1 // SPDX-License-Identifier: GPL-2.0-only
3 * Generic pidhash and scalable, time-bounded PID allocator
5 * (C) 2002-2003 Nadia Yvette Chambers, IBM
6 * (C) 2004 Nadia Yvette Chambers, Oracle
7 * (C) 2002-2004 Ingo Molnar, Red Hat
9 * pid-structures are backing objects for tasks sharing a given ID to chain
10 * against. There is very little to them aside from hashing them and
11 * parking tasks using given ID's on a list.
13 * The hash is always changed with the tasklist_lock write-acquired,
14 * and the hash is only accessed with the tasklist_lock at least
15 * read-acquired, so there's no additional SMP locking needed here.
17 * We have a list of bitmap pages, which bitmaps represent the PID space.
18 * Allocating and freeing PIDs is completely lockless. The worst-case
19 * allocation scenario when all but one out of 1 million PIDs possible are
20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
24 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
25 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
26 * Many thanks to Oleg Nesterov for comments and help
31 #include <linux/export.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/rculist.h>
35 #include <linux/memblock.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 #include <linux/proc_ns.h>
40 #include <linux/refcount.h>
41 #include <linux/anon_inodes.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/idr.h>
45 #include <linux/pidfs.h>
47 #include <uapi/linux/pidfd.h>
49 struct pid init_struct_pid
= {
50 .count
= REFCOUNT_INIT(1),
63 int pid_max
= PID_MAX_DEFAULT
;
65 int pid_max_min
= RESERVED_PIDS
+ 1;
66 int pid_max_max
= PID_MAX_LIMIT
;
68 * Pseudo filesystems start inode numbering after one. We use Reserved
69 * PIDs as a natural offset.
71 static u64 pidfs_ino
= RESERVED_PIDS
;
74 * PID-map pages start out as NULL, they get allocated upon
75 * first use and are never deallocated. This way a low pid_max
76 * value does not cause lots of bitmaps to be allocated, but
77 * the scheme scales to up to 4 million PIDs, runtime.
79 struct pid_namespace init_pid_ns
= {
80 .ns
.count
= REFCOUNT_INIT(2),
81 .idr
= IDR_INIT(init_pid_ns
.idr
),
82 .pid_allocated
= PIDNS_ADDING
,
84 .child_reaper
= &init_task
,
85 .user_ns
= &init_user_ns
,
86 .ns
.inum
= PROC_PID_INIT_INO
,
88 .ns
.ops
= &pidns_operations
,
90 #if defined(CONFIG_SYSCTL) && defined(CONFIG_MEMFD_CREATE)
91 .memfd_noexec_scope
= MEMFD_NOEXEC_SCOPE_EXEC
,
94 EXPORT_SYMBOL_GPL(init_pid_ns
);
97 * Note: disable interrupts while the pidmap_lock is held as an
98 * interrupt might come in and do read_lock(&tasklist_lock).
100 * If we don't disable interrupts there is a nasty deadlock between
101 * detach_pid()->free_pid() and another cpu that does
102 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
103 * read_lock(&tasklist_lock);
105 * After we clean up the tasklist_lock and know there are no
106 * irq handlers that take it we can leave the interrupts enabled.
107 * For now it is easier to be safe than to prove it can't happen.
110 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(pidmap_lock
);
112 void put_pid(struct pid
*pid
)
114 struct pid_namespace
*ns
;
119 ns
= pid
->numbers
[pid
->level
].ns
;
120 if (refcount_dec_and_test(&pid
->count
)) {
121 kmem_cache_free(ns
->pid_cachep
, pid
);
125 EXPORT_SYMBOL_GPL(put_pid
);
127 static void delayed_put_pid(struct rcu_head
*rhp
)
129 struct pid
*pid
= container_of(rhp
, struct pid
, rcu
);
133 void free_pid(struct pid
*pid
)
135 /* We can be called with write_lock_irq(&tasklist_lock) held */
139 spin_lock_irqsave(&pidmap_lock
, flags
);
140 for (i
= 0; i
<= pid
->level
; i
++) {
141 struct upid
*upid
= pid
->numbers
+ i
;
142 struct pid_namespace
*ns
= upid
->ns
;
143 switch (--ns
->pid_allocated
) {
146 /* When all that is left in the pid namespace
147 * is the reaper wake up the reaper. The reaper
148 * may be sleeping in zap_pid_ns_processes().
