1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _KERNEL_STATS_H
3 #define _KERNEL_STATS_H
5 #ifdef CONFIG_SCHEDSTATS
7 extern struct static_key_false sched_schedstats
;
10 * Expects runqueue lock to be held for atomicity of update
13 rq_sched_info_arrive(struct rq
*rq
, unsigned long long delta
)
16 rq
->rq_sched_info
.run_delay
+= delta
;
17 rq
->rq_sched_info
.pcount
++;
22 * Expects runqueue lock to be held for atomicity of update
25 rq_sched_info_depart(struct rq
*rq
, unsigned long long delta
)
28 rq
->rq_cpu_time
+= delta
;
32 rq_sched_info_dequeue(struct rq
*rq
, unsigned long long delta
)
35 rq
->rq_sched_info
.run_delay
+= delta
;
37 #define schedstat_enabled() static_branch_unlikely(&sched_schedstats)
38 #define __schedstat_inc(var) do { var++; } while (0)
39 #define schedstat_inc(var) do { if (schedstat_enabled()) { var++; } } while (0)
40 #define __schedstat_add(var, amt) do { var += (amt); } while (0)
41 #define schedstat_add(var, amt) do { if (schedstat_enabled()) { var += (amt); } } while (0)
42 #define __schedstat_set(var, val) do { var = (val); } while (0)
43 #define schedstat_set(var, val) do { if (schedstat_enabled()) { var = (val); } } while (0)
44 #define schedstat_val(var) (var)
45 #define schedstat_val_or_zero(var) ((schedstat_enabled()) ? (var) : 0)
47 void __update_stats_wait_start(struct rq
*rq
, struct task_struct
*p
,
48 struct sched_statistics
*stats
);
50 void __update_stats_wait_end(struct rq
*rq
, struct task_struct
*p
,
51 struct sched_statistics
*stats
);
52 void __update_stats_enqueue_sleeper(struct rq
*rq
, struct task_struct
*p
,
53 struct sched_statistics
*stats
);
56 check_schedstat_required(void)
58 if (schedstat_enabled())
61 /* Force schedstat enabled if a dependent tracepoint is active */
62 if (trace_sched_stat_wait_enabled() ||
63 trace_sched_stat_sleep_enabled() ||
64 trace_sched_stat_iowait_enabled() ||
65 trace_sched_stat_blocked_enabled() ||
66 trace_sched_stat_runtime_enabled())
67 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, stat_blocked and stat_runtime require the kernel parameter schedstats=enable or kernel.sched_schedstats=1\n");
70 #else /* !CONFIG_SCHEDSTATS: */
72 static inline void rq_sched_info_arrive (struct rq
*rq
, unsigned long long delta
) { }
73 static inline void rq_sched_info_dequeue(struct rq
*rq
, unsigned long long delta
) { }
74 static inline void rq_sched_info_depart (struct rq
*rq
, unsigned long long delta
) { }
75 # define schedstat_enabled() 0
76 # define __schedstat_inc(var) do { } while (0)
77 # define schedstat_inc(var) do { } while (0)
78 # define __schedstat_add(var, amt) do { } while (0)
79 # define schedstat_add(var, amt) do { } while (0)
80 # define __schedstat_set(var, val) do { } while (0)
81 # define schedstat_set(var, val) do { } while (0)
82 # define schedstat_val(var) 0
83 # define schedstat_val_or_zero(var) 0
85 # define __update_stats_wait_start(rq, p, stats) do { } while (0)
86 # define __update_stats_wait_end(rq, p, stats) do { } while (0)
