1 // SPDX-License-Identifier: GPL-2.0
3 * Deadline Scheduling Class (SCHED_DEADLINE)
5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
7 * Tasks that periodically executes their instances for less than their
8 * runtime won't miss any of their deadlines.
9 * Tasks that are not periodic or sporadic or that tries to execute more
10 * than their reserved bandwidth will be slowed down (and may potentially
11 * miss some of their deadlines), and won't affect any other task.
13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14 * Juri Lelli <juri.lelli@gmail.com>,
15 * Michael Trimarchi <michael@amarulasolutions.com>,
16 * Fabio Checconi <fchecconi@gmail.com>
19 #include <linux/cpuset.h>
22 * Default limits for DL period; on the top end we guard against small util
23 * tasks still getting ridiculously long effective runtimes, on the bottom end we
24 * guard against timer DoS.
26 static unsigned int sysctl_sched_dl_period_max
= 1 << 22; /* ~4 seconds */
27 static unsigned int sysctl_sched_dl_period_min
= 100; /* 100 us */
29 static struct ctl_table sched_dl_sysctls
[] = {
31 .procname
= "sched_deadline_period_max_us",
32 .data
= &sysctl_sched_dl_period_max
,
33 .maxlen
= sizeof(unsigned int),
35 .proc_handler
= proc_douintvec_minmax
,
36 .extra1
= (void *)&sysctl_sched_dl_period_min
,
39 .procname
= "sched_deadline_period_min_us",
40 .data
= &sysctl_sched_dl_period_min
,
41 .maxlen
= sizeof(unsigned int),
43 .proc_handler
= proc_douintvec_minmax
,
44 .extra2
= (void *)&sysctl_sched_dl_period_max
,
48 static int __init
sched_dl_sysctl_init(void)
50 register_sysctl_init("kernel", sched_dl_sysctls
);
53 late_initcall(sched_dl_sysctl_init
);
56 static bool dl_server(struct sched_dl_entity
*dl_se
)
58 return dl_se
->dl_server
;
61 static inline struct task_struct
*dl_task_of(struct sched_dl_entity
*dl_se
)
63 BUG_ON(dl_server(dl_se
));
64 return container_of(dl_se
, struct task_struct
, dl
);
67 static inline struct rq
*rq_of_dl_rq(struct dl_rq
*dl_rq
)
69 return container_of(dl_rq
, struct rq
, dl
);
72 static inline struct rq
*rq_of_dl_se(struct sched_dl_entity
*dl_se
)
74 struct rq
*rq
= dl_se
->rq
;
76 if (!dl_server(dl_se
))
77 rq
= task_rq(dl_task_of(dl_se
));
82 static inline struct dl_rq
*dl_rq_of_se(struct sched_dl_entity
*dl_se
)
84 return &rq_of_dl_se(dl_se
)->dl
;
87 static inline int on_dl_rq(struct sched_dl_entity
*dl_se
)
89 return !RB_EMPTY_NODE(&dl_se
->rb_node
);
92 #ifdef CONFIG_RT_MUTEXES
93 static inline struct sched_dl_entity
*pi_of(struct sched_dl_entity
*dl_se
)
98 static inline bool is_dl_boosted(struct sched_dl_entity
*dl_se
)
100 return pi_of(dl_se
) != dl_se
;
103 static inline struct sched_dl_entity
*pi_of(struct sched_dl_entity
*dl_se
)
108 static inline bool is_dl_boosted(struct sched_dl_entity
*dl_se
)
115 static inline struct dl_bw
*dl_bw_of(int i
)
117 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
118 "sched RCU must be held");
119 return &cpu_rq(i
)->rd
->dl_bw
;
122 static inline int dl_bw_cpus(int i
)
124 struct root_domain
*rd
= cpu_rq(i
)->rd
;
127 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
128 "sched RCU must be held");
130 if (cpumask_subset(rd
->span
, cpu_active_mask
))
131 return cpumask_weight(rd
->span
);
135 for_each_cpu_and(i
, rd
->span
, cpu_active_mask
)
141 static inline unsigned long __dl_bw_capacity(const struct cpumask
*mask
)
143 unsigned long cap
= 0;
146 for_each_cpu_and(i
, mask
, cpu_active_mask
)
147 cap
+= arch_scale_cpu_capacity(i
);
153 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
154 * of the CPU the task is running on rather rd's \Sum CPU capacity.
156 static inline unsigned long dl_bw_capacity(int i
)
158 if (!sched_asym_cpucap_active() &&
159 arch_scale_cpu_capacity(i
) == SCHED_CAPACITY_SCALE
) {
160 return dl_bw_cpus(i
) << SCHED_CAPACITY_SHIFT
;
162 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
163 "sched RCU must be held");
165 return __dl_bw_capacity(cpu_rq(i
)->rd
->span
);
169 static inline bool dl_bw_visited(int cpu
, u64 gen
)
171 struct root_domain
*rd
= cpu_rq(cpu
)->rd
;
173 if (rd
->visit_gen
== gen
)
181 void __dl_update(struct dl_bw
*dl_b
, s64 bw
)
183 struct root_domain
*rd
= container_of(dl_b
, struct root_domain
, dl_bw
);
186 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
187 "sched RCU must be held");
188 for_each_cpu_and(i
, rd
->span
, cpu_active_mask
) {
189 struct rq
*rq
= cpu_rq(i
);
191 rq
->dl
.extra_bw
+= bw
;
195 static inline struct dl_bw
*dl_bw_of(int i
)
197 return &cpu_rq(i
)->dl
.dl_bw
;
200 static inline int dl_bw_cpus(int i
)
205 static inline unsigned long dl_bw_capacity(int i
)
207 return SCHED_CAPACITY_SCALE
;
210 static inline bool dl_bw_visited(int cpu
, u64 gen
)
216 void __dl_update(struct dl_bw
*dl_b
, s64 bw
)
218 struct dl_rq
*dl
= container_of(dl_b
, struct dl_rq
, dl_bw
);
225 void __dl_sub(struct dl_bw
*dl_b
, u64 tsk_bw
, int cpus
)
227 dl_b
->total_bw
-= tsk_bw
;
228 __dl_update(dl_b
, (s32
)tsk_bw
/ cpus
);
232 void __dl_add(struct dl_bw
*dl_b
, u64 tsk_bw
, int cpus
)
234 dl_b
->total_bw
+= tsk_bw
;
235 __dl_update(dl_b
, -((s32
)tsk_bw
/ cpus
));
239 __dl_overflow(struct dl_bw
*dl_b
, unsigned long cap
, u64 old_bw
, u64 new_bw
)
241 return dl_b
->bw
!= -1 &&
242 cap_scale(dl_b
->bw
, cap
) < dl_b
->total_bw
- old_bw
+ new_bw
;
246 void __add_running_bw(u64 dl_bw
, struct dl_rq
*dl_rq
)
248 u64 old
= dl_rq
->running_bw
;
250 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq
));
251 dl_rq
->running_bw
+= dl_bw
;
252 SCHED_WARN_ON(dl_rq
->running_bw
< old
); /* overflow */
253 SCHED_WARN_ON(dl_rq
->running_bw
> dl_rq
->this_bw
);
254 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
255 cpufreq_update_util(rq_of_dl_rq(dl_rq
), 0);
259 void __sub_running_bw(u64 dl_bw
, struct dl_rq
*dl_rq
)
261 u64 old
= dl_rq
->running_bw
;
263 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq
));
264 dl_rq
->running_bw
-= dl_bw
;
265 SCHED_WARN_ON(dl_rq
->running_bw
> old
); /* underflow */
266 if (dl_rq
->running_bw
> old
)
267 dl_rq
->running_bw
= 0;
268 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
269 cpufreq_update_util(rq_of_dl_rq(dl_rq
), 0);
273 void __add_rq_bw(u64 dl_bw
, struct dl_rq
*dl_rq
)
275 u64 old
= dl_rq
->this_bw
;
277 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq
));
278 dl_rq
->this_bw
+= dl_bw
;
279 SCHED_WARN_ON(dl_rq
->this_bw
< old
); /* overflow */
283 void __sub_rq_bw(u64 dl_bw
, struct dl_rq
*dl_rq
)
285 u64 old
= dl_rq
->this_bw
;
287 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq
));
288 dl_rq
->this_bw
-= dl_bw
;
289 SCHED_WARN_ON(dl_rq
->this_bw
> old
); /* underflow */
290 if (dl_rq
->this_bw
> old
)
292 SCHED_WARN_ON(dl_rq
->running_bw
> dl_rq
->this_bw
);
296 void add_rq_bw(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
298 if (!dl_entity_is_special(dl_se
))
299 __add_rq_bw(dl_se
->dl_bw
, dl_rq
);
303 void sub_rq_bw(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
305 if (!dl_entity_is_special(dl_se
))
306 __sub_rq_bw(dl_se
->dl_bw
, dl_rq
);
310 void add_running_bw(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
312 if (!dl_entity_is_special(dl_se
))
313 __add_running_bw(dl_se
->dl_bw
, dl_rq
);
317 void sub_running_bw(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
319 if (!dl_entity_is_special(dl_se
))
320 __sub_running_bw(dl_se
->dl_bw
, dl_rq
);
323 static void dl_rq_change_utilization(struct rq
*rq
, struct sched_dl_entity
*dl_se
, u64 new_bw
)
325 if (dl_se
->dl_non_contending
) {
326 sub_running_bw(dl_se
, &rq
->dl
);
327 dl_se
->dl_non_contending
= 0;
330 * If the timer handler is currently running and the
331 * timer cannot be canceled, inactive_task_timer()
332 * will see that dl_not_contending is not set, and
333 * will not touch the rq's active utilization,
334 * so we are still safe.
336 if (hrtimer_try_to_cancel(&dl_se
->inactive_timer
) == 1) {
337 if (!dl_server(dl_se
))
338 put_task_struct(dl_task_of(dl_se
));
341 __sub_rq_bw(dl_se
->dl_bw
, &rq
->dl
);
342 __add_rq_bw(new_bw
, &rq
->dl
);
345 static void dl_change_utilization(struct task_struct
*p
, u64 new_bw
)
347 WARN_ON_ONCE(p
->dl
.flags
& SCHED_FLAG_SUGOV
);
349 if (task_on_rq_queued(p
))
352 dl_rq_change_utilization(task_rq(p
), &p
->dl
, new_bw
);
355 static void __dl_clear_params(struct sched_dl_entity
*dl_se
);
358 * The utilization of a task cannot be immediately removed from
359 * the rq active utilization (running_bw) when the task blocks.
360 * Instead, we have to wait for the so called "0-lag time".
362 * If a task blocks before the "0-lag time", a timer (the inactive
363 * timer) is armed, and running_bw is decreased when the timer
366 * If the task wakes up again before the inactive timer fires,
367 * the timer is canceled, whereas if the task wakes up after the
368 * inactive timer fired (and running_bw has been decreased) the
369 * task's utilization has to be added to running_bw again.
370 * A flag in the deadline scheduling entity (dl_non_contending)
371 * is used to avoid race conditions between the inactive timer handler
374 * The following diagram shows how running_bw is updated. A task is
375 * "ACTIVE" when its utilization contributes to running_bw; an
376 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
377 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
378 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
379 * time already passed, which does not contribute to running_bw anymore.
380 * +------------------+
382 * +------------------>+ contending |
383 * | add_running_bw | |
384 * | +----+------+------+
387 * +--------+-------+ | |
388 * | | t >= 0-lag | | wakeup
389 * | INACTIVE |<---------------+ |
390 * | | sub_running_bw | |
391 * +--------+-------+ | |
396 * | +----+------+------+
397 * | sub_running_bw | ACTIVE |
398 * +-------------------+ |
399 * inactive timer | non contending |
400 * fired +------------------+
402 * The task_non_contending() function is invoked when a task
403 * blocks, and checks if the 0-lag time already passed or
404 * not (in the first case, it directly updates running_bw;
405 * in the second case, it arms the inactive timer).
407 * The task_contending() function is invoked when a task wakes
408 * up, and checks if the task is still in the "ACTIVE non contending"
409 * state or not (in the second case, it updates running_bw).
411 static void task_non_contending(struct sched_dl_entity
*dl_se
)
413 struct hrtimer
*timer
= &dl_se
->inactive_timer
;
414 struct rq
*rq
= rq_of_dl_se(dl_se
);
415 struct dl_rq
*dl_rq
= &rq
->dl
;
419 * If this is a non-deadline task that has been boosted,
422 if (dl_se
->dl_runtime
== 0)
425 if (dl_entity_is_special(dl_se
))
428 WARN_ON(dl_se
->dl_non_contending
);
430 zerolag_time
= dl_se
->deadline
-
431 div64_long((dl_se
->runtime
* dl_se
->dl_period
),
435 * Using relative times instead of the absolute "0-lag time"
436 * allows to simplify the code
438 zerolag_time
-= rq_clock(rq
);
441 * If the "0-lag time" already passed, decrease the active
442 * utilization now, instead of starting a timer
444 if ((zerolag_time
< 0) || hrtimer_active(&dl_se
->inactive_timer
)) {
445 if (dl_server(dl_se
)) {
446 sub_running_bw(dl_se
, dl_rq
);
448 struct task_struct
*p
= dl_task_of(dl_se
);
451 sub_running_bw(dl_se
, dl_rq
);
453 if (!dl_task(p
) || READ_ONCE(p
->__state
) == TASK_DEAD
) {
454 struct dl_bw
*dl_b
= dl_bw_of(task_cpu(p
));
456 if (READ_ONCE(p
->__state
) == TASK_DEAD
)
457 sub_rq_bw(dl_se
, &rq
->dl
);
458 raw_spin_lock(&dl_b
->lock
);
459 __dl_sub(dl_b
, dl_se
->dl_bw
, dl_bw_cpus(task_cpu(p
)));
460 raw_spin_unlock(&dl_b
->lock
);
461 __dl_clear_params(dl_se
);
468 dl_se
->dl_non_contending
= 1;
469 if (!dl_server(dl_se
))
470 get_task_struct(dl_task_of(dl_se
));
472 hrtimer_start(timer
, ns_to_ktime(zerolag_time
), HRTIMER_MODE_REL_HARD
);
475 static void task_contending(struct sched_dl_entity
*dl_se
, int flags
)
477 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
480 * If this is a non-deadline task that has been boosted,
483 if (dl_se
->dl_runtime
== 0)
486 if (flags
& ENQUEUE_MIGRATED
)
487 add_rq_bw(dl_se
, dl_rq
);
489 if (dl_se
->dl_non_contending
) {
490 dl_se
->dl_non_contending
= 0;
492 * If the timer handler is currently running and the
493 * timer cannot be canceled, inactive_task_timer()
494 * will see that dl_not_contending is not set, and
495 * will not touch the rq's active utilization,
496 * so we are still safe.
