1 // SPDX-License-Identifier: GPL-2.0
3 * CPUFreq governor based on scheduler-provided CPU utilization data.
5 * Copyright (C) 2016, Intel Corporation
6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
9 #define IOWAIT_BOOST_MIN (SCHED_CAPACITY_SCALE / 8)
11 struct sugov_tunables
{
12 struct gov_attr_set attr_set
;
13 unsigned int rate_limit_us
;
17 struct cpufreq_policy
*policy
;
19 struct sugov_tunables
*tunables
;
20 struct list_head tunables_hook
;
22 raw_spinlock_t update_lock
;
23 u64 last_freq_update_time
;
24 s64 freq_update_delay_ns
;
25 unsigned int next_freq
;
26 unsigned int cached_raw_freq
;
28 /* The next fields are only needed if fast switch cannot be used: */
29 struct irq_work irq_work
;
30 struct kthread_work work
;
31 struct mutex work_lock
;
32 struct kthread_worker worker
;
33 struct task_struct
*thread
;
34 bool work_in_progress
;
37 bool need_freq_update
;
41 struct update_util_data update_util
;
42 struct sugov_policy
*sg_policy
;
45 bool iowait_boost_pending
;
46 unsigned int iowait_boost
;
52 /* The field below is for single-CPU policies only: */
53 #ifdef CONFIG_NO_HZ_COMMON
54 unsigned long saved_idle_calls
;
58 static DEFINE_PER_CPU(struct sugov_cpu
, sugov_cpu
);
60 /************************ Governor internals ***********************/
62 static bool sugov_should_update_freq(struct sugov_policy
*sg_policy
, u64 time
)
67 * Since cpufreq_update_util() is called with rq->lock held for
68 * the @target_cpu, our per-CPU data is fully serialized.
70 * However, drivers cannot in general deal with cross-CPU
71 * requests, so while get_next_freq() will work, our
72 * sugov_update_commit() call may not for the fast switching platforms.
74 * Hence stop here for remote requests if they aren't supported
75 * by the hardware, as calculating the frequency is pointless if
76 * we cannot in fact act on it.
78 * This is needed on the slow switching platforms too to prevent CPUs
79 * going offline from leaving stale IRQ work items behind.
81 if (!cpufreq_this_cpu_can_update(sg_policy
->policy
))
84 if (unlikely(sg_policy
->limits_changed
)) {
85 sg_policy
->limits_changed
= false;
86 sg_policy
->need_freq_update
= true;
90 delta_ns
= time
- sg_policy
->last_freq_update_time
;
92 return delta_ns
>= sg_policy
->freq_update_delay_ns
;
95 static bool sugov_update_next_freq(struct sugov_policy
*sg_policy
, u64 time
,
96 unsigned int next_freq
)
98 if (sg_policy
->need_freq_update
)
99 sg_policy
->need_freq_update
= cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS
);
100 else if (sg_policy
->next_freq
== next_freq
)
103 sg_policy
->next_freq
= next_freq
;
104 sg_policy
->last_freq_update_time
= time
;
109 static void sugov_deferred_update(struct sugov_policy
*sg_policy
)
111 if (!sg_policy
->work_in_progress
) {
112 sg_policy
->work_in_progress
= true;
113 irq_work_queue(&sg_policy
->irq_work
);
118 * get_capacity_ref_freq - get the reference frequency that has been used to
119 * correlate frequency and compute capacity for a given cpufreq policy. We use
120 * the CPU managing it for the arch_scale_freq_ref() call in the function.
121 * @policy: the cpufreq policy of the CPU in question.
123 * Return: the reference CPU frequency to compute a capacity.
125 static __always_inline
126 unsigned long get_capacity_ref_freq(struct cpufreq_policy
*policy
)
128 unsigned int freq
= arch_scale_freq_ref(policy
->cpu
);
133 if (arch_scale_freq_invariant())
134 return policy
->cpuinfo
.max_freq
;
137 * Apply a 25% margin so that we select a higher frequency than
138 * the current one before the CPU is fully busy:
140 return policy
->cur
+ (policy
->cur
>> 2);
144 * get_next_freq - Compute a new frequency for a given cpufreq policy.
145 * @sg_policy: schedutil policy object to compute the new frequency for.
