX
],
8695 task
, &pidns_operations
);
8697 #ifdef CONFIG_CGROUPS
8698 perf_fill_ns_link_info(&ns_link_info
[CGROUP_NS_INDEX
],
8699 task
, &cgroupns_operations
);
8702 perf_iterate_sb(perf_event_namespaces_output
,
8710 #ifdef CONFIG_CGROUP_PERF
8712 struct perf_cgroup_event
{
8716 struct perf_event_header header
;
8722 static int perf_event_cgroup_match(struct perf_event
*event
)
8724 return event
->attr
.cgroup
;
8727 static void perf_event_cgroup_output(struct perf_event
*event
, void *data
)
8729 struct perf_cgroup_event
*cgroup_event
= data
;
8730 struct perf_output_handle handle
;
8731 struct perf_sample_data sample
;
8732 u16 header_size
= cgroup_event
->event_id
.header
.size
;
8735 if (!perf_event_cgroup_match(event
))
8738 perf_event_header__init_id(&cgroup_event
->event_id
.header
,
8740 ret
= perf_output_begin(&handle
, &sample
, event
,
8741 cgroup_event
->event_id
.header
.size
);
8745 perf_output_put(&handle
, cgroup_event
->event_id
);
8746 __output_copy(&handle
, cgroup_event
->path
, cgroup_event
->path_size
);
8748 perf_event__output_id_sample(event
, &handle
, &sample
);
8750 perf_output_end(&handle
);
8752 cgroup_event
->event_id
.header
.size
= header_size
;
8755 static void perf_event_cgroup(struct cgroup
*cgrp
)
8757 struct perf_cgroup_event cgroup_event
;
8758 char path_enomem
[16] = "//enomem";
8762 if (!atomic_read(&nr_cgroup_events
))
8765 cgroup_event
= (struct perf_cgroup_event
){
8768 .type
= PERF_RECORD_CGROUP
,
8770 .size
= sizeof(cgroup_event
.event_id
),
8772 .id
= cgroup_id(cgrp
),
8776 pathname
= kmalloc(PATH_MAX
, GFP_KERNEL
);
8777 if (pathname
== NULL
) {
8778 cgroup_event
.path
= path_enomem
;
8780 /* just to be sure to have enough space for alignment */
8781 cgroup_path(cgrp
, pathname
, PATH_MAX
- sizeof(u64
));
8782 cgroup_event
.path
= pathname
;
8786 * Since our buffer works in 8 byte units we need to align our string
8787 * size to a multiple of 8. However, we must guarantee the tail end is
8788 * zero'd out to avoid leaking random bits to userspace.
8790 size
= strlen(cgroup_event
.path
) + 1;
8791 while (!IS_ALIGNED(size
, sizeof(u64
)))
8792 cgroup_event
.path
[size
++] = '\0';
8794 cgroup_event
.event_id
.header
.size
+= size
;
8795 cgroup_event
.path_size
= size
;
8797 perf_iterate_sb(perf_event_cgroup_output
,
8810 struct perf_mmap_event
{
8811 struct vm_area_struct
*vma
;
8813 const char *file_name
;
8819 u8 build_id
[BUILD_ID_SIZE_MAX
];
8823 struct perf_event_header header
;
8833 static int perf_event_mmap_match(struct perf_event
*event
,
8836 struct perf_mmap_event
*mmap_event
= data
;
8837 struct vm_area_struct
*vma
= mmap_event
->vma
;
8838 int executable
= vma
->vm_flags
& VM_EXEC
;
8840 return (!executable
&& event
->attr
.mmap_data
) ||
8841 (executable
&& (event
->attr
.mmap
|| event
->attr
.mmap2
));
8844 static void perf_event_mmap_output(struct perf_event
*event
,
8847 struct perf_mmap_event
*mmap_event
= data
;
8848 struct perf_output_handle handle
;
8849 struct perf_sample_data sample
;
8850 int size
= mmap_event
->event_id
.header
.size
;
8851 u32 type
= mmap_event
->event_id
.header
.type
;
8855 if (!perf_event_mmap_match(event
, data
))
8858 if (event
->attr
.mmap2
) {
8859 mmap_event
->event_id
.header
.type
= PERF_RECORD_MMAP2
;
8860 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->maj
);
8861 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->min
);
8862 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->ino
);
8863 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->ino_generation
);
8864 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->prot
);
8865 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->flags
);
8868 perf_event_header__init_id(&mmap_event
->event_id
.header
, &sample
, event
);
8869 ret
= perf_output_begin(&handle
, &sample
, event
,
8870 mmap_event
->event_id
.header
.size
);
8874 mmap_event
->event_id
.pid
= perf_event_pid(event
, current
);
8875 mmap_event
->event_id
.tid
= perf_event_tid(event
, current
);
8877 use_build_id
= event
->attr
.build_id
&& mmap_event
->build_id_size
;
8879 if (event
->attr
.mmap2
&& use_build_id
)
8880 mmap_event
->event_id
.header
.misc
|= PERF_RECORD_MISC_MMAP_BUILD_ID
;
8882 perf_output_put(&handle
, mmap_event
->event_id
);
8884 if (event
->attr
.mmap2
) {
8886 u8 size
[4] = { (u8
) mmap_event
->build_id_size
, 0, 0, 0 };
8888 __output_copy(&handle
, size
, 4);
8889 __output_copy(&handle
, mmap_event
->build_id
, BUILD_ID_SIZE_MAX
);
8891 perf_output_put(&handle
, mmap_event
->maj
);
8892 perf_output_put(&handle
, mmap_event
->min
);
8893 perf_output_put(&handle
, mmap_event
->ino
);
8894 perf_output_put(&handle
, mmap_event
->ino_generation
);
8896 perf_output_put(&handle
, mmap_event
->prot
);
8897 perf_output_put(&handle
, mmap_event
->flags
);
8900 __output_copy(&handle
, mmap_event
->file_name
,
8901 mmap_event
->file_size
);
8903 perf_event__output_id_sample(event
, &handle
, &sample
);
8905 perf_output_end(&handle
);
8907 mmap_event
->event_id
.header
.size
= size
;
8908 mmap_event
->event_id
.header
.type
= type
;
8911 static void perf_event_mmap_event(struct perf_mmap_event
*mmap_event
)
8913 struct vm_area_struct
*vma
= mmap_event
->vma
;
8914 struct file
*file
= vma
->vm_file
;
8915 int maj
= 0, min
= 0;
8916 u64 ino
= 0, gen
= 0;
8917 u32 prot
= 0, flags
= 0;
8923 if (vma
->vm_flags
& VM_READ
)
8925 if (vma
->vm_flags
& VM_WRITE
)
8927 if (vma
->vm_flags
& VM_EXEC
)
8930 if (vma
->vm_flags
& VM_MAYSHARE
)
8933 flags
= MAP_PRIVATE
;
8935 if (vma
->vm_flags
& VM_LOCKED
)
8936 flags
|= MAP_LOCKED
;
8937 if (is_vm_hugetlb_page(vma
))
8938 flags
|= MAP_HUGETLB
;
8941 struct inode
*inode
;
8944 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
8950 * d_path() works from the end of the rb backwards, so we
8951 * need to add enough zero bytes after the string to handle
8952 * the 64bit alignment we do later.
8954 name
= file_path(file
, buf
, PATH_MAX
- sizeof(u64
));
8959 inode
= file_inode(vma
->vm_file
);
8960 dev
= inode
->i_sb
->s_dev
;
8962 gen
= inode
->i_generation
;
8968 if (vma
->vm_ops
&& vma
->vm_ops
->name
)
8969 name
= (char *) vma
->vm_ops
->name(vma
);
8971 name
= (char *)arch_vma_name(vma
);
8973 if (vma_is_initial_heap(vma
))
8975 else if (vma_is_initial_stack(vma
))
8983 strscpy(tmp
, name
, sizeof(tmp
));
8987 * Since our buffer works in 8 byte units we need to align our string
8988 * size to a multiple of 8. However, we must guarantee the tail end is
8989 * zero'd out to avoid leaking random bits to userspace.
8991 size
= strlen(name
)+1;
8992 while (!IS_ALIGNED(size
, sizeof(u64
)))
8993 name
[size
++] = '\0';
8995 mmap_event
->file_name
= name
;
8996 mmap_event
->file_size
= size
;
8997 mmap_event
->maj
= maj
;
8998 mmap_event
->min
= min
;
8999 mmap_event
->ino
= ino
;
9000 mmap_event
->ino_generation
= gen
;
9001 mmap_event
->prot
= prot
;
9002 mmap_event
->flags
= flags
;
9004 if (!(vma
->vm_flags
& VM_EXEC
))
9005 mmap_event
->event_id
.header
.misc
|= PERF_RECORD_MISC_MMAP_DATA
;
9007 mmap_event
->event_id
.header
.size
= sizeof(mmap_event
->event_id
) + size
;
9009 if (atomic_read(&nr_build_id_events
))
9010 build_id_parse_nofault(vma
, mmap_event
->build_id
, &mmap_event
->build_id_size
);
9012 perf_iterate_sb(perf_event_mmap_output
,
9020 * Check whether inode and address range match filter criteria.
9022 static bool perf_addr_filter_match(struct perf_addr_filter
*filter
,
9023 struct file
*file
, unsigned long offset
,
9026 /* d_inode(NULL) won't be equal to any mapped user-space file */
9027 if (!filter
->path
.dentry
)
9030 if (d_inode(filter
->path
.dentry
) != file_inode(file
))
9033 if (filter
->offset
> offset
+ size
)
9036 if (filter
->offset
+ filter
->size
< offset
)
9042 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter
*filter
,
9043 struct vm_area_struct
*vma
,
9044 struct perf_addr_filter_range
*fr
)
9046 unsigned long vma_size
= vma
->vm_end
- vma
->vm_start
;
9047 unsigned long off
= vma
->vm_pgoff
<< PAGE_SHIFT
;
9048 struct file
*file
= vma
->vm_file
;
9050 if (!perf_addr_filter_match(filter
, file
, off
, vma_size
))
9053 if (filter
->offset
< off
) {
9054 fr
->start
= vma
->vm_start
;
9055 fr
->size
= min(vma_size
, filter
->size
- (off
- filter
->offset
));
9057 fr
->start
= vma
->vm_start
+ filter
->offset
- off
;
9058 fr
->size
= min(vma
->vm_end
- fr
->start
, filter
->size
);
9064 static void __perf_addr_filters_adjust(struct perf_event
*event
, void *data
)
9066 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
9067 struct vm_area_struct
*vma
= data
;
9068 struct perf_addr_filter
*filter
;
9069 unsigned int restart
= 0, count
= 0;
9070 unsigned long flags
;
9072 if (!has_addr_filter(event
))
9078 raw_spin_lock_irqsave(&ifh
->lock
, flags
);
9079 list_for_each_entry(filter
, &ifh
->list
, entry
) {
9080 if (perf_addr_filter_vma_adjust(filter
, vma
,
9081 &event
->addr_filter_ranges
[count
]))
9088 event
->addr_filters_gen
++;
9089 raw_spin_unlock_irqrestore(&ifh
->lock
, flags
);
9092 perf_event_stop(event
, 1);
9096 * Adjust all task's events' filters to the new vma
9098 static void perf_addr_filters_adjust(struct vm_area_struct
*vma
)
9100 struct perf_event_context
*ctx
;
9103 * Data tracing isn't supported yet and as such there is no need
9104 * to keep track of anything that isn't related to executable code:
9106 if (!(vma
->vm_flags
& VM_EXEC
))
9110 ctx
= rcu_dereference(current
->perf_event_ctxp
);
9112 perf_iterate_ctx(ctx
, __perf_addr_filters_adjust
, vma
, true);
9116 void perf_event_mmap(struct vm_area_struct
*vma
)
9118 struct perf_mmap_event mmap_event
;
9120 if (!atomic_read(&nr_mmap_events
))
9123 mmap_event
= (struct perf_mmap_event
){
9129 .type
= PERF_RECORD_MMAP
,
9130 .misc
= PERF_RECORD_MISC_USER
,
9135 .start
= vma
->vm_start
,
9136 .len
= vma
->vm_end
- vma
->vm_start
,
9137 .pgoff
= (u64
)vma
->vm_pgoff
<< PAGE_SHIFT
,
9139 /* .maj (attr_mmap2 only) */
9140 /* .min (attr_mmap2 only) */
9141 /* .ino (attr_mmap2 only) */
9142 /* .ino_generation (attr_mmap2 only) */
9143 /* .prot (attr_mmap2 only) */
9144 /* .flags (attr_mmap2 only) */
9147 perf_addr_filters_adjust(vma
);
9148 perf_event_mmap_event(&mmap_event
);
9151 void perf_event_aux_event(struct perf_event
*event
, unsigned long head
,
9152 unsigned long size
, u64 flags
)
9154 struct perf_output_handle handle
;
9155 struct perf_sample_data sample
;
9156 struct perf_aux_event
{
9157 struct perf_event_header header
;
9163 .type
= PERF_RECORD_AUX
,
9165 .size
= sizeof(rec
),
9173 perf_event_header__init_id(&rec
.header
, &sample
, event
);
9174 ret
= perf_output_begin(&handle
, &sample
, event
, rec
.header
.size
);
9179 perf_output_put(&handle
, rec
);
9180 perf_event__output_id_sample(event
, &handle
, &sample
);
9182 perf_output_end(&handle
);
9186 * Lost/dropped samples logging
9188 void perf_log_lost_samples(struct perf_event
*event
, u64 lost
)
9190 struct perf_output_handle handle
;
9191 struct perf_sample_data sample
;
9195 struct perf_event_header header
;
9197 } lost_samples_event
= {
9199 .type
= PERF_RECORD_LOST_SAMPLES
,
9201 .size
= sizeof(lost_samples_event
),
9206 perf_event_header__init_id(&lost_samples_event
.header
, &sample
, event
);
9208 ret
= perf_output_begin(&handle
, &sample
, event
,
9209 lost_samples_event
.header
.size
);
9213 perf_output_put(&handle
, lost_samples_event
);
9214 perf_event__output_id_sample(event
, &handle
, &sample
);
9215 perf_output_end(&handle
);
9219 * context_switch tracking
9222 struct perf_switch_event
{
9223 struct task_struct
*task
;
9224 struct task_struct
*next_prev
;
9227 struct perf_event_header header
;
9233 static int perf_event_switch_match(struct perf_event
*event
)
9235 return event
->attr
.context_switch
;
9238 static void perf_event_switch_output(struct perf_event
*event
, void *data
)
9240 struct perf_switch_event
*se
= data
;
9241 struct perf_output_handle handle
;
9242 struct perf_sample_data sample
;
9245 if (!perf_event_switch_match(event
))
9248 /* Only CPU-wide events are allowed to see next/prev pid/tid */
9249 if (event
->ctx
->task
) {
9250 se
->event_id
.header
.type
= PERF_RECORD_SWITCH
;
9251 se
->event_id
.header
.size
= sizeof(se
->event_id
.header
);
9253 se
->event_id
.header
.type
= PERF_RECORD_SWITCH_CPU_WIDE
;
9254 se
->event_id
.header
.size
= sizeof(se
->event_id
);
9255 se
->event_id
.next_prev_pid
=
9256 perf_event_pid(event
, se
->next_prev
);
9257 se
->event_id
.next_prev_tid
=
9258 perf_event_tid(event
, se
->next_prev
);
9261 perf_event_header__init_id(&se
->event_id
.header
, &sample
, event
);
9263 ret
= perf_output_begin(&handle
, &sample
, event
, se
->event_id
.header
.size
);
9267 if (event
->ctx
->task
)
9268 perf_output_put(&handle
, se
->event_id
.header
);
9270 perf_output_put(&handle
, se
->event_id
);
9272 perf_event__output_id_sample(event
, &handle
, &sample
);
9274 perf_output_end(&handle
);
9277 static void perf_event_switch(struct task_struct
*task
,
9278 struct task_struct
*next_prev
, bool sched_in
)
9280 struct perf_switch_event switch_event
;
9282 /* N.B. caller checks nr_switch_events != 0 */
9284 switch_event
= (struct perf_switch_event
){
9286 .next_prev
= next_prev
,
9290 .misc
= sched_in
? 0 : PERF_RECORD_MISC_SWITCH_OUT
,
9293 /* .next_prev_pid */
9294 /* .next_prev_tid */
9298 if (!sched_in
&& task_is_runnable(task
)) {
9299 switch_event
.event_id
.header
.misc
|=
9300 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT
;
9303 perf_iterate_sb(perf_event_switch_output
, &switch_event
, NULL
);
9307 * IRQ throttle logging
9310 static void perf_log_throttle(struct perf_event
*event
, int enable
)
9312 struct perf_output_handle handle
;
9313 struct perf_sample_data sample
;
9317 struct perf_event_header header
;
9321 } throttle_event
= {
9323 .type
= PERF_RECORD_THROTTLE
,
9325 .size
= sizeof(throttle_event
),
9327 .time
= perf_event_clock(event
),
9328 .id
= primary_event_id(event
),
9329 .stream_id
= event
->id
,
9333 throttle_event
.header
.type
= PERF_RECORD_UNTHROTTLE
;
9335 perf_event_header__init_id(&throttle_event
.header
, &sample
, event
);
9337 ret
= perf_output_begin(&handle
, &sample
, event
,
9338 throttle_event
.header
.size
);
9342 perf_output_put(&handle
, throttle_event
);
9343 perf_event__output_id_sample(event
, &handle
, &sample
);
9344 perf_output_end(&handle
);
9348 * ksymbol register/unregister tracking
9351 struct perf_ksymbol_event
{
9355 struct perf_event_header header
;
9363 static int perf_event_ksymbol_match(struct perf_event
*event
)
9365 return event
->attr
.ksymbol
;
9368 static void perf_event_ksymbol_output(struct perf_event
*event
, void *data
)
9370 struct perf_ksymbol_event
*ksymbol_event
= data
;
9371 struct perf_output_handle handle
;
9372 struct perf_sample_data sample
;
9375 if (!perf_event_ksymbol_match(event
))
9378 perf_event_header__init_id(&ksymbol_event
->event_id
.header
,
9380 ret
= perf_output_begin(&handle
, &sample
, event
,
9381 ksymbol_event
->event_id
.header
.size
);
9385 perf_output_put(&handle
, ksymbol_event
->event_id
);
9386 __output_copy(&handle
, ksymbol_event
->name
, ksymbol_event
->name_len
);
9387 perf_event__output_id_sample(event
, &handle
, &sample
);
9389 perf_output_end(&handle
);
9392 void perf_event_ksymbol(u16 ksym_type
, u64 addr
, u32 len
, bool unregister
,
9395 struct perf_ksymbol_event ksymbol_event
;
9396 char name
[KSYM_NAME_LEN
];
9400 if (!atomic_read(&nr_ksymbol_events
))
9403 if (ksym_type
>= PERF_RECORD_KSYMBOL_TYPE_MAX
||
9404 ksym_type
== PERF_RECORD_KSYMBOL_TYPE_UNKNOWN
)
9407 strscpy(name
, sym
, KSYM_NAME_LEN
);
9408 name_len
= strlen(name
) + 1;
9409 while (!IS_ALIGNED(name_len
, sizeof(u64
)))
9410 name
[name_len
++] = '\0';
9411 BUILD_BUG_ON(KSYM_NAME_LEN
% sizeof(u64
));
9414 flags
|= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER
;
9416 ksymbol_event
= (struct perf_ksymbol_event