498 if (hrtimer_try_to_cancel(&dl_se
->inactive_timer
) == 1) {
499 if (!dl_server(dl_se
))
500 put_task_struct(dl_task_of(dl_se
));
504 * Since "dl_non_contending" is not set, the
505 * task's utilization has already been removed from
506 * active utilization (either when the task blocked,
507 * when the "inactive timer" fired).
510 add_running_bw(dl_se
, dl_rq
);
514 static inline int is_leftmost(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
516 return rb_first_cached(&dl_rq
->root
) == &dl_se
->rb_node
;
519 static void init_dl_rq_bw_ratio(struct dl_rq
*dl_rq
);
521 void init_dl_bw(struct dl_bw
*dl_b
)
523 raw_spin_lock_init(&dl_b
->lock
);
524 if (global_rt_runtime() == RUNTIME_INF
)
527 dl_b
->bw
= to_ratio(global_rt_period(), global_rt_runtime());
531 void init_dl_rq(struct dl_rq
*dl_rq
)
533 dl_rq
->root
= RB_ROOT_CACHED
;
536 /* zero means no -deadline tasks */
537 dl_rq
->earliest_dl
.curr
= dl_rq
->earliest_dl
.next
= 0;
539 dl_rq
->overloaded
= 0;
540 dl_rq
->pushable_dl_tasks_root
= RB_ROOT_CACHED
;
542 init_dl_bw(&dl_rq
->dl_bw
);
545 dl_rq
->running_bw
= 0;
547 init_dl_rq_bw_ratio(dl_rq
);
552 static inline int dl_overloaded(struct rq
*rq
)
554 return atomic_read(&rq
->rd
->dlo_count
);
557 static inline void dl_set_overload(struct rq
*rq
)
562 cpumask_set_cpu(rq
->cpu
, rq
->rd
->dlo_mask
);
564 * Must be visible before the overload count is
565 * set (as in sched_rt.c).
567 * Matched by the barrier in pull_dl_task().
570 atomic_inc(&rq
->rd
->dlo_count
);
573 static inline void dl_clear_overload(struct rq
*rq
)
578 atomic_dec(&rq
->rd
->dlo_count
);
579 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->dlo_mask
);
582 #define __node_2_pdl(node) \
583 rb_entry((node), struct task_struct, pushable_dl_tasks)
585 static inline bool __pushable_less(struct rb_node
*a
, const struct rb_node
*b
)
587 return dl_entity_preempt(&__node_2_pdl(a
)->dl
, &__node_2_pdl(b
)->dl
);
590 static inline int has_pushable_dl_tasks(struct rq
*rq
)
592 return !RB_EMPTY_ROOT(&rq
->dl
.pushable_dl_tasks_root
.rb_root
);
596 * The list of pushable -deadline task is not a plist, like in
597 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
599 static void enqueue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
601 struct rb_node
*leftmost
;
603 WARN_ON_ONCE(!RB_EMPTY_NODE(&p
->pushable_dl_tasks
));
605 leftmost
= rb_add_cached(&p
->pushable_dl_tasks
,
606 &rq
->dl
.pushable_dl_tasks_root
,
609 rq
->dl
.earliest_dl
.next
= p
->dl
.deadline
;
611 if (!rq
->dl
.overloaded
) {
613 rq
->dl
.overloaded
= 1;
617 static void dequeue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
619 struct dl_rq
*dl_rq
= &rq
->dl
;
620 struct rb_root_cached
*root
= &dl_rq
->pushable_dl_tasks_root
;
621 struct rb_node
*leftmost
;
623 if (RB_EMPTY_NODE(&p
->pushable_dl_tasks
))
626 leftmost
= rb_erase_cached(&p
->pushable_dl_tasks
, root
);
628 dl_rq
->earliest_dl
.next
= __node_2_pdl(leftmost
)->dl
.deadline
;
630 RB_CLEAR_NODE(&p
->pushable_dl_tasks
);
632 if (!has_pushable_dl_tasks(rq
) && rq
->dl
.overloaded
) {
633 dl_clear_overload(rq
);
634 rq
->dl
.overloaded
= 0;
638 static int push_dl_task(struct rq
*rq
);
640 static inline bool need_pull_dl_task(struct rq
*rq
, struct task_struct
*prev
)
642 return rq
->online
&& dl_task(prev
);
645 static DEFINE_PER_CPU(struct balance_callback
, dl_push_head
);
646 static DEFINE_PER_CPU(struct balance_callback
, dl_pull_head
);
648 static void push_dl_tasks(struct rq
*);
649 static void pull_dl_task(struct rq
*);
651 static inline void deadline_queue_push_tasks(struct rq
*rq
)
653 if (!has_pushable_dl_tasks(rq
))
656 queue_balance_callback(rq
, &per_cpu(dl_push_head
, rq
->cpu
), push_dl_tasks
);
659 static inline void deadline_queue_pull_task(struct rq
*rq
)
661 queue_balance_callback(rq
, &per_cpu(dl_pull_head
, rq
->cpu
), pull_dl_task
);
664 static struct rq
*find_lock_later_rq(struct task_struct
*task
, struct rq
*rq
);
666 static struct rq
*dl_task_offline_migration(struct rq
*rq
, struct task_struct
*p
)
668 struct rq
*later_rq
= NULL
;
671 later_rq
= find_lock_later_rq(p
, rq
);
676 * If we cannot preempt any rq, fall back to pick any
679 cpu
= cpumask_any_and(cpu_active_mask
, p
->cpus_ptr
);
680 if (cpu
>= nr_cpu_ids
) {
682 * Failed to find any suitable CPU.
683 * The task will never come back!
685 WARN_ON_ONCE(dl_bandwidth_enabled());
688 * If admission control is disabled we
689 * try a little harder to let the task
692 cpu
= cpumask_any(cpu_active_mask
);
694 later_rq
= cpu_rq(cpu
);
695 double_lock_balance(rq
, later_rq
);
698 if (p
->dl
.dl_non_contending
|| p
->dl
.dl_throttled
) {
700 * Inactive timer is armed (or callback is running, but
701 * waiting for us to release rq locks). In any case, when it
702 * will fire (or continue), it will see running_bw of this
703 * task migrated to later_rq (and correctly handle it).
705 sub_running_bw(&p
->dl
, &rq
->dl
);
706 sub_rq_bw(&p
->dl
, &rq
->dl
);
708 add_rq_bw(&p
->dl
, &later_rq
->dl
);
709 add_running_bw(&p
->dl
, &later_rq
->dl
);
711 sub_rq_bw(&p
->dl
, &rq
->dl
);
712 add_rq_bw(&p
->dl
, &later_rq
->dl
);
716 * And we finally need to fix up root_domain(s) bandwidth accounting,
717 * since p is still hanging out in the old (now moved to default) root
720 dl_b
= &rq
->rd
->dl_bw
;
721 raw_spin_lock(&dl_b
->lock
);
722 __dl_sub(dl_b
, p
->dl
.dl_bw
, cpumask_weight(rq
->rd
->span
));
723 raw_spin_unlock(&dl_b
->lock
);
725 dl_b
= &later_rq
->rd
->dl_bw
;
726 raw_spin_lock(&dl_b
->lock
);
727 __dl_add(dl_b
, p
->dl
.dl_bw
, cpumask_weight(later_rq
->rd
->span
));
728 raw_spin_unlock(&dl_b
->lock
);
730 set_task_cpu(p
, later_rq
->cpu
);
731 double_unlock_balance(later_rq
, rq
);
739 void enqueue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
744 void dequeue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
749 void inc_dl_migration(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
754 void dec_dl_migration(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
758 static inline void deadline_queue_push_tasks(struct rq
*rq
)
762 static inline void deadline_queue_pull_task(struct rq
*rq
)
765 #endif /* CONFIG_SMP */
768 enqueue_dl_entity(struct sched_dl_entity
*dl_se
, int flags
);
769 static void enqueue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
);
770 static void dequeue_dl_entity(struct sched_dl_entity
*dl_se
, int flags
);
771 static void wakeup_preempt_dl(struct rq
*rq
, struct task_struct
*p
, int flags
);
773 static inline void replenish_dl_new_period(struct sched_dl_entity
*dl_se
,
776 /* for non-boosted task, pi_of(dl_se) == dl_se */
777 dl_se
->deadline
= rq_clock(rq
) + pi_of(dl_se
)->dl_deadline
;
778 dl_se
->runtime
= pi_of(dl_se
)->dl_runtime
;
781 * If it is a deferred reservation, and the server
782 * is not handling an starvation case, defer it.
784 if (dl_se
->dl_defer
& !dl_se
->dl_defer_running
) {
785 dl_se
->dl_throttled
= 1;
786 dl_se
->dl_defer_armed
= 1;
791 * We are being explicitly informed that a new instance is starting,
792 * and this means that:
793 * - the absolute deadline of the entity has to be placed at
794 * current time + relative deadline;
795 * - the runtime of the entity has to be set to the maximum value.
797 * The capability of specifying such event is useful whenever a -deadline
798 * entity wants to (try to!) synchronize its behaviour with the scheduler's
799 * one, and to (try to!) reconcile itself with its own scheduling
802 static inline void setup_new_dl_entity(struct sched_dl_entity
*dl_se
)
804 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
805 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
807 WARN_ON(is_dl_boosted(dl_se
));
808 WARN_ON(dl_time_before(rq_clock(rq
), dl_se
->deadline
));
811 * We are racing with the deadline timer. So, do nothing because
812 * the deadline timer handler will take care of properly recharging
813 * the runtime and postponing the deadline
815 if (dl_se
->dl_throttled
)
819 * We use the regular wall clock time to set deadlines in the
820 * future; in fact, we must consider execution overheads (time
821 * spent on hardirq context, etc.).
823 replenish_dl_new_period(dl_se
, rq
);
826 static int start_dl_timer(struct sched_dl_entity
*dl_se
);
827 static bool dl_entity_overflow(struct sched_dl_entity
*dl_se
, u64 t
);
830 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
831 * possibility of a entity lasting more than what it declared, and thus
832 * exhausting its runtime.
834 * Here we are interested in making runtime overrun possible, but we do
835 * not want a entity which is misbehaving to affect the scheduling of all
837 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
838 * is used, in order to confine each entity within its own bandwidth.
840 * This function deals exactly with that, and ensures that when the runtime
841 * of a entity is replenished, its deadline is also postponed. That ensures
842 * the overrunning entity can't interfere with other entity in the system and
843 * can't make them miss their deadlines. Reasons why this kind of overruns
844 * could happen are, typically, a entity voluntarily trying to overcome its
845 * runtime, or it just underestimated it during sched_setattr().
847 static void replenish_dl_entity(struct sched_dl_entity
*dl_se
)
849 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
850 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
852 WARN_ON_ONCE(pi_of(dl_se
)->dl_runtime
<= 0);
855 * This could be the case for a !-dl task that is boosted.
856 * Just go with full inherited parameters.
858 * Or, it could be the case of a deferred reservation that
859 * was not able to consume its runtime in background and
860 * reached this point with current u > U.
862 * In both cases, set a new period.
864 if (dl_se
->dl_deadline
== 0 ||
865 (dl_se
->dl_defer_armed
&& dl_entity_overflow(dl_se
, rq_clock(rq
)))) {
866 dl_se
->deadline
= rq_clock(rq
) + pi_of(dl_se
)->dl_deadline
;
867 dl_se
->runtime
= pi_of(dl_se
)->dl_runtime
;
870 if (dl_se
->dl_yielded
&& dl_se
->runtime
> 0)
874 * We keep moving the deadline away until we get some
875 * available runtime for the entity. This ensures correct
876 * handling of situations where the runtime overrun is
879 while (dl_se
->runtime
<= 0) {
880 dl_se
->deadline
+= pi_of(dl_se
)->dl_period
;
881 dl_se
->runtime
+= pi_of(dl_se
)->dl_runtime
;
885 * At this point, the deadline really should be "in
886 * the future" with respect to rq->clock. If it's
887 * not, we are, for some reason, lagging too much!
888 * Anyway, after having warn userspace abut that,
889 * we still try to keep the things running by
890 * resetting the deadline and the budget of the
893 if (dl_time_before(dl_se
->deadline
, rq_clock(rq
))) {
894 printk_deferred_once("sched: DL replenish lagged too much\n");
895 replenish_dl_new_period(dl_se
, rq
);
898 if (dl_se
->dl_yielded
)
899 dl_se
->dl_yielded
= 0;
900 if (dl_se
->dl_throttled
)
901 dl_se
->dl_throttled
= 0;
904 * If this is the replenishment of a deferred reservation,
905 * clear the flag and return.
907 if (dl_se
->dl_defer_armed
) {
908 dl_se
->dl_defer_armed
= 0;
913 * A this point, if the deferred server is not armed, and the deadline
914 * is in the future, if it is not running already, throttle the server
915 * and arm the defer timer.
917 if (dl_se
->dl_defer
&& !dl_se
->dl_defer_running
&&
918 dl_time_before(rq_clock(dl_se
->rq
), dl_se
->deadline
- dl_se
->runtime
)) {
919 if (!is_dl_boosted(dl_se
) && dl_se
->server_has_tasks(dl_se
)) {
922 * Set dl_se->dl_defer_armed and dl_throttled variables to
923 * inform the start_dl_timer() that this is a deferred
926 dl_se
->dl_defer_armed
= 1;
927 dl_se
->dl_throttled
= 1;
928 if (!start_dl_timer(dl_se
)) {
930 * If for whatever reason (delays), a previous timer was
931 * queued but not serviced, cancel it and clean the
932 * deferrable server variables intended for start_dl_timer().
