1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992 Linus Torvalds
8 #include <linux/export.h>
10 #include <linux/mm_inline.h>
11 #include <linux/utsname.h>
12 #include <linux/mman.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
17 #include <linux/kmod.h>
18 #include <linux/ksm.h>
19 #include <linux/perf_event.h>
20 #include <linux/resource.h>
21 #include <linux/kernel.h>
22 #include <linux/workqueue.h>
23 #include <linux/capability.h>
24 #include <linux/device.h>
25 #include <linux/key.h>
26 #include <linux/times.h>
27 #include <linux/posix-timers.h>
28 #include <linux/security.h>
29 #include <linux/random.h>
30 #include <linux/suspend.h>
31 #include <linux/tty.h>
32 #include <linux/signal.h>
33 #include <linux/cn_proc.h>
34 #include <linux/getcpu.h>
35 #include <linux/task_io_accounting_ops.h>
36 #include <linux/seccomp.h>
37 #include <linux/cpu.h>
38 #include <linux/personality.h>
39 #include <linux/ptrace.h>
40 #include <linux/fs_struct.h>
41 #include <linux/file.h>
42 #include <linux/mount.h>
43 #include <linux/gfp.h>
44 #include <linux/syscore_ops.h>
45 #include <linux/version.h>
46 #include <linux/ctype.h>
47 #include <linux/syscall_user_dispatch.h>
49 #include <linux/compat.h>
50 #include <linux/syscalls.h>
51 #include <linux/kprobes.h>
52 #include <linux/user_namespace.h>
53 #include <linux/time_namespace.h>
54 #include <linux/binfmts.h>
56 #include <linux/sched.h>
57 #include <linux/sched/autogroup.h>
58 #include <linux/sched/loadavg.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/mm.h>
61 #include <linux/sched/coredump.h>
62 #include <linux/sched/task.h>
63 #include <linux/sched/cputime.h>
64 #include <linux/rcupdate.h>
65 #include <linux/uidgid.h>
66 #include <linux/cred.h>
68 #include <linux/nospec.h>
70 #include <linux/kmsg_dump.h>
71 /* Move somewhere else to avoid recompiling? */
72 #include <generated/utsrelease.h>
74 #include <linux/uaccess.h>
76 #include <asm/unistd.h>
80 #ifndef SET_UNALIGN_CTL
81 # define SET_UNALIGN_CTL(a, b) (-EINVAL)
83 #ifndef GET_UNALIGN_CTL
84 # define GET_UNALIGN_CTL(a, b) (-EINVAL)
87 # define SET_FPEMU_CTL(a, b) (-EINVAL)
90 # define GET_FPEMU_CTL(a, b) (-EINVAL)
93 # define SET_FPEXC_CTL(a, b) (-EINVAL)
96 # define GET_FPEXC_CTL(a, b) (-EINVAL)
99 # define GET_ENDIAN(a, b) (-EINVAL)
102 # define SET_ENDIAN(a, b) (-EINVAL)
105 # define GET_TSC_CTL(a) (-EINVAL)
108 # define SET_TSC_CTL(a) (-EINVAL)
111 # define GET_FP_MODE(a) (-EINVAL)
114 # define SET_FP_MODE(a,b) (-EINVAL)
117 # define SVE_SET_VL(a) (-EINVAL)
120 # define SVE_GET_VL() (-EINVAL)
123 # define SME_SET_VL(a) (-EINVAL)
126 # define SME_GET_VL() (-EINVAL)
128 #ifndef PAC_RESET_KEYS
129 # define PAC_RESET_KEYS(a, b) (-EINVAL)
131 #ifndef PAC_SET_ENABLED_KEYS
132 # define PAC_SET_ENABLED_KEYS(a, b, c) (-EINVAL)
134 #ifndef PAC_GET_ENABLED_KEYS
135 # define PAC_GET_ENABLED_KEYS(a) (-EINVAL)
137 #ifndef SET_TAGGED_ADDR_CTRL
138 # define SET_TAGGED_ADDR_CTRL(a) (-EINVAL)
140 #ifndef GET_TAGGED_ADDR_CTRL
141 # define GET_TAGGED_ADDR_CTRL() (-EINVAL)
143 #ifndef RISCV_V_SET_CONTROL
144 # define RISCV_V_SET_CONTROL(a) (-EINVAL)
146 #ifndef RISCV_V_GET_CONTROL
147 # define RISCV_V_GET_CONTROL() (-EINVAL)
149 #ifndef RISCV_SET_ICACHE_FLUSH_CTX
150 # define RISCV_SET_ICACHE_FLUSH_CTX(a, b) (-EINVAL)
152 #ifndef PPC_GET_DEXCR_ASPECT
153 # define PPC_GET_DEXCR_ASPECT(a, b) (-EINVAL)
155 #ifndef PPC_SET_DEXCR_ASPECT
156 # define PPC_SET_DEXCR_ASPECT(a, b, c) (-EINVAL)
160 * this is where the system-wide overflow UID and GID are defined, for
161 * architectures that now have 32-bit UID/GID but didn't in the past
164 int overflowuid
= DEFAULT_OVERFLOWUID
;
165 int overflowgid
= DEFAULT_OVERFLOWGID
;
167 EXPORT_SYMBOL(overflowuid
);
168 EXPORT_SYMBOL(overflowgid
);
171 * the same as above, but for filesystems which can only store a 16-bit
172 * UID and GID. as such, this is needed on all architectures
175 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
176 int fs_overflowgid
= DEFAULT_FS_OVERFLOWGID
;
178 EXPORT_SYMBOL(fs_overflowuid
);
179 EXPORT_SYMBOL(fs_overflowgid
);
182 * Returns true if current's euid is same as p's uid or euid,
183 * or has CAP_SYS_NICE to p's user_ns.
185 * Called with rcu_read_lock, creds are safe
187 static bool set_one_prio_perm(struct task_struct
*p
)
189 const struct cred
*cred
= current_cred(), *pcred
= __task_cred(p
);
191 if (uid_eq(pcred
->uid
, cred
->euid
) ||
192 uid_eq(pcred
->euid
, cred
->euid
))
194 if (ns_capable(pcred
->user_ns
, CAP_SYS_NICE
))
200 * set the priority of a task
201 * - the caller must hold the RCU read lock
203 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
207 if (!set_one_prio_perm(p
)) {
211 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
215 no_nice
= security_task_setnice(p
, niceval
);
222 set_user_nice(p
, niceval
);
227 SYSCALL_DEFINE3(setpriority
, int, which
, int, who
, int, niceval
)
229 struct task_struct
*g
, *p
;
230 struct user_struct
*user
;
231 const struct cred
*cred
= current_cred();
236 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
239 /* normalize: avoid signed division (rounding problems) */
241 if (niceval
< MIN_NICE
)
243 if (niceval
> MAX_NICE
)
250 p
= find_task_by_vpid(who
);
254 error
= set_one_prio(p
, niceval
, error
);
258 pgrp
= find_vpid(who
);
260 pgrp
= task_pgrp(current
);
261 read_lock(&tasklist_lock
);
262 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
263 error
= set_one_prio(p
, niceval
, error
);
264 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
265 read_unlock(&tasklist_lock
);
268 uid
= make_kuid(cred
->user_ns
, who
);
272 else if (!uid_eq(uid
, cred
->uid
)) {
273 user
= find_user(uid
);
275 goto out_unlock
; /* No processes for this user */
277 for_each_process_thread(g
, p
) {
278 if (uid_eq(task_uid(p
), uid
) && task_pid_vnr(p
))
279 error
= set_one_prio(p
, niceval
, error
);
281 if (!uid_eq(uid
, cred
->uid
))
282 free_uid(user
); /* For find_user() */
292 * Ugh. To avoid negative return values, "getpriority()" will
293 * not return the normal nice-value, but a negated value that
294 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
295 * to stay compatible.
297 SYSCALL_DEFINE2(getpriority
, int, which
, int, who
)
299 struct task_struct
*g
, *p
;
300 struct user_struct
*user
;
301 const struct cred
*cred
= current_cred();
302 long niceval
, retval
= -ESRCH
;
306 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
313 p
= find_task_by_vpid(who
);
317 niceval
= nice_to_rlimit(task_nice(p
));
318 if (niceval
> retval
)
324 pgrp
= find_vpid(who
);
326 pgrp
= task_pgrp(current
);
327 read_lock(&tasklist_lock
);
328 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
329 niceval
= nice_to_rlimit(task_nice(p
));
330 if (niceval
> retval
)
332 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
333 read_unlock(&tasklist_lock
);
336 uid
= make_kuid(cred
->user_ns
, who
);
340 else if (!uid_eq(uid
, cred
->uid
)) {
341 user
= find_user(uid
);
343 goto out_unlock
; /* No processes for this user */
345 for_each_process_thread(g
, p
) {
346 if (uid_eq(task_uid(p
), uid
) && task_pid_vnr(p
)) {
347 niceval
= nice_to_rlimit(task_nice(p
));
348 if (niceval
> retval
)
352 if (!uid_eq(uid
, cred
->uid
))
353 free_uid(user
); /* for find_user() */
363 * Unprivileged users may change the real gid to the effective gid
364 * or vice versa. (BSD-style)
366 * If you set the real gid at all, or set the effective gid to a value not
367 * equal to the real gid, then the saved gid is set to the new effective gid.
369 * This makes it possible for a setgid program to completely drop its
370 * privileges, which is often a useful assertion to make when you are doing
371 * a security audit over a program.
373 * The general idea is that a program which uses just setregid() will be
374 * 100% compatible with BSD. A program which uses just setgid() will be
375 * 100% compatible with POSIX with saved IDs.
377 * SMP: There are not races, the GIDs are checked only by filesystem
378 * operations (as far as semantic preservation is concerned).
380 #ifdef CONFIG_MULTIUSER
381 long __sys_setregid(gid_t rgid
, gid_t egid
)
383 struct user_namespace
*ns
= current_user_ns();
384 const struct cred
*old
;
389 krgid
= make_kgid(ns
, rgid
);
390 kegid
= make_kgid(ns
, egid
);
392 if ((rgid
!= (gid_t
) -1) && !gid_valid(krgid
))
394 if ((egid
!= (gid_t
) -1) && !gid_valid(kegid
))
397 new = prepare_creds();
400 old
= current_cred();
403 if (rgid
!= (gid_t
) -1) {
404 if (gid_eq(old
->gid
, krgid
) ||
405 gid_eq(old
->egid
, krgid
) ||
406 ns_capable_setid(old
->user_ns
, CAP_SETGID
))
411 if (egid
!= (gid_t
) -1) {
412 if (gid_eq(old
->gid
, kegid
) ||
413 gid_eq(old
->egid
, kegid
) ||
414 gid_eq(old
->sgid
, kegid
) ||
415 ns_capable_setid(old
->user_ns
, CAP_SETGID
))
421 if (rgid
!= (gid_t
) -1 ||
422 (egid
!= (gid_t
) -1 && !gid_eq(kegid
, old
->gid
)))
423 new->sgid
= new->egid
;
424 new->fsgid
= new->egid
;
426 retval
= security_task_fix_setgid(new, old
, LSM_SETID_RE
);
430 return commit_creds(new);
437 SYSCALL_DEFINE2(setregid
, gid_t
, rgid
, gid_t
, egid
)
439 return __sys_setregid(rgid
, egid
);
443 * setgid() is implemented like SysV w/ SAVED_IDS
445 * SMP: Same implicit races as above.