){
9418 .name_len
= name_len
,
9421 .type
= PERF_RECORD_KSYMBOL
,
9422 .size
= sizeof(ksymbol_event
.event_id
) +
9427 .ksym_type
= ksym_type
,
9432 perf_iterate_sb(perf_event_ksymbol_output
, &ksymbol_event
, NULL
);
9435 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__
, ksym_type
);
9439 * bpf program load/unload tracking
9442 struct perf_bpf_event
{
9443 struct bpf_prog
*prog
;
9445 struct perf_event_header header
;
9449 u8 tag
[BPF_TAG_SIZE
];
9453 static int perf_event_bpf_match(struct perf_event
*event
)
9455 return event
->attr
.bpf_event
;
9458 static void perf_event_bpf_output(struct perf_event
*event
, void *data
)
9460 struct perf_bpf_event
*bpf_event
= data
;
9461 struct perf_output_handle handle
;
9462 struct perf_sample_data sample
;
9465 if (!perf_event_bpf_match(event
))
9468 perf_event_header__init_id(&bpf_event
->event_id
.header
,
9470 ret
= perf_output_begin(&handle
, &sample
, event
,
9471 bpf_event
->event_id
.header
.size
);
9475 perf_output_put(&handle
, bpf_event
->event_id
);
9476 perf_event__output_id_sample(event
, &handle
, &sample
);
9478 perf_output_end(&handle
);
9481 static void perf_event_bpf_emit_ksymbols(struct bpf_prog
*prog
,
9482 enum perf_bpf_event_type type
)
9484 bool unregister
= type
== PERF_BPF_EVENT_PROG_UNLOAD
;
9487 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF
,
9488 (u64
)(unsigned long)prog
->bpf_func
,
9489 prog
->jited_len
, unregister
,
9490 prog
->aux
->ksym
.name
);
9492 for (i
= 1; i
< prog
->aux
->func_cnt
; i
++) {
9493 struct bpf_prog
*subprog
= prog
->aux
->func
[i
];
9496 PERF_RECORD_KSYMBOL_TYPE_BPF
,
9497 (u64
)(unsigned long)subprog
->bpf_func
,
9498 subprog
->jited_len
, unregister
,
9499 subprog
->aux
->ksym
.name
);
9503 void perf_event_bpf_event(struct bpf_prog
*prog
,
9504 enum perf_bpf_event_type type
,
9507 struct perf_bpf_event bpf_event
;
9510 case PERF_BPF_EVENT_PROG_LOAD
:
9511 case PERF_BPF_EVENT_PROG_UNLOAD
:
9512 if (atomic_read(&nr_ksymbol_events
))
9513 perf_event_bpf_emit_ksymbols(prog
, type
);
9519 if (!atomic_read(&nr_bpf_events
))
9522 bpf_event
= (struct perf_bpf_event
){
9526 .type
= PERF_RECORD_BPF_EVENT
,
9527 .size
= sizeof(bpf_event
.event_id
),
9531 .id
= prog
->aux
->id
,
9535 BUILD_BUG_ON(BPF_TAG_SIZE
% sizeof(u64
));
9537 memcpy(bpf_event
.event_id
.tag
, prog
->tag
, BPF_TAG_SIZE
);
9538 perf_iterate_sb(perf_event_bpf_output
, &bpf_event
, NULL
);
9541 struct perf_text_poke_event
{
9542 const void *old_bytes
;
9543 const void *new_bytes
;
9549 struct perf_event_header header
;
9555 static int perf_event_text_poke_match(struct perf_event
*event
)
9557 return event
->attr
.text_poke
;
9560 static void perf_event_text_poke_output(struct perf_event
*event
, void *data
)
9562 struct perf_text_poke_event
*text_poke_event
= data
;
9563 struct perf_output_handle handle
;
9564 struct perf_sample_data sample
;
9568 if (!perf_event_text_poke_match(event
))
9571 perf_event_header__init_id(&text_poke_event
->event_id
.header
, &sample
, event
);
9573 ret
= perf_output_begin(&handle
, &sample
, event
,
9574 text_poke_event
->event_id
.header
.size
);
9578 perf_output_put(&handle
, text_poke_event
->event_id
);
9579 perf_output_put(&handle
, text_poke_event
->old_len
);
9580 perf_output_put(&handle
, text_poke_event
->new_len
);
9582 __output_copy(&handle
, text_poke_event
->old_bytes
, text_poke_event
->old_len
);
9583 __output_copy(&handle
, text_poke_event
->new_bytes
, text_poke_event
->new_len
);
9585 if (text_poke_event
->pad
)
9586 __output_copy(&handle
, &padding
, text_poke_event
->pad
);
9588 perf_event__output_id_sample(event
, &handle
, &sample
);
9590 perf_output_end(&handle
);
9593 void perf_event_text_poke(const void *addr
, const void *old_bytes
,
9594 size_t old_len
, const void *new_bytes
, size_t new_len
)
9596 struct perf_text_poke_event text_poke_event
;
9599 if (!atomic_read(&nr_text_poke_events
))
9602 tot
= sizeof(text_poke_event
.old_len
) + old_len
;
9603 tot
+= sizeof(text_poke_event
.new_len
) + new_len
;
9604 pad
= ALIGN(tot
, sizeof(u64
)) - tot
;
9606 text_poke_event
= (struct perf_text_poke_event
){
9607 .old_bytes
= old_bytes
,
9608 .new_bytes
= new_bytes
,
9614 .type
= PERF_RECORD_TEXT_POKE
,
9615 .misc
= PERF_RECORD_MISC_KERNEL
,
9616 .size
= sizeof(text_poke_event
.event_id
) + tot
+ pad
,
9618 .addr
= (unsigned long)addr
,
9622 perf_iterate_sb(perf_event_text_poke_output
, &text_poke_event
, NULL
);
9625 void perf_event_itrace_started(struct perf_event
*event
)
9627 event
->attach_state
|= PERF_ATTACH_ITRACE
;
9630 static void perf_log_itrace_start(struct perf_event
*event
)
9632 struct perf_output_handle handle
;
9633 struct perf_sample_data sample
;
9634 struct perf_aux_event
{
9635 struct perf_event_header header
;
9642 event
= event
->parent
;
9644 if (!(event
->pmu
->capabilities
& PERF_PMU_CAP_ITRACE
) ||
9645 event
->attach_state
& PERF_ATTACH_ITRACE
)
9648 rec
.header
.type
= PERF_RECORD_ITRACE_START
;
9649 rec
.header
.misc
= 0;
9650 rec
.header
.size
= sizeof(rec
);
9651 rec
.pid
= perf_event_pid(event
, current
);
9652 rec
.tid
= perf_event_tid(event
, current
);
9654 perf_event_header__init_id(&rec
.header
, &sample
, event
);
9655 ret
= perf_output_begin(&handle
, &sample
, event
, rec
.header
.size
);
9660 perf_output_put(&handle
, rec
);
9661 perf_event__output_id_sample(event
, &handle
, &sample
);
9663 perf_output_end(&handle
);
9666 void perf_report_aux_output_id(struct perf_event
*event
, u64 hw_id
)
9668 struct perf_output_handle handle
;
9669 struct perf_sample_data sample
;
9670 struct perf_aux_event
{
9671 struct perf_event_header header
;
9677 event
= event
->parent
;
9679 rec
.header
.type
= PERF_RECORD_AUX_OUTPUT_HW_ID
;
9680 rec
.header
.misc
= 0;
9681 rec
.header
.size
= sizeof(rec
);
9684 perf_event_header__init_id(&rec
.header
, &sample
, event
);
9685 ret
= perf_output_begin(&handle
, &sample
, event
, rec
.header
.size
);
9690 perf_output_put(&handle
, rec
);
9691 perf_event__output_id_sample(event
, &handle
, &sample
);
9693 perf_output_end(&handle
);
9695 EXPORT_SYMBOL_GPL(perf_report_aux_output_id
);
9698 __perf_event_account_interrupt(struct perf_event
*event
, int throttle
)
9700 struct hw_perf_event
*hwc
= &event
->hw
;
9704 seq
= __this_cpu_read(perf_throttled_seq
);
9705 if (seq
!= hwc
->interrupts_seq
) {
9706 hwc
->interrupts_seq
= seq
;
9707 hwc
->interrupts
= 1;
9710 if (unlikely(throttle
&&
9711 hwc
->interrupts
> max_samples_per_tick
)) {
9712 __this_cpu_inc(perf_throttled_count
);
9713 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS
);
9714 hwc
->interrupts
= MAX_INTERRUPTS
;
9715 perf_log_throttle(event
, 0);
9720 if (event
->attr
.freq
) {
9721 u64 now
= perf_clock();
9722 s64 delta
= now
- hwc
->freq_time_stamp
;
9724 hwc
->freq_time_stamp
= now
;
9726 if (delta
> 0 && delta
< 2*TICK_NSEC
)
9727 perf_adjust_period(event
, delta
, hwc
->last_period
, true);
9733 int perf_event_account_interrupt(struct perf_event
*event
)
9735 return __perf_event_account_interrupt(event
, 1);
9738 static inline bool sample_is_allowed(struct perf_event
*event
, struct pt_regs
*regs
)
9741 * Due to interrupt latency (AKA "skid"), we may enter the
9742 * kernel before taking an overflow, even if the PMU is only
9743 * counting user events.
9745 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
9751 #ifdef CONFIG_BPF_SYSCALL
9752 static int bpf_overflow_handler(struct perf_event
*event
,
9753 struct perf_sample_data
*data
,
9754 struct pt_regs
*regs
)
9756 struct bpf_perf_event_data_kern ctx
= {
9760 struct bpf_prog
*prog
;
9763 ctx
.regs
= perf_arch_bpf_user_pt_regs(regs
);
9764 if (unlikely(__this_cpu_inc_return(bpf_prog_active
) != 1))
9767 prog
= READ_ONCE(event
->prog
);
9769 perf_prepare_sample(data
, event
, regs
);
9770 ret
= bpf_prog_run(prog
, &ctx
);
9774 __this_cpu_dec(bpf_prog_active
);
9779 static inline int perf_event_set_bpf_handler(struct perf_event
*event
,
9780 struct bpf_prog
*prog
,
9783 if (event
->overflow_handler_context
)
9784 /* hw breakpoint or kernel counter */
9790 if (prog
->type
!= BPF_PROG_TYPE_PERF_EVENT
)
9793 if (event
->attr
.precise_ip
&&
9794 prog
->call_get_stack
&&
9795 (!(event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
) ||
9796 event
->attr
.exclude_callchain_kernel
||
9797 event
->attr
.exclude_callchain_user
)) {
9799 * On perf_event with precise_ip, calling bpf_get_stack()
9800 * may trigger unwinder warnings and occasional crashes.
9801 * bpf_get_[stack|stackid] works around this issue by using
9802 * callchain attached to perf_sample_data. If the
9803 * perf_event does not full (kernel and user) callchain
9804 * attached to perf_sample_data, do not allow attaching BPF
9805 * program that calls bpf_get_[stack|stackid].
9811 event
->bpf_cookie
= bpf_cookie
;
9815 static inline void perf_event_free_bpf_handler(struct perf_event
*event
)
9817 struct bpf_prog
*prog
= event
->prog
;
9826 static inline int bpf_overflow_handler(struct perf_event
*event
,
9827 struct perf_sample_data
*data
,
9828 struct pt_regs
*regs
)
9833 static inline int perf_event_set_bpf_handler(struct perf_event
*event
,
9834 struct bpf_prog
*prog
,
9840 static inline void perf_event_free_bpf_handler(struct perf_event
*event
)
9846 * Generic event overflow handling, sampling.
9849 static int __perf_event_overflow(struct perf_event
*event
,
9850 int throttle
, struct perf_sample_data
*data
,
9851 struct pt_regs
*regs
)
9853 int events
= atomic_read(&event
->event_limit
);
9857 * Non-sampling counters might still use the PMI to fold short
9858 * hardware counters, ignore those.
9860 if (unlikely(!is_sampling_event(event
)))
9863 ret
= __perf_event_account_interrupt(event
, throttle
);
9865 if (event
->attr
.aux_pause
)
9866 perf_event_aux_pause(event
->aux_event
, true);
9868 if (event
->prog
&& event
->prog
->type
== BPF_PROG_TYPE_PERF_EVENT
&&
9869 !bpf_overflow_handler(event
, data
, regs
))
9873 * XXX event_limit might not quite work as expected on inherited
9877 event
->pending_kill
= POLL_IN
;
9878 if (events
&& atomic_dec_and_test(&event
->event_limit
)) {
9880 event
->pending_kill
= POLL_HUP
;
9881 perf_event_disable_inatomic(event
);
9884 if (event
->attr
.sigtrap
) {
9886 * The desired behaviour of sigtrap vs invalid samples is a bit
9887 * tricky; on the one hand, one should not loose the SIGTRAP if
9888 * it is the first event, on the other hand, we should also not
9889 * trigger the WARN or override the data address.
9891 bool valid_sample
= sample_is_allowed(event
, regs
);
9892 unsigned int pending_id
= 1;
9893 enum task_work_notify_mode notify_mode
;
9896 pending_id
= hash32_ptr((void *)instruction_pointer(regs
)) ?: 1;
9898 notify_mode
= in_nmi() ? TWA_NMI_CURRENT
: TWA_RESUME
;
9900 if (!event
->pending_work
&&
9901 !task_work_add(current
, &event
->pending_task
, notify_mode
)) {
9902 event
->pending_work
= pending_id
;
9903 local_inc(&event
->ctx
->nr_no_switch_fast
);
9905 event
->pending_addr
= 0;
9906 if (valid_sample
&& (data
->sample_flags
& PERF_SAMPLE_ADDR
))
9907 event
->pending_addr
= data
->addr
;
9909 } else if (event
->attr
.exclude_kernel
&& valid_sample
) {
9911 * Should not be able to return to user space without
9912 * consuming pending_work; with exceptions:
9914 * 1. Where !exclude_kernel, events can overflow again
9915 * in the kernel without returning to user space.
9917 * 2. Events that can overflow again before the IRQ-
9918 * work without user space progress (e.g. hrtimer).
9919 * To approximate progress (with false negatives),
9920 * check 32-bit hash of the current IP.
9922 WARN_ON_ONCE(event
->pending_work
!= pending_id
);
9926 READ_ONCE(event
->overflow_handler
)(event
, data
, regs
);
9928 if (*perf_event_fasync(event
) && event
->pending_kill
) {
9929 event
->pending_wakeup
= 1;
9930 irq_work_queue(&event
->pending_irq
);
9933 if (event
->attr
.aux_resume
)
9934 perf_event_aux_pause(event
->aux_event
, false);
9939 int perf_event_overflow(struct perf_event
*event
,
9940 struct perf_sample_data
*data
,
9941 struct pt_regs
*regs
)
9943 return __perf_event_overflow(event
, 1, data
, regs
);
9947 * Generic software event infrastructure
9950 struct swevent_htable
{
9951 struct swevent_hlist
*swevent_hlist
;
9952 struct mutex hlist_mutex
;
9955 static DEFINE_PER_CPU(struct swevent_htable
, swevent_htable
);
9958 * We directly increment event->count and keep a second value in
9959 * event->hw.period_left to count intervals. This period event
9960 * is kept in the range [-sample_period, 0] so that we can use the
9964 u64
perf_swevent_set_period(struct perf_event
*event
)
9966 struct hw_perf_event
*hwc
= &event
->hw
;
9967 u64 period
= hwc
->last_period
;
9971 hwc
->last_period
= hwc
->sample_period
;
9973 old
= local64_read(&hwc
->period_left
);
9979 nr
= div64_u64(period
+ val
, period
);
9980 offset
= nr
* period
;
9982 } while (!local64_try_cmpxchg(&hwc
->period_left
, &old
, val
));
9987 static void perf_swevent_overflow(struct perf_event
*event
, u64 overflow
,
9988 struct perf_sample_data
*data
,
9989 struct pt_regs
*regs
)
9991 struct hw_perf_event
*hwc
= &event
->hw
;
9995 overflow
= perf_swevent_set_period(event
);
9997 if (hwc
->interrupts
== MAX_INTERRUPTS
)
10000 for (; overflow
; overflow
--) {
10001 if (__perf_event_overflow(event
, throttle
,
10004 * We inhibit the overflow from happening when
10005 * hwc->interrupts == MAX_INTERRUPTS.
10013 static void perf_swevent_event(struct perf_event
*event
, u64 nr
,
10014 struct perf_sample_data
*data
,
10015 struct pt_regs
*regs
)
10017 struct hw_perf_event
*hwc
= &event
->hw
;
10019 local64_add(nr
, &event
->count
);
10024 if (!is_sampling_event(event
))
10027 if ((event
->attr
.sample_type
& PERF_SAMPLE_PERIOD
) && !event
->attr
.freq
) {
10029 return perf_swevent_overflow(event
, 1, data
, regs
);
10031 data
->period
= event
->hw
.last_period
;
10033 if (nr
== 1 && hwc
->sample_period
== 1 && !event
->attr
.freq
)
10034 return perf_swevent_overflow(event
, 1, data
, regs
);
10036 if (local64_add_negative(nr
, &hwc
->period_left
))
10039 perf_swevent_overflow(event
, 0, data
, regs
);
10042 static int perf_exclude_event(struct perf_event
*event
,
10043 struct pt_regs
*regs
)
10045 if (event
->hw
.state
& PERF_HES_STOPPED
)
10049 if (event
->attr
.exclude_user
&& user_mode(regs
))
10052 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
10059 static int perf_swevent_match(struct perf_event
*event
,
10060 enum perf_type_id type
,
10062 struct perf_sample_data
*data
,
10063 struct pt_regs
*regs
)
10065 if (event
->attr
.type
!= type
)
10068 if (event
->attr
.config
!= event_id
)
10071 if (perf_exclude_event(event
, regs
))
10077 static inline u64
swevent_hash(u64 type
, u32 event_id
)
10079 u64 val
= event_id
| (type
<< 32);
10081 return hash_64(val
, SWEVENT_HLIST_BITS
);
10084 static inline struct hlist_head
*
10085 __find_swevent_head(struct swevent_hlist
*hlist
, u64 type
, u32 event_id
)
10087 u64 hash
= swevent_hash(type
, event_id
);
10089 return &hlist
->heads
[hash
];
10092 /* For the read side: events when they trigger */
10093 static inline struct hlist_head
*
10094 find_swevent_head_rcu(struct swevent_htable
*swhash
, u64 type
, u32 event_id
)
10096 struct swevent_hlist
*hlist
;
10098 hlist
= rcu_dereference(swhash
->swevent_hlist
);
10102 return __find_swevent_head(hlist
, type
, event_id
);
10105 /* For the event head insertion and removal in the hlist */
10106 static inline struct hlist_head
*
10107 find_swevent_head(struct swevent_htable
*swhash
, struct perf_event
*event
)
10109 struct swevent_hlist
*hlist
;
10110 u32 event_id
= event
->attr
.config
;
10111 u64 type
= event
->attr
.type
;
10114 * Event scheduling is always serialized against hlist allocation
10115 * and release. Which makes the protected version suitable here.
10116 * The context lock guarantees that.