934 hrtimer_try_to_cancel(&dl_se
->dl_timer
);
935 dl_se
->dl_defer_armed
= 0;
936 dl_se
->dl_throttled
= 0;
943 * Here we check if --at time t-- an entity (which is probably being
944 * [re]activated or, in general, enqueued) can use its remaining runtime
945 * and its current deadline _without_ exceeding the bandwidth it is
946 * assigned (function returns true if it can't). We are in fact applying
947 * one of the CBS rules: when a task wakes up, if the residual runtime
948 * over residual deadline fits within the allocated bandwidth, then we
949 * can keep the current (absolute) deadline and residual budget without
950 * disrupting the schedulability of the system. Otherwise, we should
951 * refill the runtime and set the deadline a period in the future,
952 * because keeping the current (absolute) deadline of the task would
953 * result in breaking guarantees promised to other tasks (refer to
954 * Documentation/scheduler/sched-deadline.rst for more information).
956 * This function returns true if:
958 * runtime / (deadline - t) > dl_runtime / dl_deadline ,
960 * IOW we can't recycle current parameters.
962 * Notice that the bandwidth check is done against the deadline. For
963 * task with deadline equal to period this is the same of using
964 * dl_period instead of dl_deadline in the equation above.
966 static bool dl_entity_overflow(struct sched_dl_entity
*dl_se
, u64 t
)
971 * left and right are the two sides of the equation above,
972 * after a bit of shuffling to use multiplications instead
975 * Note that none of the time values involved in the two
976 * multiplications are absolute: dl_deadline and dl_runtime
977 * are the relative deadline and the maximum runtime of each
978 * instance, runtime is the runtime left for the last instance
979 * and (deadline - t), since t is rq->clock, is the time left
980 * to the (absolute) deadline. Even if overflowing the u64 type
981 * is very unlikely to occur in both cases, here we scale down
982 * as we want to avoid that risk at all. Scaling down by 10
983 * means that we reduce granularity to 1us. We are fine with it,
984 * since this is only a true/false check and, anyway, thinking
985 * of anything below microseconds resolution is actually fiction
986 * (but still we want to give the user that illusion >;).
988 left
= (pi_of(dl_se
)->dl_deadline
>> DL_SCALE
) * (dl_se
->runtime
>> DL_SCALE
);
989 right
= ((dl_se
->deadline
- t
) >> DL_SCALE
) *
990 (pi_of(dl_se
)->dl_runtime
>> DL_SCALE
);
992 return dl_time_before(right
, left
);
996 * Revised wakeup rule [1]: For self-suspending tasks, rather then
997 * re-initializing task's runtime and deadline, the revised wakeup
998 * rule adjusts the task's runtime to avoid the task to overrun its
1001 * Reasoning: a task may overrun the density if:
1002 * runtime / (deadline - t) > dl_runtime / dl_deadline
1004 * Therefore, runtime can be adjusted to:
1005 * runtime = (dl_runtime / dl_deadline) * (deadline - t)
1007 * In such way that runtime will be equal to the maximum density
1008 * the task can use without breaking any rule.
1010 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
1011 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
1014 update_dl_revised_wakeup(struct sched_dl_entity
*dl_se
, struct rq
*rq
)
1016 u64 laxity
= dl_se
->deadline
- rq_clock(rq
);
1019 * If the task has deadline < period, and the deadline is in the past,
1020 * it should already be throttled before this check.
1022 * See update_dl_entity() comments for further details.
1024 WARN_ON(dl_time_before(dl_se
->deadline
, rq_clock(rq
)));
1026 dl_se
->runtime
= (dl_se
->dl_density
* laxity
) >> BW_SHIFT
;
1030 * Regarding the deadline, a task with implicit deadline has a relative
1031 * deadline == relative period. A task with constrained deadline has a
1032 * relative deadline <= relative period.
1034 * We support constrained deadline tasks. However, there are some restrictions
1035 * applied only for tasks which do not have an implicit deadline. See
1036 * update_dl_entity() to know more about such restrictions.
1038 * The dl_is_implicit() returns true if the task has an implicit deadline.
1040 static inline bool dl_is_implicit(struct sched_dl_entity
*dl_se
)
1042 return dl_se
->dl_deadline
== dl_se
->dl_period
;
1046 * When a deadline entity is placed in the runqueue, its runtime and deadline
1047 * might need to be updated. This is done by a CBS wake up rule. There are two
1048 * different rules: 1) the original CBS; and 2) the Revisited CBS.
1050 * When the task is starting a new period, the Original CBS is used. In this
1051 * case, the runtime is replenished and a new absolute deadline is set.
1053 * When a task is queued before the begin of the next period, using the
1054 * remaining runtime and deadline could make the entity to overflow, see
1055 * dl_entity_overflow() to find more about runtime overflow. When such case
1056 * is detected, the runtime and deadline need to be updated.
1058 * If the task has an implicit deadline, i.e., deadline == period, the Original
1059 * CBS is applied. The runtime is replenished and a new absolute deadline is
1060 * set, as in the previous cases.
1062 * However, the Original CBS does not work properly for tasks with
1063 * deadline < period, which are said to have a constrained deadline. By
1064 * applying the Original CBS, a constrained deadline task would be able to run
1065 * runtime/deadline in a period. With deadline < period, the task would
1066 * overrun the runtime/period allowed bandwidth, breaking the admission test.
1068 * In order to prevent this misbehave, the Revisited CBS is used for
1069 * constrained deadline tasks when a runtime overflow is detected. In the
1070 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
1071 * the remaining runtime of the task is reduced to avoid runtime overflow.
1072 * Please refer to the comments update_dl_revised_wakeup() function to find
1073 * more about the Revised CBS rule.
1075 static void update_dl_entity(struct sched_dl_entity
*dl_se
)
1077 struct rq
*rq
= rq_of_dl_se(dl_se
);
1079 if (dl_time_before(dl_se
->deadline
, rq_clock(rq
)) ||
1080 dl_entity_overflow(dl_se
, rq_clock(rq
))) {
1082 if (unlikely(!dl_is_implicit(dl_se
) &&
1083 !dl_time_before(dl_se
->deadline
, rq_clock(rq
)) &&
1084 !is_dl_boosted(dl_se
))) {
1085 update_dl_revised_wakeup(dl_se
, rq
);
1089 replenish_dl_new_period(dl_se
, rq
);
1090 } else if (dl_server(dl_se
) && dl_se
->dl_defer
) {
1092 * The server can still use its previous deadline, so check if
1093 * it left the dl_defer_running state.
1095 if (!dl_se
->dl_defer_running
) {
1096 dl_se
->dl_defer_armed
= 1;
1097 dl_se
->dl_throttled
= 1;
1102 static inline u64
dl_next_period(struct sched_dl_entity
*dl_se
)
1104 return dl_se
->deadline
- dl_se
->dl_deadline
+ dl_se
->dl_period
;
1108 * If the entity depleted all its runtime, and if we want it to sleep
1109 * while waiting for some new execution time to become available, we
1110 * set the bandwidth replenishment timer to the replenishment instant
1111 * and try to activate it.
1113 * Notice that it is important for the caller to know if the timer
1114 * actually started or not (i.e., the replenishment instant is in
1115 * the future or in the past).
1117 static int start_dl_timer(struct sched_dl_entity
*dl_se
)
1119 struct hrtimer
*timer
= &dl_se
->dl_timer
;
1120 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
1121 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
1125 lockdep_assert_rq_held(rq
);
1128 * We want the timer to fire at the deadline, but considering
1129 * that it is actually coming from rq->clock and not from
1130 * hrtimer's time base reading.
1132 * The deferred reservation will have its timer set to
1133 * (deadline - runtime). At that point, the CBS rule will decide
1134 * if the current deadline can be used, or if a replenishment is
1135 * required to avoid add too much pressure on the system
1138 if (dl_se
->dl_defer_armed
) {
1139 WARN_ON_ONCE(!dl_se
->dl_throttled
);
1140 act
= ns_to_ktime(dl_se
->deadline
- dl_se
->runtime
);
1142 /* act = deadline - rel-deadline + period */
1143 act
= ns_to_ktime(dl_next_period(dl_se
));
1146 now
= hrtimer_cb_get_time(timer
);
1147 delta
= ktime_to_ns(now
) - rq_clock(rq
);
1148 act
= ktime_add_ns(act
, delta
);
1151 * If the expiry time already passed, e.g., because the value
1152 * chosen as the deadline is too small, don't even try to
1153 * start the timer in the past!
1155 if (ktime_us_delta(act
, now
) < 0)
1159 * !enqueued will guarantee another callback; even if one is already in
1160 * progress. This ensures a balanced {get,put}_task_struct().
1162 * The race against __run_timer() clearing the enqueued state is
1163 * harmless because we're holding task_rq()->lock, therefore the timer
1164 * expiring after we've done the check will wait on its task_rq_lock()
1165 * and observe our state.
1167 if (!hrtimer_is_queued(timer
)) {
1168 if (!dl_server(dl_se
))
1169 get_task_struct(dl_task_of(dl_se
));
1170 hrtimer_start(timer
, act
, HRTIMER_MODE_ABS_HARD
);
1176 static void __push_dl_task(struct rq
*rq
, struct rq_flags
*rf
)
1180 * Queueing this task back might have overloaded rq, check if we need
1181 * to kick someone away.
1183 if (has_pushable_dl_tasks(rq
)) {
1185 * Nothing relies on rq->lock after this, so its safe to drop
1188 rq_unpin_lock(rq
, rf
);
1190 rq_repin_lock(rq
, rf
);
1195 /* a defer timer will not be reset if the runtime consumed was < dl_server_min_res */
1196 static const u64 dl_server_min_res
= 1 * NSEC_PER_MSEC
;
1198 static enum hrtimer_restart
dl_server_timer(struct hrtimer
*timer
, struct sched_dl_entity
*dl_se
)
1200 struct rq
*rq
= rq_of_dl_se(dl_se
);
1203 scoped_guard (rq_lock
, rq
) {
1204 struct rq_flags
*rf
= &scope
.rf
;
1206 if (!dl_se
->dl_throttled
|| !dl_se
->dl_runtime
)
1207 return HRTIMER_NORESTART
;
1210 update_rq_clock(rq
);
1212 if (!dl_se
->dl_runtime
)
1213 return HRTIMER_NORESTART
;
1215 if (!dl_se
->server_has_tasks(dl_se
)) {
1216 replenish_dl_entity(dl_se
);
1217 return HRTIMER_NORESTART
;
1220 if (dl_se
->dl_defer_armed
) {
1222 * First check if the server could consume runtime in background.
1223 * If so, it is possible to push the defer timer for this amount
1224 * of time. The dl_server_min_res serves as a limit to avoid
1225 * forwarding the timer for a too small amount of time.
1227 if (dl_time_before(rq_clock(dl_se
->rq
),
1228 (dl_se
->deadline
- dl_se
->runtime
- dl_server_min_res
))) {
1230 /* reset the defer timer */
1231 fw
= dl_se
->deadline
- rq_clock(dl_se
->rq
) - dl_se
->runtime
;
1233 hrtimer_forward_now(timer
, ns_to_ktime(fw
));
1234 return HRTIMER_RESTART
;
1237 dl_se
->dl_defer_running
= 1;
1240 enqueue_dl_entity(dl_se
, ENQUEUE_REPLENISH
);
1242 if (!dl_task(dl_se
->rq
->curr
) || dl_entity_preempt(dl_se
, &dl_se
->rq
->curr
->dl
))
1245 __push_dl_task(rq
, rf
);
1248 return HRTIMER_NORESTART
;
1252 * This is the bandwidth enforcement timer callback. If here, we know
1253 * a task is not on its dl_rq, since the fact that the timer was running
1254 * means the task is throttled and needs a runtime replenishment.
1256 * However, what we actually do depends on the fact the task is active,
1257 * (it is on its rq) or has been removed from there by a call to
1258 * dequeue_task_dl(). In the former case we must issue the runtime
1259 * replenishment and add the task back to the dl_rq; in the latter, we just
1260 * do nothing but clearing dl_throttled, so that runtime and deadline
1261 * updating (and the queueing back to dl_rq) will be done by the
1262 * next call to enqueue_task_dl().
1264 static enum hrtimer_restart
dl_task_timer(struct hrtimer
*timer
)
1266 struct sched_dl_entity
*dl_se
= container_of(timer
,
1267 struct sched_dl_entity
,
1269 struct task_struct
*p
;
1273 if (dl_server(dl_se
))
1274 return dl_server_timer(timer
, dl_se
);
1276 p
= dl_task_of(dl_se
);
1277 rq
= task_rq_lock(p
, &rf
);
1280 * The task might have changed its scheduling policy to something
1281 * different than SCHED_DEADLINE (through switched_from_dl()).
1287 * The task might have been boosted by someone else and might be in the
1288 * boosting/deboosting path, its not throttled.
1290 if (is_dl_boosted(dl_se
))
1294 * Spurious timer due to start_dl_timer() race; or we already received
1295 * a replenishment from rt_mutex_setprio().
1297 if (!dl_se
->dl_throttled
)
1301 update_rq_clock(rq
);
1304 * If the throttle happened during sched-out; like:
1311 * __dequeue_task_dl()
1314 * We can be both throttled and !queued. Replenish the counter
1315 * but do not enqueue -- wait for our wakeup to do that.
1317 if (!task_on_rq_queued(p
)) {
1318 replenish_dl_entity(dl_se
);
1323 if (unlikely(!rq
->online
)) {
1325 * If the runqueue is no longer available, migrate the
1326 * task elsewhere. This necessarily changes rq.
