1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/cacheflush.h>
13 #include <linux/trace_seq.h>
14 #include <linux/spinlock.h>
15 #include <linux/irq_work.h>
16 #include <linux/security.h>
17 #include <linux/uaccess.h>
18 #include <linux/hardirq.h>
19 #include <linux/kthread.h> /* for self test */
20 #include <linux/module.h>
21 #include <linux/percpu.h>
22 #include <linux/mutex.h>
23 #include <linux/delay.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/list.h>
28 #include <linux/cpu.h>
29 #include <linux/oom.h>
32 #include <asm/local64.h>
33 #include <asm/local.h>
38 * The "absolute" timestamp in the buffer is only 59 bits.
39 * If a clock has the 5 MSBs set, it needs to be saved and
42 #define TS_MSB (0xf8ULL << 56)
43 #define ABS_TS_MASK (~TS_MSB)
45 static void update_pages_handler(struct work_struct
*work
);
47 #define RING_BUFFER_META_MAGIC 0xBADFEED
49 struct ring_buffer_meta
{
52 unsigned long text_addr
;
53 unsigned long data_addr
;
54 unsigned long first_buffer
;
55 unsigned long head_buffer
;
56 unsigned long commit_buffer
;
63 * The ring buffer header is special. We must manually up keep it.
65 int ring_buffer_print_entry_header(struct trace_seq
*s
)
67 trace_seq_puts(s
, "# compressed entry header\n");
68 trace_seq_puts(s
, "\ttype_len : 5 bits\n");
69 trace_seq_puts(s
, "\ttime_delta : 27 bits\n");
70 trace_seq_puts(s
, "\tarray : 32 bits\n");
71 trace_seq_putc(s
, '\n');
72 trace_seq_printf(s
, "\tpadding : type == %d\n",
73 RINGBUF_TYPE_PADDING
);
74 trace_seq_printf(s
, "\ttime_extend : type == %d\n",
75 RINGBUF_TYPE_TIME_EXTEND
);
76 trace_seq_printf(s
, "\ttime_stamp : type == %d\n",
77 RINGBUF_TYPE_TIME_STAMP
);
78 trace_seq_printf(s
, "\tdata max type_len == %d\n",
79 RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
81 return !trace_seq_has_overflowed(s
);
85 * The ring buffer is made up of a list of pages. A separate list of pages is
86 * allocated for each CPU. A writer may only write to a buffer that is
87 * associated with the CPU it is currently executing on. A reader may read
88 * from any per cpu buffer.
90 * The reader is special. For each per cpu buffer, the reader has its own
91 * reader page. When a reader has read the entire reader page, this reader
92 * page is swapped with another page in the ring buffer.
94 * Now, as long as the writer is off the reader page, the reader can do what
95 * ever it wants with that page. The writer will never write to that page
96 * again (as long as it is out of the ring buffer).
98 * Here's some silly ASCII art.
101 * |reader| RING BUFFER
103 * +------+ +---+ +---+ +---+
112 * |reader| RING BUFFER
113 * |page |------------------v
114 * +------+ +---+ +---+ +---+
123 * |reader| RING BUFFER
124 * |page |------------------v
125 * +------+ +---+ +---+ +---+
127 * | +---+ +---+ +---+
130 * +------------------------------+
134 * |buffer| RING BUFFER
135 * |page |------------------v
136 * +------+ +---+ +---+ +---+
138 * | New +---+ +---+ +---+
141 * +------------------------------+
144 * After we make this swap, the reader can hand this page off to the splice
145 * code and be done with it. It can even allocate a new page if it needs to
146 * and swap that into the ring buffer.
148 * We will be using cmpxchg soon to make all this lockless.
152 /* Used for individual buffers (after the counter) */
153 #define RB_BUFFER_OFF (1 << 20)
155 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
157 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
158 #define RB_ALIGNMENT 4U
159 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
160 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
162 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
163 # define RB_FORCE_8BYTE_ALIGNMENT 0
164 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
166 # define RB_FORCE_8BYTE_ALIGNMENT 1
167 # define RB_ARCH_ALIGNMENT 8U
170 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
172 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
173 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
176 RB_LEN_TIME_EXTEND
= 8,
177 RB_LEN_TIME_STAMP
= 8,
180 #define skip_time_extend(event) \
181 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
183 #define extended_time(event) \
184 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
186 static inline bool rb_null_event(struct ring_buffer_event
*event
)
188 return event
->type_len
== RINGBUF_TYPE_PADDING
&& !event
->time_delta
;
191 static void rb_event_set_padding(struct ring_buffer_event
*event
)
193 /* padding has a NULL time_delta */
194 event
->type_len
= RINGBUF_TYPE_PADDING
;
195 event
->time_delta
= 0;
199 rb_event_data_length(struct ring_buffer_event
*event
)
204 length
= event
->type_len
* RB_ALIGNMENT
;
206 length
= event
->array
[0];
207 return length
+ RB_EVNT_HDR_SIZE
;
211 * Return the length of the given event. Will return
212 * the length of the time extend if the event is a
215 static inline unsigned
216 rb_event_length(struct ring_buffer_event
*event
)
218 switch (event
->type_len
) {
219 case RINGBUF_TYPE_PADDING
:
220 if (rb_null_event(event
))
223 return event
->array
[0] + RB_EVNT_HDR_SIZE
;
225 case RINGBUF_TYPE_TIME_EXTEND
:
226 return RB_LEN_TIME_EXTEND
;
228 case RINGBUF_TYPE_TIME_STAMP
:
229 return RB_LEN_TIME_STAMP
;
231 case RINGBUF_TYPE_DATA
:
232 return rb_event_data_length(event
);
241 * Return total length of time extend and data,
242 * or just the event length for all other events.
244 static inline unsigned
245 rb_event_ts_length(struct ring_buffer_event
*event
)
249 if (extended_time(event
)) {
250 /* time extends include the data event after it */
251 len
= RB_LEN_TIME_EXTEND
;
252 event
= skip_time_extend(event
);
254 return len
+ rb_event_length(event
);
258 * ring_buffer_event_length - return the length of the event
259 * @event: the event to get the length of
261 * Returns the size of the data load of a data event.
262 * If the event is something other than a data event, it
263 * returns the size of the event itself. With the exception
264 * of a TIME EXTEND, where it still returns the size of the
265 * data load of the data event after it.
267 unsigned ring_buffer_event_length(struct ring_buffer_event
*event
)
271 if (extended_time(event
))
272 event
= skip_time_extend(event
);
274 length
= rb_event_length(event
);
275 if (event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
277 length
-= RB_EVNT_HDR_SIZE
;
278 if (length
> RB_MAX_SMALL_DATA
+ sizeof(event
->array
[0]))
279 length
-= sizeof(event
->array
[0]);
282 EXPORT_SYMBOL_GPL(ring_buffer_event_length
);
284 /* inline for ring buffer fast paths */
285 static __always_inline
void *
286 rb_event_data(struct ring_buffer_event
*event
)
288 if (extended_time(event
))
289 event
= skip_time_extend(event
);
290 WARN_ON_ONCE(event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
291 /* If length is in len field, then array[0] has the data */
293 return (void *)&event
->array
[0];
294 /* Otherwise length is in array[0] and array[1] has the data */
295 return (void *)&event
->array
[1];
299 * ring_buffer_event_data - return the data of the event
300 * @event: the event to get the data from
302 void *ring_buffer_event_data(struct ring_buffer_event
*event
)
304 return rb_event_data(event
);
306 EXPORT_SYMBOL_GPL(ring_buffer_event_data
);
308 #define for_each_buffer_cpu(buffer, cpu) \
309 for_each_cpu(cpu, buffer->cpumask)
311 #define for_each_online_buffer_cpu(buffer, cpu) \
312 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
315 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
316 #define TS_DELTA_TEST (~TS_MASK)
318 static u64
rb_event_time_stamp(struct ring_buffer_event
*event
)
322 ts
= event
->array
[0];
324 ts
+= event
->time_delta
;
329 /* Flag when events were overwritten */
330 #define RB_MISSED_EVENTS (1 << 31)
331 /* Missed count stored at end */
332 #define RB_MISSED_STORED (1 << 30)
334 #define RB_MISSED_MASK (3 << 30)
336 struct buffer_data_page
{
337 u64 time_stamp
; /* page time stamp */
338 local_t commit
; /* write committed index */
339 unsigned char data
[] RB_ALIGN_DATA
; /* data of buffer page */
342 struct buffer_data_read_page
{
343 unsigned order
; /* order of the page */
344 struct buffer_data_page
*data
; /* actual data, stored in this page */
348 * Note, the buffer_page list must be first. The buffer pages
349 * are allocated in cache lines, which means that each buffer
350 * page will be at the beginning of a cache line, and thus
351 * the least significant bits will be zero. We use this to
352 * add flags in the list struct pointers, to make the ring buffer
356 struct list_head list
; /* list of buffer pages */
357 local_t write
; /* index for next write */
358 unsigned read
; /* index for next read */
359 local_t entries
; /* entries on this page */
360 unsigned long real_end
; /* real end of data */
361 unsigned order
; /* order of the page */
362 u32 id
:30; /* ID for external mapping */
363 u32 range
:1; /* Mapped via a range */
364 struct buffer_data_page
*page
; /* Actual data page */
368 * The buffer page counters, write and entries, must be reset
369 * atomically when crossing page boundaries. To synchronize this
370 * update, two counters are inserted into the number. One is
371 * the actual counter for the write position or count on the page.
373 * The other is a counter of updaters. Before an update happens
374 * the update partition of the counter is incremented. This will
375 * allow the updater to update the counter atomically.
377 * The counter is 20 bits, and the state data is 12.
379 #define RB_WRITE_MASK 0xfffff
380 #define RB_WRITE_INTCNT (1 << 20)
382 static void rb_init_page(struct buffer_data_page
*bpage
)
384 local_set(&bpage
->commit
, 0);
387 static __always_inline
unsigned int rb_page_commit(struct buffer_page
*bpage
)
389 return local_read(&bpage
->page
->commit
);
392 static void free_buffer_page(struct buffer_page
*bpage
)
394 /* Range pages are not to be freed */
396 free_pages((unsigned long)bpage
->page
, bpage
->order
);
401 * We need to fit the time_stamp delta into 27 bits.
403 static inline bool test_time_stamp(u64 delta
)
405 return !!(delta
& TS_DELTA_TEST
);
409 struct irq_work work
;
410 wait_queue_head_t waiters
;
411 wait_queue_head_t full_waiters
;
413 bool waiters_pending
;
414 bool full_waiters_pending
;
419 * Structure to hold event state and handle nested events.
421 struct rb_event_info
{
426 unsigned long length
;
427 struct buffer_page
*tail_page
;
432 * Used for the add_timestamp
434 * EXTEND - wants a time extend
435 * ABSOLUTE - the buffer requests all events to have absolute time stamps
436 * FORCE - force a full time stamp.
439 RB_ADD_STAMP_NONE
= 0,
440 RB_ADD_STAMP_EXTEND
= BIT(1),
441 RB_ADD_STAMP_ABSOLUTE
= BIT(2),
442 RB_ADD_STAMP_FORCE
= BIT(3)
445 * Used for which event context the event is in.
452 * See trace_recursive_lock() comment below for more details.
463 struct rb_time_struct
{
466 typedef struct rb_time_struct rb_time_t
;
471 * head_page == tail_page && head == tail then buffer is empty.
473 struct ring_buffer_per_cpu
{
475 atomic_t record_disabled
;
476 atomic_t resize_disabled
;
477 struct trace_buffer
*buffer
;
478 raw_spinlock_t reader_lock
; /* serialize readers */
479 arch_spinlock_t lock
;
480 struct lock_class_key lock_key
;
481 struct buffer_data_page
*free_page
;
482 unsigned long nr_pages
;
483 unsigned int current_context
;
484 struct list_head
*pages
;
485 /* pages generation counter, incremented when the list changes */
487 struct buffer_page
*head_page
; /* read from head */
488 struct buffer_page
*tail_page
; /* write to tail */
489 struct buffer_page
*commit_page
; /* committed pages */
490 struct buffer_page
*reader_page
;
491 unsigned long lost_events
;
492 unsigned long last_overrun
;
494 local_t entries_bytes
;
497 local_t commit_overrun
;
498 local_t dropped_events
;
501 local_t pages_touched
;
504 long last_pages_touch
;
505 size_t shortest_full
;
507 unsigned long read_bytes
;
508 rb_time_t write_stamp
;
509 rb_time_t before_stamp
;
510 u64 event_stamp
[MAX_NEST
];
512 /* pages removed since last reset */
513 unsigned long pages_removed
;
516 unsigned int user_mapped
; /* user space mapping */
517 struct mutex mapping_lock
;
518 unsigned long *subbuf_ids
; /* ID to subbuf VA */
519 struct trace_buffer_meta
*meta_page
;
520 struct ring_buffer_meta
*ring_meta
;
522 /* ring buffer pages to update, > 0 to add, < 0 to remove */
523 long nr_pages_to_update
;
524 struct list_head new_pages
; /* new pages to add */
525 struct work_struct update_pages_work
;
526 struct completion update_done
;
528 struct rb_irq_work irq_work
;
531 struct trace_buffer
{
534 atomic_t record_disabled
;
536 cpumask_var_t cpumask
;
538 struct lock_class_key
*reader_lock_key
;
542 struct ring_buffer_per_cpu
**buffers
;
544 struct hlist_node node
;
547 struct rb_irq_work irq_work
;
550 unsigned long range_addr_start
;
551 unsigned long range_addr_end
;
553 long last_text_delta
;
554 long last_data_delta
;
556 unsigned int subbuf_size
;
557 unsigned int subbuf_order
;
558 unsigned int max_data_size
;
561 struct ring_buffer_iter
{
562 struct ring_buffer_per_cpu
*cpu_buffer
;
564 unsigned long next_event
;
565 struct buffer_page
*head_page
;
566 struct buffer_page
*cache_reader_page
;
567 unsigned long cache_read
;
568 unsigned long cache_pages_removed
;
571 struct ring_buffer_event
*event
;
576 int ring_buffer_print_page_header(struct trace_buffer
*buffer
, struct trace_seq
*s
)
578 struct buffer_data_page field
;
580 trace_seq_printf(s
, "\tfield: u64 timestamp;\t"
581 "offset:0;\tsize:%u;\tsigned:%u;\n",
582 (unsigned int)sizeof(field
.time_stamp
),
583 (unsigned int)is_signed_type(u64
));
585 trace_seq_printf(s
, "\tfield: local_t commit;\t"
586 "offset:%u;\tsize:%u;\tsigned:%u;\n",
587 (unsigned int)offsetof(typeof(field
), commit
),
588 (unsigned int)sizeof(field
.commit
),
589 (unsigned int)is_signed_type(long));
591 trace_seq_printf(s
, "\tfield: int overwrite;\t"
592 "offset:%u;\tsize:%u;\tsigned:%u;\n",
593 (unsigned int)offsetof(typeof(field
), commit
),
595 (unsigned int)is_signed_type(long));
597 trace_seq_printf(s
, "\tfield: char data;\t"
598 "offset:%u;\tsize:%u;\tsigned:%u;\n",
599 (unsigned int)offsetof(typeof(field
), data
),
600 (unsigned int)buffer
->subbuf_size
,
601 (unsigned int)is_signed_type(char));
603 return !trace_seq_has_overflowed(s
);
606 static inline void rb_time_read(rb_time_t
*t
, u64
*ret
)
608 *ret
= local64_read(&t
->time
);
610 static void rb_time_set(rb_time_t
*t
, u64 val
)
612 local64_set(&t
->time
, val
);
616 * Enable this to make sure that the event passed to
617 * ring_buffer_event_time_stamp() is not committed and also
618 * is on the buffer that it passed in.