146 * @util: Current CPU utilization.
147 * @max: CPU capacity.
149 * If the utilization is frequency-invariant, choose the new frequency to be
150 * proportional to it, that is
152 * next_freq = C * max_freq * util / max
154 * Otherwise, approximate the would-be frequency-invariant utilization by
155 * util_raw * (curr_freq / max_freq) which leads to
157 * next_freq = C * curr_freq * util_raw / max
159 * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
161 * The lowest driver-supported frequency which is equal or greater than the raw
162 * next_freq (as calculated above) is returned, subject to policy min/max and
163 * cpufreq driver limitations.
165 static unsigned int get_next_freq(struct sugov_policy
*sg_policy
,
166 unsigned long util
, unsigned long max
)
168 struct cpufreq_policy
*policy
= sg_policy
->policy
;
171 freq
= get_capacity_ref_freq(policy
);
172 freq
= map_util_freq(util
, freq
, max
);
174 if (freq
== sg_policy
->cached_raw_freq
&& !sg_policy
->need_freq_update
)
175 return sg_policy
->next_freq
;
177 sg_policy
->cached_raw_freq
= freq
;
178 return cpufreq_driver_resolve_freq(policy
, freq
);
181 unsigned long sugov_effective_cpu_perf(int cpu
, unsigned long actual
,
185 /* Add dvfs headroom to actual utilization */
186 actual
= map_util_perf(actual
);
187 /* Actually we don't need to target the max performance */
192 * Ensure at least minimum performance while providing more compute
193 * capacity when possible.
195 return max(min
, max
);
198 static void sugov_get_util(struct sugov_cpu
*sg_cpu
, unsigned long boost
)
200 unsigned long min
, max
, util
= scx_cpuperf_target(sg_cpu
->cpu
);
202 if (!scx_switched_all())
203 util
+= cpu_util_cfs_boost(sg_cpu
->cpu
);
204 util
= effective_cpu_util(sg_cpu
->cpu
, util
, &min
, &max
);
205 util
= max(util
, boost
);
206 sg_cpu
->bw_min
= min
;
207 sg_cpu
->util
= sugov_effective_cpu_perf(sg_cpu
->cpu
, util
, min
, max
);
211 * sugov_iowait_reset() - Reset the IO boost status of a CPU.
212 * @sg_cpu: the sugov data for the CPU to boost
213 * @time: the update time from the caller
214 * @set_iowait_boost: true if an IO boost has been requested
216 * The IO wait boost of a task is disabled after a tick since the last update
217 * of a CPU. If a new IO wait boost is requested after more then a tick, then
218 * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
219 * efficiency by ignoring sporadic wakeups from IO.
221 static bool sugov_iowait_reset(struct sugov_cpu
*sg_cpu
, u64 time
,
222 bool set_iowait_boost
)
224 s64 delta_ns
= time
- sg_cpu
->last_update
;
226 /* Reset boost only if a tick has elapsed since last request */
227 if (delta_ns
<= TICK_NSEC
)
230 sg_cpu
->iowait_boost
= set_iowait_boost
? IOWAIT_BOOST_MIN
: 0;
231 sg_cpu
->iowait_boost_pending
= set_iowait_boost
;
237 * sugov_iowait_boost() - Updates the IO boost status of a CPU.
238 * @sg_cpu: the sugov data for the CPU to boost
239 * @time: the update time from the caller
240 * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
242 * Each time a task wakes up after an IO operation, the CPU utilization can be
243 * boosted to a certain utilization which doubles at each "frequent and
244 * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
245 * of the maximum OPP.
247 * To keep doubling, an IO boost has to be requested at least once per tick,
248 * otherwise we restart from the utilization of the minimum OPP.
250 static void sugov_iowait_boost(struct sugov_cpu
*sg_cpu
, u64 time
,
253 bool set_iowait_boost
= flags
& SCHED_CPUFREQ_IOWAIT
;
255 /* Reset boost if the CPU appears to have been idle enough */
256 if (sg_cpu
->iowait_boost
&&
257 sugov_iowait_reset(sg_cpu
, time
, set_iowait_boost
))
260 /* Boost only tasks waking up after IO */
261 if (!set_iowait_boost
)
264 /* Ensure boost doubles only one time at each request */
265 if (sg_cpu
->iowait_boost_pending
)
267 sg_cpu
->iowait_boost_pending
= true;
269 /* Double the boost at each request */
270 if (sg_cpu
->iowait_boost
) {
271 sg_cpu
->iowait_boost
=
272 min_t(unsigned int, sg_cpu
->iowait_boost
<< 1, SCHED_CAPACITY_SCALE
);
276 /* First wakeup after IO: start with minimum boost */
277 sg_cpu
->iowait_boost
= IOWAIT_BOOST_MIN
;
281 * sugov_iowait_apply() - Apply the IO boost to a CPU.
