1 // SPDX-License-Identifier: GPL-2.0-only
3 * Generic waiting primitives.
5 * (C) 2004 Nadia Yvette Chambers, Oracle
8 void __init_waitqueue_head(struct wait_queue_head
*wq_head
, const char *name
, struct lock_class_key
*key
)
10 spin_lock_init(&wq_head
->lock
);
11 lockdep_set_class_and_name(&wq_head
->lock
, key
, name
);
12 INIT_LIST_HEAD(&wq_head
->head
);
15 EXPORT_SYMBOL(__init_waitqueue_head
);
17 void add_wait_queue(struct wait_queue_head
*wq_head
, struct wait_queue_entry
*wq_entry
)
21 wq_entry
->flags
&= ~WQ_FLAG_EXCLUSIVE
;
22 spin_lock_irqsave(&wq_head
->lock
, flags
);
23 __add_wait_queue(wq_head
, wq_entry
);
24 spin_unlock_irqrestore(&wq_head
->lock
, flags
);
26 EXPORT_SYMBOL(add_wait_queue
);
28 void add_wait_queue_exclusive(struct wait_queue_head
*wq_head
, struct wait_queue_entry
*wq_entry
)
32 wq_entry
->flags
|= WQ_FLAG_EXCLUSIVE
;
33 spin_lock_irqsave(&wq_head
->lock
, flags
);
34 __add_wait_queue_entry_tail(wq_head
, wq_entry
);
35 spin_unlock_irqrestore(&wq_head
->lock
, flags
);
37 EXPORT_SYMBOL(add_wait_queue_exclusive
);
39 void add_wait_queue_priority(struct wait_queue_head
*wq_head
, struct wait_queue_entry
*wq_entry
)
43 wq_entry
->flags
|= WQ_FLAG_EXCLUSIVE
| WQ_FLAG_PRIORITY
;
44 spin_lock_irqsave(&wq_head
->lock
, flags
);
45 __add_wait_queue(wq_head
, wq_entry
);
46 spin_unlock_irqrestore(&wq_head
->lock
, flags
);
48 EXPORT_SYMBOL_GPL(add_wait_queue_priority
);
50 void remove_wait_queue(struct wait_queue_head
*wq_head
, struct wait_queue_entry
*wq_entry
)
54 spin_lock_irqsave(&wq_head
->lock
, flags
);
55 __remove_wait_queue(wq_head
, wq_entry
);
56 spin_unlock_irqrestore(&wq_head
->lock
, flags
);
58 EXPORT_SYMBOL(remove_wait_queue
);
61 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
62 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
63 * number) then we wake that number of exclusive tasks, and potentially all
64 * the non-exclusive tasks. Normally, exclusive tasks will be at the end of
65 * the list and any non-exclusive tasks will be woken first. A priority task
66 * may be at the head of the list, and can consume the event without any other
69 * There are circumstances in which we can try to wake a task which has already
70 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
71 * zero in this (rare) case, and we handle it by continuing to scan the queue.
73 static int __wake_up_common(struct wait_queue_head
*wq_head
, unsigned int mode
,
74 int nr_exclusive
, int wake_flags
, void *key
)
76 wait_queue_entry_t
*curr
, *next
;
78 lockdep_assert_held(&wq_head
->lock
);
80 curr
= list_first_entry(&wq_head
->head
, wait_queue_entry_t
, entry
);
82 if (&curr
->entry
== &wq_head
->head
)
85 list_for_each_entry_safe_from(curr
, next
, &wq_head
->head
, entry
) {
86 unsigned flags
= curr
->flags
;
89 ret
= curr
->func(curr
, mode
, wake_flags
, key
);
92 if (ret
&& (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
99 static int __wake_up_common_lock(struct wait_queue_head
*wq_head
, unsigned int mode
,
100 int nr_exclusive
, int wake_flags
, void *key
)
105 spin_lock_irqsave(&wq_head
->lock
, flags
);
106 remaining
= __wake_up_common(wq_head
, mode
, nr_exclusive
, wake_flags
,
108 spin_unlock_irqrestore(&wq_head
->lock
, flags
);
110 return nr_exclusive
- remaining
;
114 * __wake_up - wake up threads blocked on a waitqueue.