620 //#define RB_VERIFY_EVENT
621 #ifdef RB_VERIFY_EVENT
622 static struct list_head
*rb_list_head(struct list_head
*list
);
623 static void verify_event(struct ring_buffer_per_cpu
*cpu_buffer
,
626 struct buffer_page
*page
= cpu_buffer
->commit_page
;
627 struct buffer_page
*tail_page
= READ_ONCE(cpu_buffer
->tail_page
);
628 struct list_head
*next
;
630 unsigned long addr
= (unsigned long)event
;
634 /* Make sure the event exists and is not committed yet */
636 if (page
== tail_page
|| WARN_ON_ONCE(stop
++ > 100))
638 commit
= local_read(&page
->page
->commit
);
639 write
= local_read(&page
->write
);
640 if (addr
>= (unsigned long)&page
->page
->data
[commit
] &&
641 addr
< (unsigned long)&page
->page
->data
[write
])
644 next
= rb_list_head(page
->list
.next
);
645 page
= list_entry(next
, struct buffer_page
, list
);
650 static inline void verify_event(struct ring_buffer_per_cpu
*cpu_buffer
,
657 * The absolute time stamp drops the 5 MSBs and some clocks may
658 * require them. The rb_fix_abs_ts() will take a previous full
659 * time stamp, and add the 5 MSB of that time stamp on to the
660 * saved absolute time stamp. Then they are compared in case of
661 * the unlikely event that the latest time stamp incremented
664 static inline u64
rb_fix_abs_ts(u64 abs
, u64 save_ts
)
666 if (save_ts
& TS_MSB
) {
667 abs
|= save_ts
& TS_MSB
;
668 /* Check for overflow */
669 if (unlikely(abs
< save_ts
))
675 static inline u64
rb_time_stamp(struct trace_buffer
*buffer
);
678 * ring_buffer_event_time_stamp - return the event's current time stamp
679 * @buffer: The buffer that the event is on
680 * @event: the event to get the time stamp of
682 * Note, this must be called after @event is reserved, and before it is
683 * committed to the ring buffer. And must be called from the same
684 * context where the event was reserved (normal, softirq, irq, etc).
686 * Returns the time stamp associated with the current event.
687 * If the event has an extended time stamp, then that is used as
688 * the time stamp to return.
689 * In the highly unlikely case that the event was nested more than
690 * the max nesting, then the write_stamp of the buffer is returned,
691 * otherwise current time is returned, but that really neither of
692 * the last two cases should ever happen.
694 u64
ring_buffer_event_time_stamp(struct trace_buffer
*buffer
,
695 struct ring_buffer_event
*event
)
697 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[smp_processor_id()];
701 /* If the event includes an absolute time, then just use that */
702 if (event
->type_len
== RINGBUF_TYPE_TIME_STAMP
) {
703 ts
= rb_event_time_stamp(event
);
704 return rb_fix_abs_ts(ts
, cpu_buffer
->tail_page
->page
->time_stamp
);
707 nest
= local_read(&cpu_buffer
->committing
);
708 verify_event(cpu_buffer
, event
);
709 if (WARN_ON_ONCE(!nest
))
712 /* Read the current saved nesting level time stamp */
713 if (likely(--nest
< MAX_NEST
))
714 return cpu_buffer
->event_stamp
[nest
];
716 /* Shouldn't happen, warn if it does */
717 WARN_ONCE(1, "nest (%d) greater than max", nest
);
720 rb_time_read(&cpu_buffer
->write_stamp
, &ts
);
726 * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
727 * @buffer: The ring_buffer to get the number of pages from
728 * @cpu: The cpu of the ring_buffer to get the number of pages from
730 * Returns the number of pages that have content in the ring buffer.
732 size_t ring_buffer_nr_dirty_pages(struct trace_buffer
*buffer
, int cpu
)
738 read
= local_read(&buffer
->buffers
[cpu
]->pages_read
);
739 lost
= local_read(&buffer
->buffers
[cpu
]->pages_lost
);
740 cnt
= local_read(&buffer
->buffers
[cpu
]->pages_touched
);
742 if (WARN_ON_ONCE(cnt
< lost
))
747 /* The reader can read an empty page, but not more than that */
749 WARN_ON_ONCE(read
> cnt
+ 1);
756 static __always_inline
bool full_hit(struct trace_buffer
*buffer
, int cpu
, int full
)
758 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
762 nr_pages
= cpu_buffer
->nr_pages
;
763 if (!nr_pages
|| !full
)
767 * Add one as dirty will never equal nr_pages, as the sub-buffer
768 * that the writer is on is not counted as dirty.
769 * This is needed if "buffer_percent" is set to 100.
771 dirty
= ring_buffer_nr_dirty_pages(buffer
, cpu
) + 1;
773 return (dirty
* 100) >= (full
* nr_pages
);
777 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
779 * Schedules a delayed work to wake up any task that is blocked on the
780 * ring buffer waiters queue.
782 static void rb_wake_up_waiters(struct irq_work
*work
)
784 struct rb_irq_work
*rbwork
= container_of(work
, struct rb_irq_work
, work
);
786 /* For waiters waiting for the first wake up */
787 (void)atomic_fetch_inc_release(&rbwork
->seq
);
789 wake_up_all(&rbwork
->waiters
);
790 if (rbwork
->full_waiters_pending
|| rbwork
->wakeup_full
) {
791 /* Only cpu_buffer sets the above flags */
792 struct ring_buffer_per_cpu
*cpu_buffer
=
793 container_of(rbwork
, struct ring_buffer_per_cpu
, irq_work
);
795 /* Called from interrupt context */
796 raw_spin_lock(&cpu_buffer
->reader_lock
);
797 rbwork
->wakeup_full
= false;
798 rbwork
->full_waiters_pending
= false;
800 /* Waking up all waiters, they will reset the shortest full */
801 cpu_buffer
->shortest_full
= 0;
802 raw_spin_unlock(&cpu_buffer
->reader_lock
);
804 wake_up_all(&rbwork
->full_waiters
);
809 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
810 * @buffer: The ring buffer to wake waiters on
811 * @cpu: The CPU buffer to wake waiters on
813 * In the case of a file that represents a ring buffer is closing,
814 * it is prudent to wake up any waiters that are on this.
816 void ring_buffer_wake_waiters(struct trace_buffer
*buffer
, int cpu
)
818 struct ring_buffer_per_cpu
*cpu_buffer
;
819 struct rb_irq_work
*rbwork
;
824 if (cpu
== RING_BUFFER_ALL_CPUS
) {
826 /* Wake up individual ones too. One level recursion */
827 for_each_buffer_cpu(buffer
, cpu
)
828 ring_buffer_wake_waiters(buffer
, cpu
);
830 rbwork
= &buffer
->irq_work
;
832 if (WARN_ON_ONCE(!buffer
->buffers
))
834 if (WARN_ON_ONCE(cpu
>= nr_cpu_ids
))
837 cpu_buffer
= buffer
->buffers
[cpu
];
838 /* The CPU buffer may not have been initialized yet */
841 rbwork
= &cpu_buffer
->irq_work
;
844 /* This can be called in any context */
845 irq_work_queue(&rbwork
->work
);
848 static bool rb_watermark_hit(struct trace_buffer
*buffer
, int cpu
, int full
)
850 struct ring_buffer_per_cpu
*cpu_buffer
;
853 /* Reads of all CPUs always waits for any data */
854 if (cpu
== RING_BUFFER_ALL_CPUS
)
855 return !ring_buffer_empty(buffer
);
857 cpu_buffer
= buffer
->buffers
[cpu
];
859 if (!ring_buffer_empty_cpu(buffer
, cpu
)) {
866 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
867 pagebusy
= cpu_buffer
->reader_page
== cpu_buffer
->commit_page
;
868 ret
= !pagebusy
&& full_hit(buffer
, cpu
, full
);
870 if (!ret
&& (!cpu_buffer
->shortest_full
||
871 cpu_buffer
->shortest_full
> full
)) {
872 cpu_buffer
->shortest_full
= full
;
874 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
880 rb_wait_cond(struct rb_irq_work
*rbwork
, struct trace_buffer
*buffer
,
881 int cpu
, int full
, ring_buffer_cond_fn cond
, void *data
)
883 if (rb_watermark_hit(buffer
, cpu
, full
))
890 * The events can happen in critical sections where
891 * checking a work queue can cause deadlocks.
892 * After adding a task to the queue, this flag is set
893 * only to notify events to try to wake up the queue
896 * We don't clear it even if the buffer is no longer
897 * empty. The flag only causes the next event to run
898 * irq_work to do the work queue wake up. The worse
899 * that can happen if we race with !trace_empty() is that
900 * an event will cause an irq_work to try to wake up
903 * There's no reason to protect this flag either, as
904 * the work queue and irq_work logic will do the necessary
905 * synchronization for the wake ups. The only thing
906 * that is necessary is that the wake up happens after
907 * a task has been queued. It's OK for spurious wake ups.
910 rbwork
->full_waiters_pending
= true;
912 rbwork
->waiters_pending
= true;
917 struct rb_wait_data
{
918 struct rb_irq_work
*irq_work
;
923 * The default wait condition for ring_buffer_wait() is to just to exit the
924 * wait loop the first time it is woken up.
926 static bool rb_wait_once(void *data
)
928 struct rb_wait_data
*rdata
= data
;
929 struct rb_irq_work
*rbwork
= rdata
->irq_work
;
931 return atomic_read_acquire(&rbwork
->seq
) != rdata
->seq
;
935 * ring_buffer_wait - wait for input to the ring buffer
936 * @buffer: buffer to wait on
937 * @cpu: the cpu buffer to wait on
938 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
939 * @cond: condition function to break out of wait (NULL to run once)
940 * @data: the data to pass to @cond.
942 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
943 * as data is added to any of the @buffer's cpu buffers. Otherwise
944 * it will wait for data to be added to a specific cpu buffer.
946 int ring_buffer_wait(struct trace_buffer
*buffer
, int cpu
, int full
,
947 ring_buffer_cond_fn cond
, void *data
)
949 struct ring_buffer_per_cpu
*cpu_buffer
;
950 struct wait_queue_head
*waitq
;
951 struct rb_irq_work
*rbwork
;
952 struct rb_wait_data rdata
;
956 * Depending on what the caller is waiting for, either any
957 * data in any cpu buffer, or a specific buffer, put the
958 * caller on the appropriate wait queue.
960 if (cpu
== RING_BUFFER_ALL_CPUS
) {
961 rbwork
= &buffer
->irq_work
;
962 /* Full only makes sense on per cpu reads */
965 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
967 cpu_buffer
= buffer
->buffers
[cpu
];
968 rbwork
= &cpu_buffer
->irq_work
;
972 waitq
= &rbwork
->full_waiters
;
974 waitq
= &rbwork
->waiters
;
976 /* Set up to exit loop as soon as it is woken */
979 rdata
.irq_work
= rbwork
;
980 rdata
.seq
= atomic_read_acquire(&rbwork
->seq
);
984 ret
= wait_event_interruptible((*waitq
),
985 rb_wait_cond(rbwork
, buffer
, cpu
, full
, cond
, data
));
991 * ring_buffer_poll_wait - poll on buffer input
992 * @buffer: buffer to wait on
993 * @cpu: the cpu buffer to wait on
994 * @filp: the file descriptor
995 * @poll_table: The poll descriptor
996 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
998 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
999 * as data is added to any of the @buffer's cpu buffers. Otherwise
1000 * it will wait for data to be added to a specific cpu buffer.
1002 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1005 __poll_t
ring_buffer_poll_wait(struct trace_buffer
*buffer
, int cpu
,
1006 struct file
*filp
, poll_table
*poll_table
, int full
)
1008 struct ring_buffer_per_cpu
*cpu_buffer
;
1009 struct rb_irq_work
*rbwork
;
1011 if (cpu
== RING_BUFFER_ALL_CPUS
) {
1012 rbwork
= &buffer
->irq_work
;
1015 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
1018 cpu_buffer
= buffer
->buffers
[cpu
];
1019 rbwork
= &cpu_buffer
->irq_work
;
1023 poll_wait(filp
, &rbwork
->full_waiters
, poll_table
);
1025 if (rb_watermark_hit(buffer
, cpu
, full
))
1026 return EPOLLIN
| EPOLLRDNORM
;
1028 * Only allow full_waiters_pending update to be seen after
1029 * the shortest_full is set (in rb_watermark_hit). If the
1030 * writer sees the full_waiters_pending flag set, it will
1031 * compare the amount in the ring buffer to shortest_full.
1032 * If the amount in the ring buffer is greater than the
1033 * shortest_full percent, it will call the irq_work handler
1034 * to wake up this list. The irq_handler will reset shortest_full
1035 * back to zero. That's done under the reader_lock, but
1036 * the below smp_mb() makes sure that the update to
1037 * full_waiters_pending doesn't leak up into the above.
1040 rbwork
->full_waiters_pending
= true;
1044 poll_wait(filp
, &rbwork
->waiters
, poll_table
);
1045 rbwork
->waiters_pending
= true;
1048 * There's a tight race between setting the waiters_pending and
1049 * checking if the ring buffer is empty. Once the waiters_pending bit
1050 * is set, the next event will wake the task up, but we can get stuck
1051 * if there's only a single event in.
1053 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1054 * but adding a memory barrier to all events will cause too much of a
1055 * performance hit in the fast path. We only need a memory barrier when
1056 * the buffer goes from empty to having content. But as this race is
1057 * extremely small, and it's not a problem if another event comes in, we
1058 * will fix it later.
1062 if ((cpu
== RING_BUFFER_ALL_CPUS
&& !ring_buffer_empty(buffer
)) ||
1063 (cpu
!= RING_BUFFER_ALL_CPUS
&& !ring_buffer_empty_cpu(buffer
, cpu
)))
1064 return EPOLLIN
| EPOLLRDNORM
;
1068 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1069 #define RB_WARN_ON(b, cond) \
1071 int _____ret = unlikely(cond); \
1073 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1074 struct ring_buffer_per_cpu *__b = \
1076 atomic_inc(&__b->buffer->record_disabled); \
1078 atomic_inc(&b->record_disabled); \
1084 /* Up this if you want to test the TIME_EXTENTS and normalization */
1085 #define DEBUG_SHIFT 0
1087 static inline u64
rb_time_stamp(struct trace_buffer
*buffer
)
1091 /* Skip retpolines :-( */
1092 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE
) && likely(buffer
->clock
== trace_clock_local
))
1093 ts
= trace_clock_local();
1095 ts
= buffer
->clock();
1097 /* shift to debug/test normalization and TIME_EXTENTS */
1098 return ts
<< DEBUG_SHIFT
;
1101 u64
ring_buffer_time_stamp(struct trace_buffer
*buffer
)
1105 preempt_disable_notrace();
1106 time
= rb_time_stamp(buffer
);
1107 preempt_enable_notrace();
1111 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp
);
1113 void ring_buffer_normalize_time_stamp(struct trace_buffer
*buffer
,
1116 /* Just stupid testing the normalize function and deltas */
1117 *ts
>>= DEBUG_SHIFT
;
1119 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp
);
1122 * Making the ring buffer lockless makes things tricky.
1123 * Although writes only happen on the CPU that they are on,
1124 * and they only need to worry about interrupts. Reads can
1125 * happen on any CPU.
1127 * The reader page is always off the ring buffer, but when the
1128 * reader finishes with a page, it needs to swap its page with
1129 * a new one from the buffer. The reader needs to take from
1130 * the head (writes go to the tail). But if a writer is in overwrite
1131 * mode and wraps, it must push the head page forward.
1133 * Here lies the problem.
1135 * The reader must be careful to replace only the head page, and
1136 * not another one. As described at the top of the file in the
1137 * ASCII art, the reader sets its old page to point to the next
1138 * page after head. It then sets the page after head to point to
1139 * the old reader page. But if the writer moves the head page
1140 * during this operation, the reader could end up with the tail.
1142 * We use cmpxchg to help prevent this race. We also do something
1143 * special with the page before head. We set the LSB to 1.
1145 * When the writer must push the page forward, it will clear the
1146 * bit that points to the head page, move the head, and then set
1147 * the bit that points to the new head page.
1149 * We also don't want an interrupt coming in and moving the head
1150 * page on another writer. Thus we use the second LSB to catch
1153 * head->list->prev->next bit 1 bit 0
1156 * Points to head page 0 1
1159 * Note we can not trust the prev pointer of the head page, because:
1161 * +----+ +-----+ +-----+
1162 * | |------>| T |---X--->| N |
1164 * +----+ +-----+ +-----+
1167 * +----------| R |----------+ |
1171 * Key: ---X--> HEAD flag set in pointer
1176 * (see __rb_reserve_next() to see where this happens)
1178 * What the above shows is that the reader just swapped out
1179 * the reader page with a page in the buffer, but before it
1180 * could make the new header point back to the new page added
1181 * it was preempted by a writer. The writer moved forward onto
1182 * the new page added by the reader and is about to move forward
1185 * You can see, it is legitimate for the previous pointer of
1186 * the head (or any page) not to point back to itself. But only
1190 #define RB_PAGE_NORMAL 0UL
1191 #define RB_PAGE_HEAD 1UL
1192 #define RB_PAGE_UPDATE 2UL
1195 #define RB_FLAG_MASK 3UL
1197 /* PAGE_MOVED is not part of the mask */
1198 #define RB_PAGE_MOVED 4UL
1201 * rb_list_head - remove any bit
1203 static struct list_head
*rb_list_head(struct list_head
*list
)
1205 unsigned long val
= (unsigned long)list
;
1207 return (struct list_head
*)(val
& ~RB_FLAG_MASK
);
1211 * rb_is_head_page - test if the given page is the head page
1213 * Because the reader may move the head_page pointer, we can
1214 * not trust what the head page is (it may be pointing to
1215 * the reader page). But if the next page is a header page,
1216 * its flags will be non zero.