87 # define __update_stats_enqueue_sleeper(rq, p, stats) do { } while (0)
88 # define check_schedstat_required() do { } while (0)
90 #endif /* CONFIG_SCHEDSTATS */
92 #ifdef CONFIG_FAIR_GROUP_SCHED
93 struct sched_entity_stats
{
94 struct sched_entity se
;
95 struct sched_statistics stats
;
96 } __no_randomize_layout
;
99 static inline struct sched_statistics
*
100 __schedstats_from_se(struct sched_entity
*se
)
102 #ifdef CONFIG_FAIR_GROUP_SCHED
103 if (!entity_is_task(se
))
104 return &container_of(se
, struct sched_entity_stats
, se
)->stats
;
106 return &task_of(se
)->stats
;
110 void psi_task_change(struct task_struct
*task
, int clear
, int set
);
111 void psi_task_switch(struct task_struct
*prev
, struct task_struct
*next
,
113 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
114 void psi_account_irqtime(struct rq
*rq
, struct task_struct
*curr
, struct task_struct
*prev
);
116 static inline void psi_account_irqtime(struct rq
*rq
, struct task_struct
*curr
,
117 struct task_struct
*prev
) {}
118 #endif /*CONFIG_IRQ_TIME_ACCOUNTING */
120 * PSI tracks state that persists across sleeps, such as iowaits and
121 * memory stalls. As a result, it has to distinguish between sleeps,
122 * where a task's runnable state changes, and migrations, where a task
123 * and its runnable state are being moved between CPUs and runqueues.
125 * A notable case is a task whose dequeue is delayed. PSI considers
126 * those sleeping, but because they are still on the runqueue they can
127 * go through migration requeues. In this case, *sleeping* states need
130 static inline void psi_enqueue(struct task_struct
*p
, int flags
)
132 int clear
= 0, set
= 0;
134 if (static_branch_likely(&psi_disabled
))
137 /* Same runqueue, nothing changed for psi */
138 if (flags
& ENQUEUE_RESTORE
)
141 if (p
->se
.sched_delayed
) {
142 /* CPU migration of "sleeping" task */
143 SCHED_WARN_ON(!(flags
& ENQUEUE_MIGRATED
));
148 } else if (flags
& ENQUEUE_MIGRATED
) {
149 /* CPU migration of runnable task */
152 set
|= TSK_MEMSTALL
| TSK_MEMSTALL_RUNNING
;
154 /* Wakeup of new or sleeping task */
159 set
|= TSK_MEMSTALL_RUNNING
;
162 psi_task_change(p
, clear
, set
);
165 static inline void psi_dequeue(struct task_struct
*p
, int flags
)
167 if (static_branch_likely(&psi_disabled
))
170 /* Same runqueue, nothing changed for psi */
171 if (flags
& DEQUEUE_SAVE
)
175 * A voluntary sleep is a dequeue followed by a task switch. To
176 * avoid walking all ancestors twice, psi_task_switch() handles
177 * TSK_RUNNING and TSK_IOWAIT for us when it moves TSK_ONCPU.
180 if (flags
& DEQUEUE_SLEEP
)
184 * When migrating a task to another CPU, clear all psi
185 * state. The enqueue callback above will work it out.
187 psi_task_change(p
, p
->psi_flags
, 0);
190 static inline void psi_ttwu_dequeue(struct task_struct
*p
)
192 if (static_branch_likely(&psi_disabled
))
195 * Is the task being migrated during a wakeup? Make sure to
196 * deregister its sleep-persistent psi states from the old
197 * queue, and let psi_enqueue() know it has to requeue.