150 wake_up_process(ns
->child_reaper
);
153 /* Handle a fork failure of the first process */
154 WARN_ON(ns
->child_reaper
);
155 ns
->pid_allocated
= 0;
159 idr_remove(&ns
->idr
, upid
->nr
);
161 spin_unlock_irqrestore(&pidmap_lock
, flags
);
163 call_rcu(&pid
->rcu
, delayed_put_pid
);
166 struct pid
*alloc_pid(struct pid_namespace
*ns
, pid_t
*set_tid
,
172 struct pid_namespace
*tmp
;
174 int retval
= -ENOMEM
;
177 * set_tid_size contains the size of the set_tid array. Starting at
178 * the most nested currently active PID namespace it tells alloc_pid()
179 * which PID to set for a process in that most nested PID namespace
180 * up to set_tid_size PID namespaces. It does not have to set the PID
181 * for a process in all nested PID namespaces but set_tid_size must
182 * never be greater than the current ns->level + 1.
184 if (set_tid_size
> ns
->level
+ 1)
185 return ERR_PTR(-EINVAL
);
187 pid
= kmem_cache_alloc(ns
->pid_cachep
, GFP_KERNEL
);
189 return ERR_PTR(retval
);
192 pid
->level
= ns
->level
;
194 for (i
= ns
->level
; i
>= 0; i
--) {
198 tid
= set_tid
[ns
->level
- i
];
201 if (tid
< 1 || tid
>= pid_max
)
204 * Also fail if a PID != 1 is requested and
207 if (tid
!= 1 && !tmp
->child_reaper
)
210 if (!checkpoint_restore_ns_capable(tmp
->user_ns
))
215 idr_preload(GFP_KERNEL
);
216 spin_lock_irq(&pidmap_lock
);
219 nr
= idr_alloc(&tmp
->idr
, NULL
, tid
,
220 tid
+ 1, GFP_ATOMIC
);
222 * If ENOSPC is returned it means that the PID is
223 * alreay in use. Return EEXIST in that case.
230 * init really needs pid 1, but after reaching the
231 * maximum wrap back to RESERVED_PIDS
233 if (idr_get_cursor(&tmp
->idr
) > RESERVED_PIDS
)
234 pid_min
= RESERVED_PIDS
;
237 * Store a null pointer so find_pid_ns does not find
238 * a partially initialized PID (see below).
240 nr
= idr_alloc_cyclic(&tmp
->idr
, NULL
, pid_min
,
241 pid_max
, GFP_ATOMIC
);
243 spin_unlock_irq(&pidmap_lock
);
247 retval
= (nr
== -ENOSPC
) ? -EAGAIN
: nr
;
251 pid
->numbers
[i
].nr
= nr
;
252 pid
->numbers
[i
].ns
= tmp
;
257 * ENOMEM is not the most obvious choice especially for the case
258 * where the child subreaper has already exited and the pid
259 * namespace denies the creation of any new processes. But ENOMEM
260 * is what we have exposed to userspace for a long time and it is
261 * documented behavior for pid namespaces. So we can't easily
262 * change it even if there were an error code better suited.
