1 // SPDX-License-Identifier: GPL-2.0+
3 * Copyright (C) 2007 Alan Stern
4 * Copyright (C) IBM Corporation, 2009
5 * Copyright (C) 2009, Frederic Weisbecker <fweisbec@gmail.com>
7 * Thanks to Ingo Molnar for his many suggestions.
9 * Authors: Alan Stern <stern@rowland.harvard.edu>
10 * K.Prasad <prasad@linux.vnet.ibm.com>
11 * Frederic Weisbecker <fweisbec@gmail.com>
15 * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
16 * using the CPU's debug registers.
17 * This file contains the arch-independent routines.
20 #include <linux/hw_breakpoint.h>
22 #include <linux/atomic.h>
23 #include <linux/bug.h>
24 #include <linux/cpu.h>
25 #include <linux/export.h>
26 #include <linux/init.h>
27 #include <linux/irqflags.h>
28 #include <linux/kdebug.h>
29 #include <linux/kernel.h>
30 #include <linux/mutex.h>
31 #include <linux/notifier.h>
32 #include <linux/percpu-rwsem.h>
33 #include <linux/percpu.h>
34 #include <linux/rhashtable.h>
35 #include <linux/sched.h>
36 #include <linux/slab.h>
39 * Datastructure to track the total uses of N slots across tasks or CPUs;
40 * bp_slots_histogram::count[N] is the number of assigned N+1 breakpoint slots.
42 struct bp_slots_histogram
{
43 #ifdef hw_breakpoint_slots
44 atomic_t count
[hw_breakpoint_slots(0)];
51 * Per-CPU constraints data.
54 /* Number of pinned CPU breakpoints in a CPU. */
55 unsigned int cpu_pinned
;
56 /* Histogram of pinned task breakpoints in a CPU. */
57 struct bp_slots_histogram tsk_pinned
;
60 static DEFINE_PER_CPU(struct bp_cpuinfo
, bp_cpuinfo
[TYPE_MAX
]);
62 static struct bp_cpuinfo
*get_bp_info(int cpu
, enum bp_type_idx type
)
64 return per_cpu_ptr(bp_cpuinfo
+ type
, cpu
);
67 /* Number of pinned CPU breakpoints globally. */
68 static struct bp_slots_histogram cpu_pinned
[TYPE_MAX
];
69 /* Number of pinned CPU-independent task breakpoints. */
70 static struct bp_slots_histogram tsk_pinned_all
[TYPE_MAX
];
72 /* Keep track of the breakpoints attached to tasks */
73 static struct rhltable task_bps_ht
;
74 static const struct rhashtable_params task_bps_ht_params
= {
75 .head_offset
= offsetof(struct hw_perf_event
, bp_list
),
76 .key_offset
= offsetof(struct hw_perf_event
, target
),
77 .key_len
= sizeof_field(struct hw_perf_event
, target
),
78 .automatic_shrinking
= true,
81 static bool constraints_initialized __ro_after_init
;
84 * Synchronizes accesses to the per-CPU constraints; the locking rules are:
86 * 1. Atomic updates to bp_cpuinfo::tsk_pinned only require a held read-lock
87 * (due to bp_slots_histogram::count being atomic, no update are lost).
89 * 2. Holding a write-lock is required for computations that require a
90 * stable snapshot of all bp_cpuinfo::tsk_pinned.
92 * 3. In all other cases, non-atomic accesses require the appropriately held
93 * lock (read-lock for read-only accesses; write-lock for reads/writes).
95 DEFINE_STATIC_PERCPU_RWSEM(bp_cpuinfo_sem
);
98 * Return mutex to serialize accesses to per-task lists in task_bps_ht. Since
99 * rhltable synchronizes concurrent insertions/deletions, independent tasks may
100 * insert/delete concurrently; therefore, a mutex per task is sufficient.
102 * Uses task_struct::perf_event_mutex, to avoid extending task_struct with a
103 * hw_breakpoint-only mutex, which may be infrequently used. The caveat here is
104 * that hw_breakpoint may contend with per-task perf event list management. The
105 * assumption is that perf usecases involving hw_breakpoints are very unlikely
106 * to result in unnecessary contention.
