accel/amdxdna: use modern PM helpers
[drm/drm-misc.git] / kernel / sched / membarrier.c
blob809194cd779f42fa57759b731c52685a14744f83
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2010-2017 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
5 * membarrier system call
6 */
8 /*
9 * For documentation purposes, here are some membarrier ordering
10 * scenarios to keep in mind:
12 * A) Userspace thread execution after IPI vs membarrier's memory
13 * barrier before sending the IPI
15 * Userspace variables:
17 * int x = 0, y = 0;
19 * The memory barrier at the start of membarrier() on CPU0 is necessary in
20 * order to enforce the guarantee that any writes occurring on CPU0 before
21 * the membarrier() is executed will be visible to any code executing on
22 * CPU1 after the IPI-induced memory barrier:
24 * CPU0 CPU1
26 * x = 1
27 * membarrier():
28 * a: smp_mb()
29 * b: send IPI IPI-induced mb
30 * c: smp_mb()
31 * r2 = y
32 * y = 1
33 * barrier()
34 * r1 = x
36 * BUG_ON(r1 == 0 && r2 == 0)
38 * The write to y and load from x by CPU1 are unordered by the hardware,
39 * so it's possible to have "r1 = x" reordered before "y = 1" at any
40 * point after (b). If the memory barrier at (a) is omitted, then "x = 1"
41 * can be reordered after (a) (although not after (c)), so we get r1 == 0
42 * and r2 == 0. This violates the guarantee that membarrier() is
43 * supposed by provide.
45 * The timing of the memory barrier at (a) has to ensure that it executes
46 * before the IPI-induced memory barrier on CPU1.
48 * B) Userspace thread execution before IPI vs membarrier's memory
49 * barrier after completing the IPI
51 * Userspace variables:
53 * int x = 0, y = 0;
55 * The memory barrier at the end of membarrier() on CPU0 is necessary in
56 * order to enforce the guarantee that any writes occurring on CPU1 before
57 * the membarrier() is executed will be visible to any code executing on
58 * CPU0 after the membarrier():
60 * CPU0 CPU1
62 * x = 1
63 * barrier()
64 * y = 1
65 * r2 = y
66 * membarrier():
67 * a: smp_mb()
68 * b: send IPI IPI-induced mb
69 * c: smp_mb()
70 * r1 = x
71 * BUG_ON(r1 == 0 && r2 == 1)
73 * The writes to x and y are unordered by the hardware, so it's possible to
74 * have "r2 = 1" even though the write to x doesn't execute until (b). If
75 * the memory barrier at (c) is omitted then "r1 = x" can be reordered
76 * before (b) (although not before (a)), so we get "r1 = 0". This violates
77 * the guarantee that membarrier() is supposed to provide.
79 * The timing of the memory barrier at (c) has to ensure that it executes
80 * after the IPI-induced memory barrier on CPU1.
82 * C) Scheduling userspace thread -> kthread -> userspace thread vs membarrier
84 * CPU0 CPU1
86 * membarrier():
87 * a: smp_mb()
88 * d: switch to kthread (includes mb)
89 * b: read rq->curr->mm == NULL
90 * e: switch to user (includes mb)
91 * c: smp_mb()
93 * Using the scenario from (A), we can show that (a) needs to be paired
94 * with (e). Using the scenario from (B), we can show that (c) needs to
95 * be paired with (d).
97 * D) exit_mm vs membarrier
99 * Two thread groups are created, A and B. Thread group B is created by
100 * issuing clone from group A with flag CLONE_VM set, but not CLONE_THREAD.
101 * Let's assume we have a single thread within each thread group (Thread A
102 * and Thread B). Thread A runs on CPU0, Thread B runs on CPU1.
104 * CPU0 CPU1
106 * membarrier():
107 * a: smp_mb()
108 * exit_mm():
109 * d: smp_mb()
110 * e: current->mm = NULL
111 * b: read rq->curr->mm == NULL
112 * c: smp_mb()
114 * Using scenario (B), we can show that (c) needs to be paired with (d).
116 * E) kthread_{use,unuse}_mm vs membarrier
118 * CPU0 CPU1
120 * membarrier():
121 * a: smp_mb()
122 * kthread_unuse_mm()
123 * d: smp_mb()
124 * e: current->mm = NULL
125 * b: read rq->curr->mm == NULL
126 * kthread_use_mm()
127 * f: current->mm = mm
128 * g: smp_mb()
129 * c: smp_mb()
131 * Using the scenario from (A), we can show that (a) needs to be paired
132 * with (g). Using the scenario from (B), we can show that (c) needs to
133 * be paired with (d).