447 long __sys_setgid(gid_t gid
)
449 struct user_namespace
*ns
= current_user_ns();
450 const struct cred
*old
;
455 kgid
= make_kgid(ns
, gid
);
456 if (!gid_valid(kgid
))
459 new = prepare_creds();
462 old
= current_cred();
465 if (ns_capable_setid(old
->user_ns
, CAP_SETGID
))
466 new->gid
= new->egid
= new->sgid
= new->fsgid
= kgid
;
467 else if (gid_eq(kgid
, old
->gid
) || gid_eq(kgid
, old
->sgid
))
468 new->egid
= new->fsgid
= kgid
;
472 retval
= security_task_fix_setgid(new, old
, LSM_SETID_ID
);
476 return commit_creds(new);
483 SYSCALL_DEFINE1(setgid
, gid_t
, gid
)
485 return __sys_setgid(gid
);
489 * change the user struct in a credentials set to match the new UID
491 static int set_user(struct cred
*new)
493 struct user_struct
*new_user
;
495 new_user
= alloc_uid(new->uid
);
500 new->user
= new_user
;
504 static void flag_nproc_exceeded(struct cred
*new)
506 if (new->ucounts
== current_ucounts())
510 * We don't fail in case of NPROC limit excess here because too many
511 * poorly written programs don't check set*uid() return code, assuming
512 * it never fails if called by root. We may still enforce NPROC limit
513 * for programs doing set*uid()+execve() by harmlessly deferring the
514 * failure to the execve() stage.
516 if (is_rlimit_overlimit(new->ucounts
, UCOUNT_RLIMIT_NPROC
, rlimit(RLIMIT_NPROC
)) &&
517 new->user
!= INIT_USER
)
518 current
->flags
|= PF_NPROC_EXCEEDED
;
520 current
->flags
&= ~PF_NPROC_EXCEEDED
;
524 * Unprivileged users may change the real uid to the effective uid
525 * or vice versa. (BSD-style)
527 * If you set the real uid at all, or set the effective uid to a value not
528 * equal to the real uid, then the saved uid is set to the new effective uid.
530 * This makes it possible for a setuid program to completely drop its
531 * privileges, which is often a useful assertion to make when you are doing
532 * a security audit over a program.
534 * The general idea is that a program which uses just setreuid() will be
535 * 100% compatible with BSD. A program which uses just setuid() will be
536 * 100% compatible with POSIX with saved IDs.
538 long __sys_setreuid(uid_t ruid
, uid_t euid
)
540 struct user_namespace
*ns
= current_user_ns();
541 const struct cred
*old
;
546 kruid
= make_kuid(ns
, ruid
);
547 keuid
= make_kuid(ns
, euid
);
549 if ((ruid
!= (uid_t
) -1) && !uid_valid(kruid
))
551 if ((euid
!= (uid_t
) -1) && !uid_valid(keuid
))
554 new = prepare_creds();
557 old
= current_cred();
560 if (ruid
!= (uid_t
) -1) {
562 if (!uid_eq(old
->uid
, kruid
) &&
563 !uid_eq(old
->euid
, kruid
) &&
564 !ns_capable_setid(old
->user_ns
, CAP_SETUID
))
568 if (euid
!= (uid_t
) -1) {
570 if (!uid_eq(old
->uid
, keuid
) &&
571 !uid_eq(old
->euid
, keuid
) &&
572 !uid_eq(old
->suid
, keuid
) &&
573 !ns_capable_setid(old
->user_ns
, CAP_SETUID
))
577 if (!uid_eq(new->uid
, old
->uid
)) {
578 retval
= set_user(new);
582 if (ruid
!= (uid_t
) -1 ||
583 (euid
!= (uid_t
) -1 && !uid_eq(keuid
, old
->uid
)))
584 new->suid
= new->euid
;
585 new->fsuid
= new->euid
;
587 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RE
);
591 retval
= set_cred_ucounts(new);
595 flag_nproc_exceeded(new);
596 return commit_creds(new);
603 SYSCALL_DEFINE2(setreuid
, uid_t
, ruid
, uid_t
, euid
)
605 return __sys_setreuid(ruid
, euid
);
609 * setuid() is implemented like SysV with SAVED_IDS
611 * Note that SAVED_ID's is deficient in that a setuid root program
612 * like sendmail, for example, cannot set its uid to be a normal
613 * user and then switch back, because if you're root, setuid() sets
614 * the saved uid too. If you don't like this, blame the bright people
615 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
616 * will allow a root program to temporarily drop privileges and be able to
617 * regain them by swapping the real and effective uid.
619 long __sys_setuid(uid_t uid
)
621 struct user_namespace
*ns
= current_user_ns();
622 const struct cred
*old
;
627 kuid
= make_kuid(ns
, uid
);
628 if (!uid_valid(kuid
))
631 new = prepare_creds();
634 old
= current_cred();
637 if (ns_capable_setid(old
->user_ns
, CAP_SETUID
)) {
638 new->suid
= new->uid
= kuid
;
639 if (!uid_eq(kuid
, old
->uid
)) {
640 retval
= set_user(new);
644 } else if (!uid_eq(kuid
, old
->uid
) && !uid_eq(kuid
, new->suid
)) {
648 new->fsuid
= new->euid
= kuid
;
650 retval
= security_task_fix_setuid(new, old
, LSM_SETID_ID
);
654 retval
= set_cred_ucounts(new);
658 flag_nproc_exceeded(new);
659 return commit_creds(new);
666 SYSCALL_DEFINE1(setuid
, uid_t
, uid
)
668 return __sys_setuid(uid
);
673 * This function implements a generic ability to update ruid, euid,
674 * and suid. This allows you to implement the 4.4 compatible seteuid().
676 long __sys_setresuid(uid_t ruid
, uid_t euid
, uid_t suid
)
678 struct user_namespace
*ns
= current_user_ns();
679 const struct cred
*old
;
682 kuid_t kruid
, keuid
, ksuid
;
683 bool ruid_new
, euid_new
, suid_new
;
685 kruid
= make_kuid(ns
, ruid
);
686 keuid
= make_kuid(ns
, euid
);
687 ksuid
= make_kuid(ns
, suid
);
689 if ((ruid
!= (uid_t
) -1) && !uid_valid(kruid
))
692 if ((euid
!= (uid_t
) -1) && !uid_valid(keuid
))
695 if ((suid
!= (uid_t
) -1) && !uid_valid(ksuid
))
698 old
= current_cred();
700 /* check for no-op */
701 if ((ruid
== (uid_t
) -1 || uid_eq(kruid
, old
->uid
)) &&
702 (euid
== (uid_t
) -1 || (uid_eq(keuid
, old
->euid
) &&
703 uid_eq(keuid
, old
->fsuid
))) &&
704 (suid
== (uid_t
) -1 || uid_eq(ksuid
, old
->suid
)))
707 ruid_new
= ruid
!= (uid_t
) -1 && !uid_eq(kruid
, old
->uid
) &&
708 !uid_eq(kruid
, old
->euid
) && !uid_eq(kruid
, old
->suid
);
709 euid_new
= euid
!= (uid_t
) -1 && !uid_eq(keuid
, old
->uid
) &&
710 !uid_eq(keuid
, old
->euid
) && !uid_eq(keuid
, old
->suid
);
711 suid_new
= suid
!= (uid_t
) -1 && !uid_eq(ksuid
, old
->uid
) &&
712 !uid_eq(ksuid
, old
->euid
) && !uid_eq(ksuid
, old
->suid
);
713 if ((ruid_new
|| euid_new
|| suid_new
) &&
714 !ns_capable_setid(old
->user_ns
, CAP_SETUID
))
717 new = prepare_creds();
721 if (ruid
!= (uid_t
) -1) {
723 if (!uid_eq(kruid
, old
->uid
)) {
724 retval
= set_user(new);
729 if (euid
!= (uid_t
) -1)
731 if (suid
!= (uid_t
) -1)
733 new->fsuid
= new->euid
;
735 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RES
);
739 retval
= set_cred_ucounts(new);
743 flag_nproc_exceeded(new);
744 return commit_creds(new);
751 SYSCALL_DEFINE3(setresuid
, uid_t
, ruid
, uid_t
, euid
, uid_t
, suid
)
753 return __sys_setresuid(ruid
, euid
, suid
);
756 SYSCALL_DEFINE3(getresuid
, uid_t __user
*, ruidp
, uid_t __user
*, euidp
, uid_t __user
*, suidp
)
758 const struct cred
*cred
= current_cred();
760 uid_t ruid
, euid
, suid
;
762 ruid
= from_kuid_munged(cred
->user_ns
, cred
->uid
);
763 euid
= from_kuid_munged(cred
->user_ns
, cred
->euid
);
764 suid
= from_kuid_munged(cred
->user_ns
, cred
->suid
);
766 retval
= put_user(ruid
, ruidp
);
768 retval
= put_user(euid
, euidp
);
770 return put_user(suid
, suidp
);
776 * Same as above, but for rgid, egid, sgid.