108 static inline struct mutex
*get_task_bps_mutex(struct perf_event
*bp
)
110 struct task_struct
*tsk
= bp
->hw
.target
;
112 return tsk
? &tsk
->perf_event_mutex
: NULL
;
115 static struct mutex
*bp_constraints_lock(struct perf_event
*bp
)
117 struct mutex
*tsk_mtx
= get_task_bps_mutex(bp
);
121 * Fully analogous to the perf_try_init_event() nesting
122 * argument in the comment near perf_event_ctx_lock_nested();
123 * this child->perf_event_mutex cannot ever deadlock against
124 * the parent->perf_event_mutex usage from
125 * perf_event_task_{en,dis}able().
127 * Specifically, inherited events will never occur on
130 mutex_lock_nested(tsk_mtx
, SINGLE_DEPTH_NESTING
);
131 percpu_down_read(&bp_cpuinfo_sem
);
133 percpu_down_write(&bp_cpuinfo_sem
);
139 static void bp_constraints_unlock(struct mutex
*tsk_mtx
)
142 percpu_up_read(&bp_cpuinfo_sem
);
143 mutex_unlock(tsk_mtx
);
145 percpu_up_write(&bp_cpuinfo_sem
);
149 static bool bp_constraints_is_locked(struct perf_event
*bp
)
151 struct mutex
*tsk_mtx
= get_task_bps_mutex(bp
);
153 return percpu_is_write_locked(&bp_cpuinfo_sem
) ||
154 (tsk_mtx
? mutex_is_locked(tsk_mtx
) :
155 percpu_is_read_locked(&bp_cpuinfo_sem
));
158 static inline void assert_bp_constraints_lock_held(struct perf_event
*bp
)
160 struct mutex
*tsk_mtx
= get_task_bps_mutex(bp
);
163 lockdep_assert_held(tsk_mtx
);
164 lockdep_assert_held(&bp_cpuinfo_sem
);
167 #ifdef hw_breakpoint_slots
169 * Number of breakpoint slots is constant, and the same for all types.
171 static_assert(hw_breakpoint_slots(TYPE_INST
) == hw_breakpoint_slots(TYPE_DATA
));
172 static inline int hw_breakpoint_slots_cached(int type
) { return hw_breakpoint_slots(type
); }
173 static inline int init_breakpoint_slots(void) { return 0; }
176 * Dynamic number of breakpoint slots.
178 static int __nr_bp_slots
[TYPE_MAX
] __ro_after_init
;
180 static inline int hw_breakpoint_slots_cached(int type
)
182 return __nr_bp_slots
[type
];
186 bp_slots_histogram_alloc(struct bp_slots_histogram
*hist
, enum bp_type_idx type
)
188 hist
->count
= kcalloc(hw_breakpoint_slots_cached(type
), sizeof(*hist
->count
), GFP_KERNEL
);
192 static __init
void bp_slots_histogram_free(struct bp_slots_histogram
*hist
)
197 static __init
int init_breakpoint_slots(void)
201 for (i
= 0; i
< TYPE_MAX
; i
++)
202 __nr_bp_slots
[i
] = hw_breakpoint_slots(i
);
204 for_each_possible_cpu(cpu
) {
205 for (i
= 0; i
< TYPE_MAX
; i
++) {
206 struct bp_cpuinfo
*info
= get_bp_info(cpu
, i
);
208 if (!bp_slots_histogram_alloc(&info
->tsk_pinned
, i
))
212 for (i
= 0; i
< TYPE_MAX
; i
++) {
213 if (!bp_slots_histogram_alloc(&cpu_pinned
[i
], i
))
215 if (!bp_slots_histogram_alloc(&tsk_pinned_all
[i
], i
))
221 for_each_possible_cpu(err_cpu
) {
222 for (i
= 0; i
< TYPE_MAX
; i
++)
223 bp_slots_histogram_free(&get_bp_info(err_cpu
, i
)->tsk_pinned
);
227 for (i
= 0; i
< TYPE_MAX
; i
++) {
228 bp_slots_histogram_free(&cpu_pinned
[i
]);
229 bp_slots_histogram_free(&tsk_pinned_all
[i
]);
237 bp_slots_histogram_add(struct bp_slots_histogram
*hist
, int old
, int val
)