267 refcount_set(&pid
->count
, 1);
268 spin_lock_init(&pid
->lock
);
269 for (type
= 0; type
< PIDTYPE_MAX
; ++type
)
270 INIT_HLIST_HEAD(&pid
->tasks
[type
]);
272 init_waitqueue_head(&pid
->wait_pidfd
);
273 INIT_HLIST_HEAD(&pid
->inodes
);
275 upid
= pid
->numbers
+ ns
->level
;
276 spin_lock_irq(&pidmap_lock
);
277 if (!(ns
->pid_allocated
& PIDNS_ADDING
))
280 pid
->ino
= ++pidfs_ino
;
281 for ( ; upid
>= pid
->numbers
; --upid
) {
282 /* Make the PID visible to find_pid_ns. */
283 idr_replace(&upid
->ns
->idr
, pid
, upid
->nr
);
284 upid
->ns
->pid_allocated
++;
286 spin_unlock_irq(&pidmap_lock
);
291 spin_unlock_irq(&pidmap_lock
);
295 spin_lock_irq(&pidmap_lock
);
296 while (++i
<= ns
->level
) {
297 upid
= pid
->numbers
+ i
;
298 idr_remove(&upid
->ns
->idr
, upid
->nr
);
301 /* On failure to allocate the first pid, reset the state */
302 if (ns
->pid_allocated
== PIDNS_ADDING
)
303 idr_set_cursor(&ns
->idr
, 0);
305 spin_unlock_irq(&pidmap_lock
);
307 kmem_cache_free(ns
->pid_cachep
, pid
);
308 return ERR_PTR(retval
);
311 void disable_pid_allocation(struct pid_namespace
*ns
)
313 spin_lock_irq(&pidmap_lock
);
314 ns
->pid_allocated
&= ~PIDNS_ADDING
;
315 spin_unlock_irq(&pidmap_lock
);
318 struct pid
*find_pid_ns(int nr
, struct pid_namespace
*ns
)
320 return idr_find(&ns
->idr
, nr
);
322 EXPORT_SYMBOL_GPL(find_pid_ns
);
324 struct pid
*find_vpid(int nr
)
326 return find_pid_ns(nr
, task_active_pid_ns(current
));
328 EXPORT_SYMBOL_GPL(find_vpid
);
330 static struct pid
**task_pid_ptr(struct task_struct
*task
, enum pid_type type
)
332 return (type
== PIDTYPE_PID
) ?
334 &task
->signal
->pids
[type
];
338 * attach_pid() must be called with the tasklist_lock write-held.
340 void attach_pid(struct task_struct
*task
, enum pid_type type
)
342 struct pid
*pid
= *task_pid_ptr(task
, type
);
343 hlist_add_head_rcu(&task
->pid_links
[type
], &pid
->tasks
[type
]);
346 static void __change_pid(struct task_struct
*task
, enum pid_type type
,
349 struct pid
**pid_ptr
= task_pid_ptr(task
, type
);
355 hlist_del_rcu(&task
->pid_links
[type
]);
358 if (type
== PIDTYPE_PID
) {
359 WARN_ON_ONCE(pid_has_task(pid
, PIDTYPE_PID
));
360 wake_up_all(&pid
->wait_pidfd
);
363 for (tmp
= PIDTYPE_MAX
; --tmp
>= 0; )
364 if (pid_has_task(pid
, tmp
))
370 void detach_pid(struct task_struct
*task
, enum pid_type type
)
372 __change_pid(task
, type
, NULL
);
375 void change_pid(struct task_struct
*task
, enum pid_type type
,
378 __change_pid(task
, type
, pid
);
379 attach_pid(task
, type
);
382 void exchange_tids(struct task_struct
*left
, struct task_struct
*right
)
384 struct pid
*pid1
= left
->thread_pid
;
385 struct pid
*pid2
= right
->thread_pid
;
386 struct hlist_head
*head1
= &pid1
->tasks
[PIDTYPE_PID
];
387 struct hlist_head
*head2
= &pid2
->tasks
[PIDTYPE_PID
];
389 /* Swap the single entry tid lists */
390 hlists_swap_heads_rcu(head1
, head2
);
392 /* Swap the per task_struct pid */
393 rcu_assign_pointer(left
->thread_pid
, pid2
);
394 rcu_assign_pointer(right
->thread_pid
, pid1
);
396 /* Swap the cached value */
397 WRITE_ONCE(left
->pid
, pid_nr(pid2
));
398 WRITE_ONCE(right
->pid
, pid_nr(pid1
));
401 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
402 void transfer_pid(struct task_struct
*old
, struct task_struct
*new,
405 WARN_ON_ONCE(type
== PIDTYPE_PID
);
406 hlist_replace_rcu(&old
->pid_links
[type
], &new->pid_links
[type
]);
409 struct task_struct
*pid_task(struct pid
*pid
, enum pid_type type
)
411 struct task_struct
*result
= NULL
;
413 struct hlist_node
*first
;
414 first
= rcu_dereference_check(hlist_first_rcu(&pid
->tasks
[type
]),
415 lockdep_tasklist_lock_is_held());
417 result
= hlist_entry(first
, struct task_struct
, pid_links
[(type
)]);
421 EXPORT_SYMBOL(pid_task
);
424 * Must be called under rcu_read_lock().