778 long __sys_setresgid(gid_t rgid
, gid_t egid
, gid_t sgid
)
780 struct user_namespace
*ns
= current_user_ns();
781 const struct cred
*old
;
784 kgid_t krgid
, kegid
, ksgid
;
785 bool rgid_new
, egid_new
, sgid_new
;
787 krgid
= make_kgid(ns
, rgid
);
788 kegid
= make_kgid(ns
, egid
);
789 ksgid
= make_kgid(ns
, sgid
);
791 if ((rgid
!= (gid_t
) -1) && !gid_valid(krgid
))
793 if ((egid
!= (gid_t
) -1) && !gid_valid(kegid
))
795 if ((sgid
!= (gid_t
) -1) && !gid_valid(ksgid
))
798 old
= current_cred();
800 /* check for no-op */
801 if ((rgid
== (gid_t
) -1 || gid_eq(krgid
, old
->gid
)) &&
802 (egid
== (gid_t
) -1 || (gid_eq(kegid
, old
->egid
) &&
803 gid_eq(kegid
, old
->fsgid
))) &&
804 (sgid
== (gid_t
) -1 || gid_eq(ksgid
, old
->sgid
)))
807 rgid_new
= rgid
!= (gid_t
) -1 && !gid_eq(krgid
, old
->gid
) &&
808 !gid_eq(krgid
, old
->egid
) && !gid_eq(krgid
, old
->sgid
);
809 egid_new
= egid
!= (gid_t
) -1 && !gid_eq(kegid
, old
->gid
) &&
810 !gid_eq(kegid
, old
->egid
) && !gid_eq(kegid
, old
->sgid
);
811 sgid_new
= sgid
!= (gid_t
) -1 && !gid_eq(ksgid
, old
->gid
) &&
812 !gid_eq(ksgid
, old
->egid
) && !gid_eq(ksgid
, old
->sgid
);
813 if ((rgid_new
|| egid_new
|| sgid_new
) &&
814 !ns_capable_setid(old
->user_ns
, CAP_SETGID
))
817 new = prepare_creds();
821 if (rgid
!= (gid_t
) -1)
823 if (egid
!= (gid_t
) -1)
825 if (sgid
!= (gid_t
) -1)
827 new->fsgid
= new->egid
;
829 retval
= security_task_fix_setgid(new, old
, LSM_SETID_RES
);
833 return commit_creds(new);
840 SYSCALL_DEFINE3(setresgid
, gid_t
, rgid
, gid_t
, egid
, gid_t
, sgid
)
842 return __sys_setresgid(rgid
, egid
, sgid
);
845 SYSCALL_DEFINE3(getresgid
, gid_t __user
*, rgidp
, gid_t __user
*, egidp
, gid_t __user
*, sgidp
)
847 const struct cred
*cred
= current_cred();
849 gid_t rgid
, egid
, sgid
;
851 rgid
= from_kgid_munged(cred
->user_ns
, cred
->gid
);
852 egid
= from_kgid_munged(cred
->user_ns
, cred
->egid
);
853 sgid
= from_kgid_munged(cred
->user_ns
, cred
->sgid
);
855 retval
= put_user(rgid
, rgidp
);
857 retval
= put_user(egid
, egidp
);
859 retval
= put_user(sgid
, sgidp
);
867 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
868 * is used for "access()" and for the NFS daemon (letting nfsd stay at
869 * whatever uid it wants to). It normally shadows "euid", except when
870 * explicitly set by setfsuid() or for access..
872 long __sys_setfsuid(uid_t uid
)
874 const struct cred
*old
;
879 old
= current_cred();
880 old_fsuid
= from_kuid_munged(old
->user_ns
, old
->fsuid
);
882 kuid
= make_kuid(old
->user_ns
, uid
);
883 if (!uid_valid(kuid
))
886 new = prepare_creds();
890 if (uid_eq(kuid
, old
->uid
) || uid_eq(kuid
, old
->euid
) ||
891 uid_eq(kuid
, old
->suid
) || uid_eq(kuid
, old
->fsuid
) ||
892 ns_capable_setid(old
->user_ns
, CAP_SETUID
)) {
893 if (!uid_eq(kuid
, old
->fsuid
)) {
895 if (security_task_fix_setuid(new, old
, LSM_SETID_FS
) == 0)
908 SYSCALL_DEFINE1(setfsuid
, uid_t
, uid
)
910 return __sys_setfsuid(uid
);
914 * Samma på svenska..
916 long __sys_setfsgid(gid_t gid
)
918 const struct cred
*old
;
923 old
= current_cred();
924 old_fsgid
= from_kgid_munged(old
->user_ns
, old
->fsgid
);
926 kgid
= make_kgid(old
->user_ns
, gid
);
927 if (!gid_valid(kgid
))
930 new = prepare_creds();
934 if (gid_eq(kgid
, old
->gid
) || gid_eq(kgid
, old
->egid
) ||
935 gid_eq(kgid
, old
->sgid
) || gid_eq(kgid
, old
->fsgid
) ||
936 ns_capable_setid(old
->user_ns
, CAP_SETGID
)) {
937 if (!gid_eq(kgid
, old
->fsgid
)) {
939 if (security_task_fix_setgid(new,old
,LSM_SETID_FS
) == 0)
952 SYSCALL_DEFINE1(setfsgid
, gid_t
, gid
)
954 return __sys_setfsgid(gid
);
956 #endif /* CONFIG_MULTIUSER */
959 * sys_getpid - return the thread group id of the current process
961 * Note, despite the name, this returns the tgid not the pid. The tgid and
962 * the pid are identical unless CLONE_THREAD was specified on clone() in
963 * which case the tgid is the same in all threads of the same group.
965 * This is SMP safe as current->tgid does not change.
967 SYSCALL_DEFINE0(getpid
)
969 return task_tgid_vnr(current
);
972 /* Thread ID - the internal kernel "pid" */
973 SYSCALL_DEFINE0(gettid
)
975 return task_pid_vnr(current
);
979 * Accessing ->real_parent is not SMP-safe, it could
980 * change from under us. However, we can use a stale
981 * value of ->real_parent under rcu_read_lock(), see
982 * release_task()->call_rcu(delayed_put_task_struct).
984 SYSCALL_DEFINE0(getppid
)
989 pid
= task_tgid_vnr(rcu_dereference(current
->real_parent
));
995 SYSCALL_DEFINE0(getuid
)
997 /* Only we change this so SMP safe */
998 return from_kuid_munged(current_user_ns(), current_uid());
1001 SYSCALL_DEFINE0(geteuid
)
1003 /* Only we change this so SMP safe */
1004 return from_kuid_munged(current_user_ns(), current_euid());
1007 SYSCALL_DEFINE0(getgid
)
1009 /* Only we change this so SMP safe */
1010 return from_kgid_munged(current_user_ns(), current_gid());
1013 SYSCALL_DEFINE0(getegid
)
1015 /* Only we change this so SMP safe */
1016 return from_kgid_munged(current_user_ns(), current_egid());
1019 static void do_sys_times(struct tms
*tms
)
1021 u64 tgutime
, tgstime
, cutime
, cstime
;
1023 thread_group_cputime_adjusted(current
, &tgutime
, &tgstime
);
1024 cutime
= current
->signal
->cutime
;
1025 cstime
= current
->signal
->cstime
;
1026 tms
->tms_utime
= nsec_to_clock_t(tgutime
);
1027 tms
->tms_stime
= nsec_to_clock_t(tgstime
);
1028 tms
->tms_cutime
= nsec_to_clock_t(cutime
);
1029 tms
->tms_cstime
= nsec_to_clock_t(cstime
);
1032 SYSCALL_DEFINE1(times
, struct tms __user
*, tbuf
)
1038 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
1041 force_successful_syscall_return();
1042 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1045 #ifdef CONFIG_COMPAT
1046 static compat_clock_t
clock_t_to_compat_clock_t(clock_t x
)
1048 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x
));
1051 COMPAT_SYSCALL_DEFINE1(times
, struct compat_tms __user
*, tbuf
)
1055 struct compat_tms tmp
;
1058 /* Convert our struct tms to the compat version. */
1059 tmp
.tms_utime
= clock_t_to_compat_clock_t(tms
.tms_utime
);
1060 tmp
.tms_stime
= clock_t_to_compat_clock_t(tms
.tms_stime
);
1061 tmp
.tms_cutime
= clock_t_to_compat_clock_t(tms
.tms_cutime
);
1062 tmp
.tms_cstime
= clock_t_to_compat_clock_t(tms
.tms_cstime
);
1063 if (copy_to_user(tbuf
, &tmp
, sizeof(tmp
)))
1066 force_successful_syscall_return();
1067 return compat_jiffies_to_clock_t(jiffies
);
1072 * This needs some heavy checking ...
1073 * I just haven't the stomach for it. I also don't fully
1074 * understand sessions/pgrp etc. Let somebody who does explain it.
1076 * OK, I think I have the protection semantics right.... this is really
1077 * only important on a multi-user system anyway, to make sure one user
1078 * can't send a signal to a process owned by another. -TYT, 12/12/91
1080 * !PF_FORKNOEXEC check to conform completely to POSIX.
1082 SYSCALL_DEFINE2(setpgid
, pid_t
, pid
, pid_t
, pgid
)
1084 struct task_struct
*p
;
1085 struct task_struct
*group_leader
= current
->group_leader
;
1090 pid
= task_pid_vnr(group_leader
);
1097 /* From this point forward we keep holding onto the tasklist lock
1098 * so that our parent does not change from under us. -DaveM
1100 write_lock_irq(&tasklist_lock
);
1103 p
= find_task_by_vpid(pid
);
1108 if (!thread_group_leader(p
))
1111 if (same_thread_group(p
->real_parent
, group_leader
)) {
1113 if (task_session(p
) != task_session(group_leader
))
1116 if (!(p
->flags
& PF_FORKNOEXEC
))
1120 if (p
!= group_leader
)
1125 if (p
->signal
->leader
)
1130 struct task_struct
*g
;
1132 pgrp
= find_vpid(pgid
);
1133 g
= pid_task(pgrp
, PIDTYPE_PGID
);
1134 if (!g
|| task_session(g
) != task_session(group_leader
))
1138 err
= security_task_setpgid(p
, pgid
);
1142 if (task_pgrp(p
) != pgrp
)
1143 change_pid(p
, PIDTYPE_PGID
, pgrp
);
1147 /* All paths lead to here, thus we are safe. -DaveM */
1148 write_unlock_irq(&tasklist_lock
);
1153 static int do_getpgid(pid_t pid
)
1155 struct task_struct
*p
;
1161 grp
= task_pgrp(current
);
1164 p
= find_task_by_vpid(pid
);
1171 retval
= security_task_getpgid(p
);
1175 retval
= pid_vnr(grp
);
1181 SYSCALL_DEFINE1(getpgid
, pid_t
, pid
)
1183 return do_getpgid(pid
);
1186 #ifdef __ARCH_WANT_SYS_GETPGRP
1188 SYSCALL_DEFINE0(getpgrp
)
1190 return do_getpgid(0);
1195 SYSCALL_DEFINE1(getsid
, pid_t
, pid
)
1197 struct task_struct
*p
;
1203 sid
= task_session(current
);
1206 p
= find_task_by_vpid(pid
);
1209 sid
= task_session(p
);
1213 retval
= security_task_getsid(p
);
1217 retval
= pid_vnr(sid
);
1223 static void set_special_pids(struct pid
*pid
)
1225 struct task_struct
*curr
= current
->group_leader
;
1227 if (task_session(curr
) != pid
)
1228 change_pid(curr
, PIDTYPE_SID
, pid
);
1230 if (task_pgrp(curr
) != pid
)
1231 change_pid(curr
, PIDTYPE_PGID
, pid
);
1234 int ksys_setsid(void)
1236 struct task_struct
*group_leader
= current
->group_leader
;
1237 struct pid
*sid
= task_pid(group_leader
);
1238 pid_t session
= pid_vnr(sid
);
1241 write_lock_irq(&tasklist_lock
);
1242 /* Fail if I am already a session leader */
1243 if (group_leader
->signal
->leader
)
1246 /* Fail if a process group id already exists that equals the
1247 * proposed session id.