239 const int old_idx
= old
- 1;
240 const int new_idx
= old_idx
+ val
;
243 WARN_ON(atomic_dec_return_relaxed(&hist
->count
[old_idx
]) < 0);
245 WARN_ON(atomic_inc_return_relaxed(&hist
->count
[new_idx
]) < 0);
249 bp_slots_histogram_max(struct bp_slots_histogram
*hist
, enum bp_type_idx type
)
251 for (int i
= hw_breakpoint_slots_cached(type
) - 1; i
>= 0; i
--) {
252 const int count
= atomic_read(&hist
->count
[i
]);
254 /* Catch unexpected writers; we want a stable snapshot. */
255 ASSERT_EXCLUSIVE_WRITER(hist
->count
[i
]);
258 WARN(count
< 0, "inconsistent breakpoint slots histogram");
265 bp_slots_histogram_max_merge(struct bp_slots_histogram
*hist1
, struct bp_slots_histogram
*hist2
,
266 enum bp_type_idx type
)
268 for (int i
= hw_breakpoint_slots_cached(type
) - 1; i
>= 0; i
--) {
269 const int count1
= atomic_read(&hist1
->count
[i
]);
270 const int count2
= atomic_read(&hist2
->count
[i
]);
272 /* Catch unexpected writers; we want a stable snapshot. */
273 ASSERT_EXCLUSIVE_WRITER(hist1
->count
[i
]);
274 ASSERT_EXCLUSIVE_WRITER(hist2
->count
[i
]);
275 if (count1
+ count2
> 0)
277 WARN(count1
< 0, "inconsistent breakpoint slots histogram");
278 WARN(count2
< 0, "inconsistent breakpoint slots histogram");
284 #ifndef hw_breakpoint_weight
285 static inline int hw_breakpoint_weight(struct perf_event
*bp
)
291 static inline enum bp_type_idx
find_slot_idx(u64 bp_type
)
293 if (bp_type
& HW_BREAKPOINT_RW
)
300 * Return the maximum number of pinned breakpoints a task has in this CPU.
302 static unsigned int max_task_bp_pinned(int cpu
, enum bp_type_idx type
)
304 struct bp_slots_histogram
*tsk_pinned
= &get_bp_info(cpu
, type
)->tsk_pinned
;
307 * At this point we want to have acquired the bp_cpuinfo_sem as a
308 * writer to ensure that there are no concurrent writers in
309 * toggle_bp_task_slot() to tsk_pinned, and we get a stable snapshot.
311 lockdep_assert_held_write(&bp_cpuinfo_sem
);
312 return bp_slots_histogram_max_merge(tsk_pinned
, &tsk_pinned_all
[type
], type
);
316 * Count the number of breakpoints of the same type and same task.
317 * The given event must be not on the list.
319 * If @cpu is -1, but the result of task_bp_pinned() is not CPU-independent,
320 * returns a negative value.
322 static int task_bp_pinned(int cpu
, struct perf_event
*bp
, enum bp_type_idx type
)
324 struct rhlist_head
*head
, *pos
;
325 struct perf_event
*iter
;
329 * We need a stable snapshot of the per-task breakpoint list.
331 assert_bp_constraints_lock_held(bp
);
334 head
= rhltable_lookup(&task_bps_ht
, &bp
->hw
.target
, task_bps_ht_params
);
338 rhl_for_each_entry_rcu(iter
, pos
, head
, hw
.bp_list
) {
339 if (find_slot_idx(iter
->attr
.bp_type
) != type
)
342 if (iter
->cpu
>= 0) {
346 } else if (cpu
!= iter
->cpu
)
350 count
+= hw_breakpoint_weight(iter
);
358 static const struct cpumask
*cpumask_of_bp(struct perf_event
*bp
)
361 return cpumask_of(bp
->cpu
);
362 return cpu_possible_mask
;
366 * Returns the max pinned breakpoint slots in a given
367 * CPU (cpu > -1) or across all of them (cpu = -1).