426 struct task_struct
*find_task_by_pid_ns(pid_t nr
, struct pid_namespace
*ns
)
428 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
429 "find_task_by_pid_ns() needs rcu_read_lock() protection");
430 return pid_task(find_pid_ns(nr
, ns
), PIDTYPE_PID
);
433 struct task_struct
*find_task_by_vpid(pid_t vnr
)
435 return find_task_by_pid_ns(vnr
, task_active_pid_ns(current
));
438 struct task_struct
*find_get_task_by_vpid(pid_t nr
)
440 struct task_struct
*task
;
443 task
= find_task_by_vpid(nr
);
445 get_task_struct(task
);
451 struct pid
*get_task_pid(struct task_struct
*task
, enum pid_type type
)
455 pid
= get_pid(rcu_dereference(*task_pid_ptr(task
, type
)));
459 EXPORT_SYMBOL_GPL(get_task_pid
);
461 struct task_struct
*get_pid_task(struct pid
*pid
, enum pid_type type
)
463 struct task_struct
*result
;
465 result
= pid_task(pid
, type
);
467 get_task_struct(result
);
471 EXPORT_SYMBOL_GPL(get_pid_task
);
473 struct pid
*find_get_pid(pid_t nr
)
478 pid
= get_pid(find_vpid(nr
));
483 EXPORT_SYMBOL_GPL(find_get_pid
);
485 pid_t
pid_nr_ns(struct pid
*pid
, struct pid_namespace
*ns
)
490 if (pid
&& ns
->level
<= pid
->level
) {
491 upid
= &pid
->numbers
[ns
->level
];
497 EXPORT_SYMBOL_GPL(pid_nr_ns
);
499 pid_t
pid_vnr(struct pid
*pid
)
501 return pid_nr_ns(pid
, task_active_pid_ns(current
));
503 EXPORT_SYMBOL_GPL(pid_vnr
);
505 pid_t
__task_pid_nr_ns(struct task_struct
*task
, enum pid_type type
,
506 struct pid_namespace
*ns
)
512 ns
= task_active_pid_ns(current
);
513 nr
= pid_nr_ns(rcu_dereference(*task_pid_ptr(task
, type
)), ns
);
518 EXPORT_SYMBOL(__task_pid_nr_ns
);
520 struct pid_namespace
*task_active_pid_ns(struct task_struct
*tsk
)
522 return ns_of_pid(task_pid(tsk
));
524 EXPORT_SYMBOL_GPL(task_active_pid_ns
);
527 * Used by proc to find the first pid that is greater than or equal to nr.
529 * If there is a pid at nr this function is exactly the same as find_pid_ns.
531 struct pid
*find_ge_pid(int nr
, struct pid_namespace
*ns
)
533 return idr_get_next(&ns
->idr
, &nr
);
535 EXPORT_SYMBOL_GPL(find_ge_pid
);
537 struct pid
*pidfd_get_pid(unsigned int fd
, unsigned int *flags
)
543 return ERR_PTR(-EBADF
);
545 pid
= pidfd_pid(fd_file(f
));
548 *flags
= fd_file(f
)->f_flags
;
554 * pidfd_get_task() - Get the task associated with a pidfd
556 * @pidfd: pidfd for which to get the task
557 * @flags: flags associated with this pidfd
559 * Return the task associated with @pidfd. The function takes a reference on
560 * the returned task. The caller is responsible for releasing that reference.
562 * Return: On success, the task_struct associated with the pidfd.
563 * On error, a negative errno number will be returned.
565 struct task_struct
*pidfd_get_task(int pidfd
, unsigned int *flags
)
567 unsigned int f_flags
;
569 struct task_struct
*task
;
571 pid
= pidfd_get_pid(pidfd
, &f_flags
);
573 return ERR_CAST(pid
);
575 task
= get_pid_task(pid
, PIDTYPE_TGID
);
578 return ERR_PTR(-ESRCH
);
585 * pidfd_create() - Create a new pid file descriptor.
587 * @pid: struct pid that the pidfd will reference
588 * @flags: flags to pass
590 * This creates a new pid file descriptor with the O_CLOEXEC flag set.
592 * Note, that this function can only be called after the fd table has
593 * been unshared to avoid leaking the pidfd to the new process.
595 * This symbol should not be explicitly exported to loadable modules.
597 * Return: On success, a cloexec pidfd is returned.
598 * On error, a negative errno number will be returned.