10118 hlist
= rcu_dereference_protected(swhash
->swevent_hlist
,
10119 lockdep_is_held(&event
->ctx
->lock
));
10123 return __find_swevent_head(hlist
, type
, event_id
);
10126 static void do_perf_sw_event(enum perf_type_id type
, u32 event_id
,
10128 struct perf_sample_data
*data
,
10129 struct pt_regs
*regs
)
10131 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
10132 struct perf_event
*event
;
10133 struct hlist_head
*head
;
10136 head
= find_swevent_head_rcu(swhash
, type
, event_id
);
10140 hlist_for_each_entry_rcu(event
, head
, hlist_entry
) {
10141 if (perf_swevent_match(event
, type
, event_id
, data
, regs
))
10142 perf_swevent_event(event
, nr
, data
, regs
);
10148 DEFINE_PER_CPU(struct pt_regs
, __perf_regs
[4]);
10150 int perf_swevent_get_recursion_context(void)
10152 return get_recursion_context(current
->perf_recursion
);
10154 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context
);
10156 void perf_swevent_put_recursion_context(int rctx
)
10158 put_recursion_context(current
->perf_recursion
, rctx
);
10161 void ___perf_sw_event(u32 event_id
, u64 nr
, struct pt_regs
*regs
, u64 addr
)
10163 struct perf_sample_data data
;
10165 if (WARN_ON_ONCE(!regs
))
10168 perf_sample_data_init(&data
, addr
, 0);
10169 do_perf_sw_event(PERF_TYPE_SOFTWARE
, event_id
, nr
, &data
, regs
);
10172 void __perf_sw_event(u32 event_id
, u64 nr
, struct pt_regs
*regs
, u64 addr
)
10176 preempt_disable_notrace();
10177 rctx
= perf_swevent_get_recursion_context();
10178 if (unlikely(rctx
< 0))
10181 ___perf_sw_event(event_id
, nr
, regs
, addr
);
10183 perf_swevent_put_recursion_context(rctx
);
10185 preempt_enable_notrace();
10188 static void perf_swevent_read(struct perf_event
*event
)
10192 static int perf_swevent_add(struct perf_event
*event
, int flags
)
10194 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
10195 struct hw_perf_event
*hwc
= &event
->hw
;
10196 struct hlist_head
*head
;
10198 if (is_sampling_event(event
)) {
10199 hwc
->last_period
= hwc
->sample_period
;
10200 perf_swevent_set_period(event
);
10203 hwc
->state
= !(flags
& PERF_EF_START
);
10205 head
= find_swevent_head(swhash
, event
);
10206 if (WARN_ON_ONCE(!head
))
10209 hlist_add_head_rcu(&event
->hlist_entry
, head
);
10210 perf_event_update_userpage(event
);
10215 static void perf_swevent_del(struct perf_event
*event
, int flags
)
10217 hlist_del_rcu(&event
->hlist_entry
);
10220 static void perf_swevent_start(struct perf_event
*event
, int flags
)
10222 event
->hw
.state
= 0;
10225 static void perf_swevent_stop(struct perf_event
*event
, int flags
)
10227 event
->hw
.state
= PERF_HES_STOPPED
;
10230 /* Deref the hlist from the update side */
10231 static inline struct swevent_hlist
*
10232 swevent_hlist_deref(struct swevent_htable
*swhash
)
10234 return rcu_dereference_protected(swhash
->swevent_hlist
,
10235 lockdep_is_held(&swhash
->hlist_mutex
));
10238 static void swevent_hlist_release(struct swevent_htable
*swhash
)
10240 struct swevent_hlist
*hlist
= swevent_hlist_deref(swhash
);
10245 RCU_INIT_POINTER(swhash
->swevent_hlist
, NULL
);
10246 kfree_rcu(hlist
, rcu_head
);
10249 static void swevent_hlist_put_cpu(int cpu
)
10251 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
10253 mutex_lock(&swhash
->hlist_mutex
);
10255 if (!--swhash
->hlist_refcount
)
10256 swevent_hlist_release(swhash
);
10258 mutex_unlock(&swhash
->hlist_mutex
);
10261 static void swevent_hlist_put(void)
10265 for_each_possible_cpu(cpu
)
10266 swevent_hlist_put_cpu(cpu
);
10269 static int swevent_hlist_get_cpu(int cpu
)
10271 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
10274 mutex_lock(&swhash
->hlist_mutex
);
10275 if (!swevent_hlist_deref(swhash
) &&
10276 cpumask_test_cpu(cpu
, perf_online_mask
)) {
10277 struct swevent_hlist
*hlist
;
10279 hlist
= kzalloc(sizeof(*hlist
), GFP_KERNEL
);
10284 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
10286 swhash
->hlist_refcount
++;
10288 mutex_unlock(&swhash
->hlist_mutex
);
10293 static int swevent_hlist_get(void)
10295 int err
, cpu
, failed_cpu
;
10297 mutex_lock(&pmus_lock
);
10298 for_each_possible_cpu(cpu
) {
10299 err
= swevent_hlist_get_cpu(cpu
);
10305 mutex_unlock(&pmus_lock
);
10308 for_each_possible_cpu(cpu
) {
10309 if (cpu
== failed_cpu
)
10311 swevent_hlist_put_cpu(cpu
);
10313 mutex_unlock(&pmus_lock
);
10317 struct static_key perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
10319 static void sw_perf_event_destroy(struct perf_event
*event
)
10321 u64 event_id
= event
->attr
.config
;
10323 WARN_ON(event
->parent
);
10325 static_key_slow_dec(&perf_swevent_enabled
[event_id
]);
10326 swevent_hlist_put();
10329 static struct pmu perf_cpu_clock
; /* fwd declaration */
10330 static struct pmu perf_task_clock
;
10332 static int perf_swevent_init(struct perf_event
*event
)
10334 u64 event_id
= event
->attr
.config
;
10336 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
10340 * no branch sampling for software events
10342 if (has_branch_stack(event
))
10343 return -EOPNOTSUPP
;
10345 switch (event_id
) {
10346 case PERF_COUNT_SW_CPU_CLOCK
:
10347 event
->attr
.type
= perf_cpu_clock
.type
;
10349 case PERF_COUNT_SW_TASK_CLOCK
:
10350 event
->attr
.type
= perf_task_clock
.type
;
10357 if (event_id
>= PERF_COUNT_SW_MAX
)
10360 if (!event
->parent
) {
10363 err
= swevent_hlist_get();
10367 static_key_slow_inc(&perf_swevent_enabled
[event_id
]);
10368 event
->destroy
= sw_perf_event_destroy
;
10374 static struct pmu perf_swevent
= {
10375 .task_ctx_nr
= perf_sw_context
,
10377 .capabilities
= PERF_PMU_CAP_NO_NMI
,
10379 .event_init
= perf_swevent_init
,
10380 .add
= perf_swevent_add
,
10381 .del
= perf_swevent_del
,
10382 .start
= perf_swevent_start
,
10383 .stop
= perf_swevent_stop
,
10384 .read
= perf_swevent_read
,
10387 #ifdef CONFIG_EVENT_TRACING
10389 static void tp_perf_event_destroy(struct perf_event
*event
)
10391 perf_trace_destroy(event
);
10394 static int perf_tp_event_init(struct perf_event
*event
)
10398 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
10402 * no branch sampling for tracepoint events
10404 if (has_branch_stack(event
))
10405 return -EOPNOTSUPP
;
10407 err
= perf_trace_init(event
);
10411 event
->destroy
= tp_perf_event_destroy
;
10416 static struct pmu perf_tracepoint
= {
10417 .task_ctx_nr
= perf_sw_context
,
10419 .event_init
= perf_tp_event_init
,
10420 .add
= perf_trace_add
,
10421 .del
= perf_trace_del
,
10422 .start
= perf_swevent_start
,
10423 .stop
= perf_swevent_stop
,
10424 .read
= perf_swevent_read
,
10427 static int perf_tp_filter_match(struct perf_event
*event
,
10428 struct perf_sample_data
*data
)
10430 void *record
= data
->raw
->frag
.data
;
10432 /* only top level events have filters set */
10434 event
= event
->parent
;
10436 if (likely(!event
->filter
) || filter_match_preds(event
->filter
, record
))
10441 static int perf_tp_event_match(struct perf_event
*event
,
10442 struct perf_sample_data
*data
,
10443 struct pt_regs
*regs
)
10445 if (event
->hw
.state
& PERF_HES_STOPPED
)
10448 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10450 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
10453 if (!perf_tp_filter_match(event
, data
))
10459 void perf_trace_run_bpf_submit(void *raw_data
, int size
, int rctx
,
10460 struct trace_event_call
*call
, u64 count
,
10461 struct pt_regs
*regs
, struct hlist_head
*head
,
10462 struct task_struct
*task
)
10464 if (bpf_prog_array_valid(call
)) {
10465 *(struct pt_regs
**)raw_data
= regs
;
10466 if (!trace_call_bpf(call
, raw_data
) || hlist_empty(head
)) {
10467 perf_swevent_put_recursion_context(rctx
);
10471 perf_tp_event(call
->event
.type
, count
, raw_data
, size
, regs
, head
,
10474 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit
);
10476 static void __perf_tp_event_target_task(u64 count
, void *record
,
10477 struct pt_regs
*regs
,
10478 struct perf_sample_data
*data
,
10479 struct perf_event
*event
)
10481 struct trace_entry
*entry
= record
;
10483 if (event
->attr
.config
!= entry
->type
)
10485 /* Cannot deliver synchronous signal to other task. */
10486 if (event
->attr
.sigtrap
)
10488 if (perf_tp_event_match(event
, data
, regs
))
10489 perf_swevent_event(event
, count
, data
, regs
);
10492 static void perf_tp_event_target_task(u64 count
, void *record
,
10493 struct pt_regs
*regs
,
10494 struct perf_sample_data
*data
,
10495 struct perf_event_context
*ctx
)
10497 unsigned int cpu
= smp_processor_id();
10498 struct pmu
*pmu
= &perf_tracepoint
;
10499 struct perf_event
*event
, *sibling
;
10501 perf_event_groups_for_cpu_pmu(event
, &ctx
->pinned_groups
, cpu
, pmu
) {
10502 __perf_tp_event_target_task(count
, record
, regs
, data
, event
);
10503 for_each_sibling_event(sibling
, event
)
10504 __perf_tp_event_target_task(count
, record
, regs
, data
, sibling
);
10507 perf_event_groups_for_cpu_pmu(event
, &ctx
->flexible_groups
, cpu
, pmu
) {
10508 __perf_tp_event_target_task(count
, record
, regs
, data
, event
);
10509 for_each_sibling_event(sibling
, event
)
10510 __perf_tp_event_target_task(count
, record
, regs
, data
, sibling
);
10514 void perf_tp_event(u16 event_type
, u64 count
, void *record
, int entry_size
,
10515 struct pt_regs
*regs
, struct hlist_head
*head
, int rctx
,
10516 struct task_struct
*task
)
10518 struct perf_sample_data data
;
10519 struct perf_event
*event
;
10521 struct perf_raw_record raw
= {
10523 .size
= entry_size
,
10528 perf_sample_data_init(&data
, 0, 0);
10529 perf_sample_save_raw_data(&data
, &raw
);
10531 perf_trace_buf_update(record
, event_type
);
10533 hlist_for_each_entry_rcu(event
, head
, hlist_entry
) {
10534 if (perf_tp_event_match(event
, &data
, regs
)) {
10535 perf_swevent_event(event
, count
, &data
, regs
);
10538 * Here use the same on-stack perf_sample_data,
10539 * some members in data are event-specific and
10540 * need to be re-computed for different sweveents.
10541 * Re-initialize data->sample_flags safely to avoid
10542 * the problem that next event skips preparing data
10543 * because data->sample_flags is set.
10545 perf_sample_data_init(&data
, 0, 0);
10546 perf_sample_save_raw_data(&data
, &raw
);
10551 * If we got specified a target task, also iterate its context and
10552 * deliver this event there too.
10554 if (task
&& task
!= current
) {
10555 struct perf_event_context
*ctx
;
10558 ctx
= rcu_dereference(task
->perf_event_ctxp
);
10562 raw_spin_lock(&ctx
->lock
);
10563 perf_tp_event_target_task(count
, record
, regs
, &data
, ctx
);
10564 raw_spin_unlock(&ctx
->lock
);
10569 perf_swevent_put_recursion_context(rctx
);
10571 EXPORT_SYMBOL_GPL(perf_tp_event
);
10573 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10575 * Flags in config, used by dynamic PMU kprobe and uprobe
10576 * The flags should match following PMU_FORMAT_ATTR().
10578 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10579 * if not set, create kprobe/uprobe
10581 * The following values specify a reference counter (or semaphore in the
10582 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10583 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10585 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
10586 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
10588 enum perf_probe_config
{
10589 PERF_PROBE_CONFIG_IS_RETPROBE
= 1U << 0, /* [k,u]retprobe */
10590 PERF_UPROBE_REF_CTR_OFFSET_BITS
= 32,
10591 PERF_UPROBE_REF_CTR_OFFSET_SHIFT
= 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS
,
10594 PMU_FORMAT_ATTR(retprobe
, "config:0");
10597 #ifdef CONFIG_KPROBE_EVENTS
10598 static struct attribute
*kprobe_attrs
[] = {
10599 &format_attr_retprobe
.attr
,
10603 static struct attribute_group kprobe_format_group
= {
10605 .attrs
= kprobe_attrs
,
10608 static const struct attribute_group
*kprobe_attr_groups
[] = {
10609 &kprobe_format_group
,
10613 static int perf_kprobe_event_init(struct perf_event
*event
);
10614 static struct pmu perf_kprobe
= {
10615 .task_ctx_nr
= perf_sw_context
,
10616 .event_init
= perf_kprobe_event_init
,
10617 .add
= perf_trace_add
,
10618 .del
= perf_trace_del
,
10619 .start
= perf_swevent_start
,
10620 .stop
= perf_swevent_stop
,
10621 .read
= perf_swevent_read
,
10622 .attr_groups
= kprobe_attr_groups
,
10625 static int perf_kprobe_event_init(struct perf_event
*event
)
10630 if (event
->attr
.type
!= perf_kprobe
.type
)
10633 if (!perfmon_capable())
10637 * no branch sampling for probe events
10639 if (has_branch_stack(event
))
10640 return -EOPNOTSUPP
;
10642 is_retprobe
= event
->attr
.config
& PERF_PROBE_CONFIG_IS_RETPROBE
;
10643 err
= perf_kprobe_init(event
, is_retprobe
);
10647 event
->destroy
= perf_kprobe_destroy
;
10651 #endif /* CONFIG_KPROBE_EVENTS */
10653 #ifdef CONFIG_UPROBE_EVENTS
10654 PMU_FORMAT_ATTR(ref_ctr_offset
, "config:32-63");
10656 static struct attribute
*uprobe_attrs
[] = {
10657 &format_attr_retprobe
.attr
,
10658 &format_attr_ref_ctr_offset
.attr
,
10662 static struct attribute_group uprobe_format_group
= {
10664 .attrs
= uprobe_attrs
,
10667 static const struct attribute_group
*uprobe_attr_groups
[] = {
10668 &uprobe_format_group
,
10672 static int perf_uprobe_event_init(struct perf_event
*event
);
10673 static struct pmu perf_uprobe
= {
10674 .task_ctx_nr
= perf_sw_context
,
10675 .event_init
= perf_uprobe_event_init
,
10676 .add
= perf_trace_add
,
10677 .del
= perf_trace_del
,
10678 .start
= perf_swevent_start
,
10679 .stop
= perf_swevent_stop
,
10680 .read
= perf_swevent_read
,
10681 .attr_groups
= uprobe_attr_groups
,
10684 static int perf_uprobe_event_init(struct perf_event
*event
)
10687 unsigned long ref_ctr_offset
;
10690 if (event
->attr
.type
!= perf_uprobe
.type
)
10693 if (!perfmon_capable())
10697 * no branch sampling for probe events
10699 if (has_branch_stack(event
))
10700 return -EOPNOTSUPP
;
10702 is_retprobe
= event
->attr
.config
& PERF_PROBE_CONFIG_IS_RETPROBE
;
10703 ref_ctr_offset
= event
->attr
.config
>> PERF_UPROBE_REF_CTR_OFFSET_SHIFT
;
10704 err
= perf_uprobe_init(event
, ref_ctr_offset
, is_retprobe
);
10708 event
->destroy
= perf_uprobe_destroy
;
10712 #endif /* CONFIG_UPROBE_EVENTS */
10714 static inline void perf_tp_register(void)
10716 perf_pmu_register(&perf_tracepoint
, "tracepoint", PERF_TYPE_TRACEPOINT
);
10717 #ifdef CONFIG_KPROBE_EVENTS
10718 perf_pmu_register(&perf_kprobe
, "kprobe", -1);
10720 #ifdef CONFIG_UPROBE_EVENTS
10721 perf_pmu_register(&perf_uprobe
, "uprobe", -1);
10725 static void perf_event_free_filter(struct perf_event
*event
)
10727 ftrace_profile_free_filter(event
);
10731 * returns true if the event is a tracepoint, or a kprobe/upprobe created
10732 * with perf_event_open()
10734 static inline bool perf_event_is_tracing(struct perf_event
*event
)
10736 if (event
->pmu
== &perf_tracepoint
)
10738 #ifdef CONFIG_KPROBE_EVENTS
10739 if (event
->pmu
== &perf_kprobe
)
10742 #ifdef CONFIG_UPROBE_EVENTS
10743 if (event
->pmu
== &perf_uprobe
)
10749 int perf_event_set_bpf_prog(struct perf_event
*event
, struct bpf_prog
*prog
,
10752 bool is_kprobe
, is_uprobe
, is_tracepoint
, is_syscall_tp
;
10754 if (!perf_event_is_tracing(event
))
10755 return perf_event_set_bpf_handler(event
, prog
, bpf_cookie
);
10757 is_kprobe
= event
->tp_event
->flags
& TRACE_EVENT_FL_KPROBE
;
10758 is_uprobe
= event
->tp_event
->flags
& TRACE_EVENT_FL_UPROBE
;
10759 is_tracepoint
= event
->tp_event
->flags
& TRACE_EVENT_FL_TRACEPOINT
;
10760 is_syscall_tp
= is_syscall_trace_event(event
->tp_event
);
10761 if (!is_kprobe
&& !is_uprobe
&& !is_tracepoint
&& !is_syscall_tp
)
10762 /* bpf programs can only be attached to u/kprobe or tracepoint */
10765 if (((is_kprobe
|| is_uprobe
) && prog
->type
!= BPF_PROG_TYPE_KPROBE
) ||
10766 (is_tracepoint
&& prog
->type
!= BPF_PROG_TYPE_TRACEPOINT
) ||
10767 (is_syscall_tp
&& prog
->type
!= BPF_PROG_TYPE_TRACEPOINT
))
10770 if (prog
->type
== BPF_PROG_TYPE_KPROBE
&& prog
->sleepable
&& !is_uprobe
)
10771 /* only uprobe programs are allowed to be sleepable */
10774 /* Kprobe override only works for kprobes, not uprobes. */
10775 if (prog
->kprobe_override
&& !is_kprobe
)
10778 if (is_tracepoint
|| is_syscall_tp
) {
10779 int off
= trace_event_get_offsets(event
->tp_event
);
10781 if (prog
->aux
->max_ctx_offset
> off
)
10785 return perf_event_attach_bpf_prog(event
, prog
, bpf_cookie
);
10788 void perf_event_free_bpf_prog(struct perf_event
*event
)
10790 if (!perf_event_is_tracing(event
)) {
10791 perf_event_free_bpf_handler(event
);
10794 perf_event_detach_bpf_prog(event
);
10799 static inline void perf_tp_register(void)
10803 static void perf_event_free_filter(struct perf_event
*event
)
10807 int perf_event_set_bpf_prog(struct perf_event
*event
, struct bpf_prog
*prog
,
10813 void perf_event_free_bpf_prog(struct perf_event
*event
)
10816 #endif /* CONFIG_EVENT_TRACING */
10818 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10819 void perf_bp_event(struct perf_event
*bp
, void *data
)
10821 struct perf_sample_data sample
;
10822 struct pt_regs
*regs
= data
;
10824 perf_sample_data_init(&sample
, bp
->attr
.bp_addr
, 0);
10826 if (!bp
->hw
.state
&& !perf_exclude_event(bp
, regs
))
10827 perf_swevent_event(bp
, 1, &sample
, regs
);
10832 * Allocate a new address filter
10834 static struct perf_addr_filter
*
10835 perf_addr_filter_new(struct perf_event
*event
, struct list_head
*filters
)
10837 int node
= cpu_to_node(event
->cpu
== -1 ? 0 : event
->cpu
);
10838 struct perf_addr_filter
*filter
;
10840 filter
= kzalloc_node(sizeof(*filter
), GFP_KERNEL
, node
);
10844 INIT_LIST_HEAD(&filter
->entry
);
10845 list_add_tail(&filter
->entry
, filters
);
10850 static void free_filters_list(struct list_head
*filters
)
10852 struct perf_addr_filter
*filter
, *iter
;
10854 list_for_each_entry_safe(filter
, iter
, filters
, entry
) {
10855 path_put(&filter
->path
);
10856 list_del(&filter
->entry
);
10862 * Free existing address filters and optionally install new ones
10864 static void perf_addr_filters_splice(struct perf_event
*event
,
10865 struct list_head
*head
)
10867 unsigned long flags
;
10870 if (!has_addr_filter(event
))
10873 /* don't bother with children, they don't have their own filters */
10877 raw_spin_lock_irqsave(&event
->addr_filters
.lock
, flags
);
10879 list_splice_init(&event
->addr_filters
.list
, &list
);
10881 list_splice(head
, &event
->addr_filters
.list
);
10883 raw_spin_unlock_irqrestore(&event
->addr_filters
.lock
, flags
);
10885 free_filters_list(&list
);
10889 * Scan through mm's vmas and see if one of them matches the
10890 * @filter; if so, adjust filter's address range.