370 max_bp_pinned_slots(struct perf_event
*bp
, enum bp_type_idx type
)
372 const struct cpumask
*cpumask
= cpumask_of_bp(bp
);
373 int pinned_slots
= 0;
376 if (bp
->hw
.target
&& bp
->cpu
< 0) {
377 int max_pinned
= task_bp_pinned(-1, bp
, type
);
379 if (max_pinned
>= 0) {
381 * Fast path: task_bp_pinned() is CPU-independent and
382 * returns the same value for any CPU.
384 max_pinned
+= bp_slots_histogram_max(&cpu_pinned
[type
], type
);
389 for_each_cpu(cpu
, cpumask
) {
390 struct bp_cpuinfo
*info
= get_bp_info(cpu
, type
);
393 nr
= info
->cpu_pinned
;
395 nr
+= max_task_bp_pinned(cpu
, type
);
397 nr
+= task_bp_pinned(cpu
, bp
, type
);
399 pinned_slots
= max(nr
, pinned_slots
);
406 * Add/remove the given breakpoint in our constraint table
409 toggle_bp_slot(struct perf_event
*bp
, bool enable
, enum bp_type_idx type
, int weight
)
411 int cpu
, next_tsk_pinned
;
416 if (!bp
->hw
.target
) {
418 * Update the pinned CPU slots, in per-CPU bp_cpuinfo and in the
421 struct bp_cpuinfo
*info
= get_bp_info(bp
->cpu
, type
);
423 lockdep_assert_held_write(&bp_cpuinfo_sem
);
424 bp_slots_histogram_add(&cpu_pinned
[type
], info
->cpu_pinned
, weight
);
425 info
->cpu_pinned
+= weight
;
430 * If bp->hw.target, tsk_pinned is only modified, but not used
431 * otherwise. We can permit concurrent updates as long as there are no
432 * other uses: having acquired bp_cpuinfo_sem as a reader allows
433 * concurrent updates here. Uses of tsk_pinned will require acquiring
434 * bp_cpuinfo_sem as a writer to stabilize tsk_pinned's value.
436 lockdep_assert_held_read(&bp_cpuinfo_sem
);
439 * Update the pinned task slots, in per-CPU bp_cpuinfo and in the global
440 * histogram. We need to take care of 4 cases:
442 * 1. This breakpoint targets all CPUs (cpu < 0), and there may only
443 * exist other task breakpoints targeting all CPUs. In this case we
444 * can simply update the global slots histogram.
446 * 2. This breakpoint targets a specific CPU (cpu >= 0), but there may
447 * only exist other task breakpoints targeting all CPUs.
449 * a. On enable: remove the existing breakpoints from the global
450 * slots histogram and use the per-CPU histogram.
452 * b. On disable: re-insert the existing breakpoints into the global
453 * slots histogram and remove from per-CPU histogram.
455 * 3. Some other existing task breakpoints target specific CPUs. Only
456 * update the per-CPU slots histogram.
461 * Remove before updating histograms so we can determine if this
462 * was the last task breakpoint for a specific CPU.
464 int ret
= rhltable_remove(&task_bps_ht
, &bp
->hw
.bp_list
, task_bps_ht_params
);
470 * Note: If !enable, next_tsk_pinned will not count the to-be-removed breakpoint.