600 static int pidfd_create(struct pid
*pid
, unsigned int flags
)
603 struct file
*pidfd_file
;
605 pidfd
= pidfd_prepare(pid
, flags
, &pidfd_file
);
609 fd_install(pidfd
, pidfd_file
);
614 * sys_pidfd_open() - Open new pid file descriptor.
616 * @pid: pid for which to retrieve a pidfd
617 * @flags: flags to pass
619 * This creates a new pid file descriptor with the O_CLOEXEC flag set for
620 * the task identified by @pid. Without PIDFD_THREAD flag the target task
621 * must be a thread-group leader.
623 * Return: On success, a cloexec pidfd is returned.
624 * On error, a negative errno number will be returned.
626 SYSCALL_DEFINE2(pidfd_open
, pid_t
, pid
, unsigned int, flags
)
631 if (flags
& ~(PIDFD_NONBLOCK
| PIDFD_THREAD
))
637 p
= find_get_pid(pid
);
641 fd
= pidfd_create(p
, flags
);
647 void __init
pid_idr_init(void)
649 /* Verify no one has done anything silly: */
650 BUILD_BUG_ON(PID_MAX_LIMIT
>= PIDNS_ADDING
);
652 /* bump default and minimum pid_max based on number of cpus */
653 pid_max
= min(pid_max_max
, max_t(int, pid_max
,
654 PIDS_PER_CPU_DEFAULT
* num_possible_cpus()));
655 pid_max_min
= max_t(int, pid_max_min
,
656 PIDS_PER_CPU_MIN
* num_possible_cpus());
657 pr_info("pid_max: default: %u minimum: %u\n", pid_max
, pid_max_min
);
659 idr_init(&init_pid_ns
.idr
);
661 init_pid_ns
.pid_cachep
= kmem_cache_create("pid",
662 struct_size_t(struct pid
, numbers
, 1),
663 __alignof__(struct pid
),
664 SLAB_HWCACHE_ALIGN
| SLAB_PANIC
| SLAB_ACCOUNT
,
668 static struct file
*__pidfd_fget(struct task_struct
*task
, int fd
)
673 ret
= down_read_killable(&task
->signal
->exec_update_lock
);
677 if (ptrace_may_access(task
, PTRACE_MODE_ATTACH_REALCREDS
))
678 file
= fget_task(task
, fd
);
680 file
= ERR_PTR(-EPERM
);
682 up_read(&task
->signal
->exec_update_lock
);
686 * It is possible that the target thread is exiting; it can be
688 * 1. before exit_signals(), which gives a real fd
689 * 2. before exit_files() takes the task_lock() gives a real fd
690 * 3. after exit_files() releases task_lock(), ->files is NULL;
691 * this has PF_EXITING, since it was set in exit_signals(),
692 * __pidfd_fget() returns EBADF.
693 * In case 3 we get EBADF, but that really means ESRCH, since
694 * the task is currently exiting and has freed its files
695 * struct, so we fix it up.
697 if (task
->flags
& PF_EXITING
)
698 file
= ERR_PTR(-ESRCH
);
700 file
= ERR_PTR(-EBADF
);
706 static int pidfd_getfd(struct pid
*pid
, int fd
)
708 struct task_struct
*task
;
712 task
= get_pid_task(pid
, PIDTYPE_PID
);
716 file
= __pidfd_fget(task
, fd
);
717 put_task_struct(task
);
719 return PTR_ERR(file
);
721 ret
= receive_fd(file
, NULL
, O_CLOEXEC
);
728 * sys_pidfd_getfd() - Get a file descriptor from another process
730 * @pidfd: the pidfd file descriptor of the process
731 * @fd: the file descriptor number to get
732 * @flags: flags on how to get the fd (reserved)
734 * This syscall gets a copy of a file descriptor from another process
735 * based on the pidfd, and file descriptor number. It requires that
736 * the calling process has the ability to ptrace the process represented
737 * by the pidfd. The process which is having its file descriptor copied
738 * is otherwise unaffected.
740 * Return: On success, a cloexec file descriptor is returned.
741 * On error, a negative errno number will be returned.
743 SYSCALL_DEFINE3(pidfd_getfd
, int, pidfd
, int, fd
,
748 /* flags is currently unused - make sure it's unset */
756 pid
= pidfd_pid(fd_file(f
));
760 return pidfd_getfd(pid
, fd
);