1249 if (pid_task(sid
, PIDTYPE_PGID
))
1252 group_leader
->signal
->leader
= 1;
1253 set_special_pids(sid
);
1255 proc_clear_tty(group_leader
);
1259 write_unlock_irq(&tasklist_lock
);
1261 proc_sid_connector(group_leader
);
1262 sched_autogroup_create_attach(group_leader
);
1267 SYSCALL_DEFINE0(setsid
)
1269 return ksys_setsid();
1272 DECLARE_RWSEM(uts_sem
);
1274 #ifdef COMPAT_UTS_MACHINE
1275 #define override_architecture(name) \
1276 (personality(current->personality) == PER_LINUX32 && \
1277 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1278 sizeof(COMPAT_UTS_MACHINE)))
1280 #define override_architecture(name) 0
1284 * Work around broken programs that cannot handle "Linux 3.0".
1285 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1286 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1289 static int override_release(char __user
*release
, size_t len
)
1293 if (current
->personality
& UNAME26
) {
1294 const char *rest
= UTS_RELEASE
;
1295 char buf
[65] = { 0 };
1301 if (*rest
== '.' && ++ndots
>= 3)
1303 if (!isdigit(*rest
) && *rest
!= '.')
1307 v
= LINUX_VERSION_PATCHLEVEL
+ 60;
1308 copy
= clamp_t(size_t, len
, 1, sizeof(buf
));
1309 copy
= scnprintf(buf
, copy
, "2.6.%u%s", v
, rest
);
1310 ret
= copy_to_user(release
, buf
, copy
+ 1);
1315 SYSCALL_DEFINE1(newuname
, struct new_utsname __user
*, name
)
1317 struct new_utsname tmp
;
1319 down_read(&uts_sem
);
1320 memcpy(&tmp
, utsname(), sizeof(tmp
));
1322 if (copy_to_user(name
, &tmp
, sizeof(tmp
)))
1325 if (override_release(name
->release
, sizeof(name
->release
)))
1327 if (override_architecture(name
))
1332 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1336 SYSCALL_DEFINE1(uname
, struct old_utsname __user
*, name
)
1338 struct old_utsname tmp
;
1343 down_read(&uts_sem
);
1344 memcpy(&tmp
, utsname(), sizeof(tmp
));
1346 if (copy_to_user(name
, &tmp
, sizeof(tmp
)))
1349 if (override_release(name
->release
, sizeof(name
->release
)))
1351 if (override_architecture(name
))
1356 SYSCALL_DEFINE1(olduname
, struct oldold_utsname __user
*, name
)
1358 struct oldold_utsname tmp
;
1363 memset(&tmp
, 0, sizeof(tmp
));
1365 down_read(&uts_sem
);
1366 memcpy(&tmp
.sysname
, &utsname()->sysname
, __OLD_UTS_LEN
);
1367 memcpy(&tmp
.nodename
, &utsname()->nodename
, __OLD_UTS_LEN
);
1368 memcpy(&tmp
.release
, &utsname()->release
, __OLD_UTS_LEN
);
1369 memcpy(&tmp
.version
, &utsname()->version
, __OLD_UTS_LEN
);
1370 memcpy(&tmp
.machine
, &utsname()->machine
, __OLD_UTS_LEN
);
1372 if (copy_to_user(name
, &tmp
, sizeof(tmp
)))
1375 if (override_architecture(name
))
1377 if (override_release(name
->release
, sizeof(name
->release
)))
1383 SYSCALL_DEFINE2(sethostname
, char __user
*, name
, int, len
)
1386 char tmp
[__NEW_UTS_LEN
];
1388 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1391 if (len
< 0 || len
> __NEW_UTS_LEN
)
1394 if (!copy_from_user(tmp
, name
, len
)) {
1395 struct new_utsname
*u
;
1397 add_device_randomness(tmp
, len
);
1398 down_write(&uts_sem
);
1400 memcpy(u
->nodename
, tmp
, len
);
1401 memset(u
->nodename
+ len
, 0, sizeof(u
->nodename
) - len
);
1403 uts_proc_notify(UTS_PROC_HOSTNAME
);
1409 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1411 SYSCALL_DEFINE2(gethostname
, char __user
*, name
, int, len
)
1414 struct new_utsname
*u
;
1415 char tmp
[__NEW_UTS_LEN
+ 1];
1419 down_read(&uts_sem
);
1421 i
= 1 + strlen(u
->nodename
);
1424 memcpy(tmp
, u
->nodename
, i
);
1426 if (copy_to_user(name
, tmp
, i
))
1434 * Only setdomainname; getdomainname can be implemented by calling
1437 SYSCALL_DEFINE2(setdomainname
, char __user
*, name
, int, len
)
1440 char tmp
[__NEW_UTS_LEN
];
1442 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1444 if (len
< 0 || len
> __NEW_UTS_LEN
)
1448 if (!copy_from_user(tmp
, name
, len
)) {
1449 struct new_utsname
*u
;
1451 add_device_randomness(tmp
, len
);
1452 down_write(&uts_sem
);
1454 memcpy(u
->domainname
, tmp
, len
);
1455 memset(u
->domainname
+ len
, 0, sizeof(u
->domainname
) - len
);
1457 uts_proc_notify(UTS_PROC_DOMAINNAME
);
1463 /* make sure you are allowed to change @tsk limits before calling this */
1464 static int do_prlimit(struct task_struct
*tsk
, unsigned int resource
,
1465 struct rlimit
*new_rlim
, struct rlimit
*old_rlim
)
1467 struct rlimit
*rlim
;
1470 if (resource
>= RLIM_NLIMITS
)
1472 resource
= array_index_nospec(resource
, RLIM_NLIMITS
);
1475 if (new_rlim
->rlim_cur
> new_rlim
->rlim_max
)
1477 if (resource
== RLIMIT_NOFILE
&&
1478 new_rlim
->rlim_max
> sysctl_nr_open
)
1482 /* Holding a refcount on tsk protects tsk->signal from disappearing. */
1483 rlim
= tsk
->signal
->rlim
+ resource
;
1484 task_lock(tsk
->group_leader
);
1487 * Keep the capable check against init_user_ns until cgroups can
1488 * contain all limits.
1490 if (new_rlim
->rlim_max
> rlim
->rlim_max
&&
1491 !capable(CAP_SYS_RESOURCE
))
1494 retval
= security_task_setrlimit(tsk
, resource
, new_rlim
);
1502 task_unlock(tsk
->group_leader
);
1505 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1506 * infinite. In case of RLIM_INFINITY the posix CPU timer code
1507 * ignores the rlimit.
1509 if (!retval
&& new_rlim
&& resource
== RLIMIT_CPU
&&
1510 new_rlim
->rlim_cur
!= RLIM_INFINITY
&&
1511 IS_ENABLED(CONFIG_POSIX_TIMERS
)) {
1513 * update_rlimit_cpu can fail if the task is exiting, but there
1514 * may be other tasks in the thread group that are not exiting,
1515 * and they need their cpu timers adjusted.
1517 * The group_leader is the last task to be released, so if we
1518 * cannot update_rlimit_cpu on it, then the entire process is
1519 * exiting and we do not need to update at all.
1521 update_rlimit_cpu(tsk
->group_leader
, new_rlim
->rlim_cur
);
1527 SYSCALL_DEFINE2(getrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1529 struct rlimit value
;
1532 ret
= do_prlimit(current
, resource
, NULL
, &value
);
1534 ret
= copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1539 #ifdef CONFIG_COMPAT
1541 COMPAT_SYSCALL_DEFINE2(setrlimit
, unsigned int, resource
,
1542 struct compat_rlimit __user
*, rlim
)
1545 struct compat_rlimit r32
;
1547 if (copy_from_user(&r32
, rlim
, sizeof(struct compat_rlimit
)))
1550 if (r32
.rlim_cur
== COMPAT_RLIM_INFINITY
)
1551 r
.rlim_cur
= RLIM_INFINITY
;
1553 r
.rlim_cur
= r32
.rlim_cur
;
1554 if (r32
.rlim_max
== COMPAT_RLIM_INFINITY
)
1555 r
.rlim_max
= RLIM_INFINITY
;
1557 r
.rlim_max
= r32
.rlim_max
;
1558 return do_prlimit(current
, resource
, &r
, NULL
);
1561 COMPAT_SYSCALL_DEFINE2(getrlimit
, unsigned int, resource
,
1562 struct compat_rlimit __user
*, rlim
)
1567 ret
= do_prlimit(current
, resource
, NULL
, &r
);
1569 struct compat_rlimit r32
;
1570 if (r
.rlim_cur
> COMPAT_RLIM_INFINITY
)
1571 r32
.rlim_cur
= COMPAT_RLIM_INFINITY
;
1573 r32
.rlim_cur
= r
.rlim_cur
;
1574 if (r
.rlim_max
> COMPAT_RLIM_INFINITY
)
1575 r32
.rlim_max
= COMPAT_RLIM_INFINITY
;
1577 r32
.rlim_max
= r
.rlim_max
;
1579 if (copy_to_user(rlim
, &r32
, sizeof(struct compat_rlimit
)))
1587 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1590 * Back compatibility for getrlimit. Needed for some apps.