1328 lockdep_unpin_lock(__rq_lockp(rq
), rf
.cookie
);
1329 rq
= dl_task_offline_migration(rq
, p
);
1330 rf
.cookie
= lockdep_pin_lock(__rq_lockp(rq
));
1331 update_rq_clock(rq
);
1334 * Now that the task has been migrated to the new RQ and we
1335 * have that locked, proceed as normal and enqueue the task
1341 enqueue_task_dl(rq
, p
, ENQUEUE_REPLENISH
);
1342 if (dl_task(rq
->donor
))
1343 wakeup_preempt_dl(rq
, p
, 0);
1347 __push_dl_task(rq
, &rf
);
1350 task_rq_unlock(rq
, p
, &rf
);
1353 * This can free the task_struct, including this hrtimer, do not touch
1354 * anything related to that after this.
1358 return HRTIMER_NORESTART
;
1361 static void init_dl_task_timer(struct sched_dl_entity
*dl_se
)
1363 struct hrtimer
*timer
= &dl_se
->dl_timer
;
1365 hrtimer_init(timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL_HARD
);
1366 timer
->function
= dl_task_timer
;
1370 * During the activation, CBS checks if it can reuse the current task's
1371 * runtime and period. If the deadline of the task is in the past, CBS
1372 * cannot use the runtime, and so it replenishes the task. This rule
1373 * works fine for implicit deadline tasks (deadline == period), and the
1374 * CBS was designed for implicit deadline tasks. However, a task with
1375 * constrained deadline (deadline < period) might be awakened after the
1376 * deadline, but before the next period. In this case, replenishing the
1377 * task would allow it to run for runtime / deadline. As in this case
1378 * deadline < period, CBS enables a task to run for more than the
1379 * runtime / period. In a very loaded system, this can cause a domino
1380 * effect, making other tasks miss their deadlines.
1382 * To avoid this problem, in the activation of a constrained deadline
1383 * task after the deadline but before the next period, throttle the
1384 * task and set the replenishing timer to the begin of the next period,
1385 * unless it is boosted.
1387 static inline void dl_check_constrained_dl(struct sched_dl_entity
*dl_se
)
1389 struct rq
*rq
= rq_of_dl_se(dl_se
);
1391 if (dl_time_before(dl_se
->deadline
, rq_clock(rq
)) &&
1392 dl_time_before(rq_clock(rq
), dl_next_period(dl_se
))) {
1393 if (unlikely(is_dl_boosted(dl_se
) || !start_dl_timer(dl_se
)))
1395 dl_se
->dl_throttled
= 1;
1396 if (dl_se
->runtime
> 0)
1402 int dl_runtime_exceeded(struct sched_dl_entity
*dl_se
)
1404 return (dl_se
->runtime
<= 0);
1408 * This function implements the GRUB accounting rule. According to the
1409 * GRUB reclaiming algorithm, the runtime is not decreased as "dq = -dt",
1410 * but as "dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt",
1411 * where u is the utilization of the task, Umax is the maximum reclaimable
1412 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1413 * as the difference between the "total runqueue utilization" and the
1414 * "runqueue active utilization", and Uextra is the (per runqueue) extra
1415 * reclaimable utilization.
1416 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations multiplied
1417 * by 2^BW_SHIFT, the result has to be shifted right by BW_SHIFT.
1418 * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, dl_bw
1419 * is multiplied by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1420 * Since delta is a 64 bit variable, to have an overflow its value should be
1421 * larger than 2^(64 - 20 - 8), which is more than 64 seconds. So, overflow is
1422 * not an issue here.
1424 static u64
grub_reclaim(u64 delta
, struct rq
*rq
, struct sched_dl_entity
*dl_se
)
1427 u64 u_inact
= rq
->dl
.this_bw
- rq
->dl
.running_bw
; /* Utot - Uact */
1430 * Instead of computing max{u, (u_max - u_inact - u_extra)}, we
1431 * compare u_inact + u_extra with u_max - u, because u_inact + u_extra
1432 * can be larger than u_max. So, u_max - u_inact - u_extra would be
1433 * negative leading to wrong results.
1435 if (u_inact
+ rq
->dl
.extra_bw
> rq
->dl
.max_bw
- dl_se
->dl_bw
)
1436 u_act
= dl_se
->dl_bw
;
1438 u_act
= rq
->dl
.max_bw
- u_inact
- rq
->dl
.extra_bw
;
1440 u_act
= (u_act
* rq
->dl
.bw_ratio
) >> RATIO_SHIFT
;
1441 return (delta
* u_act
) >> BW_SHIFT
;
1444 s64
dl_scaled_delta_exec(struct rq
*rq
, struct sched_dl_entity
*dl_se
, s64 delta_exec
)
1446 s64 scaled_delta_exec
;
1449 * For tasks that participate in GRUB, we implement GRUB-PA: the
1450 * spare reclaimed bandwidth is used to clock down frequency.
1452 * For the others, we still need to scale reservation parameters
1453 * according to current frequency and CPU maximum capacity.
1455 if (unlikely(dl_se
->flags
& SCHED_FLAG_RECLAIM
)) {
1456 scaled_delta_exec
= grub_reclaim(delta_exec
, rq
, dl_se
);
1458 int cpu
= cpu_of(rq
);
1459 unsigned long scale_freq
= arch_scale_freq_capacity(cpu
);
1460 unsigned long scale_cpu
= arch_scale_cpu_capacity(cpu
);
1462 scaled_delta_exec
= cap_scale(delta_exec
, scale_freq
);
1463 scaled_delta_exec
= cap_scale(scaled_delta_exec
, scale_cpu
);
1466 return scaled_delta_exec
;
1470 update_stats_dequeue_dl(struct dl_rq
*dl_rq
, struct sched_dl_entity
*dl_se
,
1472 static void update_curr_dl_se(struct rq
*rq
, struct sched_dl_entity
*dl_se
, s64 delta_exec
)
1474 s64 scaled_delta_exec
;
1476 if (unlikely(delta_exec
<= 0)) {
1477 if (unlikely(dl_se
->dl_yielded
))
1482 if (dl_server(dl_se
) && dl_se
->dl_throttled
&& !dl_se
->dl_defer
)
1485 if (dl_entity_is_special(dl_se
))
1488 scaled_delta_exec
= dl_scaled_delta_exec(rq
, dl_se
, delta_exec
);
1490 dl_se
->runtime
-= scaled_delta_exec
;
1493 * The fair server can consume its runtime while throttled (not queued/
1494 * running as regular CFS).
1496 * If the server consumes its entire runtime in this state. The server
1497 * is not required for the current period. Thus, reset the server by
1498 * starting a new period, pushing the activation.
1500 if (dl_se
->dl_defer
&& dl_se
->dl_throttled
&& dl_runtime_exceeded(dl_se
)) {
1502 * If the server was previously activated - the starving condition
1503 * took place, it this point it went away because the fair scheduler
1504 * was able to get runtime in background. So return to the initial
1507 dl_se
->dl_defer_running
= 0;
1509 hrtimer_try_to_cancel(&dl_se
->dl_timer
);
1511 replenish_dl_new_period(dl_se
, dl_se
->rq
);
1514 * Not being able to start the timer seems problematic. If it could not
1515 * be started for whatever reason, we need to "unthrottle" the DL server
1516 * and queue right away. Otherwise nothing might queue it. That's similar
1517 * to what enqueue_dl_entity() does on start_dl_timer==0. For now, just warn.
1519 WARN_ON_ONCE(!start_dl_timer(dl_se
));
1525 if (dl_runtime_exceeded(dl_se
) || dl_se
->dl_yielded
) {
1526 dl_se
->dl_throttled
= 1;
1528 /* If requested, inform the user about runtime overruns. */
1529 if (dl_runtime_exceeded(dl_se
) &&
1530 (dl_se
->flags
& SCHED_FLAG_DL_OVERRUN
))
1531 dl_se
->dl_overrun
= 1;
1533 dequeue_dl_entity(dl_se
, 0);
1534 if (!dl_server(dl_se
)) {
1535 update_stats_dequeue_dl(&rq
->dl
, dl_se
, 0);
1536 dequeue_pushable_dl_task(rq
, dl_task_of(dl_se
));
1539 if (unlikely(is_dl_boosted(dl_se
) || !start_dl_timer(dl_se
))) {
1540 if (dl_server(dl_se
))
1541 enqueue_dl_entity(dl_se
, ENQUEUE_REPLENISH
);
1543 enqueue_task_dl(rq
, dl_task_of(dl_se
), ENQUEUE_REPLENISH
);
1546 if (!is_leftmost(dl_se
, &rq
->dl
))
1551 * The fair server (sole dl_server) does not account for real-time
1552 * workload because it is running fair work.
1554 if (dl_se
== &rq
->fair_server
)
1557 #ifdef CONFIG_RT_GROUP_SCHED
1559 * Because -- for now -- we share the rt bandwidth, we need to
1560 * account our runtime there too, otherwise actual rt tasks
1561 * would be able to exceed the shared quota.
1563 * Account to the root rt group for now.
1565 * The solution we're working towards is having the RT groups scheduled
1566 * using deadline servers -- however there's a few nasties to figure
1567 * out before that can happen.
1569 if (rt_bandwidth_enabled()) {
1570 struct rt_rq
*rt_rq
= &rq
->rt
;
1572 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
1574 * We'll let actual RT tasks worry about the overflow here, we
1575 * have our own CBS to keep us inline; only account when RT
1576 * bandwidth is relevant.
1578 if (sched_rt_bandwidth_account(rt_rq
))
1579 rt_rq
->rt_time
+= delta_exec
;
1580 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
1586 * In the non-defer mode, the idle time is not accounted, as the
1587 * server provides a guarantee.
1589 * If the dl_server is in defer mode, the idle time is also considered
1590 * as time available for the fair server, avoiding a penalty for the
1591 * rt scheduler that did not consumed that time.
1593 void dl_server_update_idle_time(struct rq
*rq
, struct task_struct
*p
)
1595 s64 delta_exec
, scaled_delta_exec
;
1597 if (!rq
->fair_server
.dl_defer
)
1600 /* no need to discount more */
1601 if (rq
->fair_server
.runtime
< 0)
1604 delta_exec
= rq_clock_task(rq
) - p
->se
.exec_start
;
1608 scaled_delta_exec
= dl_scaled_delta_exec(rq
, &rq
->fair_server
, delta_exec
);
1610 rq
->fair_server
.runtime
-= scaled_delta_exec
;
1612 if (rq
->fair_server
.runtime
< 0) {
1613 rq
->fair_server
.dl_defer_running
= 0;
1614 rq
->fair_server
.runtime
= 0;
1617 p
->se
.exec_start
= rq_clock_task(rq
);
1620 void dl_server_update(struct sched_dl_entity
*dl_se
, s64 delta_exec
)
1622 /* 0 runtime = fair server disabled */
1623 if (dl_se
->dl_runtime
)
1624 update_curr_dl_se(dl_se
->rq
, dl_se
, delta_exec
);
1627 void dl_server_start(struct sched_dl_entity
*dl_se
)
1629 struct rq
*rq
= dl_se
->rq
;
1632 * XXX: the apply do not work fine at the init phase for the
1633 * fair server because things are not yet set. We need to improve
1634 * this before getting generic.
1636 if (!dl_server(dl_se
)) {
1637 u64 runtime
= 50 * NSEC_PER_MSEC
;
1638 u64 period
= 1000 * NSEC_PER_MSEC
;
1640 dl_server_apply_params(dl_se
, runtime
, period
, 1);
1642 dl_se
->dl_server
= 1;
1643 dl_se
->dl_defer
= 1;
1644 setup_new_dl_entity(dl_se
);
1647 if (!dl_se
->dl_runtime
)
1650 enqueue_dl_entity(dl_se
, ENQUEUE_WAKEUP
);
1651 if (!dl_task(dl_se
->rq
->curr
) || dl_entity_preempt(dl_se
, &rq
->curr
->dl
))
1652 resched_curr(dl_se
->rq
);
1655 void dl_server_stop(struct sched_dl_entity
*dl_se
)
1657 if (!dl_se
->dl_runtime
)
1660 dequeue_dl_entity(dl_se
, DEQUEUE_SLEEP
);
1661 hrtimer_try_to_cancel(&dl_se
->dl_timer
);
1662 dl_se
->dl_defer_armed
= 0;
1663 dl_se
->dl_throttled
= 0;
1666 void dl_server_init(struct sched_dl_entity
*dl_se
, struct rq
*rq
,
1667 dl_server_has_tasks_f has_tasks
,
1668 dl_server_pick_f pick_task
)
1671 dl_se
->server_has_tasks
= has_tasks
;
1672 dl_se
->server_pick_task
= pick_task
;
1675 void __dl_server_attach_root(struct sched_dl_entity
*dl_se
, struct rq
*rq
)
1677 u64 new_bw
= dl_se
->dl_bw
;
1678 int cpu
= cpu_of(rq
);
1681 dl_b
= dl_bw_of(cpu_of(rq
));
1682 guard(raw_spinlock
)(&dl_b
->lock
);
1684 if (!dl_bw_cpus(cpu
))
1687 __dl_add(dl_b
, new_bw
, dl_bw_cpus(cpu
));
1690 int dl_server_apply_params(struct sched_dl_entity
*dl_se
, u64 runtime
, u64 period
, bool init
)
1692 u64 old_bw
= init
? 0 : to_ratio(dl_se
->dl_period
, dl_se
->dl_runtime
);
1693 u64 new_bw
= to_ratio(period
, runtime
);
1694 struct rq
*rq
= dl_se
->rq
;
1695 int cpu
= cpu_of(rq
);
1701 dl_b
= dl_bw_of(cpu
);
1702 guard(raw_spinlock
)(&dl_b
->lock
);
1704 cpus
= dl_bw_cpus(cpu
);
1705 cap
= dl_bw_capacity(cpu
);
1707 if (__dl_overflow(dl_b
, cap
, old_bw
, new_bw
))
1711 __add_rq_bw(new_bw
, &rq
->dl
);
1712 __dl_add(dl_b
, new_bw
, cpus
);
1714 __dl_sub(dl_b
, dl_se
->dl_bw
, cpus
);
1715 __dl_add(dl_b
, new_bw
, cpus
);
1717 dl_rq_change_utilization(rq
, dl_se
, new_bw
);
1720 dl_se
->dl_runtime
= runtime
;
1721 dl_se
->dl_deadline
= period
;
1722 dl_se
->dl_period
= period
;
1725 dl_se
->deadline
= 0;
1727 dl_se
->dl_bw
= to_ratio(dl_se
->dl_period
, dl_se
->dl_runtime
);
1728 dl_se
->dl_density
= to_ratio(dl_se
->dl_deadline
, dl_se
->dl_runtime
);
1734 * Update the current task's runtime statistics (provided it is still
1735 * a -deadline task and has not been removed from the dl_rq).