1219 rb_is_head_page(struct buffer_page
*page
, struct list_head
*list
)
1223 val
= (unsigned long)list
->next
;
1225 if ((val
& ~RB_FLAG_MASK
) != (unsigned long)&page
->list
)
1226 return RB_PAGE_MOVED
;
1228 return val
& RB_FLAG_MASK
;
1234 * The unique thing about the reader page, is that, if the
1235 * writer is ever on it, the previous pointer never points
1236 * back to the reader page.
1238 static bool rb_is_reader_page(struct buffer_page
*page
)
1240 struct list_head
*list
= page
->list
.prev
;
1242 return rb_list_head(list
->next
) != &page
->list
;
1246 * rb_set_list_to_head - set a list_head to be pointing to head.
1248 static void rb_set_list_to_head(struct list_head
*list
)
1252 ptr
= (unsigned long *)&list
->next
;
1253 *ptr
|= RB_PAGE_HEAD
;
1254 *ptr
&= ~RB_PAGE_UPDATE
;
1258 * rb_head_page_activate - sets up head page
1260 static void rb_head_page_activate(struct ring_buffer_per_cpu
*cpu_buffer
)
1262 struct buffer_page
*head
;
1264 head
= cpu_buffer
->head_page
;
1269 * Set the previous list pointer to have the HEAD flag.
1271 rb_set_list_to_head(head
->list
.prev
);
1273 if (cpu_buffer
->ring_meta
) {
1274 struct ring_buffer_meta
*meta
= cpu_buffer
->ring_meta
;
1275 meta
->head_buffer
= (unsigned long)head
->page
;
1279 static void rb_list_head_clear(struct list_head
*list
)
1281 unsigned long *ptr
= (unsigned long *)&list
->next
;
1283 *ptr
&= ~RB_FLAG_MASK
;
1287 * rb_head_page_deactivate - clears head page ptr (for free list)
1290 rb_head_page_deactivate(struct ring_buffer_per_cpu
*cpu_buffer
)
1292 struct list_head
*hd
;
1294 /* Go through the whole list and clear any pointers found. */
1295 rb_list_head_clear(cpu_buffer
->pages
);
1297 list_for_each(hd
, cpu_buffer
->pages
)
1298 rb_list_head_clear(hd
);
1301 static int rb_head_page_set(struct ring_buffer_per_cpu
*cpu_buffer
,
1302 struct buffer_page
*head
,
1303 struct buffer_page
*prev
,
1304 int old_flag
, int new_flag
)
1306 struct list_head
*list
;
1307 unsigned long val
= (unsigned long)&head
->list
;
1312 val
&= ~RB_FLAG_MASK
;
1314 ret
= cmpxchg((unsigned long *)&list
->next
,
1315 val
| old_flag
, val
| new_flag
);
1317 /* check if the reader took the page */
1318 if ((ret
& ~RB_FLAG_MASK
) != val
)
1319 return RB_PAGE_MOVED
;
1321 return ret
& RB_FLAG_MASK
;
1324 static int rb_head_page_set_update(struct ring_buffer_per_cpu
*cpu_buffer
,
1325 struct buffer_page
*head
,
1326 struct buffer_page
*prev
,
1329 return rb_head_page_set(cpu_buffer
, head
, prev
,
1330 old_flag
, RB_PAGE_UPDATE
);
1333 static int rb_head_page_set_head(struct ring_buffer_per_cpu
*cpu_buffer
,
1334 struct buffer_page
*head
,
1335 struct buffer_page
*prev
,
1338 return rb_head_page_set(cpu_buffer
, head
, prev
,
1339 old_flag
, RB_PAGE_HEAD
);
1342 static int rb_head_page_set_normal(struct ring_buffer_per_cpu
*cpu_buffer
,
1343 struct buffer_page
*head
,
1344 struct buffer_page
*prev
,
1347 return rb_head_page_set(cpu_buffer
, head
, prev
,
1348 old_flag
, RB_PAGE_NORMAL
);
1351 static inline void rb_inc_page(struct buffer_page
**bpage
)
1353 struct list_head
*p
= rb_list_head((*bpage
)->list
.next
);
1355 *bpage
= list_entry(p
, struct buffer_page
, list
);
1358 static struct buffer_page
*
1359 rb_set_head_page(struct ring_buffer_per_cpu
*cpu_buffer
)
1361 struct buffer_page
*head
;
1362 struct buffer_page
*page
;
1363 struct list_head
*list
;
1366 if (RB_WARN_ON(cpu_buffer
, !cpu_buffer
->head_page
))
1370 list
= cpu_buffer
->pages
;
1371 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
->next
) != list
))
1374 page
= head
= cpu_buffer
->head_page
;
1376 * It is possible that the writer moves the header behind
1377 * where we started, and we miss in one loop.
1378 * A second loop should grab the header, but we'll do
1379 * three loops just because I'm paranoid.
1381 for (i
= 0; i
< 3; i
++) {
1383 if (rb_is_head_page(page
, page
->list
.prev
)) {
1384 cpu_buffer
->head_page
= page
;
1388 } while (page
!= head
);
1391 RB_WARN_ON(cpu_buffer
, 1);
1396 static bool rb_head_page_replace(struct buffer_page
*old
,
1397 struct buffer_page
*new)
1399 unsigned long *ptr
= (unsigned long *)&old
->list
.prev
->next
;
1402 val
= *ptr
& ~RB_FLAG_MASK
;
1403 val
|= RB_PAGE_HEAD
;
1405 return try_cmpxchg(ptr
, &val
, (unsigned long)&new->list
);
1409 * rb_tail_page_update - move the tail page forward
1411 static void rb_tail_page_update(struct ring_buffer_per_cpu
*cpu_buffer
,
1412 struct buffer_page
*tail_page
,
1413 struct buffer_page
*next_page
)
1415 unsigned long old_entries
;
1416 unsigned long old_write
;
1419 * The tail page now needs to be moved forward.
1421 * We need to reset the tail page, but without messing
1422 * with possible erasing of data brought in by interrupts
1423 * that have moved the tail page and are currently on it.
1425 * We add a counter to the write field to denote this.
1427 old_write
= local_add_return(RB_WRITE_INTCNT
, &next_page
->write
);
1428 old_entries
= local_add_return(RB_WRITE_INTCNT
, &next_page
->entries
);
1431 * Just make sure we have seen our old_write and synchronize
1432 * with any interrupts that come in.
1437 * If the tail page is still the same as what we think
1438 * it is, then it is up to us to update the tail
1441 if (tail_page
== READ_ONCE(cpu_buffer
->tail_page
)) {
1442 /* Zero the write counter */
1443 unsigned long val
= old_write
& ~RB_WRITE_MASK
;
1444 unsigned long eval
= old_entries
& ~RB_WRITE_MASK
;
1447 * This will only succeed if an interrupt did
1448 * not come in and change it. In which case, we
1449 * do not want to modify it.
1451 * We add (void) to let the compiler know that we do not care
1452 * about the return value of these functions. We use the
1453 * cmpxchg to only update if an interrupt did not already
1454 * do it for us. If the cmpxchg fails, we don't care.
1456 (void)local_cmpxchg(&next_page
->write
, old_write
, val
);
1457 (void)local_cmpxchg(&next_page
->entries
, old_entries
, eval
);
1460 * No need to worry about races with clearing out the commit.
1461 * it only can increment when a commit takes place. But that
1462 * only happens in the outer most nested commit.
1464 local_set(&next_page
->page
->commit
, 0);
1466 /* Either we update tail_page or an interrupt does */
1467 if (try_cmpxchg(&cpu_buffer
->tail_page
, &tail_page
, next_page
))
1468 local_inc(&cpu_buffer
->pages_touched
);
1472 static void rb_check_bpage(struct ring_buffer_per_cpu
*cpu_buffer
,
1473 struct buffer_page
*bpage
)
1475 unsigned long val
= (unsigned long)bpage
;
1477 RB_WARN_ON(cpu_buffer
, val
& RB_FLAG_MASK
);
1480 static bool rb_check_links(struct ring_buffer_per_cpu
*cpu_buffer
,
1481 struct list_head
*list
)
1483 if (RB_WARN_ON(cpu_buffer
,
1484 rb_list_head(rb_list_head(list
->next
)->prev
) != list
))
1487 if (RB_WARN_ON(cpu_buffer
,
1488 rb_list_head(rb_list_head(list
->prev
)->next
) != list
))
1495 * rb_check_pages - integrity check of buffer pages
1496 * @cpu_buffer: CPU buffer with pages to test
1498 * As a safety measure we check to make sure the data pages have not
1501 static void rb_check_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
1503 struct list_head
*head
, *tmp
;
1504 unsigned long buffer_cnt
;
1505 unsigned long flags
;
1509 * Walk the linked list underpinning the ring buffer and validate all
1510 * its next and prev links.
1512 * The check acquires the reader_lock to avoid concurrent processing
1513 * with code that could be modifying the list. However, the lock cannot
1514 * be held for the entire duration of the walk, as this would make the
1515 * time when interrupts are disabled non-deterministic, dependent on the
1516 * ring buffer size. Therefore, the code releases and re-acquires the
1517 * lock after checking each page. The ring_buffer_per_cpu.cnt variable
1518 * is then used to detect if the list was modified while the lock was
1519 * not held, in which case the check needs to be restarted.
1521 * The code attempts to perform the check at most three times before
1522 * giving up. This is acceptable because this is only a self-validation
1523 * to detect problems early on. In practice, the list modification
1524 * operations are fairly spaced, and so this check typically succeeds at
1525 * most on the second try.
1531 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
1532 head
= rb_list_head(cpu_buffer
->pages
);
1533 if (!rb_check_links(cpu_buffer
, head
))
1535 buffer_cnt
= cpu_buffer
->cnt
;
1537 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
1540 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
1542 if (buffer_cnt
!= cpu_buffer
->cnt
) {
1543 /* The list was updated, try again. */
1544 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
1548 tmp
= rb_list_head(tmp
->next
);
1550 /* The iteration circled back, all is done. */
1553 if (!rb_check_links(cpu_buffer
, tmp
))
1556 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
1560 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
1564 * Take an address, add the meta data size as well as the array of
1565 * array subbuffer indexes, then align it to a subbuffer size.
1567 * This is used to help find the next per cpu subbuffer within a mapped range.
1569 static unsigned long
1570 rb_range_align_subbuf(unsigned long addr
, int subbuf_size
, int nr_subbufs
)
1572 addr
+= sizeof(struct ring_buffer_meta
) +
1573 sizeof(int) * nr_subbufs
;
1574 return ALIGN(addr
, subbuf_size
);
1578 * Return the ring_buffer_meta for a given @cpu.
1580 static void *rb_range_meta(struct trace_buffer
*buffer
, int nr_pages
, int cpu
)
1582 int subbuf_size
= buffer
->subbuf_size
+ BUF_PAGE_HDR_SIZE
;
1583 unsigned long ptr
= buffer
->range_addr_start
;
1584 struct ring_buffer_meta
*meta
;
1590 /* When nr_pages passed in is zero, the first meta has already been initialized */
1592 meta
= (struct ring_buffer_meta
*)ptr
;
1593 nr_subbufs
= meta
->nr_subbufs
;
1596 /* Include the reader page */
1597 nr_subbufs
= nr_pages
+ 1;
1601 * The first chunk may not be subbuffer aligned, where as
1602 * the rest of the chunks are.
1605 ptr
= rb_range_align_subbuf(ptr
, subbuf_size
, nr_subbufs
);
1606 ptr
+= subbuf_size
* nr_subbufs
;
1608 /* We can use multiplication to find chunks greater than 1 */
1613 /* Save the beginning of this CPU chunk */
1615 ptr
= rb_range_align_subbuf(ptr
, subbuf_size
, nr_subbufs
);
1616 ptr
+= subbuf_size
* nr_subbufs
;
1618 /* Now all chunks after this are the same size */
1620 ptr
+= size
* (cpu
- 2);
1626 /* Return the start of subbufs given the meta pointer */
1627 static void *rb_subbufs_from_meta(struct ring_buffer_meta
*meta
)
1629 int subbuf_size
= meta
->subbuf_size
;
1632 ptr
= (unsigned long)meta
;
1633 ptr
= rb_range_align_subbuf(ptr
, subbuf_size
, meta
->nr_subbufs
);
1639 * Return a specific sub-buffer for a given @cpu defined by @idx.
1641 static void *rb_range_buffer(struct ring_buffer_per_cpu
*cpu_buffer
, int idx
)
1643 struct ring_buffer_meta
*meta
;
1647 meta
= rb_range_meta(cpu_buffer
->buffer
, 0, cpu_buffer
->cpu
);
1651 if (WARN_ON_ONCE(idx
>= meta
->nr_subbufs
))
1654 subbuf_size
= meta
->subbuf_size
;
1656 /* Map this buffer to the order that's in meta->buffers[] */
1657 idx
= meta
->buffers
[idx
];
1659 ptr
= (unsigned long)rb_subbufs_from_meta(meta
);
1661 ptr
+= subbuf_size
* idx
;
1662 if (ptr
+ subbuf_size
> cpu_buffer
->buffer
->range_addr_end
)
1669 * See if the existing memory contains valid ring buffer data.