1592 SYSCALL_DEFINE2(old_getrlimit
, unsigned int, resource
,
1593 struct rlimit __user
*, rlim
)
1596 if (resource
>= RLIM_NLIMITS
)
1599 resource
= array_index_nospec(resource
, RLIM_NLIMITS
);
1600 task_lock(current
->group_leader
);
1601 x
= current
->signal
->rlim
[resource
];
1602 task_unlock(current
->group_leader
);
1603 if (x
.rlim_cur
> 0x7FFFFFFF)
1604 x
.rlim_cur
= 0x7FFFFFFF;
1605 if (x
.rlim_max
> 0x7FFFFFFF)
1606 x
.rlim_max
= 0x7FFFFFFF;
1607 return copy_to_user(rlim
, &x
, sizeof(x
)) ? -EFAULT
: 0;
1610 #ifdef CONFIG_COMPAT
1611 COMPAT_SYSCALL_DEFINE2(old_getrlimit
, unsigned int, resource
,
1612 struct compat_rlimit __user
*, rlim
)
1616 if (resource
>= RLIM_NLIMITS
)
1619 resource
= array_index_nospec(resource
, RLIM_NLIMITS
);
1620 task_lock(current
->group_leader
);
1621 r
= current
->signal
->rlim
[resource
];
1622 task_unlock(current
->group_leader
);
1623 if (r
.rlim_cur
> 0x7FFFFFFF)
1624 r
.rlim_cur
= 0x7FFFFFFF;
1625 if (r
.rlim_max
> 0x7FFFFFFF)
1626 r
.rlim_max
= 0x7FFFFFFF;
1628 if (put_user(r
.rlim_cur
, &rlim
->rlim_cur
) ||
1629 put_user(r
.rlim_max
, &rlim
->rlim_max
))
1637 static inline bool rlim64_is_infinity(__u64 rlim64
)
1639 #if BITS_PER_LONG < 64
1640 return rlim64
>= ULONG_MAX
;
1642 return rlim64
== RLIM64_INFINITY
;
1646 static void rlim_to_rlim64(const struct rlimit
*rlim
, struct rlimit64
*rlim64
)
1648 if (rlim
->rlim_cur
== RLIM_INFINITY
)
1649 rlim64
->rlim_cur
= RLIM64_INFINITY
;
1651 rlim64
->rlim_cur
= rlim
->rlim_cur
;
1652 if (rlim
->rlim_max
== RLIM_INFINITY
)
1653 rlim64
->rlim_max
= RLIM64_INFINITY
;
1655 rlim64
->rlim_max
= rlim
->rlim_max
;
1658 static void rlim64_to_rlim(const struct rlimit64
*rlim64
, struct rlimit
*rlim
)
1660 if (rlim64_is_infinity(rlim64
->rlim_cur
))
1661 rlim
->rlim_cur
= RLIM_INFINITY
;
1663 rlim
->rlim_cur
= (unsigned long)rlim64
->rlim_cur
;
1664 if (rlim64_is_infinity(rlim64
->rlim_max
))
1665 rlim
->rlim_max
= RLIM_INFINITY
;
1667 rlim
->rlim_max
= (unsigned long)rlim64
->rlim_max
;
1670 /* rcu lock must be held */
1671 static int check_prlimit_permission(struct task_struct
*task
,
1674 const struct cred
*cred
= current_cred(), *tcred
;
1677 if (current
== task
)
1680 tcred
= __task_cred(task
);
1681 id_match
= (uid_eq(cred
->uid
, tcred
->euid
) &&
1682 uid_eq(cred
->uid
, tcred
->suid
) &&
1683 uid_eq(cred
->uid
, tcred
->uid
) &&
1684 gid_eq(cred
->gid
, tcred
->egid
) &&
1685 gid_eq(cred
->gid
, tcred
->sgid
) &&
1686 gid_eq(cred
->gid
, tcred
->gid
));
1687 if (!id_match
&& !ns_capable(tcred
->user_ns
, CAP_SYS_RESOURCE
))
1690 return security_task_prlimit(cred
, tcred
, flags
);
1693 SYSCALL_DEFINE4(prlimit64
, pid_t
, pid
, unsigned int, resource
,
1694 const struct rlimit64 __user
*, new_rlim
,
1695 struct rlimit64 __user
*, old_rlim
)
1697 struct rlimit64 old64
, new64
;
1698 struct rlimit old
, new;
1699 struct task_struct
*tsk
;
1700 unsigned int checkflags
= 0;
1704 checkflags
|= LSM_PRLIMIT_READ
;
1707 if (copy_from_user(&new64
, new_rlim
, sizeof(new64
)))
1709 rlim64_to_rlim(&new64
, &new);
1710 checkflags
|= LSM_PRLIMIT_WRITE
;
1714 tsk
= pid
? find_task_by_vpid(pid
) : current
;
1719 ret
= check_prlimit_permission(tsk
, checkflags
);
1724 get_task_struct(tsk
);
1727 ret
= do_prlimit(tsk
, resource
, new_rlim
? &new : NULL
,
1728 old_rlim
? &old
: NULL
);
1730 if (!ret
&& old_rlim
) {
1731 rlim_to_rlim64(&old
, &old64
);
1732 if (copy_to_user(old_rlim
, &old64
, sizeof(old64
)))
1736 put_task_struct(tsk
);
1740 SYSCALL_DEFINE2(setrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1742 struct rlimit new_rlim
;
1744 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1746 return do_prlimit(current
, resource
, &new_rlim
, NULL
);
1750 * It would make sense to put struct rusage in the task_struct,
1751 * except that would make the task_struct be *really big*. After
1752 * task_struct gets moved into malloc'ed memory, it would
1753 * make sense to do this. It will make moving the rest of the information
1754 * a lot simpler! (Which we're not doing right now because we're not
1755 * measuring them yet).
1757 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1758 * races with threads incrementing their own counters. But since word
1759 * reads are atomic, we either get new values or old values and we don't
1760 * care which for the sums. We always take the siglock to protect reading
1761 * the c* fields from p->signal from races with exit.c updating those
1762 * fields when reaping, so a sample either gets all the additions of a
1763 * given child after it's reaped, or none so this sample is before reaping.
1766 * We need to take the siglock for CHILDEREN, SELF and BOTH
1767 * for the cases current multithreaded, non-current single threaded
1768 * non-current multithreaded. Thread traversal is now safe with
1770 * Strictly speaking, we donot need to take the siglock if we are current and
1771 * single threaded, as no one else can take our signal_struct away, no one
1772 * else can reap the children to update signal->c* counters, and no one else
1773 * can race with the signal-> fields. If we do not take any lock, the
1774 * signal-> fields could be read out of order while another thread was just
1775 * exiting. So we should place a read memory barrier when we avoid the lock.
1776 * On the writer side, write memory barrier is implied in __exit_signal
1777 * as __exit_signal releases the siglock spinlock after updating the signal->
1778 * fields. But we don't do this yet to keep things simple.
1782 static void accumulate_thread_rusage(struct task_struct
*t
, struct rusage
*r
)
1784 r
->ru_nvcsw
+= t
->nvcsw
;
1785 r
->ru_nivcsw
+= t
->nivcsw
;
1786 r
->ru_minflt
+= t
->min_flt
;
1787 r
->ru_majflt
+= t
->maj_flt
;
1788 r
->ru_inblock
+= task_io_get_inblock(t
);
1789 r
->ru_oublock
+= task_io_get_oublock(t
);
1792 void getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1794 struct task_struct
*t
;
1795 unsigned long flags
;
1796 u64 tgutime
, tgstime
, utime
, stime
;
1797 unsigned long maxrss
;
1798 struct mm_struct
*mm
;
1799 struct signal_struct
*sig
= p
->signal
;
1800 unsigned int seq
= 0;
1803 memset(r
, 0, sizeof(*r
));
1807 if (who
== RUSAGE_THREAD
) {
1808 task_cputime_adjusted(current
, &utime
, &stime
);
1809 accumulate_thread_rusage(p
, r
);
1810 maxrss
= sig
->maxrss
;
1814 flags
= read_seqbegin_or_lock_irqsave(&sig
->stats_lock
, &seq
);
1818 case RUSAGE_CHILDREN
:
1819 utime
= sig
->cutime
;
1820 stime
= sig
->cstime
;
1821 r
->ru_nvcsw
= sig
->cnvcsw
;
1822 r
->ru_nivcsw
= sig
->cnivcsw
;
1823 r
->ru_minflt
= sig
->cmin_flt
;
1824 r
->ru_majflt
= sig
->cmaj_flt
;
1825 r
->ru_inblock
= sig
->cinblock
;
1826 r
->ru_oublock
= sig
->coublock
;
1827 maxrss
= sig
->cmaxrss
;
1829 if (who
== RUSAGE_CHILDREN
)
1834 r
->ru_nvcsw
+= sig
->nvcsw
;
1835 r
->ru_nivcsw
+= sig
->nivcsw
;
1836 r
->ru_minflt
+= sig
->min_flt
;
1837 r
->ru_majflt
+= sig
->maj_flt
;
1838 r
->ru_inblock
+= sig
->inblock
;
1839 r
->ru_oublock
+= sig
->oublock
;
1840 if (maxrss
< sig
->maxrss
)
1841 maxrss
= sig
->maxrss
;
1844 __for_each_thread(sig
, t
)
1845 accumulate_thread_rusage(t
, r
);
1854 if (need_seqretry(&sig
->stats_lock
, seq
)) {
1858 done_seqretry_irqrestore(&sig
->stats_lock
, seq
, flags
);
1860 if (who
== RUSAGE_CHILDREN
)
1863 thread_group_cputime_adjusted(p
, &tgutime
, &tgstime
);
1868 mm
= get_task_mm(p
);
1870 setmax_mm_hiwater_rss(&maxrss
, mm
);
1875 r
->ru_maxrss
= maxrss
* (PAGE_SIZE
/ 1024); /* convert pages to KBs */
1876 r
->ru_utime
= ns_to_kernel_old_timeval(utime
);
1877 r
->ru_stime
= ns_to_kernel_old_timeval(stime
);
1880 SYSCALL_DEFINE2(getrusage
, int, who
, struct rusage __user
*, ru
)
1884 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1885 who
!= RUSAGE_THREAD
)
1888 getrusage(current
, who
, &r
);
1889 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
1892 #ifdef CONFIG_COMPAT
1893 COMPAT_SYSCALL_DEFINE2(getrusage
, int, who
, struct compat_rusage __user
*, ru
)
1897 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1898 who
!= RUSAGE_THREAD
)
1901 getrusage(current
, who
, &r
);
1902 return put_compat_rusage(&r
, ru
);
1906 SYSCALL_DEFINE1(umask
, int, mask
)
1908 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
1912 static int prctl_set_mm_exe_file(struct mm_struct
*mm
, unsigned int fd
)
1915 struct inode
*inode
;
1921 inode
= file_inode(fd_file(exe
));
1924 * Because the original mm->exe_file points to executable file, make
1925 * sure that this one is executable as well, to avoid breaking an
1928 if (!S_ISREG(inode
->i_mode
) || path_noexec(&fd_file(exe
)->f_path
))
1931 err
= file_permission(fd_file(exe
), MAY_EXEC
);
1935 return replace_mm_exe_file(mm
, fd_file(exe
));
1939 * Check arithmetic relations of passed addresses.
1941 * WARNING: we don't require any capability here so be very careful
1942 * in what is allowed for modification from userspace.
1944 static int validate_prctl_map_addr(struct prctl_mm_map
*prctl_map
)
1946 unsigned long mmap_max_addr
= TASK_SIZE
;
1947 int error
= -EINVAL
, i
;
1949 static const unsigned char offsets
[] = {
1950 offsetof(struct prctl_mm_map
, start_code
),
1951 offsetof(struct prctl_mm_map
, end_code
),
1952 offsetof(struct prctl_mm_map
, start_data
),
1953 offsetof(struct prctl_mm_map
, end_data
),
1954 offsetof(struct prctl_mm_map
, start_brk
),
1955 offsetof(struct prctl_mm_map
, brk
),
1956 offsetof(struct prctl_mm_map
, start_stack
),
1957 offsetof(struct prctl_mm_map
, arg_start
),
1958 offsetof(struct prctl_mm_map
, arg_end
),
1959 offsetof(struct prctl_mm_map
, env_start
),
1960 offsetof(struct prctl_mm_map
, env_end
),
1964 * Make sure the members are not somewhere outside
1965 * of allowed address space.