472 next_tsk_pinned
= task_bp_pinned(-1, bp
, type
);
474 if (next_tsk_pinned
>= 0) {
475 if (bp
->cpu
< 0) { /* Case 1: fast path */
477 next_tsk_pinned
+= hw_breakpoint_weight(bp
);
478 bp_slots_histogram_add(&tsk_pinned_all
[type
], next_tsk_pinned
, weight
);
479 } else if (enable
) { /* Case 2.a: slow path */
480 /* Add existing to per-CPU histograms. */
481 for_each_possible_cpu(cpu
) {
482 bp_slots_histogram_add(&get_bp_info(cpu
, type
)->tsk_pinned
,
485 /* Add this first CPU-pinned task breakpoint. */
486 bp_slots_histogram_add(&get_bp_info(bp
->cpu
, type
)->tsk_pinned
,
487 next_tsk_pinned
, weight
);
488 /* Rebalance global task pinned histogram. */
489 bp_slots_histogram_add(&tsk_pinned_all
[type
], next_tsk_pinned
,
491 } else { /* Case 2.b: slow path */
492 /* Remove this last CPU-pinned task breakpoint. */
493 bp_slots_histogram_add(&get_bp_info(bp
->cpu
, type
)->tsk_pinned
,
494 next_tsk_pinned
+ hw_breakpoint_weight(bp
), weight
);
495 /* Remove all from per-CPU histograms. */
496 for_each_possible_cpu(cpu
) {
497 bp_slots_histogram_add(&get_bp_info(cpu
, type
)->tsk_pinned
,
498 next_tsk_pinned
, -next_tsk_pinned
);
500 /* Rebalance global task pinned histogram. */
501 bp_slots_histogram_add(&tsk_pinned_all
[type
], 0, next_tsk_pinned
);
503 } else { /* Case 3: slow path */
504 const struct cpumask
*cpumask
= cpumask_of_bp(bp
);
506 for_each_cpu(cpu
, cpumask
) {
507 next_tsk_pinned
= task_bp_pinned(cpu
, bp
, type
);
509 next_tsk_pinned
+= hw_breakpoint_weight(bp
);
510 bp_slots_histogram_add(&get_bp_info(cpu
, type
)->tsk_pinned
,
511 next_tsk_pinned
, weight
);
516 * Readers want a stable snapshot of the per-task breakpoint list.
518 assert_bp_constraints_lock_held(bp
);
521 return rhltable_insert(&task_bps_ht
, &bp
->hw
.bp_list
, task_bps_ht_params
);
527 * Constraints to check before allowing this new breakpoint counter.
529 * Note: Flexible breakpoints are currently unimplemented, but outlined in the
530 * below algorithm for completeness. The implementation treats flexible as
531 * pinned due to no guarantee that we currently always schedule flexible events
532 * before a pinned event in a same CPU.
534 * == Non-pinned counter == (Considered as pinned for now)
536 * - If attached to a single cpu, check:
538 * (per_cpu(info->flexible, cpu) || (per_cpu(info->cpu_pinned, cpu)
539 * + max(per_cpu(info->tsk_pinned, cpu)))) < HBP_NUM
541 * -> If there are already non-pinned counters in this cpu, it means
542 * there is already a free slot for them.
543 * Otherwise, we check that the maximum number of per task
544 * breakpoints (for this cpu) plus the number of per cpu breakpoint
545 * (for this cpu) doesn't cover every registers.
547 * - If attached to every cpus, check:
549 * (per_cpu(info->flexible, *) || (max(per_cpu(info->cpu_pinned, *))
550 * + max(per_cpu(info->tsk_pinned, *)))) < HBP_NUM
552 * -> This is roughly the same, except we check the number of per cpu
553 * bp for every cpu and we keep the max one. Same for the per tasks
557 * == Pinned counter ==
559 * - If attached to a single cpu, check:
561 * ((per_cpu(info->flexible, cpu) > 1) + per_cpu(info->cpu_pinned, cpu)
562 * + max(per_cpu(info->tsk_pinned, cpu))) < HBP_NUM
564 * -> Same checks as before. But now the info->flexible, if any, must keep
565 * one register at least (or they will never be fed).