1670 * As the previous kernel must be the same as this kernel, all
1671 * the calculations (size of buffers and number of buffers)
1674 static bool rb_meta_valid(struct ring_buffer_meta
*meta
, int cpu
,
1675 struct trace_buffer
*buffer
, int nr_pages
)
1677 int subbuf_size
= PAGE_SIZE
;
1678 struct buffer_data_page
*subbuf
;
1679 unsigned long buffers_start
;
1680 unsigned long buffers_end
;
1683 /* Check the meta magic and meta struct size */
1684 if (meta
->magic
!= RING_BUFFER_META_MAGIC
||
1685 meta
->struct_size
!= sizeof(*meta
)) {
1686 pr_info("Ring buffer boot meta[%d] mismatch of magic or struct size\n", cpu
);
1690 /* The subbuffer's size and number of subbuffers must match */
1691 if (meta
->subbuf_size
!= subbuf_size
||
1692 meta
->nr_subbufs
!= nr_pages
+ 1) {
1693 pr_info("Ring buffer boot meta [%d] mismatch of subbuf_size/nr_pages\n", cpu
);
1697 buffers_start
= meta
->first_buffer
;
1698 buffers_end
= meta
->first_buffer
+ (subbuf_size
* meta
->nr_subbufs
);
1700 /* Is the head and commit buffers within the range of buffers? */
1701 if (meta
->head_buffer
< buffers_start
||
1702 meta
->head_buffer
>= buffers_end
) {
1703 pr_info("Ring buffer boot meta [%d] head buffer out of range\n", cpu
);
1707 if (meta
->commit_buffer
< buffers_start
||
1708 meta
->commit_buffer
>= buffers_end
) {
1709 pr_info("Ring buffer boot meta [%d] commit buffer out of range\n", cpu
);
1713 subbuf
= rb_subbufs_from_meta(meta
);
1715 /* Is the meta buffers and the subbufs themselves have correct data? */
1716 for (i
= 0; i
< meta
->nr_subbufs
; i
++) {
1717 if (meta
->buffers
[i
] < 0 ||
1718 meta
->buffers
[i
] >= meta
->nr_subbufs
) {
1719 pr_info("Ring buffer boot meta [%d] array out of range\n", cpu
);
1723 if ((unsigned)local_read(&subbuf
->commit
) > subbuf_size
) {
1724 pr_info("Ring buffer boot meta [%d] buffer invalid commit\n", cpu
);
1728 subbuf
= (void *)subbuf
+ subbuf_size
;
1734 static int rb_meta_subbuf_idx(struct ring_buffer_meta
*meta
, void *subbuf
);
1736 static int rb_read_data_buffer(struct buffer_data_page
*dpage
, int tail
, int cpu
,
1737 unsigned long long *timestamp
, u64
*delta_ptr
)
1739 struct ring_buffer_event
*event
;
1747 ts
= dpage
->time_stamp
;
1749 for (e
= 0; e
< tail
; e
+= rb_event_length(event
)) {
1751 event
= (struct ring_buffer_event
*)(dpage
->data
+ e
);
1753 switch (event
->type_len
) {
1755 case RINGBUF_TYPE_TIME_EXTEND
:
1756 delta
= rb_event_time_stamp(event
);
1760 case RINGBUF_TYPE_TIME_STAMP
:
1761 delta
= rb_event_time_stamp(event
);
1762 delta
= rb_fix_abs_ts(delta
, ts
);
1771 case RINGBUF_TYPE_PADDING
:
1772 if (event
->time_delta
== 1)
1775 case RINGBUF_TYPE_DATA
:
1777 ts
+= event
->time_delta
;
1788 static int rb_validate_buffer(struct buffer_data_page
*dpage
, int cpu
)
1790 unsigned long long ts
;
1794 tail
= local_read(&dpage
->commit
);
1795 return rb_read_data_buffer(dpage
, tail
, cpu
, &ts
, &delta
);
1798 /* If the meta data has been validated, now validate the events */
1799 static void rb_meta_validate_events(struct ring_buffer_per_cpu
*cpu_buffer
)
1801 struct ring_buffer_meta
*meta
= cpu_buffer
->ring_meta
;
1802 struct buffer_page
*head_page
;
1803 unsigned long entry_bytes
= 0;
1804 unsigned long entries
= 0;
1808 if (!meta
|| !meta
->head_buffer
)
1811 /* Do the reader page first */
1812 ret
= rb_validate_buffer(cpu_buffer
->reader_page
->page
, cpu_buffer
->cpu
);
1814 pr_info("Ring buffer reader page is invalid\n");
1818 entry_bytes
+= local_read(&cpu_buffer
->reader_page
->page
->commit
);
1819 local_set(&cpu_buffer
->reader_page
->entries
, ret
);
1821 head_page
= cpu_buffer
->head_page
;
1823 /* If both the head and commit are on the reader_page then we are done. */
1824 if (head_page
== cpu_buffer
->reader_page
&&
1825 head_page
== cpu_buffer
->commit_page
)
1828 /* Iterate until finding the commit page */
1829 for (i
= 0; i
< meta
->nr_subbufs
+ 1; i
++, rb_inc_page(&head_page
)) {
1831 /* Reader page has already been done */
1832 if (head_page
== cpu_buffer
->reader_page
)
1835 ret
= rb_validate_buffer(head_page
->page
, cpu_buffer
->cpu
);
1837 pr_info("Ring buffer meta [%d] invalid buffer page\n",
1842 entry_bytes
+= local_read(&head_page
->page
->commit
);
1843 local_set(&cpu_buffer
->head_page
->entries
, ret
);
1845 if (head_page
== cpu_buffer
->commit_page
)
1849 if (head_page
!= cpu_buffer
->commit_page
) {
1850 pr_info("Ring buffer meta [%d] commit page not found\n",
1855 local_set(&cpu_buffer
->entries
, entries
);
1856 local_set(&cpu_buffer
->entries_bytes
, entry_bytes
);
1858 pr_info("Ring buffer meta [%d] is from previous boot!\n", cpu_buffer
->cpu
);
1862 /* The content of the buffers are invalid, reset the meta data */
1863 meta
->head_buffer
= 0;
1864 meta
->commit_buffer
= 0;
1866 /* Reset the reader page */
1867 local_set(&cpu_buffer
->reader_page
->entries
, 0);
1868 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
1870 /* Reset all the subbuffers */
1871 for (i
= 0; i
< meta
->nr_subbufs
- 1; i
++, rb_inc_page(&head_page
)) {
1872 local_set(&head_page
->entries
, 0);
1873 local_set(&head_page
->page
->commit
, 0);
1877 /* Used to calculate data delta */
1878 static char rb_data_ptr
[] = "";
1880 #define THIS_TEXT_PTR ((unsigned long)rb_meta_init_text_addr)
1881 #define THIS_DATA_PTR ((unsigned long)rb_data_ptr)
1883 static void rb_meta_init_text_addr(struct ring_buffer_meta
*meta
)
1885 meta
->text_addr
= THIS_TEXT_PTR
;
1886 meta
->data_addr
= THIS_DATA_PTR
;
1889 static void rb_range_meta_init(struct trace_buffer
*buffer
, int nr_pages
)
1891 struct ring_buffer_meta
*meta
;
1892 unsigned long delta
;
1897 for (cpu
= 0; cpu
< nr_cpu_ids
; cpu
++) {
1900 meta
= rb_range_meta(buffer
, nr_pages
, cpu
);
1902 if (rb_meta_valid(meta
, cpu
, buffer
, nr_pages
)) {
1903 /* Make the mappings match the current address */
1904 subbuf
= rb_subbufs_from_meta(meta
);
1905 delta
= (unsigned long)subbuf
- meta
->first_buffer
;
1906 meta
->first_buffer
+= delta
;
1907 meta
->head_buffer
+= delta
;
1908 meta
->commit_buffer
+= delta
;
1909 buffer
->last_text_delta
= THIS_TEXT_PTR
- meta
->text_addr
;
1910 buffer
->last_data_delta
= THIS_DATA_PTR
- meta
->data_addr
;
1914 if (cpu
< nr_cpu_ids
- 1)
1915 next_meta
= rb_range_meta(buffer
, nr_pages
, cpu
+ 1);
1917 next_meta
= (void *)buffer
->range_addr_end
;
1919 memset(meta
, 0, next_meta
- (void *)meta
);
1921 meta
->magic
= RING_BUFFER_META_MAGIC
;
1922 meta
->struct_size
= sizeof(*meta
);
1924 meta
->nr_subbufs
= nr_pages
+ 1;
1925 meta
->subbuf_size
= PAGE_SIZE
;
1927 subbuf
= rb_subbufs_from_meta(meta
);
1929 meta
->first_buffer
= (unsigned long)subbuf
;
1930 rb_meta_init_text_addr(meta
);
1933 * The buffers[] array holds the order of the sub-buffers
1934 * that are after the meta data. The sub-buffers may
1935 * be swapped out when read and inserted into a different
1936 * location of the ring buffer. Although their addresses
1937 * remain the same, the buffers[] array contains the
1938 * index into the sub-buffers holding their actual order.
1940 for (i
= 0; i
< meta
->nr_subbufs
; i
++) {
1941 meta
->buffers
[i
] = i
;
1942 rb_init_page(subbuf
);
1943 subbuf
+= meta
->subbuf_size
;
1948 static void *rbm_start(struct seq_file
*m
, loff_t
*pos
)
1950 struct ring_buffer_per_cpu
*cpu_buffer
= m
->private;
1951 struct ring_buffer_meta
*meta
= cpu_buffer
->ring_meta
;
1957 if (*pos
> meta
->nr_subbufs
)
1966 static void *rbm_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
1970 return rbm_start(m
, pos
);
1973 static int rbm_show(struct seq_file
*m
, void *v
)
1975 struct ring_buffer_per_cpu
*cpu_buffer
= m
->private;
1976 struct ring_buffer_meta
*meta
= cpu_buffer
->ring_meta
;
1977 unsigned long val
= (unsigned long)v
;
1980 seq_printf(m
, "head_buffer: %d\n",
1981 rb_meta_subbuf_idx(meta
, (void *)meta
->head_buffer
));
1982 seq_printf(m
, "commit_buffer: %d\n",
1983 rb_meta_subbuf_idx(meta
, (void *)meta
->commit_buffer
));
1984 seq_printf(m
, "subbuf_size: %d\n", meta
->subbuf_size
);
1985 seq_printf(m
, "nr_subbufs: %d\n", meta
->nr_subbufs
);
1990 seq_printf(m
, "buffer[%ld]: %d\n", val
, meta
->buffers
[val
]);
1995 static void rbm_stop(struct seq_file
*m
, void *p
)
1999 static const struct seq_operations rb_meta_seq_ops
= {
2006 int ring_buffer_meta_seq_init(struct file
*file
, struct trace_buffer
*buffer
, int cpu
)
2011 ret
= seq_open(file
, &rb_meta_seq_ops
);
2015 m
= file
->private_data
;
2016 m
->private = buffer
->buffers
[cpu
];
2021 /* Map the buffer_pages to the previous head and commit pages */
2022 static void rb_meta_buffer_update(struct ring_buffer_per_cpu
*cpu_buffer
,
2023 struct buffer_page
*bpage
)
2025 struct ring_buffer_meta
*meta
= cpu_buffer
->ring_meta
;
2027 if (meta
->head_buffer
== (unsigned long)bpage
->page
)
2028 cpu_buffer
->head_page
= bpage
;
2030 if (meta
->commit_buffer
== (unsigned long)bpage
->page
) {
2031 cpu_buffer
->commit_page
= bpage
;
2032 cpu_buffer
->tail_page
= bpage
;
2036 static int __rb_allocate_pages(struct ring_buffer_per_cpu
*cpu_buffer
,
2037 long nr_pages
, struct list_head
*pages
)
2039 struct trace_buffer
*buffer
= cpu_buffer
->buffer
;
2040 struct ring_buffer_meta
*meta
= NULL
;
2041 struct buffer_page
*bpage
, *tmp
;
2042 bool user_thread
= current
->mm
!= NULL
;
2047 * Check if the available memory is there first.
2048 * Note, si_mem_available() only gives us a rough estimate of available
2049 * memory. It may not be accurate. But we don't care, we just want
2050 * to prevent doing any allocation when it is obvious that it is
2051 * not going to succeed.
2053 i
= si_mem_available();
2058 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
2059 * gracefully without invoking oom-killer and the system is not
2062 mflags
= GFP_KERNEL
| __GFP_RETRY_MAYFAIL
;
2065 * If a user thread allocates too much, and si_mem_available()
2066 * reports there's enough memory, even though there is not.
2067 * Make sure the OOM killer kills this thread. This can happen
2068 * even with RETRY_MAYFAIL because another task may be doing
2069 * an allocation after this task has taken all memory.
2070 * This is the task the OOM killer needs to take out during this
2071 * loop, even if it was triggered by an allocation somewhere else.
2074 set_current_oom_origin();
2076 if (buffer
->range_addr_start
)
2077 meta
= rb_range_meta(buffer
, nr_pages
, cpu_buffer
->cpu
);
2079 for (i
= 0; i
< nr_pages
; i
++) {
2082 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
2083 mflags
, cpu_to_node(cpu_buffer
->cpu
));
2087 rb_check_bpage(cpu_buffer
, bpage
);
2090 * Append the pages as for mapped buffers we want to keep
2093 list_add_tail(&bpage
->list
, pages
);
2096 /* A range was given. Use that for the buffer page */
2097 bpage
->page
= rb_range_buffer(cpu_buffer
, i
+ 1);
2100 /* If this is valid from a previous boot */
2101 if (meta
->head_buffer
)
2102 rb_meta_buffer_update(cpu_buffer
, bpage
);
2106 page
= alloc_pages_node(cpu_to_node(cpu_buffer
->cpu
),
2107 mflags
| __GFP_COMP
| __GFP_ZERO
,
2108 cpu_buffer
->buffer
->subbuf_order
);
2111 bpage
->page
= page_address(page
);
2112 rb_init_page(bpage
->page
);
2114 bpage
->order
= cpu_buffer
->buffer
->subbuf_order
;
2116 if (user_thread
&& fatal_signal_pending(current
))
2120 clear_current_oom_origin();
2125 list_for_each_entry_safe(bpage
, tmp
, pages
, list
) {
2126 list_del_init(&bpage
->list
);
2127 free_buffer_page(bpage
);
2130 clear_current_oom_origin();
2135 static int rb_allocate_pages(struct ring_buffer_per_cpu
*cpu_buffer
,
2136 unsigned long nr_pages
)
2142 if (__rb_allocate_pages(cpu_buffer
, nr_pages
, &pages
))
2146 * The ring buffer page list is a circular list that does not
2147 * start and end with a list head. All page list items point to
2150 cpu_buffer
->pages
= pages
.next
;
2153 cpu_buffer
->nr_pages
= nr_pages
;
2155 rb_check_pages(cpu_buffer
);
2160 static struct ring_buffer_per_cpu
*
2161 rb_allocate_cpu_buffer(struct trace_buffer
*buffer
, long nr_pages
, int cpu
)
2163 struct ring_buffer_per_cpu
*cpu_buffer
;
2164 struct ring_buffer_meta
*meta
;
2165 struct buffer_page
*bpage
;
2169 cpu_buffer
= kzalloc_node(ALIGN(sizeof(*cpu_buffer
), cache_line_size()),
2170 GFP_KERNEL
, cpu_to_node(cpu
));
2174 cpu_buffer
->cpu
= cpu
;
2175 cpu_buffer
->buffer
= buffer
;
2176 raw_spin_lock_init(&cpu_buffer
->reader_lock
);
2177 lockdep_set_class(&cpu_buffer
->reader_lock
, buffer
->reader_lock_key
);
2178 cpu_buffer
->lock
= (arch_spinlock_t
)__ARCH_SPIN_LOCK_UNLOCKED
;
2179 INIT_WORK(&cpu_buffer
->update_pages_work
, update_pages_handler
);
2180 init_completion(&cpu_buffer
->update_done
);
2181 init_irq_work(&cpu_buffer
->irq_work
.work
, rb_wake_up_waiters
);
2182 init_waitqueue_head(&cpu_buffer
->irq_work
.waiters
);
2183 init_waitqueue_head(&cpu_buffer
->irq_work
.full_waiters
);
2184 mutex_init(&cpu_buffer
->mapping_lock
);
2186 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
2187 GFP_KERNEL
, cpu_to_node(cpu
));
2189 goto fail_free_buffer
;
2191 rb_check_bpage(cpu_buffer
, bpage
);
2193 cpu_buffer
->reader_page
= bpage
;
2195 if (buffer
->range_addr_start
) {
2197 * Range mapped buffers have the same restrictions as memory
2200 cpu_buffer
->mapped
= 1;
2201 cpu_buffer
->ring_meta
= rb_range_meta(buffer
, nr_pages
, cpu
);
2202 bpage
->page
= rb_range_buffer(cpu_buffer
, 0);
2204 goto fail_free_reader
;
2205 if (cpu_buffer
->ring_meta
->head_buffer
)
2206 rb_meta_buffer_update(cpu_buffer
, bpage
);
2209 page
= alloc_pages_node(cpu_to_node(cpu
),
2210 GFP_KERNEL
| __GFP_COMP
| __GFP_ZERO
,
2211 cpu_buffer
->buffer
->subbuf_order
);
2213 goto fail_free_reader
;
2214 bpage
->page
= page_address(page
);
2215 rb_init_page(bpage
->page
);
2218 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
2219 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
2221 ret
= rb_allocate_pages(cpu_buffer
, nr_pages
);
2223 goto fail_free_reader
;
2225 rb_meta_validate_events(cpu_buffer
);
2227 /* If the boot meta was valid then this has already been updated */
2228 meta
= cpu_buffer
->ring_meta
;
2229 if (!meta
|| !meta
->head_buffer
||
2230 !cpu_buffer
->head_page
|| !cpu_buffer
->commit_page
|| !cpu_buffer
->tail_page
) {
2231 if (meta
&& meta
->head_buffer
&&
2232 (cpu_buffer
->head_page
|| cpu_buffer
->commit_page
|| cpu_buffer
->tail_page
)) {
2233 pr_warn("Ring buffer meta buffers not all mapped\n");
2234 if (!cpu_buffer
->head_page
)
2235 pr_warn(" Missing head_page\n");
2236 if (!cpu_buffer
->commit_page
)
2237 pr_warn(" Missing commit_page\n");
2238 if (!cpu_buffer
->tail_page
)
2239 pr_warn(" Missing tail_page\n");
2242 cpu_buffer
->head_page
2243 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
2244 cpu_buffer
->tail_page
= cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
2246 rb_head_page_activate(cpu_buffer
);
2248 if (cpu_buffer
->ring_meta
)
2249 meta
->commit_buffer
= meta
->head_buffer
;
2251 /* The valid meta buffer still needs to activate the head page */
2252 rb_head_page_activate(cpu_buffer
);
2258 free_buffer_page(cpu_buffer
->reader_page
);
2265 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu
*cpu_buffer
)
2267 struct list_head
*head
= cpu_buffer
->pages
;
2268 struct buffer_page
*bpage
, *tmp
;
2270 irq_work_sync(&cpu_buffer
->irq_work
.work
);
2272 free_buffer_page(cpu_buffer
->reader_page
);
2275 rb_head_page_deactivate(cpu_buffer
);
2277 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
2278 list_del_init(&bpage
->list
);
2279 free_buffer_page(bpage
);
2281 bpage
= list_entry(head
, struct buffer_page
, list
);
2282 free_buffer_page(bpage
);
2285 free_page((unsigned long)cpu_buffer
->free_page
);
2290 static struct trace_buffer
*alloc_buffer(unsigned long size
, unsigned flags
,
2291 int order
, unsigned long start
,
2293 struct lock_class_key
*key
)
2295 struct trace_buffer
*buffer
;
2302 /* keep it in its own cache line */
2303 buffer
= kzalloc(ALIGN(sizeof(*buffer
), cache_line_size()),
2308 if (!zalloc_cpumask_var(&buffer
->cpumask
, GFP_KERNEL
))
2309 goto fail_free_buffer
;
2311 buffer
->subbuf_order
= order
;
2312 subbuf_size
= (PAGE_SIZE
<< order
);
2313 buffer
->subbuf_size
= subbuf_size
- BUF_PAGE_HDR_SIZE
;
2315 /* Max payload is buffer page size - header (8bytes) */
2316 buffer
->max_data_size
= buffer
->subbuf_size
- (sizeof(u32
) * 2);
2318 buffer
->flags
= flags
;
2319 buffer
->clock
= trace_clock_local
;
2320 buffer
->reader_lock_key
= key
;
2322 init_irq_work(&buffer
->irq_work
.work
, rb_wake_up_waiters
);
2323 init_waitqueue_head(&buffer
->irq_work
.waiters
);
2325 buffer
->cpus
= nr_cpu_ids
;
2327 bsize
= sizeof(void *) * nr_cpu_ids
;
2328 buffer
->buffers
= kzalloc(ALIGN(bsize
, cache_line_size()),
2330 if (!buffer
->buffers
)
2331 goto fail_free_cpumask
;
2333 /* If start/end are specified, then that overrides size */
2339 size
= size
/ nr_cpu_ids
;
2342 * The number of sub-buffers (nr_pages) is determined by the
2343 * total size allocated minus the meta data size.