1967 for (i
= 0; i
< ARRAY_SIZE(offsets
); i
++) {
1968 u64 val
= *(u64
*)((char *)prctl_map
+ offsets
[i
]);
1970 if ((unsigned long)val
>= mmap_max_addr
||
1971 (unsigned long)val
< mmap_min_addr
)
1976 * Make sure the pairs are ordered.
1978 #define __prctl_check_order(__m1, __op, __m2) \
1979 ((unsigned long)prctl_map->__m1 __op \
1980 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1981 error
= __prctl_check_order(start_code
, <, end_code
);
1982 error
|= __prctl_check_order(start_data
,<=, end_data
);
1983 error
|= __prctl_check_order(start_brk
, <=, brk
);
1984 error
|= __prctl_check_order(arg_start
, <=, arg_end
);
1985 error
|= __prctl_check_order(env_start
, <=, env_end
);
1988 #undef __prctl_check_order
1993 * Neither we should allow to override limits if they set.
1995 if (check_data_rlimit(rlimit(RLIMIT_DATA
), prctl_map
->brk
,
1996 prctl_map
->start_brk
, prctl_map
->end_data
,
1997 prctl_map
->start_data
))
2005 #ifdef CONFIG_CHECKPOINT_RESTORE
2006 static int prctl_set_mm_map(int opt
, const void __user
*addr
, unsigned long data_size
)
2008 struct prctl_mm_map prctl_map
= { .exe_fd
= (u32
)-1, };
2009 unsigned long user_auxv
[AT_VECTOR_SIZE
];
2010 struct mm_struct
*mm
= current
->mm
;
2013 BUILD_BUG_ON(sizeof(user_auxv
) != sizeof(mm
->saved_auxv
));
2014 BUILD_BUG_ON(sizeof(struct prctl_mm_map
) > 256);
2016 if (opt
== PR_SET_MM_MAP_SIZE
)
2017 return put_user((unsigned int)sizeof(prctl_map
),
2018 (unsigned int __user
*)addr
);
2020 if (data_size
!= sizeof(prctl_map
))
2023 if (copy_from_user(&prctl_map
, addr
, sizeof(prctl_map
)))
2026 error
= validate_prctl_map_addr(&prctl_map
);
2030 if (prctl_map
.auxv_size
) {
2032 * Someone is trying to cheat the auxv vector.
2034 if (!prctl_map
.auxv
||
2035 prctl_map
.auxv_size
> sizeof(mm
->saved_auxv
))
2038 memset(user_auxv
, 0, sizeof(user_auxv
));
2039 if (copy_from_user(user_auxv
,
2040 (const void __user
*)prctl_map
.auxv
,
2041 prctl_map
.auxv_size
))
2044 /* Last entry must be AT_NULL as specification requires */
2045 user_auxv
[AT_VECTOR_SIZE
- 2] = AT_NULL
;
2046 user_auxv
[AT_VECTOR_SIZE
- 1] = AT_NULL
;
2049 if (prctl_map
.exe_fd
!= (u32
)-1) {
2051 * Check if the current user is checkpoint/restore capable.
2052 * At the time of this writing, it checks for CAP_SYS_ADMIN
2053 * or CAP_CHECKPOINT_RESTORE.
2054 * Note that a user with access to ptrace can masquerade an
2055 * arbitrary program as any executable, even setuid ones.
2056 * This may have implications in the tomoyo subsystem.
2058 if (!checkpoint_restore_ns_capable(current_user_ns()))
2061 error
= prctl_set_mm_exe_file(mm
, prctl_map
.exe_fd
);
2067 * arg_lock protects concurrent updates but we still need mmap_lock for
2068 * read to exclude races with sys_brk.
2073 * We don't validate if these members are pointing to
2074 * real present VMAs because application may have correspond
2075 * VMAs already unmapped and kernel uses these members for statistics
2076 * output in procfs mostly, except
2078 * - @start_brk/@brk which are used in do_brk_flags but kernel lookups
2079 * for VMAs when updating these members so anything wrong written
2080 * here cause kernel to swear at userspace program but won't lead
2081 * to any problem in kernel itself
2084 spin_lock(&mm
->arg_lock
);
2085 mm
->start_code
= prctl_map
.start_code
;
2086 mm
->end_code
= prctl_map
.end_code
;
2087 mm
->start_data
= prctl_map
.start_data
;
2088 mm
->end_data
= prctl_map
.end_data
;
2089 mm
->start_brk
= prctl_map
.start_brk
;
2090 mm
->brk
= prctl_map
.brk
;
2091 mm
->start_stack
= prctl_map
.start_stack
;
2092 mm
->arg_start
= prctl_map
.arg_start
;
2093 mm
->arg_end
= prctl_map
.arg_end
;
2094 mm
->env_start
= prctl_map
.env_start
;
2095 mm
->env_end
= prctl_map
.env_end
;
2096 spin_unlock(&mm
->arg_lock
);
2099 * Note this update of @saved_auxv is lockless thus
2100 * if someone reads this member in procfs while we're
2101 * updating -- it may get partly updated results. It's
2102 * known and acceptable trade off: we leave it as is to
2103 * not introduce additional locks here making the kernel
2106 if (prctl_map
.auxv_size
)
2107 memcpy(mm
->saved_auxv
, user_auxv
, sizeof(user_auxv
));
2109 mmap_read_unlock(mm
);
2112 #endif /* CONFIG_CHECKPOINT_RESTORE */
2114 static int prctl_set_auxv(struct mm_struct
*mm
, unsigned long addr
,
2118 * This doesn't move the auxiliary vector itself since it's pinned to
2119 * mm_struct, but it permits filling the vector with new values. It's
2120 * up to the caller to provide sane values here, otherwise userspace
2121 * tools which use this vector might be unhappy.
2123 unsigned long user_auxv
[AT_VECTOR_SIZE
] = {};
2125 if (len
> sizeof(user_auxv
))
2128 if (copy_from_user(user_auxv
, (const void __user
*)addr
, len
))
2131 /* Make sure the last entry is always AT_NULL */
2132 user_auxv
[AT_VECTOR_SIZE
- 2] = 0;
2133 user_auxv
[AT_VECTOR_SIZE
- 1] = 0;
2135 BUILD_BUG_ON(sizeof(user_auxv
) != sizeof(mm
->saved_auxv
));
2138 memcpy(mm
->saved_auxv
, user_auxv
, len
);
2139 task_unlock(current
);
2144 static int prctl_set_mm(int opt
, unsigned long addr
,
2145 unsigned long arg4
, unsigned long arg5
)
2147 struct mm_struct
*mm
= current
->mm
;
2148 struct prctl_mm_map prctl_map
= {
2153 struct vm_area_struct
*vma
;
2156 if (arg5
|| (arg4
&& (opt
!= PR_SET_MM_AUXV
&&
2157 opt
!= PR_SET_MM_MAP
&&
2158 opt
!= PR_SET_MM_MAP_SIZE
)))
2161 #ifdef CONFIG_CHECKPOINT_RESTORE
2162 if (opt
== PR_SET_MM_MAP
|| opt
== PR_SET_MM_MAP_SIZE
)
2163 return prctl_set_mm_map(opt
, (const void __user
*)addr
, arg4
);
2166 if (!capable(CAP_SYS_RESOURCE
))
2169 if (opt
== PR_SET_MM_EXE_FILE
)
2170 return prctl_set_mm_exe_file(mm
, (unsigned int)addr
);
2172 if (opt
== PR_SET_MM_AUXV
)
2173 return prctl_set_auxv(mm
, addr
, arg4
);
2175 if (addr
>= TASK_SIZE
|| addr
< mmap_min_addr
)
2181 * arg_lock protects concurrent updates of arg boundaries, we need
2182 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2186 vma
= find_vma(mm
, addr
);
2188 spin_lock(&mm
->arg_lock
);
2189 prctl_map
.start_code
= mm
->start_code
;
2190 prctl_map
.end_code
= mm
->end_code
;
2191 prctl_map
.start_data
= mm
->start_data
;
2192 prctl_map
.end_data
= mm
->end_data
;
2193 prctl_map
.start_brk
= mm
->start_brk
;
2194 prctl_map
.brk
= mm
->brk
;
2195 prctl_map
.start_stack
= mm
->start_stack
;
2196 prctl_map
.arg_start
= mm
->arg_start
;
2197 prctl_map
.arg_end
= mm
->arg_end
;
2198 prctl_map
.env_start
= mm
->env_start
;
2199 prctl_map
.env_end
= mm
->env_end
;
2202 case PR_SET_MM_START_CODE
:
2203 prctl_map
.start_code
= addr
;
2205 case PR_SET_MM_END_CODE
:
2206 prctl_map
.end_code
= addr
;
2208 case PR_SET_MM_START_DATA
:
2209 prctl_map
.start_data
= addr
;
2211 case PR_SET_MM_END_DATA
:
2212 prctl_map
.end_data
= addr
;
2214 case PR_SET_MM_START_STACK
:
2215 prctl_map
.start_stack
= addr
;
2217 case PR_SET_MM_START_BRK
:
2218 prctl_map
.start_brk
= addr
;
2221 prctl_map
.brk
= addr
;
2223 case PR_SET_MM_ARG_START
:
2224 prctl_map
.arg_start
= addr
;
2226 case PR_SET_MM_ARG_END
:
2227 prctl_map
.arg_end
= addr
;
2229 case PR_SET_MM_ENV_START
:
2230 prctl_map
.env_start
= addr
;
2232 case PR_SET_MM_ENV_END
:
2233 prctl_map
.env_end
= addr
;
2239 error
= validate_prctl_map_addr(&prctl_map
);
2245 * If command line arguments and environment
2246 * are placed somewhere else on stack, we can
2247 * set them up here, ARG_START/END to setup
2248 * command line arguments and ENV_START/END
2251 case PR_SET_MM_START_STACK
:
2252 case PR_SET_MM_ARG_START
:
2253 case PR_SET_MM_ARG_END
:
2254 case PR_SET_MM_ENV_START
:
2255 case PR_SET_MM_ENV_END
:
2262 mm
->start_code
= prctl_map
.start_code
;
2263 mm
->end_code
= prctl_map
.end_code
;
2264 mm
->start_data
= prctl_map
.start_data
;
2265 mm
->end_data
= prctl_map
.end_data
;
2266 mm
->start_brk
= prctl_map
.start_brk
;
2267 mm
->brk
= prctl_map
.brk
;
2268 mm
->start_stack
= prctl_map
.start_stack
;
2269 mm
->arg_start
= prctl_map
.arg_start
;
2270 mm
->arg_end
= prctl_map
.arg_end
;
2271 mm
->env_start
= prctl_map
.env_start
;
2272 mm
->env_end
= prctl_map
.env_end
;
2276 spin_unlock(&mm
->arg_lock
);
2277 mmap_read_unlock(mm
);
2281 #ifdef CONFIG_CHECKPOINT_RESTORE
2282 static int prctl_get_tid_address(struct task_struct
*me
, int __user
* __user
*tid_addr
)
2284 return put_user(me
->clear_child_tid
, tid_addr
);
2287 static int prctl_get_tid_address(struct task_struct
*me
, int __user
* __user
*tid_addr
)
2293 static int propagate_has_child_subreaper(struct task_struct
*p
, void *data
)
2296 * If task has has_child_subreaper - all its descendants
2297 * already have these flag too and new descendants will
2298 * inherit it on fork, skip them.