137 * Bitmask made from a "or" of all commands within enum membarrier_cmd,
138 * except MEMBARRIER_CMD_QUERY.
140 #ifdef CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE
141 #define MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK \
142 (MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE \
143 | MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE)
144 #else
145 #define MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK 0
146 #endif
148 #ifdef CONFIG_RSEQ
149 #define MEMBARRIER_PRIVATE_EXPEDITED_RSEQ_BITMASK \
150 (MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ \
151 | MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_RSEQ)
152 #else
153 #define MEMBARRIER_PRIVATE_EXPEDITED_RSEQ_BITMASK 0
154 #endif
156 #define MEMBARRIER_CMD_BITMASK \
157 (MEMBARRIER_CMD_GLOBAL | MEMBARRIER_CMD_GLOBAL_EXPEDITED \
158 | MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED \
159 | MEMBARRIER_CMD_PRIVATE_EXPEDITED \
160 | MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED \
161 | MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK \
162 | MEMBARRIER_PRIVATE_EXPEDITED_RSEQ_BITMASK \
163 | MEMBARRIER_CMD_GET_REGISTRATIONS)
165 static DEFINE_MUTEX(membarrier_ipi_mutex);
166 #define SERIALIZE_IPI() guard(mutex)(&membarrier_ipi_mutex)
168 static void ipi_mb(void *info)
170 smp_mb(); /* IPIs should be serializing but paranoid. */
173 static void ipi_sync_core(void *info)
176 * The smp_mb() in membarrier after all the IPIs is supposed to
177 * ensure that memory on remote CPUs that occur before the IPI
178 * become visible to membarrier()'s caller -- see scenario B in
179 * the big comment at the top of this file.
181 * A sync_core() would provide this guarantee, but
182 * sync_core_before_usermode() might end up being deferred until
183 * after membarrier()'s smp_mb().
185 smp_mb(); /* IPIs should be serializing but paranoid. */
187 sync_core_before_usermode();
190 static void ipi_rseq(void *info)
193 * Ensure that all stores done by the calling thread are visible
194 * to the current task before the current task resumes. We could
195 * probably optimize this away on most architectures, but by the
196 * time we've already sent an IPI, the cost of the extra smp_mb()
197 * is negligible.
199 smp_mb();
200 rseq_preempt(current);
203 static void ipi_sync_rq_state(void *info)
205 struct mm_struct *mm = (struct mm_struct *) info;
207 if (current->mm != mm)
208 return;
209 this_cpu_write(runqueues.membarrier_state,
210 atomic_read(&mm->membarrier_state));
212 * Issue a memory barrier after setting
213 * MEMBARRIER_STATE_GLOBAL_EXPEDITED in the current runqueue to
214 * guarantee that no memory access following registration is reordered
215 * before registration.
217 smp_mb();
220 void membarrier_exec_mmap(struct mm_struct *mm)
223 * Issue a memory barrier before clearing membarrier_state to
224 * guarantee that no memory access prior to exec is reordered after
225 * clearing this state.
227 smp_mb();
228 atomic_set(&mm->membarrier_state, 0);
230 * Keep the runqueue membarrier_state in sync with this mm
231 * membarrier_state.
233 this_cpu_write(runqueues.membarrier_state, 0);
236 void membarrier_update_current_mm(struct mm_struct *next_mm)
238 struct rq *rq = this_rq();
239 int membarrier_state = 0;
241 if (next_mm)
242 membarrier_state = atomic_read(&next_mm->membarrier_state);
243 if (READ_ONCE(rq->membarrier_state) == membarrier_state)
244 return;
245 WRITE_ONCE(rq->membarrier_state, membarrier_state);
248 static int membarrier_global_expedited(void)
250 int cpu;
251 cpumask_var_t tmpmask;
253 if (num_online_cpus() == 1)
254 return 0;
257 * Matches memory barriers after rq->curr modification in
258 * scheduler.
260 smp_mb(); /* system call entry is not a mb. */
262 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
263 return -ENOMEM;
265 SERIALIZE_IPI();
266 cpus_read_lock();
267 rcu_read_lock();
268 for_each_online_cpu(cpu) {
269 struct task_struct *p;
272 * Skipping the current CPU is OK even through we can be
273 * migrated at any point. The current CPU, at the point
274 * where we read raw_smp_processor_id(), is ensured to
275 * be in program order with respect to the caller
276 * thread. Therefore, we can skip this CPU from the
277 * iteration.