10891 * Called with mm::mmap_lock down for reading.
10893 static void perf_addr_filter_apply(struct perf_addr_filter
*filter
,
10894 struct mm_struct
*mm
,
10895 struct perf_addr_filter_range
*fr
)
10897 struct vm_area_struct
*vma
;
10898 VMA_ITERATOR(vmi
, mm
, 0);
10900 for_each_vma(vmi
, vma
) {
10904 if (perf_addr_filter_vma_adjust(filter
, vma
, fr
))
10910 * Update event's address range filters based on the
10911 * task's existing mappings, if any.
10913 static void perf_event_addr_filters_apply(struct perf_event
*event
)
10915 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
10916 struct task_struct
*task
= READ_ONCE(event
->ctx
->task
);
10917 struct perf_addr_filter
*filter
;
10918 struct mm_struct
*mm
= NULL
;
10919 unsigned int count
= 0;
10920 unsigned long flags
;
10923 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10924 * will stop on the parent's child_mutex that our caller is also holding
10926 if (task
== TASK_TOMBSTONE
)
10929 if (ifh
->nr_file_filters
) {
10930 mm
= get_task_mm(task
);
10934 mmap_read_lock(mm
);
10937 raw_spin_lock_irqsave(&ifh
->lock
, flags
);
10938 list_for_each_entry(filter
, &ifh
->list
, entry
) {
10939 if (filter
->path
.dentry
) {
10941 * Adjust base offset if the filter is associated to a
10942 * binary that needs to be mapped:
10944 event
->addr_filter_ranges
[count
].start
= 0;
10945 event
->addr_filter_ranges
[count
].size
= 0;
10947 perf_addr_filter_apply(filter
, mm
, &event
->addr_filter_ranges
[count
]);
10949 event
->addr_filter_ranges
[count
].start
= filter
->offset
;
10950 event
->addr_filter_ranges
[count
].size
= filter
->size
;
10956 event
->addr_filters_gen
++;
10957 raw_spin_unlock_irqrestore(&ifh
->lock
, flags
);
10959 if (ifh
->nr_file_filters
) {
10960 mmap_read_unlock(mm
);
10966 perf_event_stop(event
, 1);
10970 * Address range filtering: limiting the data to certain
10971 * instruction address ranges. Filters are ioctl()ed to us from
10972 * userspace as ascii strings.
10974 * Filter string format:
10976 * ACTION RANGE_SPEC
10977 * where ACTION is one of the
10978 * * "filter": limit the trace to this region
10979 * * "start": start tracing from this address
10980 * * "stop": stop tracing at this address/region;
10982 * * for kernel addresses: <start address>[/<size>]
10983 * * for object files: <start address>[/<size>]@</path/to/object/file>
10985 * if <size> is not specified or is zero, the range is treated as a single
10986 * address; not valid for ACTION=="filter".
11000 IF_STATE_ACTION
= 0,
11005 static const match_table_t if_tokens
= {
11006 { IF_ACT_FILTER
, "filter" },
11007 { IF_ACT_START
, "start" },
11008 { IF_ACT_STOP
, "stop" },
11009 { IF_SRC_FILE
, "%u/%u@%s" },
11010 { IF_SRC_KERNEL
, "%u/%u" },
11011 { IF_SRC_FILEADDR
, "%u@%s" },
11012 { IF_SRC_KERNELADDR
, "%u" },
11013 { IF_ACT_NONE
, NULL
},
11017 * Address filter string parser
11020 perf_event_parse_addr_filter(struct perf_event
*event
, char *fstr
,
11021 struct list_head
*filters
)
11023 struct perf_addr_filter
*filter
= NULL
;
11024 char *start
, *orig
, *filename
= NULL
;
11025 substring_t args
[MAX_OPT_ARGS
];
11026 int state
= IF_STATE_ACTION
, token
;
11027 unsigned int kernel
= 0;
11030 orig
= fstr
= kstrdup(fstr
, GFP_KERNEL
);
11034 while ((start
= strsep(&fstr
, " ,\n")) != NULL
) {
11035 static const enum perf_addr_filter_action_t actions
[] = {
11036 [IF_ACT_FILTER
] = PERF_ADDR_FILTER_ACTION_FILTER
,
11037 [IF_ACT_START
] = PERF_ADDR_FILTER_ACTION_START
,
11038 [IF_ACT_STOP
] = PERF_ADDR_FILTER_ACTION_STOP
,
11045 /* filter definition begins */
11046 if (state
== IF_STATE_ACTION
) {
11047 filter
= perf_addr_filter_new(event
, filters
);
11052 token
= match_token(start
, if_tokens
, args
);
11054 case IF_ACT_FILTER
:
11057 if (state
!= IF_STATE_ACTION
)
11060 filter
->action
= actions
[token
];
11061 state
= IF_STATE_SOURCE
;
11064 case IF_SRC_KERNELADDR
:
11065 case IF_SRC_KERNEL
:
11069 case IF_SRC_FILEADDR
:
11071 if (state
!= IF_STATE_SOURCE
)
11075 ret
= kstrtoul(args
[0].from
, 0, &filter
->offset
);
11079 if (token
== IF_SRC_KERNEL
|| token
== IF_SRC_FILE
) {
11081 ret
= kstrtoul(args
[1].from
, 0, &filter
->size
);
11086 if (token
== IF_SRC_FILE
|| token
== IF_SRC_FILEADDR
) {
11087 int fpos
= token
== IF_SRC_FILE
? 2 : 1;
11090 filename
= match_strdup(&args
[fpos
]);
11097 state
= IF_STATE_END
;
11105 * Filter definition is fully parsed, validate and install it.
11106 * Make sure that it doesn't contradict itself or the event's
11109 if (state
== IF_STATE_END
) {
11113 * ACTION "filter" must have a non-zero length region
11116 if (filter
->action
== PERF_ADDR_FILTER_ACTION_FILTER
&&
11125 * For now, we only support file-based filters
11126 * in per-task events; doing so for CPU-wide
11127 * events requires additional context switching
11128 * trickery, since same object code will be
11129 * mapped at different virtual addresses in
11130 * different processes.
11133 if (!event
->ctx
->task
)
11136 /* look up the path and grab its inode */
11137 ret
= kern_path(filename
, LOOKUP_FOLLOW
,
11143 if (!filter
->path
.dentry
||
11144 !S_ISREG(d_inode(filter
->path
.dentry
)
11148 event
->addr_filters
.nr_file_filters
++;
11151 /* ready to consume more filters */
11154 state
= IF_STATE_ACTION
;
11160 if (state
!= IF_STATE_ACTION
)
11170 free_filters_list(filters
);
11177 perf_event_set_addr_filter(struct perf_event
*event
, char *filter_str
)
11179 LIST_HEAD(filters
);
11183 * Since this is called in perf_ioctl() path, we're already holding
11186 lockdep_assert_held(&event
->ctx
->mutex
);
11188 if (WARN_ON_ONCE(event
->parent
))
11191 ret
= perf_event_parse_addr_filter(event
, filter_str
, &filters
);
11193 goto fail_clear_files
;
11195 ret
= event
->pmu
->addr_filters_validate(&filters
);
11197 goto fail_free_filters
;
11199 /* remove existing filters, if any */
11200 perf_addr_filters_splice(event
, &filters
);
11202 /* install new filters */
11203 perf_event_for_each_child(event
, perf_event_addr_filters_apply
);
11208 free_filters_list(&filters
);
11211 event
->addr_filters
.nr_file_filters
= 0;
11216 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
11221 filter_str
= strndup_user(arg
, PAGE_SIZE
);
11222 if (IS_ERR(filter_str
))
11223 return PTR_ERR(filter_str
);
11225 #ifdef CONFIG_EVENT_TRACING
11226 if (perf_event_is_tracing(event
)) {
11227 struct perf_event_context
*ctx
= event
->ctx
;
11230 * Beware, here be dragons!!
11232 * the tracepoint muck will deadlock against ctx->mutex, but
11233 * the tracepoint stuff does not actually need it. So
11234 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11235 * already have a reference on ctx.
11237 * This can result in event getting moved to a different ctx,
11238 * but that does not affect the tracepoint state.
11240 mutex_unlock(&ctx
->mutex
);
11241 ret
= ftrace_profile_set_filter(event
, event
->attr
.config
, filter_str
);
11242 mutex_lock(&ctx
->mutex
);
11245 if (has_addr_filter(event
))
11246 ret
= perf_event_set_addr_filter(event
, filter_str
);
11253 * hrtimer based swevent callback
11256 static enum hrtimer_restart
perf_swevent_hrtimer(struct hrtimer
*hrtimer
)
11258 enum hrtimer_restart ret
= HRTIMER_RESTART
;
11259 struct perf_sample_data data
;
11260 struct pt_regs
*regs
;
11261 struct perf_event
*event
;
11264 event
= container_of(hrtimer
, struct perf_event
, hw
.hrtimer
);
11266 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
11267 return HRTIMER_NORESTART
;
11269 event
->pmu
->read(event
);
11271 perf_sample_data_init(&data
, 0, event
->hw
.last_period
);
11272 regs
= get_irq_regs();
11274 if (regs
&& !perf_exclude_event(event
, regs
)) {
11275 if (!(event
->attr
.exclude_idle
&& is_idle_task(current
)))
11276 if (__perf_event_overflow(event
, 1, &data
, regs
))
11277 ret
= HRTIMER_NORESTART
;
11280 period
= max_t(u64
, 10000, event
->hw
.sample_period
);
11281 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
11286 static void perf_swevent_start_hrtimer(struct perf_event
*event
)
11288 struct hw_perf_event
*hwc
= &event
->hw
;
11291 if (!is_sampling_event(event
))
11294 period
= local64_read(&hwc
->period_left
);
11299 local64_set(&hwc
->period_left
, 0);
11301 period
= max_t(u64
, 10000, hwc
->sample_period
);
11303 hrtimer_start(&hwc
->hrtimer
, ns_to_ktime(period
),
11304 HRTIMER_MODE_REL_PINNED_HARD
);
11307 static void perf_swevent_cancel_hrtimer(struct perf_event
*event
)
11309 struct hw_perf_event
*hwc
= &event
->hw
;
11311 if (is_sampling_event(event
)) {
11312 ktime_t remaining
= hrtimer_get_remaining(&hwc
->hrtimer
);
11313 local64_set(&hwc
->period_left
, ktime_to_ns(remaining
));
11315 hrtimer_cancel(&hwc
->hrtimer
);
11319 static void perf_swevent_init_hrtimer(struct perf_event
*event
)
11321 struct hw_perf_event
*hwc
= &event
->hw
;
11323 if (!is_sampling_event(event
))
11326 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL_HARD
);
11327 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
11330 * Since hrtimers have a fixed rate, we can do a static freq->period
11331 * mapping and avoid the whole period adjust feedback stuff.
11333 if (event
->attr
.freq
) {
11334 long freq
= event
->attr
.sample_freq
;
11336 event
->attr
.sample_period
= NSEC_PER_SEC
/ freq
;
11337 hwc
->sample_period
= event
->attr
.sample_period
;
11338 local64_set(&hwc
->period_left
, hwc
->sample_period
);
11339 hwc
->last_period
= hwc
->sample_period
;
11340 event
->attr
.freq
= 0;
11345 * Software event: cpu wall time clock
11348 static void cpu_clock_event_update(struct perf_event
*event
)
11353 now
= local_clock();
11354 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
11355 local64_add(now
- prev
, &event
->count
);
11358 static void cpu_clock_event_start(struct perf_event
*event
, int flags
)
11360 local64_set(&event
->hw
.prev_count
, local_clock());
11361 perf_swevent_start_hrtimer(event
);
11364 static void cpu_clock_event_stop(struct perf_event
*event
, int flags
)
11366 perf_swevent_cancel_hrtimer(event
);
11367 cpu_clock_event_update(event
);
11370 static int cpu_clock_event_add(struct perf_event
*event
, int flags
)
11372 if (flags
& PERF_EF_START
)
11373 cpu_clock_event_start(event
, flags
);
11374 perf_event_update_userpage(event
);
11379 static void cpu_clock_event_del(struct perf_event
*event
, int flags
)
11381 cpu_clock_event_stop(event
, flags
);
11384 static void cpu_clock_event_read(struct perf_event
*event
)
11386 cpu_clock_event_update(event
);
11389 static int cpu_clock_event_init(struct perf_event
*event
)
11391 if (event
->attr
.type
!= perf_cpu_clock
.type
)
11394 if (event
->attr
.config
!= PERF_COUNT_SW_CPU_CLOCK
)
11398 * no branch sampling for software events
11400 if (has_branch_stack(event
))
11401 return -EOPNOTSUPP
;
11403 perf_swevent_init_hrtimer(event
);
11408 static struct pmu perf_cpu_clock
= {
11409 .task_ctx_nr
= perf_sw_context
,
11411 .capabilities
= PERF_PMU_CAP_NO_NMI
,
11412 .dev
= PMU_NULL_DEV
,
11414 .event_init
= cpu_clock_event_init
,
11415 .add
= cpu_clock_event_add
,
11416 .del
= cpu_clock_event_del
,
11417 .start
= cpu_clock_event_start
,
11418 .stop
= cpu_clock_event_stop
,
11419 .read
= cpu_clock_event_read
,
11423 * Software event: task time clock
11426 static void task_clock_event_update(struct perf_event
*event
, u64 now
)
11431 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
11432 delta
= now
- prev
;
11433 local64_add(delta
, &event
->count
);
11436 static void task_clock_event_start(struct perf_event
*event
, int flags
)
11438 local64_set(&event
->hw
.prev_count
, event
->ctx
->time
);
11439 perf_swevent_start_hrtimer(event
);
11442 static void task_clock_event_stop(struct perf_event
*event
, int flags
)
11444 perf_swevent_cancel_hrtimer(event
);
11445 task_clock_event_update(event
, event
->ctx
->time
);
11448 static int task_clock_event_add(struct perf_event
*event
, int flags
)
11450 if (flags
& PERF_EF_START
)
11451 task_clock_event_start(event
, flags
);
11452 perf_event_update_userpage(event
);
11457 static void task_clock_event_del(struct perf_event
*event
, int flags
)
11459 task_clock_event_stop(event
, PERF_EF_UPDATE
);
11462 static void task_clock_event_read(struct perf_event
*event
)
11464 u64 now
= perf_clock();
11465 u64 delta
= now
- event
->ctx
->timestamp
;
11466 u64 time
= event
->ctx
->time
+ delta
;
11468 task_clock_event_update(event
, time
);
11471 static int task_clock_event_init(struct perf_event
*event
)
11473 if (event
->attr
.type
!= perf_task_clock
.type
)
11476 if (event
->attr
.config
!= PERF_COUNT_SW_TASK_CLOCK
)
11480 * no branch sampling for software events
11482 if (has_branch_stack(event
))
11483 return -EOPNOTSUPP
;
11485 perf_swevent_init_hrtimer(event
);
11490 static struct pmu perf_task_clock
= {
11491 .task_ctx_nr
= perf_sw_context
,
11493 .capabilities
= PERF_PMU_CAP_NO_NMI
,
11494 .dev
= PMU_NULL_DEV
,
11496 .event_init
= task_clock_event_init
,
11497 .add
= task_clock_event_add
,
11498 .del
= task_clock_event_del
,
11499 .start
= task_clock_event_start
,
11500 .stop
= task_clock_event_stop
,
11501 .read
= task_clock_event_read
,
11504 static void perf_pmu_nop_void(struct pmu
*pmu
)
11508 static void perf_pmu_nop_txn(struct pmu
*pmu
, unsigned int flags
)
11512 static int perf_pmu_nop_int(struct pmu
*pmu
)
11517 static int perf_event_nop_int(struct perf_event
*event
, u64 value
)
11522 static DEFINE_PER_CPU(unsigned int, nop_txn_flags
);
11524 static void perf_pmu_start_txn(struct pmu
*pmu
, unsigned int flags
)
11526 __this_cpu_write(nop_txn_flags
, flags
);
11528 if (flags
& ~PERF_PMU_TXN_ADD
)
11531 perf_pmu_disable(pmu
);
11534 static int perf_pmu_commit_txn(struct pmu
*pmu
)
11536 unsigned int flags
= __this_cpu_read(nop_txn_flags
);
11538 __this_cpu_write(nop_txn_flags
, 0);
11540 if (flags
& ~PERF_PMU_TXN_ADD
)
11543 perf_pmu_enable(pmu
);
11547 static void perf_pmu_cancel_txn(struct pmu
*pmu
)
11549 unsigned int flags
= __this_cpu_read(nop_txn_flags
);
11551 __this_cpu_write(nop_txn_flags
, 0);
11553 if (flags
& ~PERF_PMU_TXN_ADD
)
11556 perf_pmu_enable(pmu
);
11559 static int perf_event_idx_default(struct perf_event
*event
)
11564 static void free_pmu_context(struct pmu
*pmu
)
11566 free_percpu(pmu
->cpu_pmu_context
);
11570 * Let userspace know that this PMU supports address range filtering:
11572 static ssize_t
nr_addr_filters_show(struct device
*dev
,
11573 struct device_attribute
*attr
,
11576 struct pmu
*pmu
= dev_get_drvdata(dev
);
11578 return scnprintf(page
, PAGE_SIZE
- 1, "%d\n", pmu
->nr_addr_filters
);
11580 DEVICE_ATTR_RO(nr_addr_filters
);
11582 static struct idr pmu_idr
;
11585 type_show(struct device
*dev
, struct device_attribute
*attr
, char *page
)
11587 struct pmu
*pmu
= dev_get_drvdata(dev
);
11589 return scnprintf(page
, PAGE_SIZE
- 1, "%d\n", pmu
->type
);
11591 static DEVICE_ATTR_RO(type
);
11594 perf_event_mux_interval_ms_show(struct device
*dev
,
11595 struct device_attribute
*attr
,
11598 struct pmu
*pmu
= dev_get_drvdata(dev
);
11600 return scnprintf(page
, PAGE_SIZE
- 1, "%d\n", pmu
->hrtimer_interval_ms