282 * @sg_cpu: the sugov data for the cpu to boost
283 * @time: the update time from the caller
284 * @max_cap: the max CPU capacity
286 * A CPU running a task which woken up after an IO operation can have its
287 * utilization boosted to speed up the completion of those IO operations.
288 * The IO boost value is increased each time a task wakes up from IO, in
289 * sugov_iowait_apply(), and it's instead decreased by this function,
290 * each time an increase has not been requested (!iowait_boost_pending).
292 * A CPU which also appears to have been idle for at least one tick has also
293 * its IO boost utilization reset.
295 * This mechanism is designed to boost high frequently IO waiting tasks, while
296 * being more conservative on tasks which does sporadic IO operations.
298 static unsigned long sugov_iowait_apply(struct sugov_cpu
*sg_cpu
, u64 time
,
299 unsigned long max_cap
)
301 /* No boost currently required */
302 if (!sg_cpu
->iowait_boost
)
305 /* Reset boost if the CPU appears to have been idle enough */
306 if (sugov_iowait_reset(sg_cpu
, time
, false))
309 if (!sg_cpu
->iowait_boost_pending
) {
311 * No boost pending; reduce the boost value.
313 sg_cpu
->iowait_boost
>>= 1;
314 if (sg_cpu
->iowait_boost
< IOWAIT_BOOST_MIN
) {
315 sg_cpu
->iowait_boost
= 0;
320 sg_cpu
->iowait_boost_pending
= false;
323 * sg_cpu->util is already in capacity scale; convert iowait_boost
324 * into the same scale so we can compare.
326 return (sg_cpu
->iowait_boost
* max_cap
) >> SCHED_CAPACITY_SHIFT
;
329 #ifdef CONFIG_NO_HZ_COMMON
330 static bool sugov_hold_freq(struct sugov_cpu
*sg_cpu
)
332 unsigned long idle_calls
;
336 * The heuristics in this function is for the fair class. For SCX, the
337 * performance target comes directly from the BPF scheduler. Let's just
340 if (scx_switched_all())
343 /* if capped by uclamp_max, always update to be in compliance */
344 if (uclamp_rq_is_capped(cpu_rq(sg_cpu
->cpu
)))
348 * Maintain the frequency if the CPU has not been idle recently, as
349 * reduction is likely to be premature.
351 idle_calls
= tick_nohz_get_idle_calls_cpu(sg_cpu
->cpu
);
352 ret
= idle_calls
== sg_cpu
->saved_idle_calls
;
354 sg_cpu
->saved_idle_calls
= idle_calls
;
358 static inline bool sugov_hold_freq(struct sugov_cpu
*sg_cpu
) { return false; }
359 #endif /* CONFIG_NO_HZ_COMMON */
362 * Make sugov_should_update_freq() ignore the rate limit when DL
363 * has increased the utilization.