279 if (cpu == raw_smp_processor_id())
280 continue;
282 if (!(READ_ONCE(cpu_rq(cpu)->membarrier_state) &
283 MEMBARRIER_STATE_GLOBAL_EXPEDITED))
284 continue;
287 * Skip the CPU if it runs a kernel thread which is not using
288 * a task mm.
290 p = rcu_dereference(cpu_rq(cpu)->curr);
291 if (!p->mm)
292 continue;
294 __cpumask_set_cpu(cpu, tmpmask);
296 rcu_read_unlock();
298 preempt_disable();
299 smp_call_function_many(tmpmask, ipi_mb, NULL, 1);
300 preempt_enable();
302 free_cpumask_var(tmpmask);
303 cpus_read_unlock();
306 * Memory barrier on the caller thread _after_ we finished
307 * waiting for the last IPI. Matches memory barriers before
308 * rq->curr modification in scheduler.
310 smp_mb(); /* exit from system call is not a mb */
311 return 0;
314 static int membarrier_private_expedited(int flags, int cpu_id)
316 cpumask_var_t tmpmask;
317 struct mm_struct *mm = current->mm;
318 smp_call_func_t ipi_func = ipi_mb;
320 if (flags == MEMBARRIER_FLAG_SYNC_CORE) {
321 if (!IS_ENABLED(CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE))
322 return -EINVAL;
323 if (!(atomic_read(&mm->membarrier_state) &
324 MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY))
325 return -EPERM;
326 ipi_func = ipi_sync_core;
327 prepare_sync_core_cmd(mm);
328 } else if (flags == MEMBARRIER_FLAG_RSEQ) {
329 if (!IS_ENABLED(CONFIG_RSEQ))
330 return -EINVAL;
331 if (!(atomic_read(&mm->membarrier_state) &
332 MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY))
333 return -EPERM;
334 ipi_func = ipi_rseq;
335 } else {
336 WARN_ON_ONCE(flags);
337 if (!(atomic_read(&mm->membarrier_state) &
338 MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY))
339 return -EPERM;
342 if (flags != MEMBARRIER_FLAG_SYNC_CORE &&
343 (atomic_read(&mm->mm_users) == 1 || num_online_cpus() == 1))
344 return 0;
347 * Matches memory barriers after rq->curr modification in
348 * scheduler.
350 * On RISC-V, this barrier pairing is also needed for the
351 * SYNC_CORE command when switching between processes, cf.
352 * the inline comments in membarrier_arch_switch_mm().
354 smp_mb(); /* system call entry is not a mb. */
356 if (cpu_id < 0 && !zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
357 return -ENOMEM;
359 SERIALIZE_IPI();
360 cpus_read_lock();
362 if (cpu_id >= 0) {
363 struct task_struct *p;
365 if (cpu_id >= nr_cpu_ids || !cpu_online(cpu_id))
366 goto out;
367 rcu_read_lock();
368 p = rcu_dereference(cpu_rq(cpu_id)->curr);
369 if (!p || p->mm != mm) {
370 rcu_read_unlock();
371 goto out;
373 rcu_read_unlock();
374 } else {
375 int cpu;
377 rcu_read_lock();
378 for_each_online_cpu(cpu) {
379 struct task_struct *p;
381 p = rcu_dereference(cpu_rq(cpu)->curr);
382 if (p && p->mm == mm)
383 __cpumask_set_cpu(cpu, tmpmask);
385 rcu_read_unlock();
388 if (cpu_id >= 0) {
390 * smp_call_function_single() will call ipi_func() if cpu_id
391 * is the calling CPU.
393 smp_call_function_single(cpu_id, ipi_func, NULL, 1);
394 } else {
396 * For regular membarrier, we can save a few cycles by
397 * skipping the current cpu -- we're about to do smp_mb()
398 * below, and if we migrate to a different cpu, this cpu
399 * and the new cpu will execute a full barrier in the
400 * scheduler.
402 * For SYNC_CORE, we do need a barrier on the current cpu --
403 * otherwise, if we are migrated and replaced by a different
404 * task in the same mm just before, during, or after
405 * membarrier, we will end up with some thread in the mm
406 * running without a core sync.
408 * For RSEQ, don't rseq_preempt() the caller. User code
409 * is not supposed to issue syscalls at all from inside an
410 * rseq critical section.