);
11603 static DEFINE_MUTEX(mux_interval_mutex
);
11606 perf_event_mux_interval_ms_store(struct device
*dev
,
11607 struct device_attribute
*attr
,
11608 const char *buf
, size_t count
)
11610 struct pmu
*pmu
= dev_get_drvdata(dev
);
11611 int timer
, cpu
, ret
;
11613 ret
= kstrtoint(buf
, 0, &timer
);
11620 /* same value, noting to do */
11621 if (timer
== pmu
->hrtimer_interval_ms
)
11624 mutex_lock(&mux_interval_mutex
);
11625 pmu
->hrtimer_interval_ms
= timer
;
11627 /* update all cpuctx for this PMU */
11629 for_each_online_cpu(cpu
) {
11630 struct perf_cpu_pmu_context
*cpc
;
11631 cpc
= per_cpu_ptr(pmu
->cpu_pmu_context
, cpu
);
11632 cpc
->hrtimer_interval
= ns_to_ktime(NSEC_PER_MSEC
* timer
);
11634 cpu_function_call(cpu
, perf_mux_hrtimer_restart_ipi
, cpc
);
11636 cpus_read_unlock();
11637 mutex_unlock(&mux_interval_mutex
);
11641 static DEVICE_ATTR_RW(perf_event_mux_interval_ms
);
11643 static inline const struct cpumask
*perf_scope_cpu_topology_cpumask(unsigned int scope
, int cpu
)
11646 case PERF_PMU_SCOPE_CORE
:
11647 return topology_sibling_cpumask(cpu
);
11648 case PERF_PMU_SCOPE_DIE
:
11649 return topology_die_cpumask(cpu
);
11650 case PERF_PMU_SCOPE_CLUSTER
:
11651 return topology_cluster_cpumask(cpu
);
11652 case PERF_PMU_SCOPE_PKG
:
11653 return topology_core_cpumask(cpu
);
11654 case PERF_PMU_SCOPE_SYS_WIDE
:
11655 return cpu_online_mask
;
11661 static inline struct cpumask
*perf_scope_cpumask(unsigned int scope
)
11664 case PERF_PMU_SCOPE_CORE
:
11665 return perf_online_core_mask
;
11666 case PERF_PMU_SCOPE_DIE
:
11667 return perf_online_die_mask
;
11668 case PERF_PMU_SCOPE_CLUSTER
:
11669 return perf_online_cluster_mask
;
11670 case PERF_PMU_SCOPE_PKG
:
11671 return perf_online_pkg_mask
;
11672 case PERF_PMU_SCOPE_SYS_WIDE
:
11673 return perf_online_sys_mask
;
11679 static ssize_t
cpumask_show(struct device
*dev
, struct device_attribute
*attr
,
11682 struct pmu
*pmu
= dev_get_drvdata(dev
);
11683 struct cpumask
*mask
= perf_scope_cpumask(pmu
->scope
);
11686 return cpumap_print_to_pagebuf(true, buf
, mask
);
11690 static DEVICE_ATTR_RO(cpumask
);
11692 static struct attribute
*pmu_dev_attrs
[] = {
11693 &dev_attr_type
.attr
,
11694 &dev_attr_perf_event_mux_interval_ms
.attr
,
11695 &dev_attr_nr_addr_filters
.attr
,
11696 &dev_attr_cpumask
.attr
,
11700 static umode_t
pmu_dev_is_visible(struct kobject
*kobj
, struct attribute
*a
, int n
)
11702 struct device
*dev
= kobj_to_dev(kobj
);
11703 struct pmu
*pmu
= dev_get_drvdata(dev
);
11705 if (n
== 2 && !pmu
->nr_addr_filters
)
11709 if (n
== 3 && pmu
->scope
== PERF_PMU_SCOPE_NONE
)
11715 static struct attribute_group pmu_dev_attr_group
= {
11716 .is_visible
= pmu_dev_is_visible
,
11717 .attrs
= pmu_dev_attrs
,
11720 static const struct attribute_group
*pmu_dev_groups
[] = {
11721 &pmu_dev_attr_group
,
11725 static int pmu_bus_running
;
11726 static struct bus_type pmu_bus
= {
11727 .name
= "event_source",
11728 .dev_groups
= pmu_dev_groups
,
11731 static void pmu_dev_release(struct device
*dev
)
11736 static int pmu_dev_alloc(struct pmu
*pmu
)
11740 pmu
->dev
= kzalloc(sizeof(struct device
), GFP_KERNEL
);
11744 pmu
->dev
->groups
= pmu
->attr_groups
;
11745 device_initialize(pmu
->dev
);
11747 dev_set_drvdata(pmu
->dev
, pmu
);
11748 pmu
->dev
->bus
= &pmu_bus
;
11749 pmu
->dev
->parent
= pmu
->parent
;
11750 pmu
->dev
->release
= pmu_dev_release
;
11752 ret
= dev_set_name(pmu
->dev
, "%s", pmu
->name
);
11756 ret
= device_add(pmu
->dev
);
11760 if (pmu
->attr_update
) {
11761 ret
= sysfs_update_groups(&pmu
->dev
->kobj
, pmu
->attr_update
);
11770 device_del(pmu
->dev
);
11773 put_device(pmu
->dev
);
11777 static struct lock_class_key cpuctx_mutex
;
11778 static struct lock_class_key cpuctx_lock
;
11780 int perf_pmu_register(struct pmu
*pmu
, const char *name
, int type
)
11782 int cpu
, ret
, max
= PERF_TYPE_MAX
;
11784 mutex_lock(&pmus_lock
);
11786 pmu
->pmu_disable_count
= alloc_percpu(int);
11787 if (!pmu
->pmu_disable_count
)
11791 if (WARN_ONCE(!name
, "Can not register anonymous pmu.\n")) {
11796 if (WARN_ONCE(pmu
->scope
>= PERF_PMU_MAX_SCOPE
, "Can not register a pmu with an invalid scope.\n")) {
11806 ret
= idr_alloc(&pmu_idr
, pmu
, max
, 0, GFP_KERNEL
);
11810 WARN_ON(type
>= 0 && ret
!= type
);
11815 if (pmu_bus_running
&& !pmu
->dev
) {
11816 ret
= pmu_dev_alloc(pmu
);
11822 pmu
->cpu_pmu_context
= alloc_percpu(struct perf_cpu_pmu_context
);
11823 if (!pmu
->cpu_pmu_context
)
11826 for_each_possible_cpu(cpu
) {
11827 struct perf_cpu_pmu_context
*cpc
;
11829 cpc
= per_cpu_ptr(pmu
->cpu_pmu_context
, cpu
);
11830 __perf_init_event_pmu_context(&cpc
->epc
, pmu
);
11831 __perf_mux_hrtimer_init(cpc
, cpu
);
11834 if (!pmu
->start_txn
) {
11835 if (pmu
->pmu_enable
) {
11837 * If we have pmu_enable/pmu_disable calls, install
11838 * transaction stubs that use that to try and batch
11839 * hardware accesses.
11841 pmu
->start_txn
= perf_pmu_start_txn
;
11842 pmu
->commit_txn
= perf_pmu_commit_txn
;
11843 pmu
->cancel_txn
= perf_pmu_cancel_txn
;
11845 pmu
->start_txn
= perf_pmu_nop_txn
;
11846 pmu
->commit_txn
= perf_pmu_nop_int
;
11847 pmu
->cancel_txn
= perf_pmu_nop_void
;
11851 if (!pmu
->pmu_enable
) {
11852 pmu
->pmu_enable
= perf_pmu_nop_void
;
11853 pmu
->pmu_disable
= perf_pmu_nop_void
;
11856 if (!pmu
->check_period
)
11857 pmu
->check_period
= perf_event_nop_int
;
11859 if (!pmu
->event_idx
)
11860 pmu
->event_idx
= perf_event_idx_default
;
11862 list_add_rcu(&pmu
->entry
, &pmus
);
11863 atomic_set(&pmu
->exclusive_cnt
, 0);
11866 mutex_unlock(&pmus_lock
);
11871 if (pmu
->dev
&& pmu
->dev
!= PMU_NULL_DEV
) {
11872 device_del(pmu
->dev
);
11873 put_device(pmu
->dev
);
11877 idr_remove(&pmu_idr
, pmu
->type
);
11880 free_percpu(pmu
->pmu_disable_count
);
11883 EXPORT_SYMBOL_GPL(perf_pmu_register
);
11885 void perf_pmu_unregister(struct pmu
*pmu
)
11887 mutex_lock(&pmus_lock
);
11888 list_del_rcu(&pmu
->entry
);
11891 * We dereference the pmu list under both SRCU and regular RCU, so
11892 * synchronize against both of those.
11894 synchronize_srcu(&pmus_srcu
);
11897 free_percpu(pmu
->pmu_disable_count
);
11898 idr_remove(&pmu_idr
, pmu
->type
);
11899 if (pmu_bus_running
&& pmu
->dev
&& pmu
->dev
!= PMU_NULL_DEV
) {
11900 if (pmu
->nr_addr_filters
)
11901 device_remove_file(pmu
->dev
, &dev_attr_nr_addr_filters
);
11902 device_del(pmu
->dev
);
11903 put_device(pmu
->dev
);
11905 free_pmu_context(pmu
);
11906 mutex_unlock(&pmus_lock
);
11908 EXPORT_SYMBOL_GPL(perf_pmu_unregister
);
11910 static inline bool has_extended_regs(struct perf_event
*event
)
11912 return (event
->attr
.sample_regs_user
& PERF_REG_EXTENDED_MASK
) ||
11913 (event
->attr
.sample_regs_intr
& PERF_REG_EXTENDED_MASK
);
11916 static int perf_try_init_event(struct pmu
*pmu
, struct perf_event
*event
)
11918 struct perf_event_context
*ctx
= NULL
;
11921 if (!try_module_get(pmu
->module
))
11925 * A number of pmu->event_init() methods iterate the sibling_list to,
11926 * for example, validate if the group fits on the PMU. Therefore,
11927 * if this is a sibling event, acquire the ctx->mutex to protect
11928 * the sibling_list.
11930 if (event
->group_leader
!= event
&& pmu
->task_ctx_nr
!= perf_sw_context
) {
11932 * This ctx->mutex can nest when we're called through
11933 * inheritance. See the perf_event_ctx_lock_nested() comment.
11935 ctx
= perf_event_ctx_lock_nested(event
->group_leader
,
11936 SINGLE_DEPTH_NESTING
);
11941 ret
= pmu
->event_init(event
);
11944 perf_event_ctx_unlock(event
->group_leader
, ctx
);
11947 if (!(pmu
->capabilities
& PERF_PMU_CAP_EXTENDED_REGS
) &&
11948 has_extended_regs(event
))
11951 if (pmu
->capabilities
& PERF_PMU_CAP_NO_EXCLUDE
&&
11952 event_has_any_exclude_flag(event
))
11955 if (pmu
->scope
!= PERF_PMU_SCOPE_NONE
&& event
->cpu
>= 0) {
11956 const struct cpumask
*cpumask
= perf_scope_cpu_topology_cpumask(pmu
->scope
, event
->cpu
);
11957 struct cpumask
*pmu_cpumask
= perf_scope_cpumask(pmu
->scope
);
11960 if (pmu_cpumask
&& cpumask
) {
11961 cpu
= cpumask_any_and(pmu_cpumask
, cpumask
);
11962 if (cpu
>= nr_cpu_ids
)
11965 event
->event_caps
|= PERF_EV_CAP_READ_SCOPE
;
11971 if (ret
&& event
->destroy
)
11972 event
->destroy(event
);
11976 module_put(pmu
->module
);
11981 static struct pmu
*perf_init_event(struct perf_event
*event
)
11983 bool extended_type
= false;
11984 int idx
, type
, ret
;
11987 idx
= srcu_read_lock(&pmus_srcu
);
11990 * Save original type before calling pmu->event_init() since certain
11991 * pmus overwrites event->attr.type to forward event to another pmu.
11993 event
->orig_type
= event
->attr
.type
;
11995 /* Try parent's PMU first: */
11996 if (event
->parent
&& event
->parent
->pmu
) {
11997 pmu
= event
->parent
->pmu
;
11998 ret
= perf_try_init_event(pmu
, event
);
12004 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
12005 * are often aliases for PERF_TYPE_RAW.
12007 type
= event
->attr
.type
;
12008 if (type
== PERF_TYPE_HARDWARE
|| type
== PERF_TYPE_HW_CACHE
) {
12009 type
= event
->attr
.config
>> PERF_PMU_TYPE_SHIFT
;
12011 type
= PERF_TYPE_RAW
;
12013 extended_type
= true;
12014 event
->attr
.config
&= PERF_HW_EVENT_MASK
;
12020 pmu
= idr_find(&pmu_idr
, type
);
12023 if (event
->attr
.type
!= type
&& type
!= PERF_TYPE_RAW
&&
12024 !(pmu
->capabilities
& PERF_PMU_CAP_EXTENDED_HW_TYPE
))
12027 ret
= perf_try_init_event(pmu
, event
);
12028 if (ret
== -ENOENT
&& event
->attr
.type
!= type
&& !extended_type
) {
12029 type
= event
->attr
.type
;
12034 pmu
= ERR_PTR(ret
);
12039 list_for_each_entry_rcu(pmu
, &pmus
, entry
, lockdep_is_held(&pmus_srcu
)) {
12040 ret
= perf_try_init_event(pmu
, event
);
12044 if (ret
!= -ENOENT
) {
12045 pmu
= ERR_PTR(ret
);
12050 pmu
= ERR_PTR(-ENOENT
);
12052 srcu_read_unlock(&pmus_srcu
, idx
);
12057 static void attach_sb_event(struct perf_event
*event
)
12059 struct pmu_event_list
*pel
= per_cpu_ptr(&pmu_sb_events
, event
->cpu
);
12061 raw_spin_lock(&pel
->lock
);
12062 list_add_rcu(&event
->sb_list
, &pel
->list
);
12063 raw_spin_unlock(&pel
->lock
);
12067 * We keep a list of all !task (and therefore per-cpu) events
12068 * that need to receive side-band records.
12070 * This avoids having to scan all the various PMU per-cpu contexts
12071 * looking for them.
12073 static void account_pmu_sb_event(struct perf_event
*event
)
12075 if (is_sb_event(event
))
12076 attach_sb_event(event
);
12079 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
12080 static void account_freq_event_nohz(void)
12082 #ifdef CONFIG_NO_HZ_FULL
12083 /* Lock so we don't race with concurrent unaccount */
12084 spin_lock(&nr_freq_lock
);
12085 if (atomic_inc_return(&nr_freq_events
) == 1)
12086 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS
);
12087 spin_unlock(&nr_freq_lock
);
12091 static void account_freq_event(void)
12093 if (tick_nohz_full_enabled())
12094 account_freq_event_nohz();
12096 atomic_inc(&nr_freq_events
);
12100 static void account_event(struct perf_event
*event
)
12107 if (event
->attach_state
& (PERF_ATTACH_TASK
| PERF_ATTACH_SCHED_CB
))
12109 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
12110 atomic_inc(&nr_mmap_events
);
12111 if (event
->attr
.build_id
)
12112 atomic_inc(&nr_build_id_events
);
12113 if (event
->attr
.comm
)
12114 atomic_inc(&nr_comm_events
);
12115 if (event
->attr
.namespaces
)
12116 atomic_inc(&nr_namespaces_events
);
12117 if (event
->attr
.cgroup
)
12118 atomic_inc(&nr_cgroup_events
);
12119 if (event
->attr
.task
)
12120 atomic_inc(&nr_task_events
);
12121 if (event
->attr
.freq
)
12122 account_freq_event();
12123 if (event
->attr
.context_switch
) {
12124 atomic_inc(&nr_switch_events
);
12127 if (has_branch_stack(event
))
12129 if (is_cgroup_event(event
))
12131 if (event
->attr
.ksymbol
)
12132 atomic_inc(&nr_ksymbol_events
);
12133 if (event
->attr
.bpf_event
)
12134 atomic_inc(&nr_bpf_events
);
12135 if (event
->attr
.text_poke
)
12136 atomic_inc(&nr_text_poke_events
);
12140 * We need the mutex here because static_branch_enable()
12141 * must complete *before* the perf_sched_count increment
12144 if (atomic_inc_not_zero(&perf_sched_count
))
12147 mutex_lock(&perf_sched_mutex
);
12148 if (!atomic_read(&perf_sched_count
)) {
12149 static_branch_enable(&perf_sched_events
);
12151 * Guarantee that all CPUs observe they key change and
12152 * call the perf scheduling hooks before proceeding to
12153 * install events that need them.
12158 * Now that we have waited for the sync_sched(), allow further
12159 * increments to by-pass the mutex.
12161 atomic_inc(&perf_sched_count
);
12162 mutex_unlock(&perf_sched_mutex
);
12166 account_pmu_sb_event(event
);
12170 * Allocate and initialize an event structure
12172 static struct perf_event
*
12173 perf_event_alloc(struct perf_event_attr
*attr
, int cpu
,
12174 struct task_struct
*task
,
12175 struct perf_event
*group_leader
,
12176 struct perf_event
*parent_event
,
12177 perf_overflow_handler_t overflow_handler
,
12178 void *context
, int cgroup_fd
)
12181 struct perf_event
*event
;
12182 struct hw_perf_event
*hwc
;
12183 long err
= -EINVAL
;
12186 if ((unsigned)cpu
>= nr_cpu_ids
) {
12187 if (!task
|| cpu
!= -1)
12188 return ERR_PTR(-EINVAL
);
12190 if (attr
->sigtrap
&& !task
) {
12191 /* Requires a task: avoid signalling random tasks. */
12192 return ERR_PTR(-EINVAL
);
12195 node
= (cpu
>= 0) ? cpu_to_node(cpu
) : -1;
12196 event
= kmem_cache_alloc_node(perf_event_cache
, GFP_KERNEL
| __GFP_ZERO
,
12199 return ERR_PTR(-ENOMEM
);
12202 * Single events are their own group leaders, with an
12203 * empty sibling list:
12206 group_leader
= event
;
12208 mutex_init(&event
->child_mutex
);
12209 INIT_LIST_HEAD(&event
->child_list
);
12211 INIT_LIST_HEAD(&event
->event_entry
);
12212 INIT_LIST_HEAD(&event
->sibling_list
);
12213 INIT_LIST_HEAD(&event
->active_list
);
12214 init_event_group(event
);
12215 INIT_LIST_HEAD(&event
->rb_entry
);
12216 INIT_LIST_HEAD(&event
->active_entry
);
12217 INIT_LIST_HEAD(&event
->addr_filters
.list
);
12218 INIT_HLIST_NODE(&event
->hlist_entry
);
12221 init_waitqueue_head(&event
->waitq
);
12222 init_irq_work(&event
->pending_irq
, perf_pending_irq
);
12223 event
->pending_disable_irq
= IRQ_WORK_INIT_HARD(perf_pending_disable
);
12224 init_task_work(&event
->pending_task
, perf_pending_task
);
12225 rcuwait_init(&event
->pending_work_wait
);
12227 mutex_init(&event
->mmap_mutex
);
12228 raw_spin_lock_init(&event
->addr_filters
.lock
);
12230 atomic_long_set(&event
->refcount
, 1);
12232 event
->attr
= *attr
;
12233 event
->group_leader
= group_leader
;
12237 event
->parent
= parent_event
;
12239 event
->ns
= get_pid_ns(task_active_pid_ns(current
));
12240 event
->id
= atomic64_inc_return(&perf_event_id
);
12242 event
->state
= PERF_EVENT_STATE_INACTIVE
;
12245 event
->event_caps
= parent_event
->event_caps
;
12248 event
->attach_state
= PERF_ATTACH_TASK
;
12250 * XXX pmu::event_init needs to know what task to account to
12251 * and we cannot use the ctx information because we need the
12252 * pmu before we get a ctx.