2300 * If we've found child_reaper - skip descendants in
2301 * it's subtree as they will never get out pidns.
2303 if (p
->signal
->has_child_subreaper
||
2304 is_child_reaper(task_pid(p
)))
2307 p
->signal
->has_child_subreaper
= 1;
2311 int __weak
arch_prctl_spec_ctrl_get(struct task_struct
*t
, unsigned long which
)
2316 int __weak
arch_prctl_spec_ctrl_set(struct task_struct
*t
, unsigned long which
,
2322 int __weak
arch_get_shadow_stack_status(struct task_struct
*t
, unsigned long __user
*status
)
2327 int __weak
arch_set_shadow_stack_status(struct task_struct
*t
, unsigned long status
)
2332 int __weak
arch_lock_shadow_stack_status(struct task_struct
*t
, unsigned long status
)
2337 #define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2339 #ifdef CONFIG_ANON_VMA_NAME
2341 #define ANON_VMA_NAME_MAX_LEN 80
2342 #define ANON_VMA_NAME_INVALID_CHARS "\\`$[]"
2344 static inline bool is_valid_name_char(char ch
)
2346 /* printable ascii characters, excluding ANON_VMA_NAME_INVALID_CHARS */
2347 return ch
> 0x1f && ch
< 0x7f &&
2348 !strchr(ANON_VMA_NAME_INVALID_CHARS
, ch
);
2351 static int prctl_set_vma(unsigned long opt
, unsigned long addr
,
2352 unsigned long size
, unsigned long arg
)
2354 struct mm_struct
*mm
= current
->mm
;
2355 const char __user
*uname
;
2356 struct anon_vma_name
*anon_name
= NULL
;
2360 case PR_SET_VMA_ANON_NAME
:
2361 uname
= (const char __user
*)arg
;
2365 name
= strndup_user(uname
, ANON_VMA_NAME_MAX_LEN
);
2367 return PTR_ERR(name
);
2369 for (pch
= name
; *pch
!= '\0'; pch
++) {
2370 if (!is_valid_name_char(*pch
)) {
2375 /* anon_vma has its own copy */
2376 anon_name
= anon_vma_name_alloc(name
);
2383 mmap_write_lock(mm
);
2384 error
= madvise_set_anon_name(mm
, addr
, size
, anon_name
);
2385 mmap_write_unlock(mm
);
2386 anon_vma_name_put(anon_name
);
2395 #else /* CONFIG_ANON_VMA_NAME */
2396 static int prctl_set_vma(unsigned long opt
, unsigned long start
,
2397 unsigned long size
, unsigned long arg
)
2401 #endif /* CONFIG_ANON_VMA_NAME */
2403 static inline unsigned long get_current_mdwe(void)
2405 unsigned long ret
= 0;
2407 if (test_bit(MMF_HAS_MDWE
, ¤t
->mm
->flags
))
2408 ret
|= PR_MDWE_REFUSE_EXEC_GAIN
;
2409 if (test_bit(MMF_HAS_MDWE_NO_INHERIT
, ¤t
->mm
->flags
))
2410 ret
|= PR_MDWE_NO_INHERIT
;
2415 static inline int prctl_set_mdwe(unsigned long bits
, unsigned long arg3
,
2416 unsigned long arg4
, unsigned long arg5
)
2418 unsigned long current_bits
;
2420 if (arg3
|| arg4
|| arg5
)
2423 if (bits
& ~(PR_MDWE_REFUSE_EXEC_GAIN
| PR_MDWE_NO_INHERIT
))
2426 /* NO_INHERIT only makes sense with REFUSE_EXEC_GAIN */
2427 if (bits
& PR_MDWE_NO_INHERIT
&& !(bits
& PR_MDWE_REFUSE_EXEC_GAIN
))
2431 * EOPNOTSUPP might be more appropriate here in principle, but
2432 * existing userspace depends on EINVAL specifically.
2434 if (!arch_memory_deny_write_exec_supported())
2437 current_bits
= get_current_mdwe();
2438 if (current_bits
&& current_bits
!= bits
)
2439 return -EPERM
; /* Cannot unset the flags */
2441 if (bits
& PR_MDWE_NO_INHERIT
)
2442 set_bit(MMF_HAS_MDWE_NO_INHERIT
, ¤t
->mm
->flags
);
2443 if (bits
& PR_MDWE_REFUSE_EXEC_GAIN
)
2444 set_bit(MMF_HAS_MDWE
, ¤t
->mm
->flags
);
2449 static inline int prctl_get_mdwe(unsigned long arg2
, unsigned long arg3
,
2450 unsigned long arg4
, unsigned long arg5
)
2452 if (arg2
|| arg3
|| arg4
|| arg5
)
2454 return get_current_mdwe();
2457 static int prctl_get_auxv(void __user
*addr
, unsigned long len
)
2459 struct mm_struct
*mm
= current
->mm
;
2460 unsigned long size
= min_t(unsigned long, sizeof(mm
->saved_auxv
), len
);
2462 if (size
&& copy_to_user(addr
, mm
->saved_auxv
, size
))
2464 return sizeof(mm
->saved_auxv
);
2467 SYSCALL_DEFINE5(prctl
, int, option
, unsigned long, arg2
, unsigned long, arg3
,
2468 unsigned long, arg4
, unsigned long, arg5
)
2470 struct task_struct
*me
= current
;
2471 unsigned char comm
[sizeof(me
->comm
)];
2474 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
2475 if (error
!= -ENOSYS
)
2480 case PR_SET_PDEATHSIG
:
2481 if (!valid_signal(arg2
)) {
2485 me
->pdeath_signal
= arg2
;
2487 case PR_GET_PDEATHSIG
:
2488 error
= put_user(me
->pdeath_signal
, (int __user
*)arg2
);
2490 case PR_GET_DUMPABLE
:
2491 error
= get_dumpable(me
->mm
);
2493 case PR_SET_DUMPABLE
:
2494 if (arg2
!= SUID_DUMP_DISABLE
&& arg2
!= SUID_DUMP_USER
) {
2498 set_dumpable(me
->mm
, arg2
);
2501 case PR_SET_UNALIGN
:
2502 error
= SET_UNALIGN_CTL(me
, arg2
);
2504 case PR_GET_UNALIGN
:
2505 error
= GET_UNALIGN_CTL(me
, arg2
);
2508 error
= SET_FPEMU_CTL(me
, arg2
);
2511 error
= GET_FPEMU_CTL(me
, arg2
);
2514 error
= SET_FPEXC_CTL(me
, arg2
);
2517 error
= GET_FPEXC_CTL(me
, arg2
);
2520 error
= PR_TIMING_STATISTICAL
;
2523 if (arg2
!= PR_TIMING_STATISTICAL
)
2527 comm
[sizeof(me
->comm
) - 1] = 0;
2528 if (strncpy_from_user(comm
, (char __user
*)arg2
,
2529 sizeof(me
->comm
) - 1) < 0)
2531 set_task_comm(me
, comm
);
2532 proc_comm_connector(me
);
2535 get_task_comm(comm
, me
);
2536 if (copy_to_user((char __user
*)arg2
, comm
, sizeof(comm
)))
2540 error
= GET_ENDIAN(me
, arg2
);
2543 error
= SET_ENDIAN(me
, arg2
);
2545 case PR_GET_SECCOMP
:
2546 error
= prctl_get_seccomp();
2548 case PR_SET_SECCOMP
:
2549 error
= prctl_set_seccomp(arg2
, (char __user
*)arg3
);
2552 error
= GET_TSC_CTL(arg2
);
2555 error
= SET_TSC_CTL(arg2
);
2557 case PR_TASK_PERF_EVENTS_DISABLE
:
2558 error
= perf_event_task_disable();
2560 case PR_TASK_PERF_EVENTS_ENABLE
:
2561 error
= perf_event_task_enable();
2563 case PR_GET_TIMERSLACK
:
2564 if (current
->timer_slack_ns
> ULONG_MAX
)
2567 error
= current
->timer_slack_ns
;
2569 case PR_SET_TIMERSLACK
:
2570 if (rt_or_dl_task_policy(current
))
2573 current
->timer_slack_ns
=
2574 current
->default_timer_slack_ns
;
2576 current
->timer_slack_ns
= arg2
;
2582 case PR_MCE_KILL_CLEAR
:
2585 current
->flags
&= ~PF_MCE_PROCESS
;
2587 case PR_MCE_KILL_SET
:
2588 current
->flags
|= PF_MCE_PROCESS
;
2589 if (arg3
== PR_MCE_KILL_EARLY
)
2590 current
->flags
|= PF_MCE_EARLY
;
2591 else if (arg3
== PR_MCE_KILL_LATE
)
2592 current
->flags
&= ~PF_MCE_EARLY
;
2593 else if (arg3
== PR_MCE_KILL_DEFAULT
)
2595 ~(PF_MCE_EARLY
|PF_MCE_PROCESS
);
2603 case PR_MCE_KILL_GET
:
2604 if (arg2
| arg3
| arg4
| arg5
)
2606 if (current
->flags
& PF_MCE_PROCESS
)
2607 error
= (current
->flags
& PF_MCE_EARLY
) ?