365 static inline void ignore_dl_rate_limit(struct sugov_cpu
*sg_cpu
)
367 if (cpu_bw_dl(cpu_rq(sg_cpu
->cpu
)) > sg_cpu
->bw_min
)
368 sg_cpu
->sg_policy
->limits_changed
= true;
371 static inline bool sugov_update_single_common(struct sugov_cpu
*sg_cpu
,
372 u64 time
, unsigned long max_cap
,
377 sugov_iowait_boost(sg_cpu
, time
, flags
);
378 sg_cpu
->last_update
= time
;
380 ignore_dl_rate_limit(sg_cpu
);
382 if (!sugov_should_update_freq(sg_cpu
->sg_policy
, time
))
385 boost
= sugov_iowait_apply(sg_cpu
, time
, max_cap
);
386 sugov_get_util(sg_cpu
, boost
);
391 static void sugov_update_single_freq(struct update_util_data
*hook
, u64 time
,
394 struct sugov_cpu
*sg_cpu
= container_of(hook
, struct sugov_cpu
, update_util
);
395 struct sugov_policy
*sg_policy
= sg_cpu
->sg_policy
;
396 unsigned int cached_freq
= sg_policy
->cached_raw_freq
;
397 unsigned long max_cap
;
400 max_cap
= arch_scale_cpu_capacity(sg_cpu
->cpu
);
402 if (!sugov_update_single_common(sg_cpu
, time
, max_cap
, flags
))
405 next_f
= get_next_freq(sg_policy
, sg_cpu
->util
, max_cap
);
407 if (sugov_hold_freq(sg_cpu
) && next_f
< sg_policy
->next_freq
&&
408 !sg_policy
->need_freq_update
) {
409 next_f
= sg_policy
->next_freq
;
411 /* Restore cached freq as next_freq has changed */
412 sg_policy
->cached_raw_freq
= cached_freq
;
415 if (!sugov_update_next_freq(sg_policy
, time
, next_f
))
419 * This code runs under rq->lock for the target CPU, so it won't run
420 * concurrently on two different CPUs for the same target and it is not
421 * necessary to acquire the lock in the fast switch case.
423 if (sg_policy
->policy
->fast_switch_enabled
) {
424 cpufreq_driver_fast_switch(sg_policy
->policy
, next_f
);
426 raw_spin_lock(&sg_policy
->update_lock
);
427 sugov_deferred_update(sg_policy
);
428 raw_spin_unlock(&sg_policy
->update_lock
);
432 static void sugov_update_single_perf(struct update_util_data
*hook
, u64 time
,
435 struct sugov_cpu
*sg_cpu
= container_of(hook
, struct sugov_cpu
, update_util
);
436 unsigned long prev_util
= sg_cpu
->util
;
437 unsigned long max_cap
;
440 * Fall back to the "frequency" path if frequency invariance is not
441 * supported, because the direct mapping between the utilization and
442 * the performance levels depends on the frequency invariance.
444 if (!arch_scale_freq_invariant()) {
445 sugov_update_single_freq(hook
, time
, flags
);
449 max_cap
= arch_scale_cpu_capacity(sg_cpu
->cpu
);
451 if (!sugov_update_single_common(sg_cpu
, time
, max_cap
, flags
))
454 if (sugov_hold_freq(sg_cpu
) && sg_cpu
->util
< prev_util
)
455 sg_cpu
->util
= prev_util
;
457 cpufreq_driver_adjust_perf(sg_cpu
->cpu
, sg_cpu
->bw_min
,
458 sg_cpu
->util
, max_cap
);
460 sg_cpu
->sg_policy
->last_freq_update_time
= time
;
463 static unsigned int sugov_next_freq_shared(struct sugov_cpu
*sg_cpu
, u64 time
)
465 struct sugov_policy
*sg_policy
= sg_cpu
->sg_policy
;
466 struct cpufreq_policy
*policy
= sg_policy
->policy
;
467 unsigned long util
= 0, max_cap
;
470 max_cap
= arch_scale_cpu_capacity(sg_cpu
->cpu
);
472 for_each_cpu(j
, policy
->cpus
) {
473 struct sugov_cpu
*j_sg_cpu
= &per_cpu(sugov_cpu
, j
);
476 boost
= sugov_iowait_apply(j_sg_cpu
, time
, max_cap
);
477 sugov_get_util(j_sg_cpu
, boost
);
479 util
= max(j_sg_cpu
->util
, util
);
482 return get_next_freq(sg_policy
, util
, max_cap
);
486 sugov_update_shared(struct update_util_data
*hook
, u64 time
, unsigned int flags
)
488 struct sugov_cpu
*sg_cpu
= container_of(hook
, struct sugov_cpu
, update_util
);
489 struct sugov_policy
*sg_policy
= sg_cpu
->sg_policy
;
492 raw_spin_lock(&sg_policy
->update_lock
);
494 sugov_iowait_boost(sg_cpu
, time
, flags
);
495 sg_cpu
->last_update
= time
;
497 ignore_dl_rate_limit(sg_cpu
);
499 if (sugov_should_update_freq(sg_policy
, time
)) {
500 next_f
= sugov_next_freq_shared(sg_cpu
, time
);
502 if (!sugov_update_next_freq(sg_policy
, time
, next_f
))
505 if (sg_policy
->policy
->fast_switch_enabled
)
506 cpufreq_driver_fast_switch(sg_policy
->policy
, next_f
);
508 sugov_deferred_update(sg_policy
);
511 raw_spin_unlock(&sg_policy
->update_lock
);
514 static void sugov_work(struct kthread_work
*work
)
516 struct sugov_policy
*sg_policy
= container_of(work
, struct sugov_policy
, work
);
521 * Hold sg_policy->update_lock shortly to handle the case where:
522 * in case sg_policy->next_freq is read here, and then updated by
523 * sugov_deferred_update() just before work_in_progress is set to false
524 * here, we may miss queueing the new update.