12254 event
->hw
.target
= get_task_struct(task
);
12257 event
->clock
= &local_clock
;
12259 event
->clock
= parent_event
->clock
;
12261 if (!overflow_handler
&& parent_event
) {
12262 overflow_handler
= parent_event
->overflow_handler
;
12263 context
= parent_event
->overflow_handler_context
;
12264 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
12265 if (parent_event
->prog
) {
12266 struct bpf_prog
*prog
= parent_event
->prog
;
12268 bpf_prog_inc(prog
);
12269 event
->prog
= prog
;
12274 if (overflow_handler
) {
12275 event
->overflow_handler
= overflow_handler
;
12276 event
->overflow_handler_context
= context
;
12277 } else if (is_write_backward(event
)){
12278 event
->overflow_handler
= perf_event_output_backward
;
12279 event
->overflow_handler_context
= NULL
;
12281 event
->overflow_handler
= perf_event_output_forward
;
12282 event
->overflow_handler_context
= NULL
;
12285 perf_event__state_init(event
);
12290 hwc
->sample_period
= attr
->sample_period
;
12291 if (attr
->freq
&& attr
->sample_freq
)
12292 hwc
->sample_period
= 1;
12293 hwc
->last_period
= hwc
->sample_period
;
12295 local64_set(&hwc
->period_left
, hwc
->sample_period
);
12298 * We do not support PERF_SAMPLE_READ on inherited events unless
12299 * PERF_SAMPLE_TID is also selected, which allows inherited events to
12300 * collect per-thread samples.
12301 * See perf_output_read().
12303 if (has_inherit_and_sample_read(attr
) && !(attr
->sample_type
& PERF_SAMPLE_TID
))
12306 if (!has_branch_stack(event
))
12307 event
->attr
.branch_sample_type
= 0;
12309 pmu
= perf_init_event(event
);
12311 err
= PTR_ERR(pmu
);
12316 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
12317 * events (they don't make sense as the cgroup will be different
12318 * on other CPUs in the uncore mask).
12320 if (pmu
->task_ctx_nr
== perf_invalid_context
&& (task
|| cgroup_fd
!= -1)) {
12325 if (event
->attr
.aux_output
&&
12326 (!(pmu
->capabilities
& PERF_PMU_CAP_AUX_OUTPUT
) ||
12327 event
->attr
.aux_pause
|| event
->attr
.aux_resume
)) {
12332 if (event
->attr
.aux_pause
&& event
->attr
.aux_resume
) {
12337 if (event
->attr
.aux_start_paused
) {
12338 if (!(pmu
->capabilities
& PERF_PMU_CAP_AUX_PAUSE
)) {
12342 event
->hw
.aux_paused
= 1;
12345 if (cgroup_fd
!= -1) {
12346 err
= perf_cgroup_connect(cgroup_fd
, event
, attr
, group_leader
);
12351 err
= exclusive_event_init(event
);
12355 if (has_addr_filter(event
)) {
12356 event
->addr_filter_ranges
= kcalloc(pmu
->nr_addr_filters
,
12357 sizeof(struct perf_addr_filter_range
),
12359 if (!event
->addr_filter_ranges
) {
12365 * Clone the parent's vma offsets: they are valid until exec()
12366 * even if the mm is not shared with the parent.
12368 if (event
->parent
) {
12369 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
12371 raw_spin_lock_irq(&ifh
->lock
);
12372 memcpy(event
->addr_filter_ranges
,
12373 event
->parent
->addr_filter_ranges
,
12374 pmu
->nr_addr_filters
* sizeof(struct perf_addr_filter_range
));
12375 raw_spin_unlock_irq(&ifh
->lock
);
12378 /* force hw sync on the address filters */
12379 event
->addr_filters_gen
= 1;
12382 if (!event
->parent
) {
12383 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
) {
12384 err
= get_callchain_buffers(attr
->sample_max_stack
);
12386 goto err_addr_filters
;
12390 err
= security_perf_event_alloc(event
);
12392 goto err_callchain_buffer
;
12394 /* symmetric to unaccount_event() in _free_event() */
12395 account_event(event
);
12399 err_callchain_buffer
:
12400 if (!event
->parent
) {
12401 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
)
12402 put_callchain_buffers();
12405 kfree(event
->addr_filter_ranges
);
12408 exclusive_event_destroy(event
);
12411 if (is_cgroup_event(event
))
12412 perf_detach_cgroup(event
);
12413 if (event
->destroy
)
12414 event
->destroy(event
);
12415 module_put(pmu
->module
);
12417 if (event
->hw
.target
)
12418 put_task_struct(event
->hw
.target
);
12419 call_rcu(&event
->rcu_head
, free_event_rcu
);
12421 return ERR_PTR(err
);
12424 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
12425 struct perf_event_attr
*attr
)
12430 /* Zero the full structure, so that a short copy will be nice. */
12431 memset(attr
, 0, sizeof(*attr
));
12433 ret
= get_user(size
, &uattr
->size
);
12437 /* ABI compatibility quirk: */
12439 size
= PERF_ATTR_SIZE_VER0
;
12440 if (size
< PERF_ATTR_SIZE_VER0
|| size
> PAGE_SIZE
)
12443 ret
= copy_struct_from_user(attr
, sizeof(*attr
), uattr
, size
);
12452 if (attr
->__reserved_1
|| attr
->__reserved_2
|| attr
->__reserved_3
)
12455 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
12458 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
12461 if (attr
->sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
12462 u64 mask
= attr
->branch_sample_type
;
12464 /* only using defined bits */
12465 if (mask
& ~(PERF_SAMPLE_BRANCH_MAX
-1))
12468 /* at least one branch bit must be set */
12469 if (!(mask
& ~PERF_SAMPLE_BRANCH_PLM_ALL
))
12472 /* propagate priv level, when not set for branch */
12473 if (!(mask
& PERF_SAMPLE_BRANCH_PLM_ALL
)) {
12475 /* exclude_kernel checked on syscall entry */
12476 if (!attr
->exclude_kernel
)
12477 mask
|= PERF_SAMPLE_BRANCH_KERNEL
;
12479 if (!attr
->exclude_user
)
12480 mask
|= PERF_SAMPLE_BRANCH_USER
;
12482 if (!attr
->exclude_hv
)
12483 mask
|= PERF_SAMPLE_BRANCH_HV
;
12485 * adjust user setting (for HW filter setup)
12487 attr
->branch_sample_type
= mask
;
12489 /* privileged levels capture (kernel, hv): check permissions */
12490 if (mask
& PERF_SAMPLE_BRANCH_PERM_PLM
) {
12491 ret
= perf_allow_kernel(attr
);
12497 if (attr
->sample_type
& PERF_SAMPLE_REGS_USER
) {
12498 ret
= perf_reg_validate(attr
->sample_regs_user
);
12503 if (attr
->sample_type
& PERF_SAMPLE_STACK_USER
) {
12504 if (!arch_perf_have_user_stack_dump())
12508 * We have __u32 type for the size, but so far
12509 * we can only use __u16 as maximum due to the
12510 * __u16 sample size limit.
12512 if (attr
->sample_stack_user
>= USHRT_MAX
)
12514 else if (!IS_ALIGNED(attr
->sample_stack_user
, sizeof(u64
)))
12518 if (!attr
->sample_max_stack
)
12519 attr
->sample_max_stack
= sysctl_perf_event_max_stack
;
12521 if (attr
->sample_type
& PERF_SAMPLE_REGS_INTR
)
12522 ret
= perf_reg_validate(attr
->sample_regs_intr
);
12524 #ifndef CONFIG_CGROUP_PERF
12525 if (attr
->sample_type
& PERF_SAMPLE_CGROUP
)
12528 if ((attr
->sample_type
& PERF_SAMPLE_WEIGHT
) &&
12529 (attr
->sample_type
& PERF_SAMPLE_WEIGHT_STRUCT
))
12532 if (!attr
->inherit
&& attr
->inherit_thread
)
12535 if (attr
->remove_on_exec
&& attr
->enable_on_exec
)
12538 if (attr
->sigtrap
&& !attr
->remove_on_exec
)
12545 put_user(sizeof(*attr
), &uattr
->size
);
12550 static void mutex_lock_double(struct mutex
*a
, struct mutex
*b
)
12556 mutex_lock_nested(b
, SINGLE_DEPTH_NESTING
);
12560 perf_event_set_output(struct perf_event
*event
, struct perf_event
*output_event
)
12562 struct perf_buffer
*rb
= NULL
;
12565 if (!output_event
) {
12566 mutex_lock(&event
->mmap_mutex
);
12570 /* don't allow circular references */
12571 if (event
== output_event
)
12575 * Don't allow cross-cpu buffers
12577 if (output_event
->cpu
!= event
->cpu
)
12581 * If its not a per-cpu rb, it must be the same task.
12583 if (output_event
->cpu
== -1 && output_event
->hw
.target
!= event
->hw
.target
)
12587 * Mixing clocks in the same buffer is trouble you don't need.
12589 if (output_event
->clock
!= event
->clock
)
12593 * Either writing ring buffer from beginning or from end.
12594 * Mixing is not allowed.
12596 if (is_write_backward(output_event
) != is_write_backward(event
))
12600 * If both events generate aux data, they must be on the same PMU
12602 if (has_aux(event
) && has_aux(output_event
) &&
12603 event
->pmu
!= output_event
->pmu
)
12607 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since
12608 * output_event is already on rb->event_list, and the list iteration
12609 * restarts after every removal, it is guaranteed this new event is
12610 * observed *OR* if output_event is already removed, it's guaranteed we
12611 * observe !rb->mmap_count.
12613 mutex_lock_double(&event
->mmap_mutex
, &output_event
->mmap_mutex
);
12615 /* Can't redirect output if we've got an active mmap() */
12616 if (atomic_read(&event
->mmap_count
))
12619 if (output_event
) {
12620 /* get the rb we want to redirect to */
12621 rb
= ring_buffer_get(output_event
);
12625 /* did we race against perf_mmap_close() */
12626 if (!atomic_read(&rb
->mmap_count
)) {
12627 ring_buffer_put(rb
);
12632 ring_buffer_attach(event
, rb
);
12636 mutex_unlock(&event
->mmap_mutex
);
12638 mutex_unlock(&output_event
->mmap_mutex
);
12644 static int perf_event_set_clock(struct perf_event
*event
, clockid_t clk_id
)
12646 bool nmi_safe
= false;
12649 case CLOCK_MONOTONIC
:
12650 event
->clock
= &ktime_get_mono_fast_ns
;
12654 case CLOCK_MONOTONIC_RAW
:
12655 event
->clock
= &ktime_get_raw_fast_ns
;
12659 case CLOCK_REALTIME
:
12660 event
->clock
= &ktime_get_real_ns
;
12663 case CLOCK_BOOTTIME
:
12664 event
->clock
= &ktime_get_boottime_ns
;
12668 event
->clock
= &ktime_get_clocktai_ns
;
12675 if (!nmi_safe
&& !(event
->pmu
->capabilities
& PERF_PMU_CAP_NO_NMI
))
12682 perf_check_permission(struct perf_event_attr
*attr
, struct task_struct
*task
)
12684 unsigned int ptrace_mode
= PTRACE_MODE_READ_REALCREDS
;
12685 bool is_capable
= perfmon_capable();
12687 if (attr
->sigtrap
) {
12689 * perf_event_attr::sigtrap sends signals to the other task.
12690 * Require the current task to also have CAP_KILL.
12693 is_capable
&= ns_capable(__task_cred(task
)->user_ns
, CAP_KILL
);
12697 * If the required capabilities aren't available, checks for
12698 * ptrace permissions: upgrade to ATTACH, since sending signals
12699 * can effectively change the target task.
12701 ptrace_mode
= PTRACE_MODE_ATTACH_REALCREDS
;
12705 * Preserve ptrace permission check for backwards compatibility. The
12706 * ptrace check also includes checks that the current task and other
12707 * task have matching uids, and is therefore not done here explicitly.
12709 return is_capable
|| ptrace_may_access(task
, ptrace_mode
);
12713 * sys_perf_event_open - open a performance event, associate it to a task/cpu
12715 * @attr_uptr: event_id type attributes for monitoring/sampling
12718 * @group_fd: group leader event fd
12719 * @flags: perf event open flags
12721 SYSCALL_DEFINE5(perf_event_open
,
12722 struct perf_event_attr __user
*, attr_uptr
,
12723 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
12725 struct perf_event
*group_leader
= NULL
, *output_event
= NULL
;
12726 struct perf_event_pmu_context
*pmu_ctx
;
12727 struct perf_event
*event
, *sibling
;
12728 struct perf_event_attr attr
;
12729 struct perf_event_context
*ctx
;
12730 struct file
*event_file
= NULL
;
12731 struct task_struct
*task
= NULL
;
12734 int move_group
= 0;
12736 int f_flags
= O_RDWR
;
12737 int cgroup_fd
= -1;
12739 /* for future expandability... */
12740 if (flags
& ~PERF_FLAG_ALL
)
12743 err
= perf_copy_attr(attr_uptr
, &attr
);
12747 /* Do we allow access to perf_event_open(2) ? */
12748 err
= security_perf_event_open(&attr
, PERF_SECURITY_OPEN
);
12752 if (!attr
.exclude_kernel
) {
12753 err
= perf_allow_kernel(&attr
);
12758 if (attr
.namespaces
) {
12759 if (!perfmon_capable())
12764 if (attr
.sample_freq
> sysctl_perf_event_sample_rate
)
12767 if (attr
.sample_period
& (1ULL << 63))
12771 /* Only privileged users can get physical addresses */
12772 if ((attr
.sample_type
& PERF_SAMPLE_PHYS_ADDR
)) {
12773 err
= perf_allow_kernel(&attr
);
12778 /* REGS_INTR can leak data, lockdown must prevent this */
12779 if (attr
.sample_type
& PERF_SAMPLE_REGS_INTR
) {
12780 err
= security_locked_down(LOCKDOWN_PERF
);
12786 * In cgroup mode, the pid argument is used to pass the fd
12787 * opened to the cgroup directory in cgroupfs. The cpu argument
12788 * designates the cpu on which to monitor threads from that
12791 if ((flags
& PERF_FLAG_PID_CGROUP
) && (pid
== -1 || cpu
== -1))
12794 if (flags
& PERF_FLAG_FD_CLOEXEC
)
12795 f_flags
|= O_CLOEXEC
;
12797 event_fd
= get_unused_fd_flags(f_flags
);
12801 CLASS(fd
, group
)(group_fd
); // group_fd == -1 => empty
12802 if (group_fd
!= -1) {
12803 if (!is_perf_file(group
)) {
12807 group_leader
= fd_file(group
)->private_data
;
12808 if (flags
& PERF_FLAG_FD_OUTPUT
)
12809 output_event
= group_leader
;
12810 if (flags
& PERF_FLAG_FD_NO_GROUP
)
12811 group_leader
= NULL
;
12814 if (pid
!= -1 && !(flags
& PERF_FLAG_PID_CGROUP
)) {
12815 task
= find_lively_task_by_vpid(pid
);
12816 if (IS_ERR(task
)) {
12817 err
= PTR_ERR(task
);
12822 if (task
&& group_leader
&&
12823 group_leader
->attr
.inherit
!= attr
.inherit
) {
12828 if (flags
& PERF_FLAG_PID_CGROUP
)
12831 event
= perf_event_alloc(&attr
, cpu
, task
, group_leader
, NULL
,
12832 NULL
, NULL
, cgroup_fd
);
12833 if (IS_ERR(event
)) {
12834 err
= PTR_ERR(event
);
12838 if (is_sampling_event(event
)) {
12839 if (event
->pmu
->capabilities
& PERF_PMU_CAP_NO_INTERRUPT
) {
12846 * Special case software events and allow them to be part of
12847 * any hardware group.
12851 if (attr
.use_clockid
) {
12852 err
= perf_event_set_clock(event
, attr
.clockid
);
12857 if (pmu
->task_ctx_nr
== perf_sw_context
)
12858 event
->event_caps
|= PERF_EV_CAP_SOFTWARE
;
12861 err
= down_read_interruptible(&task
->signal
->exec_update_lock
);
12866 * We must hold exec_update_lock across this and any potential
12867 * perf_install_in_context() call for this new event to
12868 * serialize against exec() altering our credentials (and the
12869 * perf_event_exit_task() that could imply).
12872 if (!perf_check_permission(&attr
, task
))
12877 * Get the target context (task or percpu):
12879 ctx
= find_get_context(task
, event
);
12881 err
= PTR_ERR(ctx
);
12885 mutex_lock(&ctx
->mutex
);
12887 if (ctx
->task
== TASK_TOMBSTONE
) {
12894 * Check if the @cpu we're creating an event for is online.
12896 * We use the perf_cpu_context::ctx::mutex to serialize against
12897 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12899 struct perf_cpu_context
*cpuctx
= per_cpu_ptr(&perf_cpu_context
, event
->cpu
);
12901 if (!cpuctx
->online
) {
12907 if (group_leader
) {
12911 * Do not allow a recursive hierarchy (this new sibling
12912 * becoming part of another group-sibling):
12914 if (group_leader
->group_leader
!= group_leader
)
12917 /* All events in a group should have the same clock */
12918 if (group_leader
->clock
!= event
->clock
)
12922 * Make sure we're both events for the same CPU;
12923 * grouping events for different CPUs is broken; since
12924 * you can never concurrently schedule them anyhow.
12926 if (group_leader
->cpu
!= event
->cpu
)
12930 * Make sure we're both on the same context; either task or cpu.
12932 if (group_leader
->ctx
!= ctx
)
12936 * Only a group leader can be exclusive or pinned
12938 if (attr
.exclusive
|| attr
.pinned
)
12941 if (is_software_event(event
) &&
12942 !in_software_context(group_leader
)) {
12944 * If the event is a sw event, but the group_leader
12945 * is on hw context.
12947 * Allow the addition of software events to hw
12948 * groups, this is safe because software events
12949 * never fail to schedule.
12951 * Note the comment that goes with struct
12952 * perf_event_pmu_context.
12954 pmu
= group_leader
->pmu_ctx
->pmu
;
12955 } else if (!is_software_event(event
)) {
12956 if (is_software_event(group_leader
) &&
12957 (group_leader
->group_caps
& PERF_EV_CAP_SOFTWARE
)) {
12959 * In case the group is a pure software group, and we
12960 * try to add a hardware event, move the whole group to
12961 * the hardware context.
12966 /* Don't allow group of multiple hw events from different pmus */
12967 if (!in_software_context(group_leader
) &&
12968 group_leader
->pmu_ctx
->pmu
!= pmu
)
12974 * Now that we're certain of the pmu; find the pmu_ctx.
12976 pmu_ctx
= find_get_pmu_context(pmu
, ctx
, event
);
12977 if (IS_ERR(pmu_ctx
)) {
12978 err
= PTR_ERR(pmu_ctx
);
12981 event
->pmu_ctx
= pmu_ctx
;
12983 if (output_event
) {
12984 err
= perf_event_set_output(event
, output_event
);
12989 if (!perf_event_validate_size(event
)) {
12994 if (perf_need_aux_event(event
) && !perf_get_aux_event(event
, group_leader
)) {
13000 * Must be under the same ctx::mutex as perf_install_in_context(),
13001 * because we need to serialize with concurrent event creation.
13003 if (!exclusive_event_installable(event
, ctx
)) {
13008 WARN_ON_ONCE(ctx
->parent_ctx
);
13010 event_file
= anon_inode_getfile("[perf_event]", &perf_fops
, event
, f_flags
);
13011 if (IS_ERR(event_file
)) {
13012 err
= PTR_ERR(event_file
);
13018 * This is the point on no return; we cannot fail hereafter. This is
13019 * where we start modifying current state.
13023 perf_remove_from_context(group_leader
, 0);
13024 put_pmu_ctx(group_leader
->pmu_ctx
);
13026 for_each_sibling_event(sibling
, group_leader
) {
13027 perf_remove_from_context(sibling
, 0);
13028 put_pmu_ctx(sibling
->pmu_ctx
);
13032 * Install the group siblings before the group leader.