412 if (flags != MEMBARRIER_FLAG_SYNC_CORE) {
413 preempt_disable();
414 smp_call_function_many(tmpmask, ipi_func, NULL, true);
415 preempt_enable();
416 } else {
417 on_each_cpu_mask(tmpmask, ipi_func, NULL, true);
421 out:
422 if (cpu_id < 0)
423 free_cpumask_var(tmpmask);
424 cpus_read_unlock();
427 * Memory barrier on the caller thread _after_ we finished
428 * waiting for the last IPI. Matches memory barriers before
429 * rq->curr modification in scheduler.
431 smp_mb(); /* exit from system call is not a mb */
433 return 0;
436 static int sync_runqueues_membarrier_state(struct mm_struct *mm)
438 int membarrier_state = atomic_read(&mm->membarrier_state);
439 cpumask_var_t tmpmask;
440 int cpu;
442 if (atomic_read(&mm->mm_users) == 1 || num_online_cpus() == 1) {
443 this_cpu_write(runqueues.membarrier_state, membarrier_state);
446 * For single mm user, we can simply issue a memory barrier
447 * after setting MEMBARRIER_STATE_GLOBAL_EXPEDITED in the
448 * mm and in the current runqueue to guarantee that no memory
449 * access following registration is reordered before
450 * registration.
452 smp_mb();
453 return 0;
456 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
457 return -ENOMEM;
460 * For mm with multiple users, we need to ensure all future
461 * scheduler executions will observe @mm's new membarrier
462 * state.
464 synchronize_rcu();
467 * For each cpu runqueue, if the task's mm match @mm, ensure that all
468 * @mm's membarrier state set bits are also set in the runqueue's
469 * membarrier state. This ensures that a runqueue scheduling
470 * between threads which are users of @mm has its membarrier state
471 * updated.
473 SERIALIZE_IPI();
474 cpus_read_lock();
475 rcu_read_lock();
476 for_each_online_cpu(cpu) {
477 struct rq *rq = cpu_rq(cpu);
478 struct task_struct *p;
480 p = rcu_dereference(rq->curr);
481 if (p && p->mm == mm)
482 __cpumask_set_cpu(cpu, tmpmask);
484 rcu_read_unlock();
486 on_each_cpu_mask(tmpmask, ipi_sync_rq_state, mm, true);
488 free_cpumask_var(tmpmask);
489 cpus_read_unlock();
491 return 0;
494 static int membarrier_register_global_expedited(void)
496 struct task_struct *p = current;
497 struct mm_struct *mm = p->mm;
498 int ret;
500 if (atomic_read(&mm->membarrier_state) &
501 MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY)
502 return 0;
503 atomic_or(MEMBARRIER_STATE_GLOBAL_EXPEDITED, &mm->membarrier_state);
504 ret = sync_runqueues_membarrier_state(mm);
505 if (ret)
506 return ret;
507 atomic_or(MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY,
508 &mm->membarrier_state);
510 return 0;
513 static int membarrier_register_private_expedited(int flags)
515 struct task_struct *p = current;
516 struct mm_struct *mm = p->mm;
517 int ready_state = MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY,
518 set_state = MEMBARRIER_STATE_PRIVATE_EXPEDITED,
519 ret;
521 if (flags == MEMBARRIER_FLAG_SYNC_CORE) {
522 if (!IS_ENABLED(CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE))
523 return -EINVAL;
524 ready_state =
525 MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY;
526 } else if (flags == MEMBARRIER_FLAG_RSEQ) {
527 if (!IS_ENABLED(CONFIG_RSEQ))
528 return -EINVAL;
529 ready_state =
530 MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY;
531 } else {
532 WARN_ON_ONCE(flags);
536 * We need to consider threads belonging to different thread
537 * groups, which use the same mm. (CLONE_VM but not
538 * CLONE_THREAD).
540 if ((atomic_read(&mm->membarrier_state) & ready_state) == ready_state)
541 return 0;
542 if (flags & MEMBARRIER_FLAG_SYNC_CORE)
543 set_state |= MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE;
544 if (flags & MEMBARRIER_FLAG_RSEQ)
545 set_state |= MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ;
546 atomic_or(set_state, &mm->membarrier_state);
547 ret = sync_runqueues_membarrier_state(mm);
548 if (ret)
549 return ret;
550 atomic_or(ready_state, &mm->membarrier_state);
552 return 0;
555 static int membarrier_get_registrations(void)
557 struct task_struct *p = current;
558 struct mm_struct *mm = p->mm;
559 int registrations_mask = 0, membarrier_state, i;
560 static const int states[] = {
561 MEMBARRIER_STATE_GLOBAL_EXPEDITED |
562 MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY,
563 MEMBARRIER_STATE_PRIVATE_EXPEDITED |
564 MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY,
565 MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE |
566 MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY,
567 MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ |
568 MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY
570 static const int registration_cmds[] = {
571 MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED,
572 MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED,
573 MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE,
574 MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_RSEQ
576 BUILD_BUG_ON(ARRAY_SIZE(states) != ARRAY_SIZE(registration_cmds));
578 membarrier_state = atomic_read(&mm->membarrier_state);
579 for (i = 0; i < ARRAY_SIZE(states); ++i) {
580 if (membarrier_state & states[i]) {
581 registrations_mask |= registration_cmds[i];
582 membarrier_state &= ~states[i];
585 WARN_ON_ONCE(membarrier_state != 0);
586 return registrations_mask;
590 * sys_membarrier - issue memory barriers on a set of threads
591 * @cmd: Takes command values defined in enum membarrier_cmd.