567 * - If attached to every cpus, check:
569 * ((per_cpu(info->flexible, *) > 1) + max(per_cpu(info->cpu_pinned, *))
570 * + max(per_cpu(info->tsk_pinned, *))) < HBP_NUM
572 static int __reserve_bp_slot(struct perf_event
*bp
, u64 bp_type
)
574 enum bp_type_idx type
;
575 int max_pinned_slots
;
578 /* We couldn't initialize breakpoint constraints on boot */
579 if (!constraints_initialized
)
583 if (bp_type
== HW_BREAKPOINT_EMPTY
||
584 bp_type
== HW_BREAKPOINT_INVALID
)
587 type
= find_slot_idx(bp_type
);
588 weight
= hw_breakpoint_weight(bp
);
590 /* Check if this new breakpoint can be satisfied across all CPUs. */
591 max_pinned_slots
= max_bp_pinned_slots(bp
, type
) + weight
;
592 if (max_pinned_slots
> hw_breakpoint_slots_cached(type
))
595 return toggle_bp_slot(bp
, true, type
, weight
);
598 int reserve_bp_slot(struct perf_event
*bp
)
600 struct mutex
*mtx
= bp_constraints_lock(bp
);
601 int ret
= __reserve_bp_slot(bp
, bp
->attr
.bp_type
);
603 bp_constraints_unlock(mtx
);
607 static void __release_bp_slot(struct perf_event
*bp
, u64 bp_type
)
609 enum bp_type_idx type
;
612 type
= find_slot_idx(bp_type
);
613 weight
= hw_breakpoint_weight(bp
);
614 WARN_ON(toggle_bp_slot(bp
, false, type
, weight
));
617 void release_bp_slot(struct perf_event
*bp
)
619 struct mutex
*mtx
= bp_constraints_lock(bp
);
621 __release_bp_slot(bp
, bp
->attr
.bp_type
);
622 bp_constraints_unlock(mtx
);
625 static int __modify_bp_slot(struct perf_event
*bp
, u64 old_type
, u64 new_type
)
629 __release_bp_slot(bp
, old_type
);
631 err
= __reserve_bp_slot(bp
, new_type
);
634 * Reserve the old_type slot back in case
635 * there's no space for the new type.
637 * This must succeed, because we just released
638 * the old_type slot in the __release_bp_slot
639 * call above. If not, something is broken.
641 WARN_ON(__reserve_bp_slot(bp
, old_type
));
647 static int modify_bp_slot(struct perf_event
*bp
, u64 old_type
, u64 new_type
)
649 struct mutex
*mtx
= bp_constraints_lock(bp
);
650 int ret
= __modify_bp_slot(bp
, old_type
, new_type
);
652 bp_constraints_unlock(mtx
);
657 * Allow the kernel debugger to reserve breakpoint slots without
658 * taking a lock using the dbg_* variant of for the reserve and
659 * release breakpoint slots.
661 int dbg_reserve_bp_slot(struct perf_event
*bp
)
665 if (bp_constraints_is_locked(bp
))
668 /* Locks aren't held; disable lockdep assert checking. */
670 ret
= __reserve_bp_slot(bp
, bp
->attr
.bp_type
);
676 int dbg_release_bp_slot(struct perf_event
*bp
)
678 if (bp_constraints_is_locked(bp
))
681 /* Locks aren't held; disable lockdep assert checking. */
683 __release_bp_slot(bp
, bp
->attr
.bp_type
);
689 static int hw_breakpoint_parse(struct perf_event
*bp
,
690 const struct perf_event_attr
*attr
,
691 struct arch_hw_breakpoint
*hw
)
695 err
= hw_breakpoint_arch_parse(bp
, attr
, hw
);
699 if (arch_check_bp_in_kernelspace(hw
)) {
700 if (attr
->exclude_kernel
)
703 * Don't let unprivileged users set a breakpoint in the trap
704 * path to avoid trap recursion attacks.