13034 * Because a group leader will try and install the entire group
13035 * (through the sibling list, which is still in-tact), we can
13036 * end up with siblings installed in the wrong context.
13038 * By installing siblings first we NO-OP because they're not
13039 * reachable through the group lists.
13041 for_each_sibling_event(sibling
, group_leader
) {
13042 sibling
->pmu_ctx
= pmu_ctx
;
13043 get_pmu_ctx(pmu_ctx
);
13044 perf_event__state_init(sibling
);
13045 perf_install_in_context(ctx
, sibling
, sibling
->cpu
);
13049 * Removing from the context ends up with disabled
13050 * event. What we want here is event in the initial
13051 * startup state, ready to be add into new context.
13053 group_leader
->pmu_ctx
= pmu_ctx
;
13054 get_pmu_ctx(pmu_ctx
);
13055 perf_event__state_init(group_leader
);
13056 perf_install_in_context(ctx
, group_leader
, group_leader
->cpu
);
13060 * Precalculate sample_data sizes; do while holding ctx::mutex such
13061 * that we're serialized against further additions and before
13062 * perf_install_in_context() which is the point the event is active and
13063 * can use these values.
13065 perf_event__header_size(event
);
13066 perf_event__id_header_size(event
);
13068 event
->owner
= current
;
13070 perf_install_in_context(ctx
, event
, event
->cpu
);
13071 perf_unpin_context(ctx
);
13073 mutex_unlock(&ctx
->mutex
);
13076 up_read(&task
->signal
->exec_update_lock
);
13077 put_task_struct(task
);
13080 mutex_lock(¤t
->perf_event_mutex
);
13081 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
13082 mutex_unlock(¤t
->perf_event_mutex
);
13085 * File reference in group guarantees that group_leader has been
13086 * kept alive until we place the new event on the sibling_list.
13087 * This ensures destruction of the group leader will find
13088 * the pointer to itself in perf_group_detach().
13090 fd_install(event_fd
, event_file
);
13094 put_pmu_ctx(event
->pmu_ctx
);
13095 event
->pmu_ctx
= NULL
; /* _free_event() */
13097 mutex_unlock(&ctx
->mutex
);
13098 perf_unpin_context(ctx
);
13102 up_read(&task
->signal
->exec_update_lock
);
13107 put_task_struct(task
);
13109 put_unused_fd(event_fd
);
13114 * perf_event_create_kernel_counter
13116 * @attr: attributes of the counter to create
13117 * @cpu: cpu in which the counter is bound
13118 * @task: task to profile (NULL for percpu)
13119 * @overflow_handler: callback to trigger when we hit the event
13120 * @context: context data could be used in overflow_handler callback
13122 struct perf_event
*
13123 perf_event_create_kernel_counter(struct perf_event_attr
*attr
, int cpu
,
13124 struct task_struct
*task
,
13125 perf_overflow_handler_t overflow_handler
,
13128 struct perf_event_pmu_context
*pmu_ctx
;
13129 struct perf_event_context
*ctx
;
13130 struct perf_event
*event
;
13135 * Grouping is not supported for kernel events, neither is 'AUX',
13136 * make sure the caller's intentions are adjusted.
13138 if (attr
->aux_output
|| attr
->aux_action
)
13139 return ERR_PTR(-EINVAL
);
13141 event
= perf_event_alloc(attr
, cpu
, task
, NULL
, NULL
,
13142 overflow_handler
, context
, -1);
13143 if (IS_ERR(event
)) {
13144 err
= PTR_ERR(event
);
13148 /* Mark owner so we could distinguish it from user events. */
13149 event
->owner
= TASK_TOMBSTONE
;
13152 if (pmu
->task_ctx_nr
== perf_sw_context
)
13153 event
->event_caps
|= PERF_EV_CAP_SOFTWARE
;
13156 * Get the target context (task or percpu):
13158 ctx
= find_get_context(task
, event
);
13160 err
= PTR_ERR(ctx
);
13164 WARN_ON_ONCE(ctx
->parent_ctx
);
13165 mutex_lock(&ctx
->mutex
);
13166 if (ctx
->task
== TASK_TOMBSTONE
) {
13171 pmu_ctx
= find_get_pmu_context(pmu
, ctx
, event
);
13172 if (IS_ERR(pmu_ctx
)) {
13173 err
= PTR_ERR(pmu_ctx
);
13176 event
->pmu_ctx
= pmu_ctx
;
13180 * Check if the @cpu we're creating an event for is online.
13182 * We use the perf_cpu_context::ctx::mutex to serialize against
13183 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
13185 struct perf_cpu_context
*cpuctx
=
13186 container_of(ctx
, struct perf_cpu_context
, ctx
);
13187 if (!cpuctx
->online
) {
13193 if (!exclusive_event_installable(event
, ctx
)) {
13198 perf_install_in_context(ctx
, event
, event
->cpu
);
13199 perf_unpin_context(ctx
);
13200 mutex_unlock(&ctx
->mutex
);
13205 put_pmu_ctx(pmu_ctx
);
13206 event
->pmu_ctx
= NULL
; /* _free_event() */
13208 mutex_unlock(&ctx
->mutex
);
13209 perf_unpin_context(ctx
);
13214 return ERR_PTR(err
);
13216 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter
);
13218 static void __perf_pmu_remove(struct perf_event_context
*ctx
,
13219 int cpu
, struct pmu
*pmu
,
13220 struct perf_event_groups
*groups
,
13221 struct list_head
*events
)
13223 struct perf_event
*event
, *sibling
;
13225 perf_event_groups_for_cpu_pmu(event
, groups
, cpu
, pmu
) {
13226 perf_remove_from_context(event
, 0);
13227 put_pmu_ctx(event
->pmu_ctx
);
13228 list_add(&event
->migrate_entry
, events
);
13230 for_each_sibling_event(sibling
, event
) {
13231 perf_remove_from_context(sibling
, 0);
13232 put_pmu_ctx(sibling
->pmu_ctx
);
13233 list_add(&sibling
->migrate_entry
, events
);
13238 static void __perf_pmu_install_event(struct pmu
*pmu
,
13239 struct perf_event_context
*ctx
,
13240 int cpu
, struct perf_event
*event
)
13242 struct perf_event_pmu_context
*epc
;
13243 struct perf_event_context
*old_ctx
= event
->ctx
;
13245 get_ctx(ctx
); /* normally find_get_context() */
13248 epc
= find_get_pmu_context(pmu
, ctx
, event
);
13249 event
->pmu_ctx
= epc
;
13251 if (event
->state
>= PERF_EVENT_STATE_OFF
)
13252 event
->state
= PERF_EVENT_STATE_INACTIVE
;
13253 perf_install_in_context(ctx
, event
, cpu
);
13256 * Now that event->ctx is updated and visible, put the old ctx.
13261 static void __perf_pmu_install(struct perf_event_context
*ctx
,
13262 int cpu
, struct pmu
*pmu
, struct list_head
*events
)
13264 struct perf_event
*event
, *tmp
;
13267 * Re-instate events in 2 passes.
13269 * Skip over group leaders and only install siblings on this first
13270 * pass, siblings will not get enabled without a leader, however a
13271 * leader will enable its siblings, even if those are still on the old
13274 list_for_each_entry_safe(event
, tmp
, events
, migrate_entry
) {
13275 if (event
->group_leader
== event
)
13278 list_del(&event
->migrate_entry
);
13279 __perf_pmu_install_event(pmu
, ctx
, cpu
, event
);
13283 * Once all the siblings are setup properly, install the group leaders
13286 list_for_each_entry_safe(event
, tmp
, events
, migrate_entry
) {
13287 list_del(&event
->migrate_entry
);
13288 __perf_pmu_install_event(pmu
, ctx
, cpu
, event
);
13292 void perf_pmu_migrate_context(struct pmu
*pmu
, int src_cpu
, int dst_cpu
)
13294 struct perf_event_context
*src_ctx
, *dst_ctx
;
13298 * Since per-cpu context is persistent, no need to grab an extra
13301 src_ctx
= &per_cpu_ptr(&perf_cpu_context
, src_cpu
)->ctx
;
13302 dst_ctx
= &per_cpu_ptr(&perf_cpu_context
, dst_cpu
)->ctx
;
13305 * See perf_event_ctx_lock() for comments on the details
13306 * of swizzling perf_event::ctx.
13308 mutex_lock_double(&src_ctx
->mutex
, &dst_ctx
->mutex
);
13310 __perf_pmu_remove(src_ctx
, src_cpu
, pmu
, &src_ctx
->pinned_groups
, &events
);
13311 __perf_pmu_remove(src_ctx
, src_cpu
, pmu
, &src_ctx
->flexible_groups
, &events
);
13313 if (!list_empty(&events
)) {
13315 * Wait for the events to quiesce before re-instating them.
13319 __perf_pmu_install(dst_ctx
, dst_cpu
, pmu
, &events
);
13322 mutex_unlock(&dst_ctx
->mutex
);
13323 mutex_unlock(&src_ctx
->mutex
);
13325 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context
);
13327 static void sync_child_event(struct perf_event
*child_event
)
13329 struct perf_event
*parent_event
= child_event
->parent
;
13332 if (child_event
->attr
.inherit_stat
) {
13333 struct task_struct
*task
= child_event
->ctx
->task
;
13335 if (task
&& task
!= TASK_TOMBSTONE
)
13336 perf_event_read_event(child_event
, task
);
13339 child_val
= perf_event_count(child_event
, false);
13342 * Add back the child's count to the parent's count:
13344 atomic64_add(child_val
, &parent_event
->child_count
);
13345 atomic64_add(child_event
->total_time_enabled
,
13346 &parent_event
->child_total_time_enabled
);
13347 atomic64_add(child_event
->total_time_running
,
13348 &parent_event
->child_total_time_running
);
13352 perf_event_exit_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
13354 struct perf_event
*parent_event
= event
->parent
;
13355 unsigned long detach_flags
= 0;
13357 if (parent_event
) {
13359 * Do not destroy the 'original' grouping; because of the
13360 * context switch optimization the original events could've
13361 * ended up in a random child task.
13363 * If we were to destroy the original group, all group related
13364 * operations would cease to function properly after this
13365 * random child dies.
13367 * Do destroy all inherited groups, we don't care about those
13368 * and being thorough is better.
13370 detach_flags
= DETACH_GROUP
| DETACH_CHILD
;
13371 mutex_lock(&parent_event
->child_mutex
);
13374 perf_remove_from_context(event
, detach_flags
);
13376 raw_spin_lock_irq(&ctx
->lock
);
13377 if (event
->state
> PERF_EVENT_STATE_EXIT
)
13378 perf_event_set_state(event
, PERF_EVENT_STATE_EXIT
);
13379 raw_spin_unlock_irq(&ctx
->lock
);
13382 * Child events can be freed.
13384 if (parent_event
) {
13385 mutex_unlock(&parent_event
->child_mutex
);
13387 * Kick perf_poll() for is_event_hup();
13389 perf_event_wakeup(parent_event
);
13391 put_event(parent_event
);
13396 * Parent events are governed by their filedesc, retain them.
13398 perf_event_wakeup(event
);
13401 static void perf_event_exit_task_context(struct task_struct
*child
)
13403 struct perf_event_context
*child_ctx
, *clone_ctx
= NULL
;
13404 struct perf_event
*child_event
, *next
;
13406 WARN_ON_ONCE(child
!= current
);
13408 child_ctx
= perf_pin_task_context(child
);
13413 * In order to reduce the amount of tricky in ctx tear-down, we hold
13414 * ctx::mutex over the entire thing. This serializes against almost
13415 * everything that wants to access the ctx.
13417 * The exception is sys_perf_event_open() /
13418 * perf_event_create_kernel_count() which does find_get_context()
13419 * without ctx::mutex (it cannot because of the move_group double mutex
13420 * lock thing). See the comments in perf_install_in_context().
13422 mutex_lock(&child_ctx
->mutex
);
13425 * In a single ctx::lock section, de-schedule the events and detach the
13426 * context from the task such that we cannot ever get it scheduled back
13429 raw_spin_lock_irq(&child_ctx
->lock
);
13430 task_ctx_sched_out(child_ctx
, NULL
, EVENT_ALL
);
13433 * Now that the context is inactive, destroy the task <-> ctx relation
13434 * and mark the context dead.
13436 RCU_INIT_POINTER(child
->perf_event_ctxp
, NULL
);
13437 put_ctx(child_ctx
); /* cannot be last */
13438 WRITE_ONCE(child_ctx
->task
, TASK_TOMBSTONE
);
13439 put_task_struct(current
); /* cannot be last */
13441 clone_ctx
= unclone_ctx(child_ctx
);
13442 raw_spin_unlock_irq(&child_ctx
->lock
);
13445 put_ctx(clone_ctx
);
13448 * Report the task dead after unscheduling the events so that we
13449 * won't get any samples after PERF_RECORD_EXIT. We can however still
13450 * get a few PERF_RECORD_READ events.
13452 perf_event_task(child
, child_ctx
, 0);
13454 list_for_each_entry_safe(child_event
, next
, &child_ctx
->event_list
, event_entry
)
13455 perf_event_exit_event(child_event
, child_ctx
);
13457 mutex_unlock(&child_ctx
->mutex
);
13459 put_ctx(child_ctx
);
13463 * When a child task exits, feed back event values to parent events.
13465 * Can be called with exec_update_lock held when called from
13466 * setup_new_exec().
13468 void perf_event_exit_task(struct task_struct
*child
)
13470 struct perf_event
*event
, *tmp
;
13472 mutex_lock(&child
->perf_event_mutex
);
13473 list_for_each_entry_safe(event
, tmp
, &child
->perf_event_list
,
13475 list_del_init(&event
->owner_entry
);
13478 * Ensure the list deletion is visible before we clear
13479 * the owner, closes a race against perf_release() where
13480 * we need to serialize on the owner->perf_event_mutex.
13482 smp_store_release(&event
->owner
, NULL
);
13484 mutex_unlock(&child
->perf_event_mutex
);
13486 perf_event_exit_task_context(child
);
13489 * The perf_event_exit_task_context calls perf_event_task
13490 * with child's task_ctx, which generates EXIT events for
13491 * child contexts and sets child->perf_event_ctxp[] to NULL.
13492 * At this point we need to send EXIT events to cpu contexts.
13494 perf_event_task(child
, NULL
, 0);
13497 static void perf_free_event(struct perf_event
*event
,
13498 struct perf_event_context
*ctx
)
13500 struct perf_event
*parent
= event
->parent
;
13502 if (WARN_ON_ONCE(!parent
))
13505 mutex_lock(&parent
->child_mutex
);
13506 list_del_init(&event
->child_list
);
13507 mutex_unlock(&parent
->child_mutex
);
13511 raw_spin_lock_irq(&ctx
->lock
);
13512 perf_group_detach(event
);
13513 list_del_event(event
, ctx
);
13514 raw_spin_unlock_irq(&ctx
->lock
);
13519 * Free a context as created by inheritance by perf_event_init_task() below,
13520 * used by fork() in case of fail.
13522 * Even though the task has never lived, the context and events have been
13523 * exposed through the child_list, so we must take care tearing it all down.
13525 void perf_event_free_task(struct task_struct
*task
)
13527 struct perf_event_context
*ctx
;
13528 struct perf_event
*event
, *tmp
;
13530 ctx
= rcu_access_pointer(task
->perf_event_ctxp
);
13534 mutex_lock(&ctx
->mutex
);
13535 raw_spin_lock_irq(&ctx
->lock
);
13537 * Destroy the task <-> ctx relation and mark the context dead.
13539 * This is important because even though the task hasn't been
13540 * exposed yet the context has been (through child_list).
13542 RCU_INIT_POINTER(task
->perf_event_ctxp
, NULL
);
13543 WRITE_ONCE(ctx
->task
, TASK_TOMBSTONE
);
13544 put_task_struct(task
); /* cannot be last */
13545 raw_spin_unlock_irq(&ctx
->lock
);
13548 list_for_each_entry_safe(event
, tmp
, &ctx
->event_list
, event_entry
)
13549 perf_free_event(event
, ctx
);
13551 mutex_unlock(&ctx
->mutex
);
13554 * perf_event_release_kernel() could've stolen some of our
13555 * child events and still have them on its free_list. In that
13556 * case we must wait for these events to have been freed (in
13557 * particular all their references to this task must've been
13560 * Without this copy_process() will unconditionally free this
13561 * task (irrespective of its reference count) and
13562 * _free_event()'s put_task_struct(event->hw.target) will be a
13565 * Wait for all events to drop their context reference.
13567 wait_var_event(&ctx
->refcount
, refcount_read(&ctx
->refcount
) == 1);
13568 put_ctx(ctx
); /* must be last */
13571 void perf_event_delayed_put(struct task_struct
*task
)
13573 WARN_ON_ONCE(task
->perf_event_ctxp
);
13576 struct file
*perf_event_get(unsigned int fd
)
13578 struct file
*file
= fget(fd
);
13580 return ERR_PTR(-EBADF
);
13582 if (file
->f_op
!= &perf_fops
) {
13584 return ERR_PTR(-EBADF
);
13590 const struct perf_event
*perf_get_event(struct file
*file
)
13592 if (file
->f_op
!= &perf_fops
)
13593 return ERR_PTR(-EINVAL
);
13595 return file
->private_data
;
13598 const struct perf_event_attr
*perf_event_attrs(struct perf_event
*event
)
13601 return ERR_PTR(-EINVAL
);
13603 return &event
->attr
;
13606 int perf_allow_kernel(struct perf_event_attr
*attr
)
13608 if (sysctl_perf_event_paranoid
> 1 && !perfmon_capable())
13611 return security_perf_event_open(attr
, PERF_SECURITY_KERNEL
);
13613 EXPORT_SYMBOL_GPL(perf_allow_kernel
);
13616 * Inherit an event from parent task to child task.
13619 * - valid pointer on success
13620 * - NULL for orphaned events
13621 * - IS_ERR() on error
13623 static struct perf_event
*
13624 inherit_event(struct perf_event
*parent_event
,
13625 struct task_struct
*parent
,
13626 struct perf_event_context
*parent_ctx
,
13627 struct task_struct
*child
,
13628 struct perf_event
*group_leader
,
13629 struct perf_event_context
*child_ctx
)
13631 enum perf_event_state parent_state
= parent_event
->state
;
13632 struct perf_event_pmu_context
*pmu_ctx
;
13633 struct perf_event
*child_event
;
13634 unsigned long flags
;
13637 * Instead of creating recursive hierarchies of events,
13638 * we link inherited events back to the original parent,
13639 * which has a filp for sure, which we use as the reference
13642 if (parent_event
->parent
)
13643 parent_event
= parent_event
->parent
;
13645 child_event
= perf_event_alloc(&parent_event
->attr
,
13648 group_leader
, parent_event
,
13650 if (IS_ERR(child_event
))
13651 return child_event
;
13653 pmu_ctx
= find_get_pmu_context(child_event
->pmu
, child_ctx
, child_event
);
13654 if (IS_ERR(pmu_ctx
)) {
13655 free_event(child_event
);
13656 return ERR_CAST(pmu_ctx
);
13658 child_event
->pmu_ctx
= pmu_ctx
;
13661 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13662 * must be under the same lock in order to serialize against
13663 * perf_event_release_kernel(), such that either we must observe
13664 * is_orphaned_event() or they will observe us on the child_list.