2344 * Then that is divided by the number of per CPU buffers
2345 * needed, plus account for the integer array index that
2346 * will be appended to the meta data.
2348 nr_pages
= (size
- sizeof(struct ring_buffer_meta
)) /
2349 (subbuf_size
+ sizeof(int));
2350 /* Need at least two pages plus the reader page */
2352 goto fail_free_buffers
;
2355 /* Make sure that the size fits aligned */
2356 for (n
= 0, ptr
= start
; n
< nr_cpu_ids
; n
++) {
2357 ptr
+= sizeof(struct ring_buffer_meta
) +
2358 sizeof(int) * nr_pages
;
2359 ptr
= ALIGN(ptr
, subbuf_size
);
2360 ptr
+= subbuf_size
* nr_pages
;
2364 goto fail_free_buffers
;
2369 /* nr_pages should not count the reader page */
2371 buffer
->range_addr_start
= start
;
2372 buffer
->range_addr_end
= end
;
2374 rb_range_meta_init(buffer
, nr_pages
);
2377 /* need at least two pages */
2378 nr_pages
= DIV_ROUND_UP(size
, buffer
->subbuf_size
);
2383 cpu
= raw_smp_processor_id();
2384 cpumask_set_cpu(cpu
, buffer
->cpumask
);
2385 buffer
->buffers
[cpu
] = rb_allocate_cpu_buffer(buffer
, nr_pages
, cpu
);
2386 if (!buffer
->buffers
[cpu
])
2387 goto fail_free_buffers
;
2389 ret
= cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE
, &buffer
->node
);
2391 goto fail_free_buffers
;
2393 mutex_init(&buffer
->mutex
);
2398 for_each_buffer_cpu(buffer
, cpu
) {
2399 if (buffer
->buffers
[cpu
])
2400 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
2402 kfree(buffer
->buffers
);
2405 free_cpumask_var(buffer
->cpumask
);
2413 * __ring_buffer_alloc - allocate a new ring_buffer
2414 * @size: the size in bytes per cpu that is needed.
2415 * @flags: attributes to set for the ring buffer.
2416 * @key: ring buffer reader_lock_key.
2418 * Currently the only flag that is available is the RB_FL_OVERWRITE
2419 * flag. This flag means that the buffer will overwrite old data
2420 * when the buffer wraps. If this flag is not set, the buffer will
2421 * drop data when the tail hits the head.
2423 struct trace_buffer
*__ring_buffer_alloc(unsigned long size
, unsigned flags
,
2424 struct lock_class_key
*key
)
2426 /* Default buffer page size - one system page */
2427 return alloc_buffer(size
, flags
, 0, 0, 0,key
);
2430 EXPORT_SYMBOL_GPL(__ring_buffer_alloc
);
2433 * __ring_buffer_alloc_range - allocate a new ring_buffer from existing memory
2434 * @size: the size in bytes per cpu that is needed.
2435 * @flags: attributes to set for the ring buffer.
2436 * @order: sub-buffer order
2437 * @start: start of allocated range
2438 * @range_size: size of allocated range
2439 * @key: ring buffer reader_lock_key.
2441 * Currently the only flag that is available is the RB_FL_OVERWRITE
2442 * flag. This flag means that the buffer will overwrite old data
2443 * when the buffer wraps. If this flag is not set, the buffer will
2444 * drop data when the tail hits the head.
2446 struct trace_buffer
*__ring_buffer_alloc_range(unsigned long size
, unsigned flags
,
2447 int order
, unsigned long start
,
2448 unsigned long range_size
,
2449 struct lock_class_key
*key
)
2451 return alloc_buffer(size
, flags
, order
, start
, start
+ range_size
, key
);
2455 * ring_buffer_last_boot_delta - return the delta offset from last boot
2456 * @buffer: The buffer to return the delta from
2457 * @text: Return text delta
2458 * @data: Return data delta
2460 * Returns: The true if the delta is non zero
2462 bool ring_buffer_last_boot_delta(struct trace_buffer
*buffer
, long *text
,
2468 if (!buffer
->last_text_delta
)
2471 *text
= buffer
->last_text_delta
;
2472 *data
= buffer
->last_data_delta
;
2478 * ring_buffer_free - free a ring buffer.
2479 * @buffer: the buffer to free.
2482 ring_buffer_free(struct trace_buffer
*buffer
)
2486 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE
, &buffer
->node
);
2488 irq_work_sync(&buffer
->irq_work
.work
);
2490 for_each_buffer_cpu(buffer
, cpu
)
2491 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
2493 kfree(buffer
->buffers
);
2494 free_cpumask_var(buffer
->cpumask
);
2498 EXPORT_SYMBOL_GPL(ring_buffer_free
);
2500 void ring_buffer_set_clock(struct trace_buffer
*buffer
,
2503 buffer
->clock
= clock
;
2506 void ring_buffer_set_time_stamp_abs(struct trace_buffer
*buffer
, bool abs
)
2508 buffer
->time_stamp_abs
= abs
;
2511 bool ring_buffer_time_stamp_abs(struct trace_buffer
*buffer
)
2513 return buffer
->time_stamp_abs
;
2516 static inline unsigned long rb_page_entries(struct buffer_page
*bpage
)
2518 return local_read(&bpage
->entries
) & RB_WRITE_MASK
;
2521 static inline unsigned long rb_page_write(struct buffer_page
*bpage
)
2523 return local_read(&bpage
->write
) & RB_WRITE_MASK
;
2527 rb_remove_pages(struct ring_buffer_per_cpu
*cpu_buffer
, unsigned long nr_pages
)
2529 struct list_head
*tail_page
, *to_remove
, *next_page
;
2530 struct buffer_page
*to_remove_page
, *tmp_iter_page
;
2531 struct buffer_page
*last_page
, *first_page
;
2532 unsigned long nr_removed
;
2533 unsigned long head_bit
;
2538 raw_spin_lock_irq(&cpu_buffer
->reader_lock
);
2539 atomic_inc(&cpu_buffer
->record_disabled
);
2541 * We don't race with the readers since we have acquired the reader
2542 * lock. We also don't race with writers after disabling recording.
2543 * This makes it easy to figure out the first and the last page to be
2544 * removed from the list. We unlink all the pages in between including
2545 * the first and last pages. This is done in a busy loop so that we
2546 * lose the least number of traces.
2547 * The pages are freed after we restart recording and unlock readers.
2549 tail_page
= &cpu_buffer
->tail_page
->list
;
2552 * tail page might be on reader page, we remove the next page
2553 * from the ring buffer
2555 if (cpu_buffer
->tail_page
== cpu_buffer
->reader_page
)
2556 tail_page
= rb_list_head(tail_page
->next
);
2557 to_remove
= tail_page
;
2559 /* start of pages to remove */
2560 first_page
= list_entry(rb_list_head(to_remove
->next
),
2561 struct buffer_page
, list
);
2563 for (nr_removed
= 0; nr_removed
< nr_pages
; nr_removed
++) {
2564 to_remove
= rb_list_head(to_remove
)->next
;
2565 head_bit
|= (unsigned long)to_remove
& RB_PAGE_HEAD
;
2567 /* Read iterators need to reset themselves when some pages removed */
2568 cpu_buffer
->pages_removed
+= nr_removed
;
2570 next_page
= rb_list_head(to_remove
)->next
;
2573 * Now we remove all pages between tail_page and next_page.
2574 * Make sure that we have head_bit value preserved for the
2577 tail_page
->next
= (struct list_head
*)((unsigned long)next_page
|
2579 next_page
= rb_list_head(next_page
);
2580 next_page
->prev
= tail_page
;
2582 /* make sure pages points to a valid page in the ring buffer */
2583 cpu_buffer
->pages
= next_page
;
2586 /* update head page */
2588 cpu_buffer
->head_page
= list_entry(next_page
,
2589 struct buffer_page
, list
);
2591 /* pages are removed, resume tracing and then free the pages */
2592 atomic_dec(&cpu_buffer
->record_disabled
);
2593 raw_spin_unlock_irq(&cpu_buffer
->reader_lock
);
2595 RB_WARN_ON(cpu_buffer
, list_empty(cpu_buffer
->pages
));
2597 /* last buffer page to remove */
2598 last_page
= list_entry(rb_list_head(to_remove
), struct buffer_page
,
2600 tmp_iter_page
= first_page
;
2605 to_remove_page
= tmp_iter_page
;
2606 rb_inc_page(&tmp_iter_page
);
2608 /* update the counters */
2609 page_entries
= rb_page_entries(to_remove_page
);
2612 * If something was added to this page, it was full
2613 * since it is not the tail page. So we deduct the
2614 * bytes consumed in ring buffer from here.
2615 * Increment overrun to account for the lost events.
2617 local_add(page_entries
, &cpu_buffer
->overrun
);
2618 local_sub(rb_page_commit(to_remove_page
), &cpu_buffer
->entries_bytes
);
2619 local_inc(&cpu_buffer
->pages_lost
);
2623 * We have already removed references to this list item, just
2624 * free up the buffer_page and its page
2626 free_buffer_page(to_remove_page
);
2629 } while (to_remove_page
!= last_page
);
2631 RB_WARN_ON(cpu_buffer
, nr_removed
);
2633 return nr_removed
== 0;
2637 rb_insert_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
2639 struct list_head
*pages
= &cpu_buffer
->new_pages
;
2640 unsigned long flags
;
2644 /* Can be called at early boot up, where interrupts must not been enabled */
2645 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
2647 * We are holding the reader lock, so the reader page won't be swapped
2648 * in the ring buffer. Now we are racing with the writer trying to
2649 * move head page and the tail page.
2650 * We are going to adapt the reader page update process where:
2651 * 1. We first splice the start and end of list of new pages between
2652 * the head page and its previous page.
2653 * 2. We cmpxchg the prev_page->next to point from head page to the
2654 * start of new pages list.
2655 * 3. Finally, we update the head->prev to the end of new list.
2657 * We will try this process 10 times, to make sure that we don't keep
2663 struct list_head
*head_page
, *prev_page
;
2664 struct list_head
*last_page
, *first_page
;
2665 struct list_head
*head_page_with_bit
;
2666 struct buffer_page
*hpage
= rb_set_head_page(cpu_buffer
);
2670 head_page
= &hpage
->list
;
2671 prev_page
= head_page
->prev
;
2673 first_page
= pages
->next
;
2674 last_page
= pages
->prev
;
2676 head_page_with_bit
= (struct list_head
*)
2677 ((unsigned long)head_page
| RB_PAGE_HEAD
);
2679 last_page
->next
= head_page_with_bit
;
2680 first_page
->prev
= prev_page
;
2682 /* caution: head_page_with_bit gets updated on cmpxchg failure */
2683 if (try_cmpxchg(&prev_page
->next
,
2684 &head_page_with_bit
, first_page
)) {
2686 * yay, we replaced the page pointer to our new list,
2687 * now, we just have to update to head page's prev
2688 * pointer to point to end of list
2690 head_page
->prev
= last_page
;
2698 INIT_LIST_HEAD(pages
);
2700 * If we weren't successful in adding in new pages, warn and stop
2703 RB_WARN_ON(cpu_buffer
, !success
);
2704 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
2706 /* free pages if they weren't inserted */
2708 struct buffer_page
*bpage
, *tmp
;
2709 list_for_each_entry_safe(bpage
, tmp
, &cpu_buffer
->new_pages
,
2711 list_del_init(&bpage
->list
);
2712 free_buffer_page(bpage
);
2718 static void rb_update_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
2722 if (cpu_buffer
->nr_pages_to_update
> 0)
2723 success
= rb_insert_pages(cpu_buffer
);
2725 success
= rb_remove_pages(cpu_buffer
,
2726 -cpu_buffer
->nr_pages_to_update
);
2729 cpu_buffer
->nr_pages
+= cpu_buffer
->nr_pages_to_update
;
2732 static void update_pages_handler(struct work_struct
*work
)
2734 struct ring_buffer_per_cpu
*cpu_buffer
= container_of(work
,
2735 struct ring_buffer_per_cpu
, update_pages_work
);
2736 rb_update_pages(cpu_buffer
);
2737 complete(&cpu_buffer
->update_done
);
2741 * ring_buffer_resize - resize the ring buffer
2742 * @buffer: the buffer to resize.
2743 * @size: the new size.
2744 * @cpu_id: the cpu buffer to resize
2746 * Minimum size is 2 * buffer->subbuf_size.
2748 * Returns 0 on success and < 0 on failure.
2750 int ring_buffer_resize(struct trace_buffer
*buffer
, unsigned long size
,
2753 struct ring_buffer_per_cpu
*cpu_buffer
;
2754 unsigned long nr_pages
;
2758 * Always succeed at resizing a non-existent buffer:
2763 /* Make sure the requested buffer exists */
2764 if (cpu_id
!= RING_BUFFER_ALL_CPUS
&&
2765 !cpumask_test_cpu(cpu_id
, buffer
->cpumask
))
2768 nr_pages
= DIV_ROUND_UP(size
, buffer
->subbuf_size
);
2770 /* we need a minimum of two pages */
2774 /* prevent another thread from changing buffer sizes */
2775 mutex_lock(&buffer
->mutex
);
2776 atomic_inc(&buffer
->resizing
);
2778 if (cpu_id
== RING_BUFFER_ALL_CPUS
) {
2780 * Don't succeed if resizing is disabled, as a reader might be
2781 * manipulating the ring buffer and is expecting a sane state while
2784 for_each_buffer_cpu(buffer
, cpu
) {
2785 cpu_buffer
= buffer
->buffers
[cpu
];
2786 if (atomic_read(&cpu_buffer
->resize_disabled
)) {
2788 goto out_err_unlock
;
2792 /* calculate the pages to update */
2793 for_each_buffer_cpu(buffer
, cpu
) {
2794 cpu_buffer
= buffer
->buffers
[cpu
];
2796 cpu_buffer
->nr_pages_to_update
= nr_pages
-
2797 cpu_buffer
->nr_pages
;
2799 * nothing more to do for removing pages or no update
2801 if (cpu_buffer
->nr_pages_to_update
<= 0)
2804 * to add pages, make sure all new pages can be
2805 * allocated without receiving ENOMEM
2807 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
2808 if (__rb_allocate_pages(cpu_buffer
, cpu_buffer
->nr_pages_to_update
,
2809 &cpu_buffer
->new_pages
)) {
2810 /* not enough memory for new pages */
2820 * Fire off all the required work handlers
2821 * We can't schedule on offline CPUs, but it's not necessary
2822 * since we can change their buffer sizes without any race.