2608 PR_MCE_KILL_EARLY
: PR_MCE_KILL_LATE
;
2610 error
= PR_MCE_KILL_DEFAULT
;
2613 error
= prctl_set_mm(arg2
, arg3
, arg4
, arg5
);
2615 case PR_GET_TID_ADDRESS
:
2616 error
= prctl_get_tid_address(me
, (int __user
* __user
*)arg2
);
2618 case PR_SET_CHILD_SUBREAPER
:
2619 me
->signal
->is_child_subreaper
= !!arg2
;
2623 walk_process_tree(me
, propagate_has_child_subreaper
, NULL
);
2625 case PR_GET_CHILD_SUBREAPER
:
2626 error
= put_user(me
->signal
->is_child_subreaper
,
2627 (int __user
*)arg2
);
2629 case PR_SET_NO_NEW_PRIVS
:
2630 if (arg2
!= 1 || arg3
|| arg4
|| arg5
)
2633 task_set_no_new_privs(current
);
2635 case PR_GET_NO_NEW_PRIVS
:
2636 if (arg2
|| arg3
|| arg4
|| arg5
)
2638 return task_no_new_privs(current
) ? 1 : 0;
2639 case PR_GET_THP_DISABLE
:
2640 if (arg2
|| arg3
|| arg4
|| arg5
)
2642 error
= !!test_bit(MMF_DISABLE_THP
, &me
->mm
->flags
);
2644 case PR_SET_THP_DISABLE
:
2645 if (arg3
|| arg4
|| arg5
)
2647 if (mmap_write_lock_killable(me
->mm
))
2650 set_bit(MMF_DISABLE_THP
, &me
->mm
->flags
);
2652 clear_bit(MMF_DISABLE_THP
, &me
->mm
->flags
);
2653 mmap_write_unlock(me
->mm
);
2655 case PR_MPX_ENABLE_MANAGEMENT
:
2656 case PR_MPX_DISABLE_MANAGEMENT
:
2657 /* No longer implemented: */
2659 case PR_SET_FP_MODE
:
2660 error
= SET_FP_MODE(me
, arg2
);
2662 case PR_GET_FP_MODE
:
2663 error
= GET_FP_MODE(me
);
2666 error
= SVE_SET_VL(arg2
);
2669 error
= SVE_GET_VL();
2672 error
= SME_SET_VL(arg2
);
2675 error
= SME_GET_VL();
2677 case PR_GET_SPECULATION_CTRL
:
2678 if (arg3
|| arg4
|| arg5
)
2680 error
= arch_prctl_spec_ctrl_get(me
, arg2
);
2682 case PR_SET_SPECULATION_CTRL
:
2685 error
= arch_prctl_spec_ctrl_set(me
, arg2
, arg3
);
2687 case PR_PAC_RESET_KEYS
:
2688 if (arg3
|| arg4
|| arg5
)
2690 error
= PAC_RESET_KEYS(me
, arg2
);
2692 case PR_PAC_SET_ENABLED_KEYS
:
2695 error
= PAC_SET_ENABLED_KEYS(me
, arg2
, arg3
);
2697 case PR_PAC_GET_ENABLED_KEYS
:
2698 if (arg2
|| arg3
|| arg4
|| arg5
)
2700 error
= PAC_GET_ENABLED_KEYS(me
);
2702 case PR_SET_TAGGED_ADDR_CTRL
:
2703 if (arg3
|| arg4
|| arg5
)
2705 error
= SET_TAGGED_ADDR_CTRL(arg2
);
2707 case PR_GET_TAGGED_ADDR_CTRL
:
2708 if (arg2
|| arg3
|| arg4
|| arg5
)
2710 error
= GET_TAGGED_ADDR_CTRL();
2712 case PR_SET_IO_FLUSHER
:
2713 if (!capable(CAP_SYS_RESOURCE
))
2716 if (arg3
|| arg4
|| arg5
)
2720 current
->flags
|= PR_IO_FLUSHER
;
2722 current
->flags
&= ~PR_IO_FLUSHER
;
2726 case PR_GET_IO_FLUSHER
:
2727 if (!capable(CAP_SYS_RESOURCE
))
2730 if (arg2
|| arg3
|| arg4
|| arg5
)
2733 error
= (current
->flags
& PR_IO_FLUSHER
) == PR_IO_FLUSHER
;
2735 case PR_SET_SYSCALL_USER_DISPATCH
:
2736 error
= set_syscall_user_dispatch(arg2
, arg3
, arg4
,
2737 (char __user
*) arg5
);
2739 #ifdef CONFIG_SCHED_CORE
2741 error
= sched_core_share_pid(arg2
, arg3
, arg4
, arg5
);
2745 error
= prctl_set_mdwe(arg2
, arg3
, arg4
, arg5
);
2748 error
= prctl_get_mdwe(arg2
, arg3
, arg4
, arg5
);
2750 case PR_PPC_GET_DEXCR
:
2751 if (arg3
|| arg4
|| arg5
)
2753 error
= PPC_GET_DEXCR_ASPECT(me
, arg2
);
2755 case PR_PPC_SET_DEXCR
:
2758 error
= PPC_SET_DEXCR_ASPECT(me
, arg2
, arg3
);
2761 error
= prctl_set_vma(arg2
, arg3
, arg4
, arg5
);
2766 error
= prctl_get_auxv((void __user
*)arg2
, arg3
);
2769 case PR_SET_MEMORY_MERGE
:
2770 if (arg3
|| arg4
|| arg5
)
2772 if (mmap_write_lock_killable(me
->mm
))
2776 error
= ksm_enable_merge_any(me
->mm
);
2778 error
= ksm_disable_merge_any(me
->mm
);
2779 mmap_write_unlock(me
->mm
);
2781 case PR_GET_MEMORY_MERGE
:
2782 if (arg2
|| arg3
|| arg4
|| arg5
)
2785 error
= !!test_bit(MMF_VM_MERGE_ANY
, &me
->mm
->flags
);
2788 case PR_RISCV_V_SET_CONTROL
:
2789 error
= RISCV_V_SET_CONTROL(arg2
);
2791 case PR_RISCV_V_GET_CONTROL
:
2792 error
= RISCV_V_GET_CONTROL();
2794 case PR_RISCV_SET_ICACHE_FLUSH_CTX
:
2795 error
= RISCV_SET_ICACHE_FLUSH_CTX(arg2
, arg3
);
2797 case PR_GET_SHADOW_STACK_STATUS
:
2798 if (arg3
|| arg4
|| arg5
)
2800 error
= arch_get_shadow_stack_status(me
, (unsigned long __user
*) arg2
);
2802 case PR_SET_SHADOW_STACK_STATUS
:
2803 if (arg3
|| arg4
|| arg5
)
2805 error
= arch_set_shadow_stack_status(me
, arg2
);
2807 case PR_LOCK_SHADOW_STACK_STATUS
:
2808 if (arg3
|| arg4
|| arg5
)
2810 error
= arch_lock_shadow_stack_status(me
, arg2
);
2819 SYSCALL_DEFINE3(getcpu
, unsigned __user
*, cpup
, unsigned __user
*, nodep
,
2820 struct getcpu_cache __user
*, unused
)
2823 int cpu
= raw_smp_processor_id();
2826 err
|= put_user(cpu
, cpup
);
2828 err
|= put_user(cpu_to_node(cpu
), nodep
);
2829 return err
? -EFAULT
: 0;
2833 * do_sysinfo - fill in sysinfo struct
2834 * @info: pointer to buffer to fill
2836 static int do_sysinfo(struct sysinfo
*info
)
2838 unsigned long mem_total
, sav_total
;
2839 unsigned int mem_unit
, bitcount
;
2840 struct timespec64 tp
;
2842 memset(info
, 0, sizeof(struct sysinfo
));
2844 ktime_get_boottime_ts64(&tp
);
2845 timens_add_boottime(&tp
);
2846 info
->uptime
= tp
.tv_sec
+ (tp
.tv_nsec
? 1 : 0);
2848 get_avenrun(info
->loads
, 0, SI_LOAD_SHIFT
- FSHIFT
);
2850 info
->procs
= nr_threads
;
2856 * If the sum of all the available memory (i.e. ram + swap)
2857 * is less than can be stored in a 32 bit unsigned long then
2858 * we can be binary compatible with 2.2.x kernels. If not,
2859 * well, in that case 2.2.x was broken anyways...
2861 * -Erik Andersen <andersee@debian.org>
2864 mem_total
= info
->totalram
+ info
->totalswap
;
2865 if (mem_total
< info
->totalram
|| mem_total
< info
->totalswap
)
2868 mem_unit
= info
->mem_unit
;
2869 while (mem_unit
> 1) {
2872 sav_total
= mem_total
;
2874 if (mem_total
< sav_total
)
2879 * If mem_total did not overflow, multiply all memory values by
2880 * info->mem_unit and set it to 1. This leaves things compatible
2881 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2886 info
->totalram
<<= bitcount
;
2887 info
->freeram
<<= bitcount
;
2888 info
->sharedram
<<= bitcount
;
2889 info
->bufferram
<<= bitcount
;
2890 info
->totalswap
<<= bitcount
;
2891 info
->freeswap
<<= bitcount
;
2892 info
->totalhigh
<<= bitcount
;
2893 info
->freehigh
<<= bitcount
;
2899 SYSCALL_DEFINE1(sysinfo
, struct sysinfo __user
*, info
)
2905 if (copy_to_user(info
, &val
, sizeof(struct sysinfo
)))
2911 #ifdef CONFIG_COMPAT
2912 struct compat_sysinfo
{
2926 char _f
[20-2*sizeof(u32
)-sizeof(int)];
2929 COMPAT_SYSCALL_DEFINE1(sysinfo
, struct compat_sysinfo __user
*, info
)
2932 struct compat_sysinfo s_32
;
2936 /* Check to see if any memory value is too large for 32-bit and scale
2939 if (upper_32_bits(s
.totalram
) || upper_32_bits(s
.totalswap
)) {
2942 while (s
.mem_unit
< PAGE_SIZE
) {
2947 s
.totalram
>>= bitcount
;
2948 s
.freeram
>>= bitcount
;
2949 s
.sharedram
>>= bitcount
;
2950 s
.bufferram
>>= bitcount
;
2951 s
.totalswap
>>= bitcount
;
2952 s
.freeswap
>>= bitcount
;
2953 s
.totalhigh
>>= bitcount
;
2954 s
.freehigh
>>= bitcount
;
2957 memset(&s_32
, 0, sizeof(s_32
));
2958 s_32
.uptime
= s
.uptime
;
2959 s_32
.loads
[0] = s
.loads
[0];
2960 s_32
.loads
[1] = s
.loads
[1];
2961 s_32
.loads
[2] = s
.loads
[2];
2962 s_32
.totalram
= s
.totalram
;
2963 s_32
.freeram
= s
.freeram
;
2964 s_32
.sharedram
= s
.sharedram
;
2965 s_32
.bufferram
= s
.bufferram
;
2966 s_32
.totalswap
= s
.totalswap
;
2967 s_32
.freeswap
= s
.freeswap
;
2968 s_32
.procs
= s
.procs
;
2969 s_32
.totalhigh
= s
.totalhigh
;
2970 s_32
.freehigh
= s
.freehigh
;
2971 s_32
.mem_unit
= s
.mem_unit
;
2972 if (copy_to_user(info
, &s_32
, sizeof(s_32
)))
2976 #endif /* CONFIG_COMPAT */