115 * @wq_head: the waitqueue
116 * @mode: which threads
117 * @nr_exclusive: how many wake-one or wake-many threads to wake up
118 * @key: is directly passed to the wakeup function
120 * If this function wakes up a task, it executes a full memory barrier
121 * before accessing the task state. Returns the number of exclusive
122 * tasks that were awaken.
124 int __wake_up(struct wait_queue_head
*wq_head
, unsigned int mode
,
125 int nr_exclusive
, void *key
)
127 return __wake_up_common_lock(wq_head
, mode
, nr_exclusive
, 0, key
);
129 EXPORT_SYMBOL(__wake_up
);
131 void __wake_up_on_current_cpu(struct wait_queue_head
*wq_head
, unsigned int mode
, void *key
)
133 __wake_up_common_lock(wq_head
, mode
, 1, WF_CURRENT_CPU
, key
);
137 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
139 void __wake_up_locked(struct wait_queue_head
*wq_head
, unsigned int mode
, int nr
)
141 __wake_up_common(wq_head
, mode
, nr
, 0, NULL
);
143 EXPORT_SYMBOL_GPL(__wake_up_locked
);
145 void __wake_up_locked_key(struct wait_queue_head
*wq_head
, unsigned int mode
, void *key
)
147 __wake_up_common(wq_head
, mode
, 1, 0, key
);
149 EXPORT_SYMBOL_GPL(__wake_up_locked_key
);
152 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
153 * @wq_head: the waitqueue
154 * @mode: which threads
155 * @key: opaque value to be passed to wakeup targets
157 * The sync wakeup differs that the waker knows that it will schedule
158 * away soon, so while the target thread will be woken up, it will not
159 * be migrated to another CPU - ie. the two threads are 'synchronized'
160 * with each other. This can prevent needless bouncing between CPUs.
162 * On UP it can prevent extra preemption.
164 * If this function wakes up a task, it executes a full memory barrier before
165 * accessing the task state.
167 void __wake_up_sync_key(struct wait_queue_head
*wq_head
, unsigned int mode
,
170 if (unlikely(!wq_head
))
173 __wake_up_common_lock(wq_head
, mode
, 1, WF_SYNC
, key
);
175 EXPORT_SYMBOL_GPL(__wake_up_sync_key
);
178 * __wake_up_locked_sync_key - wake up a thread blocked on a locked waitqueue.
179 * @wq_head: the waitqueue
180 * @mode: which threads
181 * @key: opaque value to be passed to wakeup targets
183 * The sync wakeup differs in that the waker knows that it will schedule
184 * away soon, so while the target thread will be woken up, it will not
185 * be migrated to another CPU - ie. the two threads are 'synchronized'
186 * with each other. This can prevent needless bouncing between CPUs.
188 * On UP it can prevent extra preemption.
190 * If this function wakes up a task, it executes a full memory barrier before
191 * accessing the task state.
193 void __wake_up_locked_sync_key(struct wait_queue_head
*wq_head
,
194 unsigned int mode
, void *key
)
196 __wake_up_common(wq_head
, mode
, 1, WF_SYNC
, key
);
198 EXPORT_SYMBOL_GPL(__wake_up_locked_sync_key
);
201 * __wake_up_sync - see __wake_up_sync_key()
203 void __wake_up_sync(struct wait_queue_head
*wq_head
, unsigned int mode
)
205 __wake_up_sync_key(wq_head
, mode
, NULL
);
207 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
209 void __wake_up_pollfree(struct wait_queue_head
*wq_head
)
211 __wake_up(wq_head
, TASK_NORMAL
, 0, poll_to_key(EPOLLHUP
| POLLFREE
));
212 /* POLLFREE must have cleared the queue. */
213 WARN_ON_ONCE(waitqueue_active(wq_head
));
217 * Note: we use "set_current_state()" _after_ the wait-queue add,
218 * because we need a memory barrier there on SMP, so that any
219 * wake-function that tests for the wait-queue being active
220 * will be guaranteed to see waitqueue addition _or_ subsequent
221 * tests in this thread will see the wakeup having taken place.