1737 static void update_curr_dl(struct rq
*rq
)
1739 struct task_struct
*donor
= rq
->donor
;
1740 struct sched_dl_entity
*dl_se
= &donor
->dl
;
1743 if (!dl_task(donor
) || !on_dl_rq(dl_se
))
1747 * Consumed budget is computed considering the time as
1748 * observed by schedulable tasks (excluding time spent
1749 * in hardirq context, etc.). Deadlines are instead
1750 * computed using hard walltime. This seems to be the more
1751 * natural solution, but the full ramifications of this
1752 * approach need further study.
1754 delta_exec
= update_curr_common(rq
);
1755 update_curr_dl_se(rq
, dl_se
, delta_exec
);
1758 static enum hrtimer_restart
inactive_task_timer(struct hrtimer
*timer
)
1760 struct sched_dl_entity
*dl_se
= container_of(timer
,
1761 struct sched_dl_entity
,
1763 struct task_struct
*p
= NULL
;
1767 if (!dl_server(dl_se
)) {
1768 p
= dl_task_of(dl_se
);
1769 rq
= task_rq_lock(p
, &rf
);
1776 update_rq_clock(rq
);
1778 if (dl_server(dl_se
))
1781 if (!dl_task(p
) || READ_ONCE(p
->__state
) == TASK_DEAD
) {
1782 struct dl_bw
*dl_b
= dl_bw_of(task_cpu(p
));
1784 if (READ_ONCE(p
->__state
) == TASK_DEAD
&& dl_se
->dl_non_contending
) {
1785 sub_running_bw(&p
->dl
, dl_rq_of_se(&p
->dl
));
1786 sub_rq_bw(&p
->dl
, dl_rq_of_se(&p
->dl
));
1787 dl_se
->dl_non_contending
= 0;
1790 raw_spin_lock(&dl_b
->lock
);
1791 __dl_sub(dl_b
, p
->dl
.dl_bw
, dl_bw_cpus(task_cpu(p
)));
1792 raw_spin_unlock(&dl_b
->lock
);
1793 __dl_clear_params(dl_se
);
1799 if (dl_se
->dl_non_contending
== 0)
1802 sub_running_bw(dl_se
, &rq
->dl
);
1803 dl_se
->dl_non_contending
= 0;
1806 if (!dl_server(dl_se
)) {
1807 task_rq_unlock(rq
, p
, &rf
);
1813 return HRTIMER_NORESTART
;
1816 static void init_dl_inactive_task_timer(struct sched_dl_entity
*dl_se
)
1818 struct hrtimer
*timer
= &dl_se
->inactive_timer
;
1820 hrtimer_init(timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL_HARD
);
1821 timer
->function
= inactive_task_timer
;
1824 #define __node_2_dle(node) \
1825 rb_entry((node), struct sched_dl_entity, rb_node)
1829 static void inc_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
)
1831 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
1833 if (dl_rq
->earliest_dl
.curr
== 0 ||
1834 dl_time_before(deadline
, dl_rq
->earliest_dl
.curr
)) {
1835 if (dl_rq
->earliest_dl
.curr
== 0)
1836 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, CPUPRI_HIGHER
);
1837 dl_rq
->earliest_dl
.curr
= deadline
;
1838 cpudl_set(&rq
->rd
->cpudl
, rq
->cpu
, deadline
);
1842 static void dec_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
)
1844 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
1847 * Since we may have removed our earliest (and/or next earliest)
1848 * task we must recompute them.
1850 if (!dl_rq
->dl_nr_running
) {
1851 dl_rq
->earliest_dl
.curr
= 0;
1852 dl_rq
->earliest_dl
.next
= 0;
1853 cpudl_clear(&rq
->rd
->cpudl
, rq
->cpu
);
1854 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, rq
->rt
.highest_prio
.curr
);
1856 struct rb_node
*leftmost
= rb_first_cached(&dl_rq
->root
);
1857 struct sched_dl_entity
*entry
= __node_2_dle(leftmost
);
1859 dl_rq
->earliest_dl
.curr
= entry
->deadline
;
1860 cpudl_set(&rq
->rd
->cpudl
, rq
->cpu
, entry
->deadline
);
1866 static inline void inc_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
) {}
1867 static inline void dec_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
) {}
1869 #endif /* CONFIG_SMP */
1872 void inc_dl_tasks(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
1874 u64 deadline
= dl_se
->deadline
;
1876 dl_rq
->dl_nr_running
++;
1877 add_nr_running(rq_of_dl_rq(dl_rq
), 1);
1879 inc_dl_deadline(dl_rq
, deadline
);
1883 void dec_dl_tasks(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
1885 WARN_ON(!dl_rq
->dl_nr_running
);
1886 dl_rq
->dl_nr_running
--;
1887 sub_nr_running(rq_of_dl_rq(dl_rq
), 1);
1889 dec_dl_deadline(dl_rq
, dl_se
->deadline
);
1892 static inline bool __dl_less(struct rb_node
*a
, const struct rb_node
*b
)
1894 return dl_time_before(__node_2_dle(a
)->deadline
, __node_2_dle(b
)->deadline
);
1897 static __always_inline
struct sched_statistics
*
1898 __schedstats_from_dl_se(struct sched_dl_entity
*dl_se
)
1900 if (!schedstat_enabled())
1903 if (dl_server(dl_se
))
1906 return &dl_task_of(dl_se
)->stats
;
1910 update_stats_wait_start_dl(struct dl_rq
*dl_rq
, struct sched_dl_entity
*dl_se
)
1912 struct sched_statistics
*stats
= __schedstats_from_dl_se(dl_se
);
1914 __update_stats_wait_start(rq_of_dl_rq(dl_rq
), dl_task_of(dl_se
), stats
);
1918 update_stats_wait_end_dl(struct dl_rq
*dl_rq
, struct sched_dl_entity
*dl_se
)
1920 struct sched_statistics
*stats
= __schedstats_from_dl_se(dl_se
);
1922 __update_stats_wait_end(rq_of_dl_rq(dl_rq
), dl_task_of(dl_se
), stats
);
1926 update_stats_enqueue_sleeper_dl(struct dl_rq
*dl_rq
, struct sched_dl_entity
*dl_se
)
1928 struct sched_statistics
*stats
= __schedstats_from_dl_se(dl_se
);
1930 __update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq
), dl_task_of(dl_se
), stats
);
1934 update_stats_enqueue_dl(struct dl_rq
*dl_rq
, struct sched_dl_entity
*dl_se
,
1937 if (!schedstat_enabled())
1940 if (flags
& ENQUEUE_WAKEUP
)
1941 update_stats_enqueue_sleeper_dl(dl_rq
, dl_se
);
1945 update_stats_dequeue_dl(struct dl_rq
*dl_rq
, struct sched_dl_entity
*dl_se
,
1948 struct task_struct
*p
= dl_task_of(dl_se
);
1950 if (!schedstat_enabled())
1953 if ((flags
& DEQUEUE_SLEEP
)) {
1956 state
= READ_ONCE(p
->__state
);
1957 if (state
& TASK_INTERRUPTIBLE
)
1958 __schedstat_set(p
->stats
.sleep_start
,
1959 rq_clock(rq_of_dl_rq(dl_rq
)));
1961 if (state
& TASK_UNINTERRUPTIBLE
)
1962 __schedstat_set(p
->stats
.block_start
,
1963 rq_clock(rq_of_dl_rq(dl_rq
)));
1967 static void __enqueue_dl_entity(struct sched_dl_entity
*dl_se
)
1969 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
1971 WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se
->rb_node
));
1973 rb_add_cached(&dl_se
->rb_node
, &dl_rq
->root
, __dl_less
);
1975 inc_dl_tasks(dl_se
, dl_rq
);
1978 static void __dequeue_dl_entity(struct sched_dl_entity
*dl_se
)
1980 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
1982 if (RB_EMPTY_NODE(&dl_se
->rb_node
))
1985 rb_erase_cached(&dl_se
->rb_node
, &dl_rq
->root
);
1987 RB_CLEAR_NODE(&dl_se
->rb_node
);
1989 dec_dl_tasks(dl_se
, dl_rq
);
1993 enqueue_dl_entity(struct sched_dl_entity
*dl_se
, int flags
)
1995 WARN_ON_ONCE(on_dl_rq(dl_se
));
1997 update_stats_enqueue_dl(dl_rq_of_se(dl_se
), dl_se
, flags
);
2000 * Check if a constrained deadline task was activated
2001 * after the deadline but before the next period.
2002 * If that is the case, the task will be throttled and
2003 * the replenishment timer will be set to the next period.
2005 if (!dl_se
->dl_throttled
&& !dl_is_implicit(dl_se
))
2006 dl_check_constrained_dl(dl_se
);
2008 if (flags
& (ENQUEUE_RESTORE
|ENQUEUE_MIGRATING
)) {
2009 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
2011 add_rq_bw(dl_se
, dl_rq
);
2012 add_running_bw(dl_se
, dl_rq
);
2016 * If p is throttled, we do not enqueue it. In fact, if it exhausted
2017 * its budget it needs a replenishment and, since it now is on
2018 * its rq, the bandwidth timer callback (which clearly has not
2019 * run yet) will take care of this.
2020 * However, the active utilization does not depend on the fact
2021 * that the task is on the runqueue or not (but depends on the
2022 * task's state - in GRUB parlance, "inactive" vs "active contending").
2023 * In other words, even if a task is throttled its utilization must
2024 * be counted in the active utilization; hence, we need to call
2027 if (!dl_se
->dl_defer
&& dl_se
->dl_throttled
&& !(flags
& ENQUEUE_REPLENISH
)) {
2028 if (flags
& ENQUEUE_WAKEUP
)
2029 task_contending(dl_se
, flags
);
2035 * If this is a wakeup or a new instance, the scheduling
2036 * parameters of the task might need updating. Otherwise,
2037 * we want a replenishment of its runtime.
2039 if (flags
& ENQUEUE_WAKEUP
) {
2040 task_contending(dl_se
, flags
);
2041 update_dl_entity(dl_se
);
2042 } else if (flags
& ENQUEUE_REPLENISH
) {
2043 replenish_dl_entity(dl_se
);
2044 } else if ((flags
& ENQUEUE_RESTORE
) &&
2045 dl_time_before(dl_se
->deadline
, rq_clock(rq_of_dl_se(dl_se
)))) {
2046 setup_new_dl_entity(dl_se
);
2050 * If the reservation is still throttled, e.g., it got replenished but is a
2051 * deferred task and still got to wait, don't enqueue.
2053 if (dl_se
->dl_throttled
&& start_dl_timer(dl_se
))
2057 * We're about to enqueue, make sure we're not ->dl_throttled!
2058 * In case the timer was not started, say because the defer time
2059 * has passed, mark as not throttled and mark unarmed.
2060 * Also cancel earlier timers, since letting those run is pointless.
2062 if (dl_se
->dl_throttled
) {
2063 hrtimer_try_to_cancel(&dl_se
->dl_timer
);
2064 dl_se
->dl_defer_armed
= 0;
2065 dl_se
->dl_throttled
= 0;
2068 __enqueue_dl_entity(dl_se
);
2071 static void dequeue_dl_entity(struct sched_dl_entity
*dl_se
, int flags
)
2073 __dequeue_dl_entity(dl_se
);
2075 if (flags
& (DEQUEUE_SAVE
|DEQUEUE_MIGRATING
)) {
2076 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
2078 sub_running_bw(dl_se
, dl_rq
);
2079 sub_rq_bw(dl_se
, dl_rq
);
2083 * This check allows to start the inactive timer (or to immediately
2084 * decrease the active utilization, if needed) in two cases:
2085 * when the task blocks and when it is terminating
2086 * (p->state == TASK_DEAD). We can handle the two cases in the same
2087 * way, because from GRUB's point of view the same thing is happening
2088 * (the task moves from "active contending" to "active non contending"
2091 if (flags
& DEQUEUE_SLEEP
)
2092 task_non_contending(dl_se
);
2095 static void enqueue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
)
2097 if (is_dl_boosted(&p
->dl
)) {
2099 * Because of delays in the detection of the overrun of a
2100 * thread's runtime, it might be the case that a thread
2101 * goes to sleep in a rt mutex with negative runtime. As
2102 * a consequence, the thread will be throttled.
2104 * While waiting for the mutex, this thread can also be
2105 * boosted via PI, resulting in a thread that is throttled
2106 * and boosted at the same time.
2108 * In this case, the boost overrides the throttle.
2110 if (p
->dl
.dl_throttled
) {
2112 * The replenish timer needs to be canceled. No
2113 * problem if it fires concurrently: boosted threads
2114 * are ignored in dl_task_timer().
2116 * If the timer callback was running (hrtimer_try_to_cancel == -1),
2117 * it will eventually call put_task_struct().