13666 mutex_lock(&parent_event
->child_mutex
);
13667 if (is_orphaned_event(parent_event
) ||
13668 !atomic_long_inc_not_zero(&parent_event
->refcount
)) {
13669 mutex_unlock(&parent_event
->child_mutex
);
13670 /* task_ctx_data is freed with child_ctx */
13671 free_event(child_event
);
13675 get_ctx(child_ctx
);
13678 * Make the child state follow the state of the parent event,
13679 * not its attr.disabled bit. We hold the parent's mutex,
13680 * so we won't race with perf_event_{en, dis}able_family.
13682 if (parent_state
>= PERF_EVENT_STATE_INACTIVE
)
13683 child_event
->state
= PERF_EVENT_STATE_INACTIVE
;
13685 child_event
->state
= PERF_EVENT_STATE_OFF
;
13687 if (parent_event
->attr
.freq
) {
13688 u64 sample_period
= parent_event
->hw
.sample_period
;
13689 struct hw_perf_event
*hwc
= &child_event
->hw
;
13691 hwc
->sample_period
= sample_period
;
13692 hwc
->last_period
= sample_period
;
13694 local64_set(&hwc
->period_left
, sample_period
);
13697 child_event
->ctx
= child_ctx
;
13698 child_event
->overflow_handler
= parent_event
->overflow_handler
;
13699 child_event
->overflow_handler_context
13700 = parent_event
->overflow_handler_context
;
13703 * Precalculate sample_data sizes
13705 perf_event__header_size(child_event
);
13706 perf_event__id_header_size(child_event
);
13709 * Link it up in the child's context:
13711 raw_spin_lock_irqsave(&child_ctx
->lock
, flags
);
13712 add_event_to_ctx(child_event
, child_ctx
);
13713 child_event
->attach_state
|= PERF_ATTACH_CHILD
;
13714 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
13717 * Link this into the parent event's child list
13719 list_add_tail(&child_event
->child_list
, &parent_event
->child_list
);
13720 mutex_unlock(&parent_event
->child_mutex
);
13722 return child_event
;
13726 * Inherits an event group.
13728 * This will quietly suppress orphaned events; !inherit_event() is not an error.
13729 * This matches with perf_event_release_kernel() removing all child events.
13735 static int inherit_group(struct perf_event
*parent_event
,
13736 struct task_struct
*parent
,
13737 struct perf_event_context
*parent_ctx
,
13738 struct task_struct
*child
,
13739 struct perf_event_context
*child_ctx
)
13741 struct perf_event
*leader
;
13742 struct perf_event
*sub
;
13743 struct perf_event
*child_ctr
;
13745 leader
= inherit_event(parent_event
, parent
, parent_ctx
,
13746 child
, NULL
, child_ctx
);
13747 if (IS_ERR(leader
))
13748 return PTR_ERR(leader
);
13750 * @leader can be NULL here because of is_orphaned_event(). In this
13751 * case inherit_event() will create individual events, similar to what
13752 * perf_group_detach() would do anyway.
13754 for_each_sibling_event(sub
, parent_event
) {
13755 child_ctr
= inherit_event(sub
, parent
, parent_ctx
,
13756 child
, leader
, child_ctx
);
13757 if (IS_ERR(child_ctr
))
13758 return PTR_ERR(child_ctr
);
13760 if (sub
->aux_event
== parent_event
&& child_ctr
&&
13761 !perf_get_aux_event(child_ctr
, leader
))
13765 leader
->group_generation
= parent_event
->group_generation
;
13770 * Creates the child task context and tries to inherit the event-group.
13772 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13773 * inherited_all set when we 'fail' to inherit an orphaned event; this is
13774 * consistent with perf_event_release_kernel() removing all child events.
13781 inherit_task_group(struct perf_event
*event
, struct task_struct
*parent
,
13782 struct perf_event_context
*parent_ctx
,
13783 struct task_struct
*child
,
13784 u64 clone_flags
, int *inherited_all
)
13786 struct perf_event_context
*child_ctx
;
13789 if (!event
->attr
.inherit
||
13790 (event
->attr
.inherit_thread
&& !(clone_flags
& CLONE_THREAD
)) ||
13791 /* Do not inherit if sigtrap and signal handlers were cleared. */
13792 (event
->attr
.sigtrap
&& (clone_flags
& CLONE_CLEAR_SIGHAND
))) {
13793 *inherited_all
= 0;
13797 child_ctx
= child
->perf_event_ctxp
;
13800 * This is executed from the parent task context, so
13801 * inherit events that have been marked for cloning.
13802 * First allocate and initialize a context for the
13805 child_ctx
= alloc_perf_context(child
);
13809 child
->perf_event_ctxp
= child_ctx
;
13812 ret
= inherit_group(event
, parent
, parent_ctx
, child
, child_ctx
);
13814 *inherited_all
= 0;
13820 * Initialize the perf_event context in task_struct
13822 static int perf_event_init_context(struct task_struct
*child
, u64 clone_flags
)
13824 struct perf_event_context
*child_ctx
, *parent_ctx
;
13825 struct perf_event_context
*cloned_ctx
;
13826 struct perf_event
*event
;
13827 struct task_struct
*parent
= current
;
13828 int inherited_all
= 1;
13829 unsigned long flags
;
13832 if (likely(!parent
->perf_event_ctxp
))
13836 * If the parent's context is a clone, pin it so it won't get
13837 * swapped under us.
13839 parent_ctx
= perf_pin_task_context(parent
);
13844 * No need to check if parent_ctx != NULL here; since we saw
13845 * it non-NULL earlier, the only reason for it to become NULL
13846 * is if we exit, and since we're currently in the middle of
13847 * a fork we can't be exiting at the same time.
13851 * Lock the parent list. No need to lock the child - not PID
13852 * hashed yet and not running, so nobody can access it.
13854 mutex_lock(&parent_ctx
->mutex
);
13857 * We dont have to disable NMIs - we are only looking at
13858 * the list, not manipulating it:
13860 perf_event_groups_for_each(event
, &parent_ctx
->pinned_groups
) {
13861 ret
= inherit_task_group(event
, parent
, parent_ctx
,
13862 child
, clone_flags
, &inherited_all
);
13868 * We can't hold ctx->lock when iterating the ->flexible_group list due
13869 * to allocations, but we need to prevent rotation because
13870 * rotate_ctx() will change the list from interrupt context.
13872 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
13873 parent_ctx
->rotate_disable
= 1;
13874 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
13876 perf_event_groups_for_each(event
, &parent_ctx
->flexible_groups
) {
13877 ret
= inherit_task_group(event
, parent
, parent_ctx
,
13878 child
, clone_flags
, &inherited_all
);
13883 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
13884 parent_ctx
->rotate_disable
= 0;
13886 child_ctx
= child
->perf_event_ctxp
;
13888 if (child_ctx
&& inherited_all
) {
13890 * Mark the child context as a clone of the parent
13891 * context, or of whatever the parent is a clone of.
13893 * Note that if the parent is a clone, the holding of
13894 * parent_ctx->lock avoids it from being uncloned.
13896 cloned_ctx
= parent_ctx
->parent_ctx
;
13898 child_ctx
->parent_ctx
= cloned_ctx
;
13899 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
13901 child_ctx
->parent_ctx
= parent_ctx
;
13902 child_ctx
->parent_gen
= parent_ctx
->generation
;
13904 get_ctx(child_ctx
->parent_ctx
);
13907 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
13909 mutex_unlock(&parent_ctx
->mutex
);
13911 perf_unpin_context(parent_ctx
);
13912 put_ctx(parent_ctx
);
13918 * Initialize the perf_event context in task_struct
13920 int perf_event_init_task(struct task_struct
*child
, u64 clone_flags
)
13924 memset(child
->perf_recursion
, 0, sizeof(child
->perf_recursion
));
13925 child
->perf_event_ctxp
= NULL
;
13926 mutex_init(&child
->perf_event_mutex
);
13927 INIT_LIST_HEAD(&child
->perf_event_list
);
13929 ret
= perf_event_init_context(child
, clone_flags
);
13931 perf_event_free_task(child
);
13938 static void __init
perf_event_init_all_cpus(void)
13940 struct swevent_htable
*swhash
;
13941 struct perf_cpu_context
*cpuctx
;
13944 zalloc_cpumask_var(&perf_online_mask
, GFP_KERNEL
);
13945 zalloc_cpumask_var(&perf_online_core_mask
, GFP_KERNEL
);
13946 zalloc_cpumask_var(&perf_online_die_mask
, GFP_KERNEL
);
13947 zalloc_cpumask_var(&perf_online_cluster_mask
, GFP_KERNEL
);
13948 zalloc_cpumask_var(&perf_online_pkg_mask
, GFP_KERNEL
);
13949 zalloc_cpumask_var(&perf_online_sys_mask
, GFP_KERNEL
);
13952 for_each_possible_cpu(cpu
) {
13953 swhash
= &per_cpu(swevent_htable
, cpu
);
13954 mutex_init(&swhash
->hlist_mutex
);
13956 INIT_LIST_HEAD(&per_cpu(pmu_sb_events
.list
, cpu
));
13957 raw_spin_lock_init(&per_cpu(pmu_sb_events
.lock
, cpu
));
13959 INIT_LIST_HEAD(&per_cpu(sched_cb_list
, cpu
));
13961 cpuctx
= per_cpu_ptr(&perf_cpu_context
, cpu
);
13962 __perf_event_init_context(&cpuctx
->ctx
);
13963 lockdep_set_class(&cpuctx
->ctx
.mutex
, &cpuctx_mutex
);
13964 lockdep_set_class(&cpuctx
->ctx
.lock
, &cpuctx_lock
);
13965 cpuctx
->online
= cpumask_test_cpu(cpu
, perf_online_mask
);
13966 cpuctx
->heap_size
= ARRAY_SIZE(cpuctx
->heap_default
);
13967 cpuctx
->heap
= cpuctx
->heap_default
;
13971 static void perf_swevent_init_cpu(unsigned int cpu
)
13973 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
13975 mutex_lock(&swhash
->hlist_mutex
);
13976 if (swhash
->hlist_refcount
> 0 && !swevent_hlist_deref(swhash
)) {
13977 struct swevent_hlist
*hlist
;
13979 hlist
= kzalloc_node(sizeof(*hlist
), GFP_KERNEL
, cpu_to_node(cpu
));
13981 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
13983 mutex_unlock(&swhash
->hlist_mutex
);
13986 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13987 static void __perf_event_exit_context(void *__info
)
13989 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(&perf_cpu_context
);
13990 struct perf_event_context
*ctx
= __info
;
13991 struct perf_event
*event
;
13993 raw_spin_lock(&ctx
->lock
);
13994 ctx_sched_out(ctx
, NULL
, EVENT_TIME
);
13995 list_for_each_entry(event
, &ctx
->event_list
, event_entry
)
13996 __perf_remove_from_context(event
, cpuctx
, ctx
, (void *)DETACH_GROUP
);
13997 raw_spin_unlock(&ctx
->lock
);
14000 static void perf_event_clear_cpumask(unsigned int cpu
)
14002 int target
[PERF_PMU_MAX_SCOPE
];
14003 unsigned int scope
;
14006 cpumask_clear_cpu(cpu
, perf_online_mask
);
14008 for (scope
= PERF_PMU_SCOPE_NONE
+ 1; scope
< PERF_PMU_MAX_SCOPE
; scope
++) {
14009 const struct cpumask
*cpumask
= perf_scope_cpu_topology_cpumask(scope
, cpu
);
14010 struct cpumask
*pmu_cpumask
= perf_scope_cpumask(scope
);
14012 target
[scope
] = -1;
14013 if (WARN_ON_ONCE(!pmu_cpumask
|| !cpumask
))
14016 if (!cpumask_test_and_clear_cpu(cpu
, pmu_cpumask
))
14018 target
[scope
] = cpumask_any_but(cpumask
, cpu
);
14019 if (target
[scope
] < nr_cpu_ids
)
14020 cpumask_set_cpu(target
[scope
], pmu_cpumask
);
14024 list_for_each_entry(pmu
, &pmus
, entry
) {
14025 if (pmu
->scope
== PERF_PMU_SCOPE_NONE
||
14026 WARN_ON_ONCE(pmu
->scope
>= PERF_PMU_MAX_SCOPE
))
14029 if (target
[pmu
->scope
] >= 0 && target
[pmu
->scope
] < nr_cpu_ids
)
14030 perf_pmu_migrate_context(pmu
, cpu
, target
[pmu
->scope
]);
14034 static void perf_event_exit_cpu_context(int cpu
)
14036 struct perf_cpu_context
*cpuctx
;
14037 struct perf_event_context
*ctx
;
14039 // XXX simplify cpuctx->online
14040 mutex_lock(&pmus_lock
);
14042 * Clear the cpumasks, and migrate to other CPUs if possible.
14043 * Must be invoked before the __perf_event_exit_context.
14045 perf_event_clear_cpumask(cpu
);
14046 cpuctx
= per_cpu_ptr(&perf_cpu_context
, cpu
);
14047 ctx
= &cpuctx
->ctx
;
14049 mutex_lock(&ctx
->mutex
);
14050 smp_call_function_single(cpu
, __perf_event_exit_context
, ctx
, 1);
14051 cpuctx
->online
= 0;
14052 mutex_unlock(&ctx
->mutex
);
14053 mutex_unlock(&pmus_lock
);
14057 static void perf_event_exit_cpu_context(int cpu
) { }
14061 static void perf_event_setup_cpumask(unsigned int cpu
)
14063 struct cpumask
*pmu_cpumask
;
14064 unsigned int scope
;
14067 * Early boot stage, the cpumask hasn't been set yet.
14068 * The perf_online_<domain>_masks includes the first CPU of each domain.
14069 * Always unconditionally set the boot CPU for the perf_online_<domain>_masks.
14071 if (cpumask_empty(perf_online_mask
)) {
14072 for (scope
= PERF_PMU_SCOPE_NONE
+ 1; scope
< PERF_PMU_MAX_SCOPE
; scope
++) {
14073 pmu_cpumask
= perf_scope_cpumask(scope
);
14074 if (WARN_ON_ONCE(!pmu_cpumask
))
14076 cpumask_set_cpu(cpu
, pmu_cpumask
);
14081 for (scope
= PERF_PMU_SCOPE_NONE
+ 1; scope
< PERF_PMU_MAX_SCOPE
; scope
++) {
14082 const struct cpumask
*cpumask
= perf_scope_cpu_topology_cpumask(scope
, cpu
);
14084 pmu_cpumask
= perf_scope_cpumask(scope
);
14086 if (WARN_ON_ONCE(!pmu_cpumask
|| !cpumask
))
14089 if (!cpumask_empty(cpumask
) &&
14090 cpumask_any_and(pmu_cpumask
, cpumask
) >= nr_cpu_ids
)
14091 cpumask_set_cpu(cpu
, pmu_cpumask
);
14094 cpumask_set_cpu(cpu
, perf_online_mask
);
14097 int perf_event_init_cpu(unsigned int cpu
)
14099 struct perf_cpu_context
*cpuctx
;
14100 struct perf_event_context
*ctx
;
14102 perf_swevent_init_cpu(cpu
);
14104 mutex_lock(&pmus_lock
);
14105 perf_event_setup_cpumask(cpu
);
14106 cpuctx
= per_cpu_ptr(&perf_cpu_context
, cpu
);
14107 ctx
= &cpuctx
->ctx
;
14109 mutex_lock(&ctx
->mutex
);
14110 cpuctx
->online
= 1;
14111 mutex_unlock(&ctx
->mutex
);
14112 mutex_unlock(&pmus_lock
);
14117 int perf_event_exit_cpu(unsigned int cpu
)
14119 perf_event_exit_cpu_context(cpu
);
14124 perf_reboot(struct notifier_block
*notifier
, unsigned long val
, void *v
)
14128 for_each_online_cpu(cpu
)
14129 perf_event_exit_cpu(cpu
);
14135 * Run the perf reboot notifier at the very last possible moment so that
14136 * the generic watchdog code runs as long as possible.
14138 static struct notifier_block perf_reboot_notifier
= {
14139 .notifier_call
= perf_reboot
,
14140 .priority
= INT_MIN
,
14143 void __init
perf_event_init(void)
14147 idr_init(&pmu_idr
);
14149 perf_event_init_all_cpus();
14150 init_srcu_struct(&pmus_srcu
);
14151 perf_pmu_register(&perf_swevent
, "software", PERF_TYPE_SOFTWARE
);
14152 perf_pmu_register(&perf_cpu_clock
, "cpu_clock", -1);
14153 perf_pmu_register(&perf_task_clock
, "task_clock", -1);
14154 perf_tp_register();
14155 perf_event_init_cpu(smp_processor_id());
14156 register_reboot_notifier(&perf_reboot_notifier
);
14158 ret
= init_hw_breakpoint();
14159 WARN(ret
, "hw_breakpoint initialization failed with: %d", ret
);
14161 perf_event_cache
= KMEM_CACHE(perf_event
, SLAB_PANIC
);
14164 * Build time assertion that we keep the data_head at the intended
14165 * location. IOW, validation we got the __reserved[] size right.
14167 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page
, data_head
))
14171 ssize_t
perf_event_sysfs_show(struct device
*dev
, struct device_attribute
*attr
,
14174 struct perf_pmu_events_attr
*pmu_attr
=
14175 container_of(attr
, struct perf_pmu_events_attr
, attr
);
14177 if (pmu_attr
->event_str
)
14178 return sprintf(page
, "%s\n", pmu_attr
->event_str
);
14182 EXPORT_SYMBOL_GPL(perf_event_sysfs_show
);
14184 static int __init
perf_event_sysfs_init(void)
14189 mutex_lock(&pmus_lock
);
14191 ret
= bus_register(&pmu_bus
);
14195 list_for_each_entry(pmu
, &pmus
, entry
) {
14199 ret
= pmu_dev_alloc(pmu
);
14200 WARN(ret
, "Failed to register pmu: %s, reason %d\n", pmu
->name
, ret
);
14202 pmu_bus_running
= 1;
14206 mutex_unlock(&pmus_lock
);
14210 device_initcall(perf_event_sysfs_init
);
14212 #ifdef CONFIG_CGROUP_PERF
14213 static struct cgroup_subsys_state
*
14214 perf_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
14216 struct perf_cgroup
*jc
;
14218 jc
= kzalloc(sizeof(*jc
), GFP_KERNEL
);
14220 return ERR_PTR(-ENOMEM
);
14222 jc
->info
= alloc_percpu(struct perf_cgroup_info
);
14225 return ERR_PTR(-ENOMEM
);
14231 static void perf_cgroup_css_free(struct cgroup_subsys_state
*css
)
14233 struct perf_cgroup
*jc
= container_of(css
, struct perf_cgroup
, css
);
14235 free_percpu(jc
->info
);
14239 static int perf_cgroup_css_online(struct cgroup_subsys_state
*css
)
14241 perf_event_cgroup(css
->cgroup
);
14245 static int __perf_cgroup_move(void *info
)
14247 struct task_struct
*task
= info
;
14250 perf_cgroup_switch(task
);
14256 static void perf_cgroup_attach(struct cgroup_taskset
*tset
)
14258 struct task_struct
*task
;
14259 struct cgroup_subsys_state
*css
;
14261 cgroup_taskset_for_each(task
, css
, tset
)
14262 task_function_call(task
, __perf_cgroup_move
, task
);
14265 struct cgroup_subsys perf_event_cgrp_subsys
= {
14266 .css_alloc
= perf_cgroup_css_alloc
,
14267 .css_free
= perf_cgroup_css_free
,
14268 .css_online
= perf_cgroup_css_online
,
14269 .attach
= perf_cgroup_attach
,
14271 * Implicitly enable on dfl hierarchy so that perf events can
14272 * always be filtered by cgroup2 path as long as perf_event
14273 * controller is not mounted on a legacy hierarchy.
14275 .implicit_on_dfl
= true,
14278 #endif /* CONFIG_CGROUP_PERF */
14280 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack
, perf_snapshot_branch_stack_t
);