526 * Note: If a work was queued after the update_lock is released,
527 * sugov_work() will just be called again by kthread_work code; and the
528 * request will be proceed before the sugov thread sleeps.
530 raw_spin_lock_irqsave(&sg_policy
->update_lock
, flags
);
531 freq
= sg_policy
->next_freq
;
532 sg_policy
->work_in_progress
= false;
533 raw_spin_unlock_irqrestore(&sg_policy
->update_lock
, flags
);
535 mutex_lock(&sg_policy
->work_lock
);
536 __cpufreq_driver_target(sg_policy
->policy
, freq
, CPUFREQ_RELATION_L
);
537 mutex_unlock(&sg_policy
->work_lock
);
540 static void sugov_irq_work(struct irq_work
*irq_work
)
542 struct sugov_policy
*sg_policy
;
544 sg_policy
= container_of(irq_work
, struct sugov_policy
, irq_work
);
546 kthread_queue_work(&sg_policy
->worker
, &sg_policy
->work
);
549 /************************** sysfs interface ************************/
551 static struct sugov_tunables
*global_tunables
;
552 static DEFINE_MUTEX(global_tunables_lock
);
554 static inline struct sugov_tunables
*to_sugov_tunables(struct gov_attr_set
*attr_set
)
556 return container_of(attr_set
, struct sugov_tunables
, attr_set
);
559 static ssize_t
rate_limit_us_show(struct gov_attr_set
*attr_set
, char *buf
)
561 struct sugov_tunables
*tunables
= to_sugov_tunables(attr_set
);
563 return sprintf(buf
, "%u\n", tunables
->rate_limit_us
);
567 rate_limit_us_store(struct gov_attr_set
*attr_set
, const char *buf
, size_t count
)
569 struct sugov_tunables
*tunables
= to_sugov_tunables(attr_set
);
570 struct sugov_policy
*sg_policy
;
571 unsigned int rate_limit_us
;
573 if (kstrtouint(buf
, 10, &rate_limit_us
))
576 tunables
->rate_limit_us
= rate_limit_us
;
578 list_for_each_entry(sg_policy
, &attr_set
->policy_list
, tunables_hook
)
579 sg_policy
->freq_update_delay_ns
= rate_limit_us
* NSEC_PER_USEC
;
584 static struct governor_attr rate_limit_us
= __ATTR_RW(rate_limit_us
);
586 static struct attribute
*sugov_attrs
[] = {
590 ATTRIBUTE_GROUPS(sugov
);
592 static void sugov_tunables_free(struct kobject
*kobj
)
594 struct gov_attr_set
*attr_set
= to_gov_attr_set(kobj
);
596 kfree(to_sugov_tunables(attr_set
));
599 static const struct kobj_type sugov_tunables_ktype
= {
600 .default_groups
= sugov_groups
,
601 .sysfs_ops
= &governor_sysfs_ops
,
602 .release
= &sugov_tunables_free
,
605 /********************** cpufreq governor interface *********************/
607 #ifdef CONFIG_ENERGY_MODEL
608 static void rebuild_sd_workfn(struct work_struct
*work
)
610 rebuild_sched_domains_energy();
613 static DECLARE_WORK(rebuild_sd_work
, rebuild_sd_workfn
);
616 * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
617 * on governor changes to make sure the scheduler knows about it.