2119 if (hrtimer_try_to_cancel(&p
->dl
.dl_timer
) == 1 &&
2122 p
->dl
.dl_throttled
= 0;
2124 } else if (!dl_prio(p
->normal_prio
)) {
2126 * Special case in which we have a !SCHED_DEADLINE task that is going
2127 * to be deboosted, but exceeds its runtime while doing so. No point in
2128 * replenishing it, as it's going to return back to its original
2129 * scheduling class after this. If it has been throttled, we need to
2130 * clear the flag, otherwise the task may wake up as throttled after
2131 * being boosted again with no means to replenish the runtime and clear
2134 p
->dl
.dl_throttled
= 0;
2135 if (!(flags
& ENQUEUE_REPLENISH
))
2136 printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n",
2142 check_schedstat_required();
2143 update_stats_wait_start_dl(dl_rq_of_se(&p
->dl
), &p
->dl
);
2145 if (p
->on_rq
== TASK_ON_RQ_MIGRATING
)
2146 flags
|= ENQUEUE_MIGRATING
;
2148 enqueue_dl_entity(&p
->dl
, flags
);
2150 if (dl_server(&p
->dl
))
2153 if (!task_current(rq
, p
) && !p
->dl
.dl_throttled
&& p
->nr_cpus_allowed
> 1)
2154 enqueue_pushable_dl_task(rq
, p
);
2157 static bool dequeue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
)
2161 if (p
->on_rq
== TASK_ON_RQ_MIGRATING
)
2162 flags
|= DEQUEUE_MIGRATING
;
2164 dequeue_dl_entity(&p
->dl
, flags
);
2165 if (!p
->dl
.dl_throttled
&& !dl_server(&p
->dl
))
2166 dequeue_pushable_dl_task(rq
, p
);
2172 * Yield task semantic for -deadline tasks is:
2174 * get off from the CPU until our next instance, with
2175 * a new runtime. This is of little use now, since we
2176 * don't have a bandwidth reclaiming mechanism. Anyway,
2177 * bandwidth reclaiming is planned for the future, and
2178 * yield_task_dl will indicate that some spare budget
2179 * is available for other task instances to use it.
2181 static void yield_task_dl(struct rq
*rq
)
2184 * We make the task go to sleep until its current deadline by
2185 * forcing its runtime to zero. This way, update_curr_dl() stops
2186 * it and the bandwidth timer will wake it up and will give it
2187 * new scheduling parameters (thanks to dl_yielded=1).
2189 rq
->curr
->dl
.dl_yielded
= 1;
2191 update_rq_clock(rq
);
2194 * Tell update_rq_clock() that we've just updated,
2195 * so we don't do microscopic update in schedule()
2196 * and double the fastpath cost.
2198 rq_clock_skip_update(rq
);
2203 static inline bool dl_task_is_earliest_deadline(struct task_struct
*p
,
2206 return (!rq
->dl
.dl_nr_running
||
2207 dl_time_before(p
->dl
.deadline
,
2208 rq
->dl
.earliest_dl
.curr
));
2211 static int find_later_rq(struct task_struct
*task
);
2214 select_task_rq_dl(struct task_struct
*p
, int cpu
, int flags
)
2216 struct task_struct
*curr
, *donor
;
2220 if (!(flags
& WF_TTWU
))
2226 curr
= READ_ONCE(rq
->curr
); /* unlocked access */
2227 donor
= READ_ONCE(rq
->donor
);
2230 * If we are dealing with a -deadline task, we must
2231 * decide where to wake it up.
2232 * If it has a later deadline and the current task
2233 * on this rq can't move (provided the waking task
2234 * can!) we prefer to send it somewhere else. On the
2235 * other hand, if it has a shorter deadline, we
2236 * try to make it stay here, it might be important.
2238 select_rq
= unlikely(dl_task(donor
)) &&
2239 (curr
->nr_cpus_allowed
< 2 ||
2240 !dl_entity_preempt(&p
->dl
, &donor
->dl
)) &&
2241 p
->nr_cpus_allowed
> 1;
2244 * Take the capacity of the CPU into account to
2245 * ensure it fits the requirement of the task.
2247 if (sched_asym_cpucap_active())
2248 select_rq
|= !dl_task_fits_capacity(p
, cpu
);
2251 int target
= find_later_rq(p
);
2254 dl_task_is_earliest_deadline(p
, cpu_rq(target
)))
2263 static void migrate_task_rq_dl(struct task_struct
*p
, int new_cpu __maybe_unused
)
2268 if (READ_ONCE(p
->__state
) != TASK_WAKING
)
2273 * Since p->state == TASK_WAKING, set_task_cpu() has been called
2274 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
2275 * rq->lock is not... So, lock it
2278 if (p
->dl
.dl_non_contending
) {
2279 update_rq_clock(rq
);
2280 sub_running_bw(&p
->dl
, &rq
->dl
);
2281 p
->dl
.dl_non_contending
= 0;
2283 * If the timer handler is currently running and the
2284 * timer cannot be canceled, inactive_task_timer()
2285 * will see that dl_not_contending is not set, and
2286 * will not touch the rq's active utilization,
2287 * so we are still safe.
2289 if (hrtimer_try_to_cancel(&p
->dl
.inactive_timer
) == 1)
2292 sub_rq_bw(&p
->dl
, &rq
->dl
);
2296 static void check_preempt_equal_dl(struct rq
*rq
, struct task_struct
*p
)
2299 * Current can't be migrated, useless to reschedule,
2300 * let's hope p can move out.
2302 if (rq
->curr
->nr_cpus_allowed
== 1 ||
2303 !cpudl_find(&rq
->rd
->cpudl
, rq
->donor
, NULL
))
2307 * p is migratable, so let's not schedule it and
2308 * see if it is pushed or pulled somewhere else.
2310 if (p
->nr_cpus_allowed
!= 1 &&
2311 cpudl_find(&rq
->rd
->cpudl
, p
, NULL
))
2317 static int balance_dl(struct rq
*rq
, struct task_struct
*p
, struct rq_flags
*rf
)
2319 if (!on_dl_rq(&p
->dl
) && need_pull_dl_task(rq
, p
)) {
2321 * This is OK, because current is on_cpu, which avoids it being
2322 * picked for load-balance and preemption/IRQs are still
2323 * disabled avoiding further scheduler activity on it and we've
2324 * not yet started the picking loop.
2326 rq_unpin_lock(rq
, rf
);
2328 rq_repin_lock(rq
, rf
);
2331 return sched_stop_runnable(rq
) || sched_dl_runnable(rq
);
2333 #endif /* CONFIG_SMP */
2336 * Only called when both the current and waking task are -deadline
2339 static void wakeup_preempt_dl(struct rq
*rq
, struct task_struct
*p
,
2342 if (dl_entity_preempt(&p
->dl
, &rq
->donor
->dl
)) {
2349 * In the unlikely case current and p have the same deadline
2350 * let us try to decide what's the best thing to do...
2352 if ((p
->dl
.deadline
== rq
->donor
->dl
.deadline
) &&
2353 !test_tsk_need_resched(rq
->curr
))
2354 check_preempt_equal_dl(rq
, p
);
2355 #endif /* CONFIG_SMP */
2358 #ifdef CONFIG_SCHED_HRTICK
2359 static void start_hrtick_dl(struct rq
*rq
, struct sched_dl_entity
*dl_se
)
2361 hrtick_start(rq
, dl_se
->runtime
);
2363 #else /* !CONFIG_SCHED_HRTICK */
2364 static void start_hrtick_dl(struct rq
*rq
, struct sched_dl_entity
*dl_se
)
2369 static void set_next_task_dl(struct rq
*rq
, struct task_struct
*p
, bool first
)
2371 struct sched_dl_entity
*dl_se
= &p
->dl
;
2372 struct dl_rq
*dl_rq
= &rq
->dl
;
2374 p
->se
.exec_start
= rq_clock_task(rq
);
2375 if (on_dl_rq(&p
->dl
))
2376 update_stats_wait_end_dl(dl_rq
, dl_se
);
2378 /* You can't push away the running task */
2379 dequeue_pushable_dl_task(rq
, p
);
2384 if (rq
->donor
->sched_class
!= &dl_sched_class
)
2385 update_dl_rq_load_avg(rq_clock_pelt(rq
), rq
, 0);
2387 deadline_queue_push_tasks(rq
);
2389 if (hrtick_enabled_dl(rq
))
2390 start_hrtick_dl(rq
, &p
->dl
);
2393 static struct sched_dl_entity
*pick_next_dl_entity(struct dl_rq
*dl_rq
)
2395 struct rb_node
*left
= rb_first_cached(&dl_rq
->root
);
2400 return __node_2_dle(left
);
2404 * __pick_next_task_dl - Helper to pick the next -deadline task to run.
2405 * @rq: The runqueue to pick the next task from.
2407 static struct task_struct
*__pick_task_dl(struct rq
*rq
)
2409 struct sched_dl_entity
*dl_se
;
2410 struct dl_rq
*dl_rq
= &rq
->dl
;
2411 struct task_struct
*p
;
2414 if (!sched_dl_runnable(rq
))
2417 dl_se
= pick_next_dl_entity(dl_rq
);
2418 WARN_ON_ONCE(!dl_se
);
2420 if (dl_server(dl_se
)) {
2421 p
= dl_se
->server_pick_task(dl_se
);
2423 dl_se
->dl_yielded
= 1;
2424 update_curr_dl_se(rq
, dl_se
, 0);
2427 rq
->dl_server
= dl_se
;
2429 p
= dl_task_of(dl_se
);
2435 static struct task_struct
*pick_task_dl(struct rq
*rq
)
2437 return __pick_task_dl(rq
);
2440 static void put_prev_task_dl(struct rq
*rq
, struct task_struct
*p
, struct task_struct
*next
)
2442 struct sched_dl_entity
*dl_se
= &p
->dl
;
2443 struct dl_rq
*dl_rq
= &rq
->dl
;
2445 if (on_dl_rq(&p
->dl
))
2446 update_stats_wait_start_dl(dl_rq
, dl_se
);
2450 update_dl_rq_load_avg(rq_clock_pelt(rq
), rq
, 1);
2451 if (on_dl_rq(&p
->dl
) && p
->nr_cpus_allowed
> 1)
2452 enqueue_pushable_dl_task(rq
, p
);
2456 * scheduler tick hitting a task of our scheduling class.
2458 * NOTE: This function can be called remotely by the tick offload that
2459 * goes along full dynticks. Therefore no local assumption can be made
2460 * and everything must be accessed through the @rq and @curr passed in
2463 static void task_tick_dl(struct rq
*rq
, struct task_struct
*p
, int queued
)
2467 update_dl_rq_load_avg(rq_clock_pelt(rq
), rq
, 1);
2469 * Even when we have runtime, update_curr_dl() might have resulted in us
2470 * not being the leftmost task anymore. In that case NEED_RESCHED will
2471 * be set and schedule() will start a new hrtick for the next task.
2473 if (hrtick_enabled_dl(rq
) && queued
&& p
->dl
.runtime
> 0 &&
2474 is_leftmost(&p
->dl
, &rq
->dl
))
2475 start_hrtick_dl(rq
, &p
->dl
);
2478 static void task_fork_dl(struct task_struct
*p
)
2481 * SCHED_DEADLINE tasks cannot fork and this is achieved through
2488 /* Only try algorithms three times */
2489 #define DL_MAX_TRIES 3
2492 * Return the earliest pushable rq's task, which is suitable to be executed
2493 * on the CPU, NULL otherwise:
2495 static struct task_struct
*pick_earliest_pushable_dl_task(struct rq
*rq
, int cpu
)
2497 struct task_struct
*p
= NULL
;
2498 struct rb_node
*next_node
;
2500 if (!has_pushable_dl_tasks(rq
))
2503 next_node
= rb_first_cached(&rq
->dl
.pushable_dl_tasks_root
);
2507 p
= __node_2_pdl(next_node
);
2509 if (task_is_pushable(rq
, p
, cpu
))
2512 next_node
= rb_next(next_node
);
2519 static DEFINE_PER_CPU(cpumask_var_t
, local_cpu_mask_dl
);
2521 static int find_later_rq(struct task_struct
*task
)
2523 struct sched_domain
*sd
;
2524 struct cpumask
*later_mask
= this_cpu_cpumask_var_ptr(local_cpu_mask_dl
);
2525 int this_cpu
= smp_processor_id();
2526 int cpu
= task_cpu(task
);
2528 /* Make sure the mask is initialized first */
2529 if (unlikely(!later_mask
))
2532 if (task
->nr_cpus_allowed
== 1)
2536 * We have to consider system topology and task affinity
2537 * first, then we can look for a suitable CPU.
2539 if (!cpudl_find(&task_rq(task
)->rd
->cpudl
, task
, later_mask
))
2543 * If we are here, some targets have been found, including
2544 * the most suitable which is, among the runqueues where the
2545 * current tasks have later deadlines than the task's one, the
2546 * rq with the latest possible one.
2548 * Now we check how well this matches with task's
2549 * affinity and system topology.
2551 * The last CPU where the task run is our first
2552 * guess, since it is most likely cache-hot there.
2554 if (cpumask_test_cpu(cpu
, later_mask
))
2557 * Check if this_cpu is to be skipped (i.e., it is
2558 * not in the mask) or not.
2560 if (!cpumask_test_cpu(this_cpu
, later_mask
))
2564 for_each_domain(cpu
, sd
) {
2565 if (sd
->flags
& SD_WAKE_AFFINE
) {
2569 * If possible, preempting this_cpu is
2570 * cheaper than migrating.
2572 if (this_cpu
!= -1 &&
2573 cpumask_test_cpu(this_cpu
, sched_domain_span(sd
))) {
2578 best_cpu
= cpumask_any_and_distribute(later_mask
,
2579 sched_domain_span(sd
));
2581 * Last chance: if a CPU being in both later_mask
2582 * and current sd span is valid, that becomes our
2583 * choice. Of course, the latest possible CPU is
2584 * already under consideration through later_mask.
2586 if (best_cpu
< nr_cpu_ids
) {
2595 * At this point, all our guesses failed, we just return
2596 * 'something', and let the caller sort the things out.
2601 cpu
= cpumask_any_distribute(later_mask
);
2602 if (cpu
< nr_cpu_ids
)
2608 /* Locks the rq it finds */
2609 static struct rq
*find_lock_later_rq(struct task_struct
*task
, struct rq
*rq
)
2611 struct rq
*later_rq
= NULL
;
2615 for (tries
= 0; tries
< DL_MAX_TRIES
; tries
++) {
2616 cpu
= find_later_rq(task
);
2618 if ((cpu
== -1) || (cpu
== rq
->cpu
))
2621 later_rq
= cpu_rq(cpu
);
2623 if (!dl_task_is_earliest_deadline(task
, later_rq
)) {
2625 * Target rq has tasks of equal or earlier deadline,
2626 * retrying does not release any lock and is unlikely
2627 * to yield a different result.