223 * The spin_unlock() itself is semi-permeable and only protects
224 * one way (it only protects stuff inside the critical region and
225 * stops them from bleeding out - it would still allow subsequent
226 * loads to move into the critical region).
229 prepare_to_wait(struct wait_queue_head
*wq_head
, struct wait_queue_entry
*wq_entry
, int state
)
233 wq_entry
->flags
&= ~WQ_FLAG_EXCLUSIVE
;
234 spin_lock_irqsave(&wq_head
->lock
, flags
);
235 if (list_empty(&wq_entry
->entry
))
236 __add_wait_queue(wq_head
, wq_entry
);
237 set_current_state(state
);
238 spin_unlock_irqrestore(&wq_head
->lock
, flags
);
240 EXPORT_SYMBOL(prepare_to_wait
);
242 /* Returns true if we are the first waiter in the queue, false otherwise. */
244 prepare_to_wait_exclusive(struct wait_queue_head
*wq_head
, struct wait_queue_entry
*wq_entry
, int state
)
247 bool was_empty
= false;
249 wq_entry
->flags
|= WQ_FLAG_EXCLUSIVE
;
250 spin_lock_irqsave(&wq_head
->lock
, flags
);
251 if (list_empty(&wq_entry
->entry
)) {
252 was_empty
= list_empty(&wq_head
->head
);
253 __add_wait_queue_entry_tail(wq_head
, wq_entry
);
255 set_current_state(state
);
256 spin_unlock_irqrestore(&wq_head
->lock
, flags
);
259 EXPORT_SYMBOL(prepare_to_wait_exclusive
);
261 void init_wait_entry(struct wait_queue_entry
*wq_entry
, int flags
)
263 wq_entry
->flags
= flags
;
264 wq_entry
->private = current
;
265 wq_entry
->func
= autoremove_wake_function
;
266 INIT_LIST_HEAD(&wq_entry
->entry
);
268 EXPORT_SYMBOL(init_wait_entry
);
270 long prepare_to_wait_event(struct wait_queue_head
*wq_head
, struct wait_queue_entry
*wq_entry
, int state
)
275 spin_lock_irqsave(&wq_head
->lock
, flags
);
276 if (signal_pending_state(state
, current
)) {
278 * Exclusive waiter must not fail if it was selected by wakeup,
279 * it should "consume" the condition we were waiting for.
281 * The caller will recheck the condition and return success if
282 * we were already woken up, we can not miss the event because
283 * wakeup locks/unlocks the same wq_head->lock.
285 * But we need to ensure that set-condition + wakeup after that
286 * can't see us, it should wake up another exclusive waiter if
289 list_del_init(&wq_entry
->entry
);
292 if (list_empty(&wq_entry
->entry
)) {
293 if (wq_entry
->flags
& WQ_FLAG_EXCLUSIVE
)
294 __add_wait_queue_entry_tail(wq_head
, wq_entry
);
296 __add_wait_queue(wq_head
, wq_entry
);
298 set_current_state(state
);
300 spin_unlock_irqrestore(&wq_head
->lock
, flags
);
304 EXPORT_SYMBOL(prepare_to_wait_event
);
307 * Note! These two wait functions are entered with the
308 * wait-queue lock held (and interrupts off in the _irq
309 * case), so there is no race with testing the wakeup
310 * condition in the caller before they add the wait
311 * entry to the wake queue.