2824 for_each_buffer_cpu(buffer
, cpu
) {
2825 cpu_buffer
= buffer
->buffers
[cpu
];
2826 if (!cpu_buffer
->nr_pages_to_update
)
2829 /* Can't run something on an offline CPU. */
2830 if (!cpu_online(cpu
)) {
2831 rb_update_pages(cpu_buffer
);
2832 cpu_buffer
->nr_pages_to_update
= 0;
2834 /* Run directly if possible. */
2836 if (cpu
!= smp_processor_id()) {
2838 schedule_work_on(cpu
,
2839 &cpu_buffer
->update_pages_work
);
2841 update_pages_handler(&cpu_buffer
->update_pages_work
);
2847 /* wait for all the updates to complete */
2848 for_each_buffer_cpu(buffer
, cpu
) {
2849 cpu_buffer
= buffer
->buffers
[cpu
];
2850 if (!cpu_buffer
->nr_pages_to_update
)
2853 if (cpu_online(cpu
))
2854 wait_for_completion(&cpu_buffer
->update_done
);
2855 cpu_buffer
->nr_pages_to_update
= 0;
2860 cpu_buffer
= buffer
->buffers
[cpu_id
];
2862 if (nr_pages
== cpu_buffer
->nr_pages
)
2866 * Don't succeed if resizing is disabled, as a reader might be
2867 * manipulating the ring buffer and is expecting a sane state while
2870 if (atomic_read(&cpu_buffer
->resize_disabled
)) {
2872 goto out_err_unlock
;
2875 cpu_buffer
->nr_pages_to_update
= nr_pages
-
2876 cpu_buffer
->nr_pages
;
2878 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
2879 if (cpu_buffer
->nr_pages_to_update
> 0 &&
2880 __rb_allocate_pages(cpu_buffer
, cpu_buffer
->nr_pages_to_update
,
2881 &cpu_buffer
->new_pages
)) {
2888 /* Can't run something on an offline CPU. */
2889 if (!cpu_online(cpu_id
))
2890 rb_update_pages(cpu_buffer
);
2892 /* Run directly if possible. */
2894 if (cpu_id
== smp_processor_id()) {
2895 rb_update_pages(cpu_buffer
);
2899 schedule_work_on(cpu_id
,
2900 &cpu_buffer
->update_pages_work
);
2901 wait_for_completion(&cpu_buffer
->update_done
);
2905 cpu_buffer
->nr_pages_to_update
= 0;
2911 * The ring buffer resize can happen with the ring buffer
2912 * enabled, so that the update disturbs the tracing as little
2913 * as possible. But if the buffer is disabled, we do not need
2914 * to worry about that, and we can take the time to verify
2915 * that the buffer is not corrupt.
2917 if (atomic_read(&buffer
->record_disabled
)) {
2918 atomic_inc(&buffer
->record_disabled
);
2920 * Even though the buffer was disabled, we must make sure
2921 * that it is truly disabled before calling rb_check_pages.
2922 * There could have been a race between checking
2923 * record_disable and incrementing it.
2926 for_each_buffer_cpu(buffer
, cpu
) {
2927 cpu_buffer
= buffer
->buffers
[cpu
];
2928 rb_check_pages(cpu_buffer
);
2930 atomic_dec(&buffer
->record_disabled
);
2933 atomic_dec(&buffer
->resizing
);
2934 mutex_unlock(&buffer
->mutex
);
2938 for_each_buffer_cpu(buffer
, cpu
) {
2939 struct buffer_page
*bpage
, *tmp
;
2941 cpu_buffer
= buffer
->buffers
[cpu
];
2942 cpu_buffer
->nr_pages_to_update
= 0;
2944 if (list_empty(&cpu_buffer
->new_pages
))
2947 list_for_each_entry_safe(bpage
, tmp
, &cpu_buffer
->new_pages
,
2949 list_del_init(&bpage
->list
);
2950 free_buffer_page(bpage
);
2954 atomic_dec(&buffer
->resizing
);
2955 mutex_unlock(&buffer
->mutex
);
2958 EXPORT_SYMBOL_GPL(ring_buffer_resize
);
2960 void ring_buffer_change_overwrite(struct trace_buffer
*buffer
, int val
)
2962 mutex_lock(&buffer
->mutex
);
2964 buffer
->flags
|= RB_FL_OVERWRITE
;
2966 buffer
->flags
&= ~RB_FL_OVERWRITE
;
2967 mutex_unlock(&buffer
->mutex
);
2969 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite
);
2971 static __always_inline
void *__rb_page_index(struct buffer_page
*bpage
, unsigned index
)
2973 return bpage
->page
->data
+ index
;
2976 static __always_inline
struct ring_buffer_event
*
2977 rb_reader_event(struct ring_buffer_per_cpu
*cpu_buffer
)
2979 return __rb_page_index(cpu_buffer
->reader_page
,
2980 cpu_buffer
->reader_page
->read
);
2983 static struct ring_buffer_event
*
2984 rb_iter_head_event(struct ring_buffer_iter
*iter
)
2986 struct ring_buffer_event
*event
;
2987 struct buffer_page
*iter_head_page
= iter
->head_page
;
2988 unsigned long commit
;
2991 if (iter
->head
!= iter
->next_event
)
2995 * When the writer goes across pages, it issues a cmpxchg which
2996 * is a mb(), which will synchronize with the rmb here.
2997 * (see rb_tail_page_update() and __rb_reserve_next())
2999 commit
= rb_page_commit(iter_head_page
);
3002 /* An event needs to be at least 8 bytes in size */
3003 if (iter
->head
> commit
- 8)
3006 event
= __rb_page_index(iter_head_page
, iter
->head
);
3007 length
= rb_event_length(event
);
3010 * READ_ONCE() doesn't work on functions and we don't want the
3011 * compiler doing any crazy optimizations with length.
3015 if ((iter
->head
+ length
) > commit
|| length
> iter
->event_size
)
3016 /* Writer corrupted the read? */
3019 memcpy(iter
->event
, event
, length
);
3021 * If the page stamp is still the same after this rmb() then the
3022 * event was safely copied without the writer entering the page.
3026 /* Make sure the page didn't change since we read this */
3027 if (iter
->page_stamp
!= iter_head_page
->page
->time_stamp
||
3028 commit
> rb_page_commit(iter_head_page
))
3031 iter
->next_event
= iter
->head
+ length
;
3034 /* Reset to the beginning */
3035 iter
->page_stamp
= iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
3037 iter
->next_event
= 0;
3038 iter
->missed_events
= 1;
3042 /* Size is determined by what has been committed */
3043 static __always_inline
unsigned rb_page_size(struct buffer_page
*bpage
)
3045 return rb_page_commit(bpage
) & ~RB_MISSED_MASK
;
3048 static __always_inline
unsigned
3049 rb_commit_index(struct ring_buffer_per_cpu
*cpu_buffer
)
3051 return rb_page_commit(cpu_buffer
->commit_page
);
3054 static __always_inline
unsigned
3055 rb_event_index(struct ring_buffer_per_cpu
*cpu_buffer
, struct ring_buffer_event
*event
)
3057 unsigned long addr
= (unsigned long)event
;
3059 addr
&= (PAGE_SIZE
<< cpu_buffer
->buffer
->subbuf_order
) - 1;
3061 return addr
- BUF_PAGE_HDR_SIZE
;
3064 static void rb_inc_iter(struct ring_buffer_iter
*iter
)
3066 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3069 * The iterator could be on the reader page (it starts there).
3070 * But the head could have moved, since the reader was
3071 * found. Check for this case and assign the iterator
3072 * to the head page instead of next.
3074 if (iter
->head_page
== cpu_buffer
->reader_page
)
3075 iter
->head_page
= rb_set_head_page(cpu_buffer
);
3077 rb_inc_page(&iter
->head_page
);
3079 iter
->page_stamp
= iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
3081 iter
->next_event
= 0;
3084 /* Return the index into the sub-buffers for a given sub-buffer */
3085 static int rb_meta_subbuf_idx(struct ring_buffer_meta
*meta
, void *subbuf
)
3089 subbuf_array
= (void *)meta
+ sizeof(int) * meta
->nr_subbufs
;
3090 subbuf_array
= (void *)ALIGN((unsigned long)subbuf_array
, meta
->subbuf_size
);
3091 return (subbuf
- subbuf_array
) / meta
->subbuf_size
;
3094 static void rb_update_meta_head(struct ring_buffer_per_cpu
*cpu_buffer
,
3095 struct buffer_page
*next_page
)
3097 struct ring_buffer_meta
*meta
= cpu_buffer
->ring_meta
;
3098 unsigned long old_head
= (unsigned long)next_page
->page
;
3099 unsigned long new_head
;
3101 rb_inc_page(&next_page
);
3102 new_head
= (unsigned long)next_page
->page
;
3105 * Only move it forward once, if something else came in and
3106 * moved it forward, then we don't want to touch it.
3108 (void)cmpxchg(&meta
->head_buffer
, old_head
, new_head
);
3111 static void rb_update_meta_reader(struct ring_buffer_per_cpu
*cpu_buffer
,
3112 struct buffer_page
*reader
)
3114 struct ring_buffer_meta
*meta
= cpu_buffer
->ring_meta
;
3115 void *old_reader
= cpu_buffer
->reader_page
->page
;
3116 void *new_reader
= reader
->page
;
3120 cpu_buffer
->reader_page
->id
= id
;
3123 meta
->buffers
[0] = rb_meta_subbuf_idx(meta
, new_reader
);
3124 meta
->buffers
[id
] = rb_meta_subbuf_idx(meta
, old_reader
);
3126 /* The head pointer is the one after the reader */
3127 rb_update_meta_head(cpu_buffer
, reader
);
3131 * rb_handle_head_page - writer hit the head page
3133 * Returns: +1 to retry page
3138 rb_handle_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
3139 struct buffer_page
*tail_page
,
3140 struct buffer_page
*next_page
)
3142 struct buffer_page
*new_head
;
3147 entries
= rb_page_entries(next_page
);
3150 * The hard part is here. We need to move the head
3151 * forward, and protect against both readers on
3152 * other CPUs and writers coming in via interrupts.
3154 type
= rb_head_page_set_update(cpu_buffer
, next_page
, tail_page
,
3158 * type can be one of four:
3159 * NORMAL - an interrupt already moved it for us
3160 * HEAD - we are the first to get here.
3161 * UPDATE - we are the interrupt interrupting
3163 * MOVED - a reader on another CPU moved the next
3164 * pointer to its reader page. Give up
3171 * We changed the head to UPDATE, thus
3172 * it is our responsibility to update
3175 local_add(entries
, &cpu_buffer
->overrun
);
3176 local_sub(rb_page_commit(next_page
), &cpu_buffer
->entries_bytes
);
3177 local_inc(&cpu_buffer
->pages_lost
);
3179 if (cpu_buffer
->ring_meta
)
3180 rb_update_meta_head(cpu_buffer
, next_page
);
3182 * The entries will be zeroed out when we move the
3186 /* still more to do */
3189 case RB_PAGE_UPDATE
:
3191 * This is an interrupt that interrupt the
3192 * previous update. Still more to do.
3195 case RB_PAGE_NORMAL
:
3197 * An interrupt came in before the update
3198 * and processed this for us.
3199 * Nothing left to do.
3204 * The reader is on another CPU and just did
3205 * a swap with our next_page.
3210 RB_WARN_ON(cpu_buffer
, 1); /* WTF??? */
3215 * Now that we are here, the old head pointer is
3216 * set to UPDATE. This will keep the reader from
3217 * swapping the head page with the reader page.
3218 * The reader (on another CPU) will spin till
3221 * We just need to protect against interrupts
3222 * doing the job. We will set the next pointer
3223 * to HEAD. After that, we set the old pointer
3224 * to NORMAL, but only if it was HEAD before.
3225 * otherwise we are an interrupt, and only
3226 * want the outer most commit to reset it.
3228 new_head
= next_page
;
3229 rb_inc_page(&new_head
);
3231 ret
= rb_head_page_set_head(cpu_buffer
, new_head
, next_page
,
3235 * Valid returns are:
3236 * HEAD - an interrupt came in and already set it.
3237 * NORMAL - One of two things:
3238 * 1) We really set it.
3239 * 2) A bunch of interrupts came in and moved
3240 * the page forward again.
3244 case RB_PAGE_NORMAL
:
3248 RB_WARN_ON(cpu_buffer
, 1);
3253 * It is possible that an interrupt came in,
3254 * set the head up, then more interrupts came in
3255 * and moved it again. When we get back here,
3256 * the page would have been set to NORMAL but we
3257 * just set it back to HEAD.
3259 * How do you detect this? Well, if that happened
3260 * the tail page would have moved.
3262 if (ret
== RB_PAGE_NORMAL
) {
3263 struct buffer_page
*buffer_tail_page
;
3265 buffer_tail_page
= READ_ONCE(cpu_buffer
->tail_page
);
3267 * If the tail had moved passed next, then we need
3268 * to reset the pointer.
3270 if (buffer_tail_page
!= tail_page
&&
3271 buffer_tail_page
!= next_page
)
3272 rb_head_page_set_normal(cpu_buffer
, new_head
,
3278 * If this was the outer most commit (the one that
3279 * changed the original pointer from HEAD to UPDATE),
3280 * then it is up to us to reset it to NORMAL.
3282 if (type
== RB_PAGE_HEAD
) {
3283 ret
= rb_head_page_set_normal(cpu_buffer
, next_page
,
3286 if (RB_WARN_ON(cpu_buffer
,
3287 ret
!= RB_PAGE_UPDATE
))
3295 rb_reset_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
3296 unsigned long tail
, struct rb_event_info
*info
)
3298 unsigned long bsize
= READ_ONCE(cpu_buffer
->buffer
->subbuf_size
);
3299 struct buffer_page
*tail_page
= info
->tail_page
;
3300 struct ring_buffer_event
*event
;
3301 unsigned long length
= info
->length
;
3304 * Only the event that crossed the page boundary
3305 * must fill the old tail_page with padding.
3307 if (tail
>= bsize
) {
3309 * If the page was filled, then we still need
3310 * to update the real_end. Reset it to zero
3311 * and the reader will ignore it.
3314 tail_page
->real_end
= 0;
3316 local_sub(length
, &tail_page
->write
);
3320 event
= __rb_page_index(tail_page
, tail
);
3323 * Save the original length to the meta data.
3324 * This will be used by the reader to add lost event
3327 tail_page
->real_end
= tail
;
3330 * If this event is bigger than the minimum size, then
3331 * we need to be careful that we don't subtract the
3332 * write counter enough to allow another writer to slip
3334 * We put in a discarded commit instead, to make sure
3335 * that this space is not used again, and this space will
3336 * not be accounted into 'entries_bytes'.
3338 * If we are less than the minimum size, we don't need to
3341 if (tail
> (bsize
- RB_EVNT_MIN_SIZE
)) {
3342 /* No room for any events */
3344 /* Mark the rest of the page with padding */
3345 rb_event_set_padding(event
);
3347 /* Make sure the padding is visible before the write update */
3350 /* Set the write back to the previous setting */
3351 local_sub(length
, &tail_page
->write
);
3355 /* Put in a discarded event */
3356 event
->array
[0] = (bsize
- tail
) - RB_EVNT_HDR_SIZE
;
3357 event
->type_len
= RINGBUF_TYPE_PADDING
;
3358 /* time delta must be non zero */
3359 event
->time_delta
= 1;
3361 /* account for padding bytes */
3362 local_add(bsize
- tail
, &cpu_buffer
->entries_bytes
);
3364 /* Make sure the padding is visible before the tail_page->write update */
3367 /* Set write to end of buffer */
3368 length
= (tail
+ length
) - bsize
;
3369 local_sub(length
, &tail_page
->write
);
3372 static inline void rb_end_commit(struct ring_buffer_per_cpu
*cpu_buffer
);
3375 * This is the slow path, force gcc not to inline it.
3377 static noinline
struct ring_buffer_event
*
3378 rb_move_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
3379 unsigned long tail
, struct rb_event_info
*info
)
3381 struct buffer_page
*tail_page
= info
->tail_page
;
3382 struct buffer_page
*commit_page
= cpu_buffer
->commit_page
;
3383 struct trace_buffer
*buffer
= cpu_buffer
->buffer
;
3384 struct buffer_page
*next_page
;
3387 next_page
= tail_page
;
3389 rb_inc_page(&next_page
);
3392 * If for some reason, we had an interrupt storm that made
3393 * it all the way around the buffer, bail, and warn
3396 if (unlikely(next_page
== commit_page
)) {
3397 local_inc(&cpu_buffer
->commit_overrun
);
3402 * This is where the fun begins!
3404 * We are fighting against races between a reader that
3405 * could be on another CPU trying to swap its reader
3406 * page with the buffer head.