619 static void sugov_eas_rebuild_sd(void)
622 * When called from the cpufreq_register_driver() path, the
623 * cpu_hotplug_lock is already held, so use a work item to
624 * avoid nested locking in rebuild_sched_domains().
626 schedule_work(&rebuild_sd_work
);
629 static inline void sugov_eas_rebuild_sd(void) { };
632 struct cpufreq_governor schedutil_gov
;
634 static struct sugov_policy
*sugov_policy_alloc(struct cpufreq_policy
*policy
)
636 struct sugov_policy
*sg_policy
;
638 sg_policy
= kzalloc(sizeof(*sg_policy
), GFP_KERNEL
);
642 sg_policy
->policy
= policy
;
643 raw_spin_lock_init(&sg_policy
->update_lock
);
647 static void sugov_policy_free(struct sugov_policy
*sg_policy
)
652 static int sugov_kthread_create(struct sugov_policy
*sg_policy
)
654 struct task_struct
*thread
;
655 struct sched_attr attr
= {
656 .size
= sizeof(struct sched_attr
),
657 .sched_policy
= SCHED_DEADLINE
,
658 .sched_flags
= SCHED_FLAG_SUGOV
,
662 * Fake (unused) bandwidth; workaround to "fix"
663 * priority inheritance.
665 .sched_runtime
= NSEC_PER_MSEC
,
666 .sched_deadline
= 10 * NSEC_PER_MSEC
,
667 .sched_period
= 10 * NSEC_PER_MSEC
,
669 struct cpufreq_policy
*policy
= sg_policy
->policy
;
672 /* kthread only required for slow path */
673 if (policy
->fast_switch_enabled
)
676 kthread_init_work(&sg_policy
->work
, sugov_work
);
677 kthread_init_worker(&sg_policy
->worker
);
678 thread
= kthread_create(kthread_worker_fn
, &sg_policy
->worker
,
680 cpumask_first(policy
->related_cpus
));
681 if (IS_ERR(thread
)) {
682 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread
));
683 return PTR_ERR(thread
);
686 ret
= sched_setattr_nocheck(thread
, &attr
);
688 kthread_stop(thread
);
689 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__
);
693 sg_policy
->thread
= thread
;
694 kthread_bind_mask(thread
, policy
->related_cpus
);
695 init_irq_work(&sg_policy
->irq_work
, sugov_irq_work
);
696 mutex_init(&sg_policy
->work_lock
);
698 wake_up_process(thread
);
703 static void sugov_kthread_stop(struct sugov_policy
*sg_policy
)
705 /* kthread only required for slow path */
706 if (sg_policy
->policy
->fast_switch_enabled
)
709 kthread_flush_worker(&sg_policy
->worker
);
710 kthread_stop(sg_policy
->thread
);
711 mutex_destroy(&sg_policy
->work_lock
);
714 static struct sugov_tunables
*sugov_tunables_alloc(struct sugov_policy
*sg_policy
)
716 struct sugov_tunables
*tunables
;
718 tunables
= kzalloc(sizeof(*tunables
), GFP_KERNEL
);
720 gov_attr_set_init(&tunables
->attr_set
, &sg_policy
->tunables_hook
);
721 if (!have_governor_per_policy())
722 global_tunables
= tunables
;
727 static void sugov_clear_global_tunables(void)
729 if (!have_governor_per_policy())
730 global_tunables
= NULL
;
733 static int sugov_init(struct cpufreq_policy
*policy
)
735 struct sugov_policy
*sg_policy
;
736 struct sugov_tunables
*tunables
;
739 /* State should be equivalent to EXIT */
740 if (policy
->governor_data
)
743 cpufreq_enable_fast_switch(policy
);
745 sg_policy
= sugov_policy_alloc(policy
);
748 goto disable_fast_switch
;
751 ret
= sugov_kthread_create(sg_policy
);
755 mutex_lock(&global_tunables_lock
);
757 if (global_tunables
) {
758 if (WARN_ON(have_governor_per_policy())) {
762 policy
->governor_data
= sg_policy
;
763 sg_policy
->tunables
= global_tunables
;
765 gov_attr_set_get(&global_tunables
->attr_set
, &sg_policy
->tunables_hook