313 int do_wait_intr(wait_queue_head_t
*wq
, wait_queue_entry_t
*wait
)
315 if (likely(list_empty(&wait
->entry
)))
316 __add_wait_queue_entry_tail(wq
, wait
);
318 set_current_state(TASK_INTERRUPTIBLE
);
319 if (signal_pending(current
))
322 spin_unlock(&wq
->lock
);
324 spin_lock(&wq
->lock
);
328 EXPORT_SYMBOL(do_wait_intr
);
330 int do_wait_intr_irq(wait_queue_head_t
*wq
, wait_queue_entry_t
*wait
)
332 if (likely(list_empty(&wait
->entry
)))
333 __add_wait_queue_entry_tail(wq
, wait
);
335 set_current_state(TASK_INTERRUPTIBLE
);
336 if (signal_pending(current
))
339 spin_unlock_irq(&wq
->lock
);
341 spin_lock_irq(&wq
->lock
);
345 EXPORT_SYMBOL(do_wait_intr_irq
);
348 * finish_wait - clean up after waiting in a queue
349 * @wq_head: waitqueue waited on
350 * @wq_entry: wait descriptor
352 * Sets current thread back to running state and removes
353 * the wait descriptor from the given waitqueue if still
356 void finish_wait(struct wait_queue_head
*wq_head
, struct wait_queue_entry
*wq_entry
)
360 __set_current_state(TASK_RUNNING
);
362 * We can check for list emptiness outside the lock
364 * - we use the "careful" check that verifies both
365 * the next and prev pointers, so that there cannot
366 * be any half-pending updates in progress on other
367 * CPU's that we haven't seen yet (and that might
368 * still change the stack area.
370 * - all other users take the lock (ie we can only
371 * have _one_ other CPU that looks at or modifies
374 if (!list_empty_careful(&wq_entry
->entry
)) {
375 spin_lock_irqsave(&wq_head
->lock
, flags
);
376 list_del_init(&wq_entry
->entry
);
377 spin_unlock_irqrestore(&wq_head
->lock
, flags
);
380 EXPORT_SYMBOL(finish_wait
);
382 int autoremove_wake_function(struct wait_queue_entry
*wq_entry
, unsigned mode
, int sync
, void *key
)
384 int ret
= default_wake_function(wq_entry
, mode
, sync
, key
);
387 list_del_init_careful(&wq_entry
->entry
);
391 EXPORT_SYMBOL(autoremove_wake_function
);
394 * DEFINE_WAIT_FUNC(wait, woken_wake_func);
396 * add_wait_queue(&wq_head, &wait);
401 * // in wait_woken() // in woken_wake_function()
403 * p->state = mode; wq_entry->flags |= WQ_FLAG_WOKEN;
404 * smp_mb(); // A try_to_wake_up():
405 * if (!(wq_entry->flags & WQ_FLAG_WOKEN)) <full barrier>
406 * schedule() if (p->state & mode)
407 * p->state = TASK_RUNNING; p->state = TASK_RUNNING;
408 * wq_entry->flags &= ~WQ_FLAG_WOKEN; ~~~~~~~~~~~~~~~~~~
409 * smp_mb(); // B condition = true;
411 * remove_wait_queue(&wq_head, &wait); wq_entry->flags |= WQ_FLAG_WOKEN;
413 long wait_woken(struct wait_queue_entry
*wq_entry
, unsigned mode
, long timeout
)
416 * The below executes an smp_mb(), which matches with the full barrier
417 * executed by the try_to_wake_up() in woken_wake_function() such that
418 * either we see the store to wq_entry->flags in woken_wake_function()
419 * or woken_wake_function() sees our store to current->state.
421 set_current_state(mode
); /* A */
422 if (!(wq_entry
->flags
& WQ_FLAG_WOKEN
) && !kthread_should_stop_or_park())
423 timeout
= schedule_timeout(timeout
);
424 __set_current_state(TASK_RUNNING
);
427 * The below executes an smp_mb(), which matches with the smp_mb() (C)
428 * in woken_wake_function() such that either we see the wait condition
429 * being true or the store to wq_entry->flags in woken_wake_function()
430 * follows ours in the coherence order.
432 smp_store_mb(wq_entry
->flags
, wq_entry
->flags
& ~WQ_FLAG_WOKEN
); /* B */
436 EXPORT_SYMBOL(wait_woken
);
438 int woken_wake_function(struct wait_queue_entry
*wq_entry
, unsigned mode
, int sync
, void *key
)
440 /* Pairs with the smp_store_mb() in wait_woken(). */
442 wq_entry
->flags
|= WQ_FLAG_WOKEN
;
444 return default_wake_function(wq_entry
, mode
, sync
, key
);
446 EXPORT_SYMBOL(woken_wake_function
);