3408 * We are also fighting against interrupts coming in and
3409 * moving the head or tail on us as well.
3411 * If the next page is the head page then we have filled
3412 * the buffer, unless the commit page is still on the
3415 if (rb_is_head_page(next_page
, &tail_page
->list
)) {
3418 * If the commit is not on the reader page, then
3419 * move the header page.
3421 if (!rb_is_reader_page(cpu_buffer
->commit_page
)) {
3423 * If we are not in overwrite mode,
3424 * this is easy, just stop here.
3426 if (!(buffer
->flags
& RB_FL_OVERWRITE
)) {
3427 local_inc(&cpu_buffer
->dropped_events
);
3431 ret
= rb_handle_head_page(cpu_buffer
,
3440 * We need to be careful here too. The
3441 * commit page could still be on the reader
3442 * page. We could have a small buffer, and
3443 * have filled up the buffer with events
3444 * from interrupts and such, and wrapped.
3446 * Note, if the tail page is also on the
3447 * reader_page, we let it move out.
3449 if (unlikely((cpu_buffer
->commit_page
!=
3450 cpu_buffer
->tail_page
) &&
3451 (cpu_buffer
->commit_page
==
3452 cpu_buffer
->reader_page
))) {
3453 local_inc(&cpu_buffer
->commit_overrun
);
3459 rb_tail_page_update(cpu_buffer
, tail_page
, next_page
);
3463 rb_reset_tail(cpu_buffer
, tail
, info
);
3465 /* Commit what we have for now. */
3466 rb_end_commit(cpu_buffer
);
3467 /* rb_end_commit() decs committing */
3468 local_inc(&cpu_buffer
->committing
);
3470 /* fail and let the caller try again */
3471 return ERR_PTR(-EAGAIN
);
3475 rb_reset_tail(cpu_buffer
, tail
, info
);
3481 static struct ring_buffer_event
*
3482 rb_add_time_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
3483 struct ring_buffer_event
*event
, u64 delta
, bool abs
)
3486 event
->type_len
= RINGBUF_TYPE_TIME_STAMP
;
3488 event
->type_len
= RINGBUF_TYPE_TIME_EXTEND
;
3490 /* Not the first event on the page, or not delta? */
3491 if (abs
|| rb_event_index(cpu_buffer
, event
)) {
3492 event
->time_delta
= delta
& TS_MASK
;
3493 event
->array
[0] = delta
>> TS_SHIFT
;
3495 /* nope, just zero it */
3496 event
->time_delta
= 0;
3497 event
->array
[0] = 0;
3500 return skip_time_extend(event
);
3503 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
3504 static inline bool sched_clock_stable(void)
3511 rb_check_timestamp(struct ring_buffer_per_cpu
*cpu_buffer
,
3512 struct rb_event_info
*info
)
3516 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
3517 (unsigned long long)info
->delta
,
3518 (unsigned long long)info
->ts
,
3519 (unsigned long long)info
->before
,
3520 (unsigned long long)info
->after
,
3521 (unsigned long long)({rb_time_read(&cpu_buffer
->write_stamp
, &write_stamp
); write_stamp
;}),
3522 sched_clock_stable() ? "" :
3523 "If you just came from a suspend/resume,\n"
3524 "please switch to the trace global clock:\n"
3525 " echo global > /sys/kernel/tracing/trace_clock\n"
3526 "or add trace_clock=global to the kernel command line\n");
3529 static void rb_add_timestamp(struct ring_buffer_per_cpu
*cpu_buffer
,
3530 struct ring_buffer_event
**event
,
3531 struct rb_event_info
*info
,
3533 unsigned int *length
)
3535 bool abs
= info
->add_timestamp
&
3536 (RB_ADD_STAMP_FORCE
| RB_ADD_STAMP_ABSOLUTE
);
3538 if (unlikely(info
->delta
> (1ULL << 59))) {
3540 * Some timers can use more than 59 bits, and when a timestamp
3541 * is added to the buffer, it will lose those bits.
3543 if (abs
&& (info
->ts
& TS_MSB
)) {
3544 info
->delta
&= ABS_TS_MASK
;
3546 /* did the clock go backwards */
3547 } else if (info
->before
== info
->after
&& info
->before
> info
->ts
) {
3548 /* not interrupted */
3552 * This is possible with a recalibrating of the TSC.
3553 * Do not produce a call stack, but just report it.
3557 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
3558 info
->before
, info
->ts
);
3561 rb_check_timestamp(cpu_buffer
, info
);
3565 *event
= rb_add_time_stamp(cpu_buffer
, *event
, info
->delta
, abs
);
3566 *length
-= RB_LEN_TIME_EXTEND
;
3571 * rb_update_event - update event type and data
3572 * @cpu_buffer: The per cpu buffer of the @event
3573 * @event: the event to update
3574 * @info: The info to update the @event with (contains length and delta)
3576 * Update the type and data fields of the @event. The length
3577 * is the actual size that is written to the ring buffer,
3578 * and with this, we can determine what to place into the
3582 rb_update_event(struct ring_buffer_per_cpu
*cpu_buffer
,
3583 struct ring_buffer_event
*event
,
3584 struct rb_event_info
*info
)
3586 unsigned length
= info
->length
;
3587 u64 delta
= info
->delta
;
3588 unsigned int nest
= local_read(&cpu_buffer
->committing
) - 1;
3590 if (!WARN_ON_ONCE(nest
>= MAX_NEST
))
3591 cpu_buffer
->event_stamp
[nest
] = info
->ts
;
3594 * If we need to add a timestamp, then we
3595 * add it to the start of the reserved space.
3597 if (unlikely(info
->add_timestamp
))
3598 rb_add_timestamp(cpu_buffer
, &event
, info
, &delta
, &length
);
3600 event
->time_delta
= delta
;
3601 length
-= RB_EVNT_HDR_SIZE
;
3602 if (length
> RB_MAX_SMALL_DATA
|| RB_FORCE_8BYTE_ALIGNMENT
) {
3603 event
->type_len
= 0;
3604 event
->array
[0] = length
;
3606 event
->type_len
= DIV_ROUND_UP(length
, RB_ALIGNMENT
);
3609 static unsigned rb_calculate_event_length(unsigned length
)
3611 struct ring_buffer_event event
; /* Used only for sizeof array */
3613 /* zero length can cause confusions */
3617 if (length
> RB_MAX_SMALL_DATA
|| RB_FORCE_8BYTE_ALIGNMENT
)
3618 length
+= sizeof(event
.array
[0]);
3620 length
+= RB_EVNT_HDR_SIZE
;
3621 length
= ALIGN(length
, RB_ARCH_ALIGNMENT
);
3624 * In case the time delta is larger than the 27 bits for it
3625 * in the header, we need to add a timestamp. If another
3626 * event comes in when trying to discard this one to increase
3627 * the length, then the timestamp will be added in the allocated
3628 * space of this event. If length is bigger than the size needed
3629 * for the TIME_EXTEND, then padding has to be used. The events
3630 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
3631 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
3632 * As length is a multiple of 4, we only need to worry if it
3633 * is 12 (RB_LEN_TIME_EXTEND + 4).
3635 if (length
== RB_LEN_TIME_EXTEND
+ RB_ALIGNMENT
)
3636 length
+= RB_ALIGNMENT
;
3642 rb_try_to_discard(struct ring_buffer_per_cpu
*cpu_buffer
,
3643 struct ring_buffer_event
*event
)
3645 unsigned long new_index
, old_index
;
3646 struct buffer_page
*bpage
;
3649 new_index
= rb_event_index(cpu_buffer
, event
);
3650 old_index
= new_index
+ rb_event_ts_length(event
);
3651 addr
= (unsigned long)event
;
3652 addr
&= ~((PAGE_SIZE
<< cpu_buffer
->buffer
->subbuf_order
) - 1);
3654 bpage
= READ_ONCE(cpu_buffer
->tail_page
);
3657 * Make sure the tail_page is still the same and
3658 * the next write location is the end of this event
3660 if (bpage
->page
== (void *)addr
&& rb_page_write(bpage
) == old_index
) {
3661 unsigned long write_mask
=
3662 local_read(&bpage
->write
) & ~RB_WRITE_MASK
;
3663 unsigned long event_length
= rb_event_length(event
);
3666 * For the before_stamp to be different than the write_stamp
3667 * to make sure that the next event adds an absolute
3668 * value and does not rely on the saved write stamp, which
3669 * is now going to be bogus.
3671 * By setting the before_stamp to zero, the next event
3672 * is not going to use the write_stamp and will instead
3673 * create an absolute timestamp. This means there's no
3674 * reason to update the wirte_stamp!
3676 rb_time_set(&cpu_buffer
->before_stamp
, 0);
3679 * If an event were to come in now, it would see that the
3680 * write_stamp and the before_stamp are different, and assume
3681 * that this event just added itself before updating
3682 * the write stamp. The interrupting event will fix the
3683 * write stamp for us, and use an absolute timestamp.
3687 * This is on the tail page. It is possible that
3688 * a write could come in and move the tail page
3689 * and write to the next page. That is fine
3690 * because we just shorten what is on this page.
3692 old_index
+= write_mask
;
3693 new_index
+= write_mask
;
3695 /* caution: old_index gets updated on cmpxchg failure */
3696 if (local_try_cmpxchg(&bpage
->write
, &old_index
, new_index
)) {
3697 /* update counters */
3698 local_sub(event_length
, &cpu_buffer
->entries_bytes
);
3703 /* could not discard */
3707 static void rb_start_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
3709 local_inc(&cpu_buffer
->committing
);
3710 local_inc(&cpu_buffer
->commits
);
3713 static __always_inline
void
3714 rb_set_commit_to_write(struct ring_buffer_per_cpu
*cpu_buffer
)
3716 unsigned long max_count
;
3719 * We only race with interrupts and NMIs on this CPU.
3720 * If we own the commit event, then we can commit
3721 * all others that interrupted us, since the interruptions
3722 * are in stack format (they finish before they come
3723 * back to us). This allows us to do a simple loop to
3724 * assign the commit to the tail.
3727 max_count
= cpu_buffer
->nr_pages
* 100;
3729 while (cpu_buffer
->commit_page
!= READ_ONCE(cpu_buffer
->tail_page
)) {
3730 if (RB_WARN_ON(cpu_buffer
, !(--max_count
)))
3732 if (RB_WARN_ON(cpu_buffer
,
3733 rb_is_reader_page(cpu_buffer
->tail_page
)))
3736 * No need for a memory barrier here, as the update
3737 * of the tail_page did it for this page.
3739 local_set(&cpu_buffer
->commit_page
->page
->commit
,
3740 rb_page_write(cpu_buffer
->commit_page
));
3741 rb_inc_page(&cpu_buffer
->commit_page
);
3742 if (cpu_buffer
->ring_meta
) {
3743 struct ring_buffer_meta
*meta
= cpu_buffer
->ring_meta
;
3744 meta
->commit_buffer
= (unsigned long)cpu_buffer
->commit_page
->page
;
3746 /* add barrier to keep gcc from optimizing too much */
3749 while (rb_commit_index(cpu_buffer
) !=
3750 rb_page_write(cpu_buffer
->commit_page
)) {
3752 /* Make sure the readers see the content of what is committed. */
3754 local_set(&cpu_buffer
->commit_page
->page
->commit
,
3755 rb_page_write(cpu_buffer
->commit_page
));
3756 RB_WARN_ON(cpu_buffer
,
3757 local_read(&cpu_buffer
->commit_page
->page
->commit
) &
3762 /* again, keep gcc from optimizing */
3766 * If an interrupt came in just after the first while loop
3767 * and pushed the tail page forward, we will be left with
3768 * a dangling commit that will never go forward.
3770 if (unlikely(cpu_buffer
->commit_page
!= READ_ONCE(cpu_buffer
->tail_page
)))
3774 static __always_inline
void rb_end_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
3776 unsigned long commits
;
3778 if (RB_WARN_ON(cpu_buffer
,
3779 !local_read(&cpu_buffer
->committing
)))
3783 commits
= local_read(&cpu_buffer
->commits
);
3784 /* synchronize with interrupts */
3786 if (local_read(&cpu_buffer
->committing
) == 1)
3787 rb_set_commit_to_write(cpu_buffer
);
3789 local_dec(&cpu_buffer
->committing
);
3791 /* synchronize with interrupts */
3795 * Need to account for interrupts coming in between the
3796 * updating of the commit page and the clearing of the
3797 * committing counter.
3799 if (unlikely(local_read(&cpu_buffer
->commits
) != commits
) &&
3800 !local_read(&cpu_buffer
->committing
)) {
3801 local_inc(&cpu_buffer
->committing
);
3806 static inline void rb_event_discard(struct ring_buffer_event
*event
)
3808 if (extended_time(event
))
3809 event
= skip_time_extend(event
);
3811 /* array[0] holds the actual length for the discarded event */
3812 event
->array
[0] = rb_event_data_length(event
) - RB_EVNT_HDR_SIZE
;
3813 event
->type_len
= RINGBUF_TYPE_PADDING
;
3814 /* time delta must be non zero */
3815 if (!event
->time_delta
)
3816 event
->time_delta
= 1;
3819 static void rb_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
3821 local_inc(&cpu_buffer
->entries
);
3822 rb_end_commit(cpu_buffer
);
3825 static __always_inline
void
3826 rb_wakeups(struct trace_buffer
*buffer
, struct ring_buffer_per_cpu
*cpu_buffer
)
3828 if (buffer
->irq_work
.waiters_pending
) {
3829 buffer
->irq_work
.waiters_pending
= false;
3830 /* irq_work_queue() supplies it's own memory barriers */
3831 irq_work_queue(&buffer
->irq_work
.work
);
3834 if (cpu_buffer
->irq_work
.waiters_pending
) {
3835 cpu_buffer
->irq_work
.waiters_pending
= false;
3836 /* irq_work_queue() supplies it's own memory barriers */
3837 irq_work_queue(&cpu_buffer
->irq_work
.work
);
3840 if (cpu_buffer
->last_pages_touch
== local_read(&cpu_buffer
->pages_touched
))
3843 if (cpu_buffer
->reader_page
== cpu_buffer
->commit_page
)
3846 if (!cpu_buffer
->irq_work
.full_waiters_pending
)
3849 cpu_buffer
->last_pages_touch
= local_read(&cpu_buffer
->pages_touched
);
3851 if (!full_hit(buffer
, cpu_buffer
->cpu
, cpu_buffer
->shortest_full
))
3854 cpu_buffer
->irq_work
.wakeup_full
= true;
3855 cpu_buffer
->irq_work
.full_waiters_pending
= false;
3856 /* irq_work_queue() supplies it's own memory barriers */
3857 irq_work_queue(&cpu_buffer
->irq_work
.work
);
3860 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3861 # define do_ring_buffer_record_recursion() \
3862 do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3864 # define do_ring_buffer_record_recursion() do { } while (0)
3868 * The lock and unlock are done within a preempt disable section.
3869 * The current_context per_cpu variable can only be modified
3870 * by the current task between lock and unlock. But it can
3871 * be modified more than once via an interrupt. To pass this
3872 * information from the lock to the unlock without having to
3873 * access the 'in_interrupt()' functions again (which do show
3874 * a bit of overhead in something as critical as function tracing,
3875 * we use a bitmask trick.
3877 * bit 1 = NMI context
3878 * bit 2 = IRQ context
3879 * bit 3 = SoftIRQ context
3880 * bit 4 = normal context.
3882 * This works because this is the order of contexts that can
3883 * preempt other contexts. A SoftIRQ never preempts an IRQ
3886 * When the context is determined, the corresponding bit is
3887 * checked and set (if it was set, then a recursion of that context
3890 * On unlock, we need to clear this bit. To do so, just subtract
3891 * 1 from the current_context and AND it to itself.
3895 * 101 & 100 = 100 (clearing bit zero)
3898 * 1010 & 1001 = 1000 (clearing bit 1)
3900 * The least significant bit can be cleared this way, and it
3901 * just so happens that it is the same bit corresponding to
3902 * the current context.
3904 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3905 * is set when a recursion is detected at the current context, and if
3906 * the TRANSITION bit is already set, it will fail the recursion.
3907 * This is needed because there's a lag between the changing of
3908 * interrupt context and updating the preempt count. In this case,
3909 * a false positive will be found. To handle this, one extra recursion
3910 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3911 * bit is already set, then it is considered a recursion and the function
3912 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3914 * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3915 * to be cleared. Even if it wasn't the context that set it. That is,
3916 * if an interrupt comes in while NORMAL bit is set and the ring buffer
3917 * is called before preempt_count() is updated, since the check will
3918 * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3919 * NMI then comes in, it will set the NMI bit, but when the NMI code
3920 * does the trace_recursive_unlock() it will clear the TRANSITION bit
3921 * and leave the NMI bit set. But this is fine, because the interrupt
3922 * code that set the TRANSITION bit will then clear the NMI bit when it
3923 * calls trace_recursive_unlock(). If another NMI comes in, it will
3924 * set the TRANSITION bit and continue.