);
769 tunables
= sugov_tunables_alloc(sg_policy
);
775 tunables
->rate_limit_us
= cpufreq_policy_transition_delay_us(policy
);
777 policy
->governor_data
= sg_policy
;
778 sg_policy
->tunables
= tunables
;
780 ret
= kobject_init_and_add(&tunables
->attr_set
.kobj
, &sugov_tunables_ktype
,
781 get_governor_parent_kobj(policy
), "%s",
787 sugov_eas_rebuild_sd();
788 mutex_unlock(&global_tunables_lock
);
792 kobject_put(&tunables
->attr_set
.kobj
);
793 policy
->governor_data
= NULL
;
794 sugov_clear_global_tunables();
797 sugov_kthread_stop(sg_policy
);
798 mutex_unlock(&global_tunables_lock
);
801 sugov_policy_free(sg_policy
);
804 cpufreq_disable_fast_switch(policy
);
806 pr_err("initialization failed (error %d)\n", ret
);
810 static void sugov_exit(struct cpufreq_policy
*policy
)
812 struct sugov_policy
*sg_policy
= policy
->governor_data
;
813 struct sugov_tunables
*tunables
= sg_policy
->tunables
;
816 mutex_lock(&global_tunables_lock
);
818 count
= gov_attr_set_put(&tunables
->attr_set
, &sg_policy
->tunables_hook
);
819 policy
->governor_data
= NULL
;
821 sugov_clear_global_tunables();
823 mutex_unlock(&global_tunables_lock
);
825 sugov_kthread_stop(sg_policy
);
826 sugov_policy_free(sg_policy
);
827 cpufreq_disable_fast_switch(policy
);
829 sugov_eas_rebuild_sd();
832 static int sugov_start(struct cpufreq_policy
*policy
)
834 struct sugov_policy
*sg_policy
= policy
->governor_data
;
835 void (*uu
)(struct update_util_data
*data
, u64 time
, unsigned int flags
);
838 sg_policy
->freq_update_delay_ns
= sg_policy
->tunables
->rate_limit_us
* NSEC_PER_USEC
;
839 sg_policy
->last_freq_update_time
= 0;
840 sg_policy
->next_freq
= 0;
841 sg_policy
->work_in_progress
= false;
842 sg_policy
->limits_changed
= false;
843 sg_policy
->cached_raw_freq
= 0;
845 sg_policy
->need_freq_update
= cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS
);
847 if (policy_is_shared(policy
))
848 uu
= sugov_update_shared
;
849 else if (policy
->fast_switch_enabled
&& cpufreq_driver_has_adjust_perf())
850 uu
= sugov_update_single_perf
;
852 uu
= sugov_update_single_freq
;
854 for_each_cpu(cpu
, policy
->cpus
) {
855 struct sugov_cpu
*sg_cpu
= &per_cpu(sugov_cpu
, cpu
);
857 memset(sg_cpu
, 0, sizeof(*sg_cpu
));
859 sg_cpu
->sg_policy
= sg_policy
;
860 cpufreq_add_update_util_hook(cpu
, &sg_cpu
->update_util
, uu
);
865 static void sugov_stop(struct cpufreq_policy
*policy
)
867 struct sugov_policy
*sg_policy
= policy
->governor_data
;
870 for_each_cpu(cpu
, policy
->cpus
)
871 cpufreq_remove_update_util_hook(cpu
);
875 if (!policy
->fast_switch_enabled
) {
876 irq_work_sync(&sg_policy
->irq_work
);
877 kthread_cancel_work_sync(&sg_policy
->work
);
881 static void sugov_limits(struct cpufreq_policy
*policy
)
883 struct sugov_policy
*sg_policy
= policy
->governor_data
;
885 if (!policy
->fast_switch_enabled
) {
886 mutex_lock(&sg_policy
->work_lock
);
887 cpufreq_policy_apply_limits(policy
);
888 mutex_unlock(&sg_policy
->work_lock
);
891 sg_policy
->limits_changed
= true;
894 struct cpufreq_governor schedutil_gov
= {
896 .owner
= THIS_MODULE
,
897 .flags
= CPUFREQ_GOV_DYNAMIC_SWITCHING
,
900 .start
= sugov_start
,
902 .limits
= sugov_limits
,
905 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
906 struct cpufreq_governor
*cpufreq_default_governor(void)
908 return &schedutil_gov
;
912 cpufreq_governor_init(schedutil_gov
);