2633 /* Retry if something changed. */
2634 if (double_lock_balance(rq
, later_rq
)) {
2635 if (unlikely(task_rq(task
) != rq
||
2636 !cpumask_test_cpu(later_rq
->cpu
, &task
->cpus_mask
) ||
2637 task_on_cpu(rq
, task
) ||
2639 is_migration_disabled(task
) ||
2640 !task_on_rq_queued(task
))) {
2641 double_unlock_balance(rq
, later_rq
);
2648 * If the rq we found has no -deadline task, or
2649 * its earliest one has a later deadline than our
2650 * task, the rq is a good one.
2652 if (dl_task_is_earliest_deadline(task
, later_rq
))
2655 /* Otherwise we try again. */
2656 double_unlock_balance(rq
, later_rq
);
2663 static struct task_struct
*pick_next_pushable_dl_task(struct rq
*rq
)
2665 struct task_struct
*p
;
2667 if (!has_pushable_dl_tasks(rq
))
2670 p
= __node_2_pdl(rb_first_cached(&rq
->dl
.pushable_dl_tasks_root
));
2672 WARN_ON_ONCE(rq
->cpu
!= task_cpu(p
));
2673 WARN_ON_ONCE(task_current(rq
, p
));
2674 WARN_ON_ONCE(p
->nr_cpus_allowed
<= 1);
2676 WARN_ON_ONCE(!task_on_rq_queued(p
));
2677 WARN_ON_ONCE(!dl_task(p
));
2683 * See if the non running -deadline tasks on this rq
2684 * can be sent to some other CPU where they can preempt
2685 * and start executing.
2687 static int push_dl_task(struct rq
*rq
)
2689 struct task_struct
*next_task
;
2690 struct rq
*later_rq
;
2693 next_task
= pick_next_pushable_dl_task(rq
);
2699 * If next_task preempts rq->curr, and rq->curr
2700 * can move away, it makes sense to just reschedule
2701 * without going further in pushing next_task.
2703 if (dl_task(rq
->donor
) &&
2704 dl_time_before(next_task
->dl
.deadline
, rq
->donor
->dl
.deadline
) &&
2705 rq
->curr
->nr_cpus_allowed
> 1) {
2710 if (is_migration_disabled(next_task
))
2713 if (WARN_ON(next_task
== rq
->curr
))
2716 /* We might release rq lock */
2717 get_task_struct(next_task
);
2719 /* Will lock the rq it'll find */
2720 later_rq
= find_lock_later_rq(next_task
, rq
);
2722 struct task_struct
*task
;
2725 * We must check all this again, since
2726 * find_lock_later_rq releases rq->lock and it is
2727 * then possible that next_task has migrated.
2729 task
= pick_next_pushable_dl_task(rq
);
2730 if (task
== next_task
) {
2732 * The task is still there. We don't try
2733 * again, some other CPU will pull it when ready.
2742 put_task_struct(next_task
);
2747 move_queued_task_locked(rq
, later_rq
, next_task
);
2750 resched_curr(later_rq
);
2752 double_unlock_balance(rq
, later_rq
);
2755 put_task_struct(next_task
);
2760 static void push_dl_tasks(struct rq
*rq
)
2762 /* push_dl_task() will return true if it moved a -deadline task */
2763 while (push_dl_task(rq
))
2767 static void pull_dl_task(struct rq
*this_rq
)
2769 int this_cpu
= this_rq
->cpu
, cpu
;
2770 struct task_struct
*p
, *push_task
;
2771 bool resched
= false;
2773 u64 dmin
= LONG_MAX
;
2775 if (likely(!dl_overloaded(this_rq
)))
2779 * Match the barrier from dl_set_overloaded; this guarantees that if we
2780 * see overloaded we must also see the dlo_mask bit.
2784 for_each_cpu(cpu
, this_rq
->rd
->dlo_mask
) {
2785 if (this_cpu
== cpu
)
2788 src_rq
= cpu_rq(cpu
);
2791 * It looks racy, and it is! However, as in sched_rt.c,
2792 * we are fine with this.
2794 if (this_rq
->dl
.dl_nr_running
&&
2795 dl_time_before(this_rq
->dl
.earliest_dl
.curr
,
2796 src_rq
->dl
.earliest_dl
.next
))
2799 /* Might drop this_rq->lock */
2801 double_lock_balance(this_rq
, src_rq
);
2804 * If there are no more pullable tasks on the
2805 * rq, we're done with it.
2807 if (src_rq
->dl
.dl_nr_running
<= 1)
2810 p
= pick_earliest_pushable_dl_task(src_rq
, this_cpu
);
2813 * We found a task to be pulled if:
2814 * - it preempts our current (if there's one),
2815 * - it will preempt the last one we pulled (if any).
2817 if (p
&& dl_time_before(p
->dl
.deadline
, dmin
) &&
2818 dl_task_is_earliest_deadline(p
, this_rq
)) {
2819 WARN_ON(p
== src_rq
->curr
);
2820 WARN_ON(!task_on_rq_queued(p
));
2823 * Then we pull iff p has actually an earlier
2824 * deadline than the current task of its runqueue.
2826 if (dl_time_before(p
->dl
.deadline
,
2827 src_rq
->donor
->dl
.deadline
))
2830 if (is_migration_disabled(p
)) {
2831 push_task
= get_push_task(src_rq
);
2833 move_queued_task_locked(src_rq
, this_rq
, p
);
2834 dmin
= p
->dl
.deadline
;
2838 /* Is there any other task even earlier? */
2841 double_unlock_balance(this_rq
, src_rq
);
2845 raw_spin_rq_unlock(this_rq
);
2846 stop_one_cpu_nowait(src_rq
->cpu
, push_cpu_stop
,
2847 push_task
, &src_rq
->push_work
);
2849 raw_spin_rq_lock(this_rq
);
2854 resched_curr(this_rq
);
2858 * Since the task is not running and a reschedule is not going to happen
2859 * anytime soon on its runqueue, we try pushing it away now.
2861 static void task_woken_dl(struct rq
*rq
, struct task_struct
*p
)
2863 if (!task_on_cpu(rq
, p
) &&
2864 !test_tsk_need_resched(rq
->curr
) &&
2865 p
->nr_cpus_allowed
> 1 &&
2866 dl_task(rq
->donor
) &&
2867 (rq
->curr
->nr_cpus_allowed
< 2 ||
2868 !dl_entity_preempt(&p
->dl
, &rq
->donor
->dl
))) {
2873 static void set_cpus_allowed_dl(struct task_struct
*p
,
2874 struct affinity_context
*ctx
)
2876 struct root_domain
*src_rd
;
2879 WARN_ON_ONCE(!dl_task(p
));
2884 * Migrating a SCHED_DEADLINE task between exclusive
2885 * cpusets (different root_domains) entails a bandwidth
2886 * update. We already made space for us in the destination
2887 * domain (see cpuset_can_attach()).
2889 if (!cpumask_intersects(src_rd
->span
, ctx
->new_mask
)) {
2890 struct dl_bw
*src_dl_b
;
2892 src_dl_b
= dl_bw_of(cpu_of(rq
));
2894 * We now free resources of the root_domain we are migrating
2895 * off. In the worst case, sched_setattr() may temporary fail
2896 * until we complete the update.
2898 raw_spin_lock(&src_dl_b
->lock
);
2899 __dl_sub(src_dl_b
, p
->dl
.dl_bw
, dl_bw_cpus(task_cpu(p
)));
2900 raw_spin_unlock(&src_dl_b
->lock
);
2903 set_cpus_allowed_common(p
, ctx
);
2906 /* Assumes rq->lock is held */
2907 static void rq_online_dl(struct rq
*rq
)
2909 if (rq
->dl
.overloaded
)
2910 dl_set_overload(rq
);
2912 cpudl_set_freecpu(&rq
->rd
->cpudl
, rq
->cpu
);
2913 if (rq
->dl
.dl_nr_running
> 0)
2914 cpudl_set(&rq
->rd
->cpudl
, rq
->cpu
, rq
->dl
.earliest_dl
.curr
);
2917 /* Assumes rq->lock is held */
2918 static void rq_offline_dl(struct rq
*rq
)
2920 if (rq
->dl
.overloaded
)
2921 dl_clear_overload(rq
);
2923 cpudl_clear(&rq
->rd
->cpudl
, rq
->cpu
);
2924 cpudl_clear_freecpu(&rq
->rd
->cpudl
, rq
->cpu
);
2927 void __init
init_sched_dl_class(void)
2931 for_each_possible_cpu(i
)
2932 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl
, i
),
2933 GFP_KERNEL
, cpu_to_node(i
));
2936 void dl_add_task_root_domain(struct task_struct
*p
)
2942 raw_spin_lock_irqsave(&p
->pi_lock
, rf
.flags
);
2944 raw_spin_unlock_irqrestore(&p
->pi_lock
, rf
.flags
);
2948 rq
= __task_rq_lock(p
, &rf
);
2950 dl_b
= &rq
->rd
->dl_bw
;
2951 raw_spin_lock(&dl_b
->lock
);
2953 __dl_add(dl_b
, p
->dl
.dl_bw
, cpumask_weight(rq
->rd
->span
));
2955 raw_spin_unlock(&dl_b
->lock
);
2957 task_rq_unlock(rq
, p
, &rf
);
2960 void dl_clear_root_domain(struct root_domain
*rd
)
2962 unsigned long flags
;
2964 raw_spin_lock_irqsave(&rd
->dl_bw
.lock
, flags
);
2965 rd
->dl_bw
.total_bw
= 0;
2966 raw_spin_unlock_irqrestore(&rd
->dl_bw
.lock
, flags
);
2969 #endif /* CONFIG_SMP */
2971 static void switched_from_dl(struct rq
*rq
, struct task_struct
*p
)
2974 * task_non_contending() can start the "inactive timer" (if the 0-lag
2975 * time is in the future). If the task switches back to dl before
2976 * the "inactive timer" fires, it can continue to consume its current
2977 * runtime using its current deadline. If it stays outside of
2978 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2979 * will reset the task parameters.
2981 if (task_on_rq_queued(p
) && p
->dl
.dl_runtime
)
2982 task_non_contending(&p
->dl
);
2985 * In case a task is setscheduled out from SCHED_DEADLINE we need to
2986 * keep track of that on its cpuset (for correct bandwidth tracking).
2990 if (!task_on_rq_queued(p
)) {
2992 * Inactive timer is armed. However, p is leaving DEADLINE and
2993 * might migrate away from this rq while continuing to run on
2994 * some other class. We need to remove its contribution from
2995 * this rq running_bw now, or sub_rq_bw (below) will complain.
2997 if (p
->dl
.dl_non_contending
)
2998 sub_running_bw(&p
->dl
, &rq
->dl
);
2999 sub_rq_bw(&p
->dl
, &rq
->dl
);
3003 * We cannot use inactive_task_timer() to invoke sub_running_bw()
3004 * at the 0-lag time, because the task could have been migrated
3005 * while SCHED_OTHER in the meanwhile.
3007 if (p
->dl
.dl_non_contending
)
3008 p
->dl
.dl_non_contending
= 0;
3011 * Since this might be the only -deadline task on the rq,
3012 * this is the right place to try to pull some other one
3013 * from an overloaded CPU, if any.
3015 if (!task_on_rq_queued(p
) || rq
->dl
.dl_nr_running
)
3018 deadline_queue_pull_task(rq
);
3022 * When switching to -deadline, we may overload the rq, then
3023 * we try to push someone off, if possible.
3025 static void switched_to_dl(struct rq
*rq
, struct task_struct
*p
)
3027 if (hrtimer_try_to_cancel(&p
->dl
.inactive_timer
) == 1)
3031 * In case a task is setscheduled to SCHED_DEADLINE we need to keep
3032 * track of that on its cpuset (for correct bandwidth tracking).
3036 /* If p is not queued we will update its parameters at next wakeup. */
3037 if (!task_on_rq_queued(p
)) {
3038 add_rq_bw(&p
->dl
, &rq
->dl
);
3043 if (rq
->donor
!= p
) {
3045 if (p
->nr_cpus_allowed
> 1 && rq
->dl
.overloaded
)
3046 deadline_queue_push_tasks(rq
);
3048 if (dl_task(rq
->donor
))
3049 wakeup_preempt_dl(rq
, p
, 0);
3053 update_dl_rq_load_avg(rq_clock_pelt(rq
), rq
, 0);
3058 * If the scheduling parameters of a -deadline task changed,
3059 * a push or pull operation might be needed.
3061 static void prio_changed_dl(struct rq
*rq
, struct task_struct
*p
,
3064 if (!task_on_rq_queued(p
))
3069 * This might be too much, but unfortunately
3070 * we don't have the old deadline value, and
3071 * we can't argue if the task is increasing
3072 * or lowering its prio, so...
3074 if (!rq
->dl
.overloaded
)
3075 deadline_queue_pull_task(rq
);
3077 if (task_current_donor(rq
, p
)) {
3079 * If we now have a earlier deadline task than p,
3080 * then reschedule, provided p is still on this
3083 if (dl_time_before(rq
->dl
.earliest_dl
.curr
, p
->dl
.deadline
))
3087 * Current may not be deadline in case p was throttled but we
3088 * have just replenished it (e.g. rt_mutex_setprio()).
3090 * Otherwise, if p was given an earlier deadline, reschedule.
3092 if (!dl_task(rq
->curr
) ||
3093 dl_time_before(p
->dl
.deadline
, rq
->curr
->dl
.deadline
))
3098 * We don't know if p has a earlier or later deadline, so let's blindly
3099 * set a (maybe not needed) rescheduling point.