592 * @flags: Currently needs to be 0 for all commands other than
593 * MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ: in the latter
594 * case it can be MEMBARRIER_CMD_FLAG_CPU, indicating that @cpu_id
595 * contains the CPU on which to interrupt (= restart)
596 * the RSEQ critical section.
597 * @cpu_id: if @flags == MEMBARRIER_CMD_FLAG_CPU, indicates the cpu on which
598 * RSEQ CS should be interrupted (@cmd must be
599 * MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ).
601 * If this system call is not implemented, -ENOSYS is returned. If the
602 * command specified does not exist, not available on the running
603 * kernel, or if the command argument is invalid, this system call
604 * returns -EINVAL. For a given command, with flags argument set to 0,
605 * if this system call returns -ENOSYS or -EINVAL, it is guaranteed to
606 * always return the same value until reboot. In addition, it can return
607 * -ENOMEM if there is not enough memory available to perform the system
608 * call.
610 * All memory accesses performed in program order from each targeted thread
611 * is guaranteed to be ordered with respect to sys_membarrier(). If we use
612 * the semantic "barrier()" to represent a compiler barrier forcing memory
613 * accesses to be performed in program order across the barrier, and
614 * smp_mb() to represent explicit memory barriers forcing full memory
615 * ordering across the barrier, we have the following ordering table for
616 * each pair of barrier(), sys_membarrier() and smp_mb():
618 * The pair ordering is detailed as (O: ordered, X: not ordered):
620 * barrier() smp_mb() sys_membarrier()
621 * barrier() X X O
622 * smp_mb() X O O
623 * sys_membarrier() O O O
625 SYSCALL_DEFINE3(membarrier, int, cmd, unsigned int, flags, int, cpu_id)
627 switch (cmd) {
628 case MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ:
629 if (unlikely(flags && flags != MEMBARRIER_CMD_FLAG_CPU))
630 return -EINVAL;
631 break;
632 default:
633 if (unlikely(flags))
634 return -EINVAL;
637 if (!(flags & MEMBARRIER_CMD_FLAG_CPU))
638 cpu_id = -1;
640 switch (cmd) {
641 case MEMBARRIER_CMD_QUERY:
643 int cmd_mask = MEMBARRIER_CMD_BITMASK;
645 if (tick_nohz_full_enabled())
646 cmd_mask &= ~MEMBARRIER_CMD_GLOBAL;
647 return cmd_mask;
649 case MEMBARRIER_CMD_GLOBAL:
650 /* MEMBARRIER_CMD_GLOBAL is not compatible with nohz_full. */
651 if (tick_nohz_full_enabled())
652 return -EINVAL;
653 if (num_online_cpus() > 1)
654 synchronize_rcu();
655 return 0;
656 case MEMBARRIER_CMD_GLOBAL_EXPEDITED:
657 return membarrier_global_expedited();
658 case MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED:
659 return membarrier_register_global_expedited();
660 case MEMBARRIER_CMD_PRIVATE_EXPEDITED:
661 return membarrier_private_expedited(0, cpu_id);
662 case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED:
663 return membarrier_register_private_expedited(0);
664 case MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE:
665 return membarrier_private_expedited(MEMBARRIER_FLAG_SYNC_CORE, cpu_id);
666 case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE:
667 return membarrier_register_private_expedited(MEMBARRIER_FLAG_SYNC_CORE);
668 case MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ:
669 return membarrier_private_expedited(MEMBARRIER_FLAG_RSEQ, cpu_id);
670 case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_RSEQ:
671 return membarrier_register_private_expedited(MEMBARRIER_FLAG_RSEQ);
672 case MEMBARRIER_CMD_GET_REGISTRATIONS:
673 return membarrier_get_registrations();
674 default:
675 return -EINVAL;