199 if (unlikely(p
->psi_flags
)) {
203 rq
= __task_rq_lock(p
, &rf
);
204 psi_task_change(p
, p
->psi_flags
, 0);
205 __task_rq_unlock(rq
, &rf
);
209 static inline void psi_sched_switch(struct task_struct
*prev
,
210 struct task_struct
*next
,
213 if (static_branch_likely(&psi_disabled
))
216 psi_task_switch(prev
, next
, sleep
);
219 #else /* CONFIG_PSI */
220 static inline void psi_enqueue(struct task_struct
*p
, bool migrate
) {}
221 static inline void psi_dequeue(struct task_struct
*p
, bool migrate
) {}
222 static inline void psi_ttwu_dequeue(struct task_struct
*p
) {}
223 static inline void psi_sched_switch(struct task_struct
*prev
,
224 struct task_struct
*next
,
226 static inline void psi_account_irqtime(struct rq
*rq
, struct task_struct
*curr
,
227 struct task_struct
*prev
) {}
228 #endif /* CONFIG_PSI */
230 #ifdef CONFIG_SCHED_INFO
232 * We are interested in knowing how long it was from the *first* time a
233 * task was queued to the time that it finally hit a CPU, we call this routine
234 * from dequeue_task() to account for possible rq->clock skew across CPUs. The
235 * delta taken on each CPU would annul the skew.
237 static inline void sched_info_dequeue(struct rq
*rq
, struct task_struct
*t
)
239 unsigned long long delta
= 0;
241 if (!t
->sched_info
.last_queued
)
244 delta
= rq_clock(rq
) - t
->sched_info
.last_queued
;
245 t
->sched_info
.last_queued
= 0;
246 t
->sched_info
.run_delay
+= delta
;
248 rq_sched_info_dequeue(rq
, delta
);
252 * Called when a task finally hits the CPU. We can now calculate how
253 * long it was waiting to run. We also note when it began so that we
254 * can keep stats on how long its time-slice is.
256 static void sched_info_arrive(struct rq
*rq
, struct task_struct
*t
)
258 unsigned long long now
, delta
= 0;
260 if (!t
->sched_info
.last_queued
)
264 delta
= now
- t
->sched_info
.last_queued
;
265 t
->sched_info
.last_queued
= 0;
266 t
->sched_info
.run_delay
+= delta
;
267 t
->sched_info
.last_arrival
= now
;
268 t
->sched_info
.pcount
++;
270 rq_sched_info_arrive(rq
, delta
);
274 * This function is only called from enqueue_task(), but also only updates
275 * the timestamp if it is already not set. It's assumed that
276 * sched_info_dequeue() will clear that stamp when appropriate.
278 static inline void sched_info_enqueue(struct rq
*rq
, struct task_struct
*t
)
280 if (!t
->sched_info
.last_queued
)
281 t
->sched_info
.last_queued
= rq_clock(rq
);
285 * Called when a process ceases being the active-running process involuntarily
286 * due, typically, to expiring its time slice (this may also be called when
287 * switching to the idle task). Now we can calculate how long we ran.
288 * Also, if the process is still in the TASK_RUNNING state, call
289 * sched_info_enqueue() to mark that it has now again started waiting on
292 static inline void sched_info_depart(struct rq
*rq
, struct task_struct
*t
)
294 unsigned long long delta
= rq_clock(rq
) - t
->sched_info
.last_arrival
;
296 rq_sched_info_depart(rq
, delta
);
298 if (task_is_running(t
))
299 sched_info_enqueue(rq
, t
);
303 * Called when tasks are switched involuntarily due, typically, to expiring
304 * their time slice. (This may also be called when switching to or from
305 * the idle task.) We are only called when prev != next.
308 sched_info_switch(struct rq
*rq
, struct task_struct
*prev
, struct task_struct
*next
)
311 * prev now departs the CPU. It's not interesting to record
312 * stats about how efficient we were at scheduling the idle
315 if (prev
!= rq
->idle
)
316 sched_info_depart(rq
, prev
);
318 if (next
!= rq
->idle
)
319 sched_info_arrive(rq
, next
);
322 #else /* !CONFIG_SCHED_INFO: */
323 # define sched_info_enqueue(rq, t) do { } while (0)
324 # define sched_info_dequeue(rq, t) do { } while (0)
325 # define sched_info_switch(rq, t, next) do { } while (0)
326 #endif /* CONFIG_SCHED_INFO */
328 #endif /* _KERNEL_STATS_H */