3105 #ifdef CONFIG_SCHED_CORE
3106 static int task_is_throttled_dl(struct task_struct
*p
, int cpu
)
3108 return p
->dl
.dl_throttled
;
3112 DEFINE_SCHED_CLASS(dl
) = {
3114 .enqueue_task
= enqueue_task_dl
,
3115 .dequeue_task
= dequeue_task_dl
,
3116 .yield_task
= yield_task_dl
,
3118 .wakeup_preempt
= wakeup_preempt_dl
,
3120 .pick_task
= pick_task_dl
,
3121 .put_prev_task
= put_prev_task_dl
,
3122 .set_next_task
= set_next_task_dl
,
3125 .balance
= balance_dl
,
3126 .select_task_rq
= select_task_rq_dl
,
3127 .migrate_task_rq
= migrate_task_rq_dl
,
3128 .set_cpus_allowed
= set_cpus_allowed_dl
,
3129 .rq_online
= rq_online_dl
,
3130 .rq_offline
= rq_offline_dl
,
3131 .task_woken
= task_woken_dl
,
3132 .find_lock_rq
= find_lock_later_rq
,
3135 .task_tick
= task_tick_dl
,
3136 .task_fork
= task_fork_dl
,
3138 .prio_changed
= prio_changed_dl
,
3139 .switched_from
= switched_from_dl
,
3140 .switched_to
= switched_to_dl
,
3142 .update_curr
= update_curr_dl
,
3143 #ifdef CONFIG_SCHED_CORE
3144 .task_is_throttled
= task_is_throttled_dl
,
3148 /* Used for dl_bw check and update, used under sched_rt_handler()::mutex */
3149 static u64 dl_generation
;
3151 int sched_dl_global_validate(void)
3153 u64 runtime
= global_rt_runtime();
3154 u64 period
= global_rt_period();
3155 u64 new_bw
= to_ratio(period
, runtime
);
3156 u64 gen
= ++dl_generation
;
3158 int cpu
, cpus
, ret
= 0;
3159 unsigned long flags
;
3162 * Here we want to check the bandwidth not being set to some
3163 * value smaller than the currently allocated bandwidth in
3164 * any of the root_domains.
3166 for_each_possible_cpu(cpu
) {
3167 rcu_read_lock_sched();
3169 if (dl_bw_visited(cpu
, gen
))
3172 dl_b
= dl_bw_of(cpu
);
3173 cpus
= dl_bw_cpus(cpu
);
3175 raw_spin_lock_irqsave(&dl_b
->lock
, flags
);
3176 if (new_bw
* cpus
< dl_b
->total_bw
)
3178 raw_spin_unlock_irqrestore(&dl_b
->lock
, flags
);
3181 rcu_read_unlock_sched();
3190 static void init_dl_rq_bw_ratio(struct dl_rq
*dl_rq
)
3192 if (global_rt_runtime() == RUNTIME_INF
) {
3193 dl_rq
->bw_ratio
= 1 << RATIO_SHIFT
;
3194 dl_rq
->max_bw
= dl_rq
->extra_bw
= 1 << BW_SHIFT
;
3196 dl_rq
->bw_ratio
= to_ratio(global_rt_runtime(),
3197 global_rt_period()) >> (BW_SHIFT
- RATIO_SHIFT
);
3198 dl_rq
->max_bw
= dl_rq
->extra_bw
=
3199 to_ratio(global_rt_period(), global_rt_runtime());
3203 void sched_dl_do_global(void)
3206 u64 gen
= ++dl_generation
;
3209 unsigned long flags
;
3211 if (global_rt_runtime() != RUNTIME_INF
)
3212 new_bw
= to_ratio(global_rt_period(), global_rt_runtime());
3214 for_each_possible_cpu(cpu
) {
3215 rcu_read_lock_sched();
3217 if (dl_bw_visited(cpu
, gen
)) {
3218 rcu_read_unlock_sched();
3222 dl_b
= dl_bw_of(cpu
);
3224 raw_spin_lock_irqsave(&dl_b
->lock
, flags
);
3226 raw_spin_unlock_irqrestore(&dl_b
->lock
, flags
);
3228 rcu_read_unlock_sched();
3229 init_dl_rq_bw_ratio(&cpu_rq(cpu
)->dl
);
3234 * We must be sure that accepting a new task (or allowing changing the
3235 * parameters of an existing one) is consistent with the bandwidth
3236 * constraints. If yes, this function also accordingly updates the currently
3237 * allocated bandwidth to reflect the new situation.
3239 * This function is called while holding p's rq->lock.
3241 int sched_dl_overflow(struct task_struct
*p
, int policy
,
3242 const struct sched_attr
*attr
)
3244 u64 period
= attr
->sched_period
?: attr
->sched_deadline
;
3245 u64 runtime
= attr
->sched_runtime
;
3246 u64 new_bw
= dl_policy(policy
) ? to_ratio(period
, runtime
) : 0;
3247 int cpus
, err
= -1, cpu
= task_cpu(p
);
3248 struct dl_bw
*dl_b
= dl_bw_of(cpu
);
3251 if (attr
->sched_flags
& SCHED_FLAG_SUGOV
)
3254 /* !deadline task may carry old deadline bandwidth */
3255 if (new_bw
== p
->dl
.dl_bw
&& task_has_dl_policy(p
))
3259 * Either if a task, enters, leave, or stays -deadline but changes
3260 * its parameters, we may need to update accordingly the total
3261 * allocated bandwidth of the container.
3263 raw_spin_lock(&dl_b
->lock
);
3264 cpus
= dl_bw_cpus(cpu
);
3265 cap
= dl_bw_capacity(cpu
);
3267 if (dl_policy(policy
) && !task_has_dl_policy(p
) &&
3268 !__dl_overflow(dl_b
, cap
, 0, new_bw
)) {
3269 if (hrtimer_active(&p
->dl
.inactive_timer
))
3270 __dl_sub(dl_b
, p
->dl
.dl_bw
, cpus
);
3271 __dl_add(dl_b
, new_bw
, cpus
);
3273 } else if (dl_policy(policy
) && task_has_dl_policy(p
) &&
3274 !__dl_overflow(dl_b
, cap
, p
->dl
.dl_bw
, new_bw
)) {
3276 * XXX this is slightly incorrect: when the task
3277 * utilization decreases, we should delay the total
3278 * utilization change until the task's 0-lag point.
3279 * But this would require to set the task's "inactive
3280 * timer" when the task is not inactive.
3282 __dl_sub(dl_b
, p
->dl
.dl_bw
, cpus
);
3283 __dl_add(dl_b
, new_bw
, cpus
);
3284 dl_change_utilization(p
, new_bw
);
3286 } else if (!dl_policy(policy
) && task_has_dl_policy(p
)) {
3288 * Do not decrease the total deadline utilization here,
3289 * switched_from_dl() will take care to do it at the correct
3294 raw_spin_unlock(&dl_b
->lock
);
3300 * This function initializes the sched_dl_entity of a newly becoming
3301 * SCHED_DEADLINE task.
3303 * Only the static values are considered here, the actual runtime and the
3304 * absolute deadline will be properly calculated when the task is enqueued
3305 * for the first time with its new policy.
3307 void __setparam_dl(struct task_struct
*p
, const struct sched_attr
*attr
)
3309 struct sched_dl_entity
*dl_se
= &p
->dl
;
3311 dl_se
->dl_runtime
= attr
->sched_runtime
;
3312 dl_se
->dl_deadline
= attr
->sched_deadline
;
3313 dl_se
->dl_period
= attr
->sched_period
?: dl_se
->dl_deadline
;
3314 dl_se
->flags
= attr
->sched_flags
& SCHED_DL_FLAGS
;
3315 dl_se
->dl_bw
= to_ratio(dl_se
->dl_period
, dl_se
->dl_runtime
);
3316 dl_se
->dl_density
= to_ratio(dl_se
->dl_deadline
, dl_se
->dl_runtime
);
3319 void __getparam_dl(struct task_struct
*p
, struct sched_attr
*attr
)
3321 struct sched_dl_entity
*dl_se
= &p
->dl
;
3323 attr
->sched_priority
= p
->rt_priority
;
3324 attr
->sched_runtime
= dl_se
->dl_runtime
;
3325 attr
->sched_deadline
= dl_se
->dl_deadline
;
3326 attr
->sched_period
= dl_se
->dl_period
;
3327 attr
->sched_flags
&= ~SCHED_DL_FLAGS
;
3328 attr
->sched_flags
|= dl_se
->flags
;
3332 * This function validates the new parameters of a -deadline task.
3333 * We ask for the deadline not being zero, and greater or equal
3334 * than the runtime, as well as the period of being zero or
3335 * greater than deadline. Furthermore, we have to be sure that
3336 * user parameters are above the internal resolution of 1us (we
3337 * check sched_runtime only since it is always the smaller one) and
3338 * below 2^63 ns (we have to check both sched_deadline and
3339 * sched_period, as the latter can be zero).
3341 bool __checkparam_dl(const struct sched_attr
*attr
)
3343 u64 period
, max
, min
;
3345 /* special dl tasks don't actually use any parameter */
3346 if (attr
->sched_flags
& SCHED_FLAG_SUGOV
)
3350 if (attr
->sched_deadline
== 0)
3354 * Since we truncate DL_SCALE bits, make sure we're at least
3357 if (attr
->sched_runtime
< (1ULL << DL_SCALE
))
3361 * Since we use the MSB for wrap-around and sign issues, make
3362 * sure it's not set (mind that period can be equal to zero).
3364 if (attr
->sched_deadline
& (1ULL << 63) ||
3365 attr
->sched_period
& (1ULL << 63))
3368 period
= attr
->sched_period
;
3370 period
= attr
->sched_deadline
;
3372 /* runtime <= deadline <= period (if period != 0) */
3373 if (period
< attr
->sched_deadline
||
3374 attr
->sched_deadline
< attr
->sched_runtime
)
3377 max
= (u64
)READ_ONCE(sysctl_sched_dl_period_max
) * NSEC_PER_USEC
;
3378 min
= (u64
)READ_ONCE(sysctl_sched_dl_period_min
) * NSEC_PER_USEC
;
3380 if (period
< min
|| period
> max
)
3387 * This function clears the sched_dl_entity static params.
3389 static void __dl_clear_params(struct sched_dl_entity
*dl_se
)
3391 dl_se
->dl_runtime
= 0;
3392 dl_se
->dl_deadline
= 0;
3393 dl_se
->dl_period
= 0;
3396 dl_se
->dl_density
= 0;
3398 dl_se
->dl_throttled
= 0;
3399 dl_se
->dl_yielded
= 0;
3400 dl_se
->dl_non_contending
= 0;
3401 dl_se
->dl_overrun
= 0;
3402 dl_se
->dl_server
= 0;
3404 #ifdef CONFIG_RT_MUTEXES
3405 dl_se
->pi_se
= dl_se
;
3409 void init_dl_entity(struct sched_dl_entity
*dl_se
)
3411 RB_CLEAR_NODE(&dl_se
->rb_node
);
3412 init_dl_task_timer(dl_se
);
3413 init_dl_inactive_task_timer(dl_se
);
3414 __dl_clear_params(dl_se
);
3417 bool dl_param_changed(struct task_struct
*p
, const struct sched_attr
*attr
)
3419 struct sched_dl_entity
*dl_se
= &p
->dl
;
3421 if (dl_se
->dl_runtime
!= attr
->sched_runtime
||
3422 dl_se
->dl_deadline
!= attr
->sched_deadline
||
3423 dl_se
->dl_period
!= attr
->sched_period
||
3424 dl_se
->flags
!= (attr
->sched_flags
& SCHED_DL_FLAGS
))
3431 int dl_cpuset_cpumask_can_shrink(const struct cpumask
*cur
,
3432 const struct cpumask
*trial
)
3434 unsigned long flags
, cap
;
3435 struct dl_bw
*cur_dl_b
;
3438 rcu_read_lock_sched();
3439 cur_dl_b
= dl_bw_of(cpumask_any(cur
));
3440 cap
= __dl_bw_capacity(trial
);
3441 raw_spin_lock_irqsave(&cur_dl_b
->lock
, flags
);
3442 if (__dl_overflow(cur_dl_b
, cap
, 0, 0))
3444 raw_spin_unlock_irqrestore(&cur_dl_b
->lock
, flags
);
3445 rcu_read_unlock_sched();
3450 enum dl_bw_request
{
3451 dl_bw_req_check_overflow
= 0,
3456 static int dl_bw_manage(enum dl_bw_request req
, int cpu
, u64 dl_bw
)
3458 unsigned long flags
;
3462 rcu_read_lock_sched();
3463 dl_b
= dl_bw_of(cpu
);
3464 raw_spin_lock_irqsave(&dl_b
->lock
, flags
);
3466 if (req
== dl_bw_req_free
) {
3467 __dl_sub(dl_b
, dl_bw
, dl_bw_cpus(cpu
));
3469 unsigned long cap
= dl_bw_capacity(cpu
);
3471 overflow
= __dl_overflow(dl_b
, cap
, 0, dl_bw
);
3473 if (req
== dl_bw_req_alloc
&& !overflow
) {
3475 * We reserve space in the destination
3476 * root_domain, as we can't fail after this point.
3477 * We will free resources in the source root_domain
3478 * later on (see set_cpus_allowed_dl()).
3480 __dl_add(dl_b
, dl_bw
, dl_bw_cpus(cpu
));
3484 raw_spin_unlock_irqrestore(&dl_b
->lock
, flags
);
3485 rcu_read_unlock_sched();
3487 return overflow
? -EBUSY
: 0;
3490 int dl_bw_check_overflow(int cpu
)
3492 return dl_bw_manage(dl_bw_req_check_overflow
, cpu
, 0);
3495 int dl_bw_alloc(int cpu
, u64 dl_bw
)
3497 return dl_bw_manage(dl_bw_req_alloc
, cpu
, dl_bw
);
3500 void dl_bw_free(int cpu
, u64 dl_bw
)
3502 dl_bw_manage(dl_bw_req_free
, cpu
, dl_bw
);
3506 #ifdef CONFIG_SCHED_DEBUG
3507 void print_dl_stats(struct seq_file
*m
, int cpu
)
3509 print_dl_rq(m
, cpu
, &cpu_rq(cpu
)->dl
);
3511 #endif /* CONFIG_SCHED_DEBUG */