706 if (!capable(CAP_SYS_ADMIN
))
713 int register_perf_hw_breakpoint(struct perf_event
*bp
)
715 struct arch_hw_breakpoint hw
= { };
718 err
= reserve_bp_slot(bp
);
722 err
= hw_breakpoint_parse(bp
, &bp
->attr
, &hw
);
734 * register_user_hw_breakpoint - register a hardware breakpoint for user space
735 * @attr: breakpoint attributes
736 * @triggered: callback to trigger when we hit the breakpoint
737 * @context: context data could be used in the triggered callback
738 * @tsk: pointer to 'task_struct' of the process to which the address belongs
741 register_user_hw_breakpoint(struct perf_event_attr
*attr
,
742 perf_overflow_handler_t triggered
,
744 struct task_struct
*tsk
)
746 return perf_event_create_kernel_counter(attr
, -1, tsk
, triggered
,
749 EXPORT_SYMBOL_GPL(register_user_hw_breakpoint
);
751 static void hw_breakpoint_copy_attr(struct perf_event_attr
*to
,
752 struct perf_event_attr
*from
)
754 to
->bp_addr
= from
->bp_addr
;
755 to
->bp_type
= from
->bp_type
;
756 to
->bp_len
= from
->bp_len
;
757 to
->disabled
= from
->disabled
;
761 modify_user_hw_breakpoint_check(struct perf_event
*bp
, struct perf_event_attr
*attr
,
764 struct arch_hw_breakpoint hw
= { };
767 err
= hw_breakpoint_parse(bp
, attr
, &hw
);
772 struct perf_event_attr old_attr
;
775 hw_breakpoint_copy_attr(&old_attr
, attr
);
776 if (memcmp(&old_attr
, attr
, sizeof(*attr
)))
780 if (bp
->attr
.bp_type
!= attr
->bp_type
) {
781 err
= modify_bp_slot(bp
, bp
->attr
.bp_type
, attr
->bp_type
);
786 hw_breakpoint_copy_attr(&bp
->attr
, attr
);
793 * modify_user_hw_breakpoint - modify a user-space hardware breakpoint
794 * @bp: the breakpoint structure to modify
795 * @attr: new breakpoint attributes
797 int modify_user_hw_breakpoint(struct perf_event
*bp
, struct perf_event_attr
*attr
)
802 * modify_user_hw_breakpoint can be invoked with IRQs disabled and hence it
803 * will not be possible to raise IPIs that invoke __perf_event_disable.
804 * So call the function directly after making sure we are targeting the
807 if (irqs_disabled() && bp
->ctx
&& bp
->ctx
->task
== current
)
808 perf_event_disable_local(bp
);
810 perf_event_disable(bp
);
812 err
= modify_user_hw_breakpoint_check(bp
, attr
, false);
814 if (!bp
->attr
.disabled
)
815 perf_event_enable(bp
);
819 EXPORT_SYMBOL_GPL(modify_user_hw_breakpoint
);
822 * unregister_hw_breakpoint - unregister a user-space hardware breakpoint
823 * @bp: the breakpoint structure to unregister
825 void unregister_hw_breakpoint(struct perf_event
*bp
)
829 perf_event_release_kernel(bp
);
831 EXPORT_SYMBOL_GPL(unregister_hw_breakpoint
);
834 * register_wide_hw_breakpoint - register a wide breakpoint in the kernel
835 * @attr: breakpoint attributes
836 * @triggered: callback to trigger when we hit the breakpoint
837 * @context: context data could be used in the triggered callback
839 * @return a set of per_cpu pointers to perf events
841 struct perf_event
* __percpu
*
842 register_wide_hw_breakpoint(struct perf_event_attr
*attr
,
843 perf_overflow_handler_t triggered
,
846 struct perf_event
* __percpu
*cpu_events
, *bp
;
850 cpu_events
= alloc_percpu(typeof(*cpu_events
));
852 return ERR_PTR_PCPU(-ENOMEM
);
855 for_each_online_cpu(cpu
) {
856 bp
= perf_event_create_kernel_counter(attr
, cpu
, NULL
,
863 per_cpu(*cpu_events
, cpu
) = bp
;
870 unregister_wide_hw_breakpoint(cpu_events
);
871 return ERR_PTR_PCPU(err
);
873 EXPORT_SYMBOL_GPL(register_wide_hw_breakpoint
);
876 * unregister_wide_hw_breakpoint - unregister a wide breakpoint in the kernel
877 * @cpu_events: the per cpu set of events to unregister
879 void unregister_wide_hw_breakpoint(struct perf_event
* __percpu
*cpu_events
)
883 for_each_possible_cpu(cpu
)
884 unregister_hw_breakpoint(per_cpu(*cpu_events
, cpu
));
886 free_percpu(cpu_events
);
888 EXPORT_SYMBOL_GPL(unregister_wide_hw_breakpoint
);
891 * hw_breakpoint_is_used - check if breakpoints are currently used
893 * Returns: true if breakpoints are used, false otherwise.
895 bool hw_breakpoint_is_used(void)
899 if (!constraints_initialized
)
902 for_each_possible_cpu(cpu
) {
903 for (int type
= 0; type
< TYPE_MAX
; ++type
) {
904 struct bp_cpuinfo
*info
= get_bp_info(cpu
, type
);
906 if (info
->cpu_pinned
)
909 for (int slot
= 0; slot
< hw_breakpoint_slots_cached(type
); ++slot
) {
910 if (atomic_read(&info
->tsk_pinned
.count
[slot
]))
916 for (int type
= 0; type
< TYPE_MAX
; ++type
) {
917 for (int slot
= 0; slot
< hw_breakpoint_slots_cached(type
); ++slot
) {
919 * Warn, because if there are CPU pinned counters,
920 * should never get here; bp_cpuinfo::cpu_pinned should
921 * be consistent with the global cpu_pinned histogram.
923 if (WARN_ON(atomic_read(&cpu_pinned
[type
].count
[slot
])))
926 if (atomic_read(&tsk_pinned_all
[type
].count
[slot
]))
934 static struct notifier_block hw_breakpoint_exceptions_nb
= {
935 .notifier_call
= hw_breakpoint_exceptions_notify
,
936 /* we need to be notified first */
937 .priority
= 0x7fffffff
940 static void bp_perf_event_destroy(struct perf_event
*event
)
942 release_bp_slot(event
);
945 static int hw_breakpoint_event_init(struct perf_event
*bp
)
949 if (bp
->attr
.type
!= PERF_TYPE_BREAKPOINT
)
953 * no branch sampling for breakpoint events
955 if (has_branch_stack(bp
))
958 err
= register_perf_hw_breakpoint(bp
);
962 bp
->destroy
= bp_perf_event_destroy
;
967 static int hw_breakpoint_add(struct perf_event
*bp
, int flags
)
969 if (!(flags
& PERF_EF_START
))
970 bp
->hw
.state
= PERF_HES_STOPPED
;
972 if (is_sampling_event(bp
)) {
973 bp
->hw
.last_period
= bp
->hw
.sample_period
;
974 perf_swevent_set_period(bp
);
977 return arch_install_hw_breakpoint(bp
);
980 static void hw_breakpoint_del(struct perf_event
*bp
, int flags
)
982 arch_uninstall_hw_breakpoint(bp
);
985 static void hw_breakpoint_start(struct perf_event
*bp
, int flags
)
990 static void hw_breakpoint_stop(struct perf_event
*bp
, int flags
)
992 bp
->hw
.state
= PERF_HES_STOPPED
;
995 static struct pmu perf_breakpoint
= {
996 .task_ctx_nr
= perf_sw_context
, /* could eventually get its own */
998 .event_init
= hw_breakpoint_event_init
,
999 .add
= hw_breakpoint_add
,
1000 .del
= hw_breakpoint_del
,
1001 .start
= hw_breakpoint_start
,
1002 .stop
= hw_breakpoint_stop
,
1003 .read
= hw_breakpoint_pmu_read
,
1006 int __init
init_hw_breakpoint(void)
1010 ret
= rhltable_init(&task_bps_ht
, &task_bps_ht_params
);
1014 ret
= init_breakpoint_slots();
1018 constraints_initialized
= true;
1020 perf_pmu_register(&perf_breakpoint
, "breakpoint", PERF_TYPE_BREAKPOINT
);
1022 return register_die_notifier(&hw_breakpoint_exceptions_nb
);