3926 * Note: The TRANSITION bit only handles a single transition between context.
3929 static __always_inline
bool
3930 trace_recursive_lock(struct ring_buffer_per_cpu
*cpu_buffer
)
3932 unsigned int val
= cpu_buffer
->current_context
;
3933 int bit
= interrupt_context_level();
3935 bit
= RB_CTX_NORMAL
- bit
;
3937 if (unlikely(val
& (1 << (bit
+ cpu_buffer
->nest
)))) {
3939 * It is possible that this was called by transitioning
3940 * between interrupt context, and preempt_count() has not
3941 * been updated yet. In this case, use the TRANSITION bit.
3943 bit
= RB_CTX_TRANSITION
;
3944 if (val
& (1 << (bit
+ cpu_buffer
->nest
))) {
3945 do_ring_buffer_record_recursion();
3950 val
|= (1 << (bit
+ cpu_buffer
->nest
));
3951 cpu_buffer
->current_context
= val
;
3956 static __always_inline
void
3957 trace_recursive_unlock(struct ring_buffer_per_cpu
*cpu_buffer
)
3959 cpu_buffer
->current_context
&=
3960 cpu_buffer
->current_context
- (1 << cpu_buffer
->nest
);
3963 /* The recursive locking above uses 5 bits */
3964 #define NESTED_BITS 5
3967 * ring_buffer_nest_start - Allow to trace while nested
3968 * @buffer: The ring buffer to modify
3970 * The ring buffer has a safety mechanism to prevent recursion.
3971 * But there may be a case where a trace needs to be done while
3972 * tracing something else. In this case, calling this function
3973 * will allow this function to nest within a currently active
3974 * ring_buffer_lock_reserve().
3976 * Call this function before calling another ring_buffer_lock_reserve() and
3977 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3979 void ring_buffer_nest_start(struct trace_buffer
*buffer
)
3981 struct ring_buffer_per_cpu
*cpu_buffer
;
3984 /* Enabled by ring_buffer_nest_end() */
3985 preempt_disable_notrace();
3986 cpu
= raw_smp_processor_id();
3987 cpu_buffer
= buffer
->buffers
[cpu
];
3988 /* This is the shift value for the above recursive locking */
3989 cpu_buffer
->nest
+= NESTED_BITS
;
3993 * ring_buffer_nest_end - Allow to trace while nested
3994 * @buffer: The ring buffer to modify
3996 * Must be called after ring_buffer_nest_start() and after the
3997 * ring_buffer_unlock_commit().
3999 void ring_buffer_nest_end(struct trace_buffer
*buffer
)
4001 struct ring_buffer_per_cpu
*cpu_buffer
;
4004 /* disabled by ring_buffer_nest_start() */
4005 cpu
= raw_smp_processor_id();
4006 cpu_buffer
= buffer
->buffers
[cpu
];
4007 /* This is the shift value for the above recursive locking */
4008 cpu_buffer
->nest
-= NESTED_BITS
;
4009 preempt_enable_notrace();
4013 * ring_buffer_unlock_commit - commit a reserved
4014 * @buffer: The buffer to commit to
4016 * This commits the data to the ring buffer, and releases any locks held.
4018 * Must be paired with ring_buffer_lock_reserve.
4020 int ring_buffer_unlock_commit(struct trace_buffer
*buffer
)
4022 struct ring_buffer_per_cpu
*cpu_buffer
;
4023 int cpu
= raw_smp_processor_id();
4025 cpu_buffer
= buffer
->buffers
[cpu
];
4027 rb_commit(cpu_buffer
);
4029 rb_wakeups(buffer
, cpu_buffer
);
4031 trace_recursive_unlock(cpu_buffer
);
4033 preempt_enable_notrace();
4037 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit
);
4039 /* Special value to validate all deltas on a page. */
4040 #define CHECK_FULL_PAGE 1L
4042 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
4044 static const char *show_irq_str(int bits
)
4046 const char *type
[] = {
4060 /* Assume this is a trace event */
4061 static const char *show_flags(struct ring_buffer_event
*event
)
4063 struct trace_entry
*entry
;
4066 if (rb_event_data_length(event
) - RB_EVNT_HDR_SIZE
< sizeof(*entry
))
4069 entry
= ring_buffer_event_data(event
);
4071 if (entry
->flags
& TRACE_FLAG_SOFTIRQ
)
4074 if (entry
->flags
& TRACE_FLAG_HARDIRQ
)
4077 if (entry
->flags
& TRACE_FLAG_NMI
)
4080 return show_irq_str(bits
);
4083 static const char *show_irq(struct ring_buffer_event
*event
)
4085 struct trace_entry
*entry
;
4087 if (rb_event_data_length(event
) - RB_EVNT_HDR_SIZE
< sizeof(*entry
))
4090 entry
= ring_buffer_event_data(event
);
4091 if (entry
->flags
& TRACE_FLAG_IRQS_OFF
)
4096 static const char *show_interrupt_level(void)
4098 unsigned long pc
= preempt_count();
4099 unsigned char level
= 0;
4101 if (pc
& SOFTIRQ_OFFSET
)
4104 if (pc
& HARDIRQ_MASK
)
4110 return show_irq_str(level
);
4113 static void dump_buffer_page(struct buffer_data_page
*bpage
,
4114 struct rb_event_info
*info
,
4117 struct ring_buffer_event
*event
;
4121 ts
= bpage
->time_stamp
;
4122 pr_warn(" [%lld] PAGE TIME STAMP\n", ts
);
4124 for (e
= 0; e
< tail
; e
+= rb_event_length(event
)) {
4126 event
= (struct ring_buffer_event
*)(bpage
->data
+ e
);
4128 switch (event
->type_len
) {
4130 case RINGBUF_TYPE_TIME_EXTEND
:
4131 delta
= rb_event_time_stamp(event
);
4133 pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n",
4137 case RINGBUF_TYPE_TIME_STAMP
:
4138 delta
= rb_event_time_stamp(event
);
4139 ts
= rb_fix_abs_ts(delta
, ts
);
4140 pr_warn(" 0x%x: [%lld] absolute:%lld TIME STAMP\n",
4144 case RINGBUF_TYPE_PADDING
:
4145 ts
+= event
->time_delta
;
4146 pr_warn(" 0x%x: [%lld] delta:%d PADDING\n",
4147 e
, ts
, event
->time_delta
);
4150 case RINGBUF_TYPE_DATA
:
4151 ts
+= event
->time_delta
;
4152 pr_warn(" 0x%x: [%lld] delta:%d %s%s\n",
4153 e
, ts
, event
->time_delta
,
4154 show_flags(event
), show_irq(event
));
4161 pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail
, e
);
4164 static DEFINE_PER_CPU(atomic_t
, checking
);
4165 static atomic_t ts_dump
;
4167 #define buffer_warn_return(fmt, ...) \
4169 /* If another report is happening, ignore this one */ \
4170 if (atomic_inc_return(&ts_dump) != 1) { \
4171 atomic_dec(&ts_dump); \
4174 atomic_inc(&cpu_buffer->record_disabled); \
4175 pr_warn(fmt, ##__VA_ARGS__); \
4176 dump_buffer_page(bpage, info, tail); \
4177 atomic_dec(&ts_dump); \
4178 /* There's some cases in boot up that this can happen */ \
4179 if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING)) \
4180 /* Do not re-enable checking */ \
4185 * Check if the current event time stamp matches the deltas on
4188 static void check_buffer(struct ring_buffer_per_cpu
*cpu_buffer
,
4189 struct rb_event_info
*info
,
4192 struct buffer_data_page
*bpage
;
4197 bpage
= info
->tail_page
->page
;
4199 if (tail
== CHECK_FULL_PAGE
) {
4201 tail
= local_read(&bpage
->commit
);
4202 } else if (info
->add_timestamp
&
4203 (RB_ADD_STAMP_FORCE
| RB_ADD_STAMP_ABSOLUTE
)) {
4204 /* Ignore events with absolute time stamps */
4209 * Do not check the first event (skip possible extends too).
4210 * Also do not check if previous events have not been committed.
4212 if (tail
<= 8 || tail
> local_read(&bpage
->commit
))
4216 * If this interrupted another event,
4218 if (atomic_inc_return(this_cpu_ptr(&checking
)) != 1)
4221 ret
= rb_read_data_buffer(bpage
, tail
, cpu_buffer
->cpu
, &ts
, &delta
);
4224 buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n",
4225 cpu_buffer
->cpu
, ts
, delta
);
4229 if ((full
&& ts
> info
->ts
) ||
4230 (!full
&& ts
+ info
->delta
!= info
->ts
)) {
4231 buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n",
4233 ts
+ info
->delta
, info
->ts
, info
->delta
,
4234 info
->before
, info
->after
,
4235 full
? " (full)" : "", show_interrupt_level());
4238 atomic_dec(this_cpu_ptr(&checking
));
4241 static inline void check_buffer(struct ring_buffer_per_cpu
*cpu_buffer
,
4242 struct rb_event_info
*info
,
4246 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
4248 static struct ring_buffer_event
*
4249 __rb_reserve_next(struct ring_buffer_per_cpu
*cpu_buffer
,
4250 struct rb_event_info
*info
)
4252 struct ring_buffer_event
*event
;
4253 struct buffer_page
*tail_page
;
4254 unsigned long tail
, write
, w
;
4256 /* Don't let the compiler play games with cpu_buffer->tail_page */
4257 tail_page
= info
->tail_page
= READ_ONCE(cpu_buffer
->tail_page
);
4259 /*A*/ w
= local_read(&tail_page
->write
) & RB_WRITE_MASK
;
4261 rb_time_read(&cpu_buffer
->before_stamp
, &info
->before
);
4262 rb_time_read(&cpu_buffer
->write_stamp
, &info
->after
);
4264 info
->ts
= rb_time_stamp(cpu_buffer
->buffer
);
4266 if ((info
->add_timestamp
& RB_ADD_STAMP_ABSOLUTE
)) {
4267 info
->delta
= info
->ts
;
4270 * If interrupting an event time update, we may need an
4271 * absolute timestamp.
4272 * Don't bother if this is the start of a new page (w == 0).
4275 /* Use the sub-buffer timestamp */
4277 } else if (unlikely(info
->before
!= info
->after
)) {
4278 info
->add_timestamp
|= RB_ADD_STAMP_FORCE
| RB_ADD_STAMP_EXTEND
;
4279 info
->length
+= RB_LEN_TIME_EXTEND
;
4281 info
->delta
= info
->ts
- info
->after
;
4282 if (unlikely(test_time_stamp(info
->delta
))) {
4283 info
->add_timestamp
|= RB_ADD_STAMP_EXTEND
;
4284 info
->length
+= RB_LEN_TIME_EXTEND
;
4289 /*B*/ rb_time_set(&cpu_buffer
->before_stamp
, info
->ts
);
4291 /*C*/ write
= local_add_return(info
->length
, &tail_page
->write
);
4293 /* set write to only the index of the write */
4294 write
&= RB_WRITE_MASK
;
4296 tail
= write
- info
->length
;
4298 /* See if we shot pass the end of this buffer page */
4299 if (unlikely(write
> cpu_buffer
->buffer
->subbuf_size
)) {
4300 check_buffer(cpu_buffer
, info
, CHECK_FULL_PAGE
);
4301 return rb_move_tail(cpu_buffer
, tail
, info
);
4304 if (likely(tail
== w
)) {
4305 /* Nothing interrupted us between A and C */
4306 /*D*/ rb_time_set(&cpu_buffer
->write_stamp
, info
->ts
);
4308 * If something came in between C and D, the write stamp
4309 * may now not be in sync. But that's fine as the before_stamp
4310 * will be different and then next event will just be forced
4311 * to use an absolute timestamp.
4313 if (likely(!(info
->add_timestamp
&
4314 (RB_ADD_STAMP_FORCE
| RB_ADD_STAMP_ABSOLUTE
))))
4315 /* This did not interrupt any time update */
4316 info
->delta
= info
->ts
- info
->after
;
4318 /* Just use full timestamp for interrupting event */
4319 info
->delta
= info
->ts
;
4320 check_buffer(cpu_buffer
, info
, tail
);
4323 /* SLOW PATH - Interrupted between A and C */
4325 /* Save the old before_stamp */
4326 rb_time_read(&cpu_buffer
->before_stamp
, &info
->before
);
4329 * Read a new timestamp and update the before_stamp to make
4330 * the next event after this one force using an absolute
4331 * timestamp. This is in case an interrupt were to come in
4334 ts
= rb_time_stamp(cpu_buffer
->buffer
);
4335 rb_time_set(&cpu_buffer
->before_stamp
, ts
);
4338 /*E*/ rb_time_read(&cpu_buffer
->write_stamp
, &info
->after
);
4340 /*F*/ if (write
== (local_read(&tail_page
->write
) & RB_WRITE_MASK
) &&
4341 info
->after
== info
->before
&& info
->after
< ts
) {
4343 * Nothing came after this event between C and F, it is
4344 * safe to use info->after for the delta as it
4345 * matched info->before and is still valid.
4347 info
->delta
= ts
- info
->after
;
4350 * Interrupted between C and F:
4351 * Lost the previous events time stamp. Just set the
4352 * delta to zero, and this will be the same time as
4353 * the event this event interrupted. And the events that
4354 * came after this will still be correct (as they would
4355 * have built their delta on the previous event.
4360 info
->add_timestamp
&= ~RB_ADD_STAMP_FORCE
;
4364 * If this is the first commit on the page, then it has the same
4365 * timestamp as the page itself.
4367 if (unlikely(!tail
&& !(info
->add_timestamp
&
4368 (RB_ADD_STAMP_FORCE
| RB_ADD_STAMP_ABSOLUTE
))))
4371 /* We reserved something on the buffer */
4373 event
= __rb_page_index(tail_page
, tail
);
4374 rb_update_event(cpu_buffer
, event
, info
);
4376 local_inc(&tail_page
->entries
);
4379 * If this is the first commit on the page, then update
4382 if (unlikely(!tail
))
4383 tail_page
->page
->time_stamp
= info
->ts
;
4385 /* account for these added bytes */
4386 local_add(info
->length
, &cpu_buffer
->entries_bytes
);
4391 static __always_inline
struct ring_buffer_event
*
4392 rb_reserve_next_event(struct trace_buffer
*buffer
,
4393 struct ring_buffer_per_cpu
*cpu_buffer
,
4394 unsigned long length
)
4396 struct ring_buffer_event
*event
;
4397 struct rb_event_info info
;
4401 /* ring buffer does cmpxchg, make sure it is safe in NMI context */
4402 if (!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
) &&
4403 (unlikely(in_nmi()))) {
4407 rb_start_commit(cpu_buffer
);
4408 /* The commit page can not change after this */
4410 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4412 * Due to the ability to swap a cpu buffer from a buffer
4413 * it is possible it was swapped before we committed.
4414 * (committing stops a swap). We check for it here and
4415 * if it happened, we have to fail the write.
4418 if (unlikely(READ_ONCE(cpu_buffer
->buffer
) != buffer
)) {
4419 local_dec(&cpu_buffer
->committing
);
4420 local_dec(&cpu_buffer
->commits
);
4425 info
.length
= rb_calculate_event_length(length
);
4427 if (ring_buffer_time_stamp_abs(cpu_buffer
->buffer
)) {
4428 add_ts_default
= RB_ADD_STAMP_ABSOLUTE
;
4429 info
.length
+= RB_LEN_TIME_EXTEND
;
4430 if (info
.length
> cpu_buffer
->buffer
->max_data_size
)
4433 add_ts_default
= RB_ADD_STAMP_NONE
;
4437 info
.add_timestamp
= add_ts_default
;
4441 * We allow for interrupts to reenter here and do a trace.
4442 * If one does, it will cause this original code to loop
4443 * back here. Even with heavy interrupts happening, this
4444 * should only happen a few times in a row. If this happens
4445 * 1000 times in a row, there must be either an interrupt
4446 * storm or we have something buggy.
4449 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 1000))
4452 event
= __rb_reserve_next(cpu_buffer
, &info
);
4454 if (unlikely(PTR_ERR(event
) == -EAGAIN
)) {
4455 if (info
.add_timestamp
& (RB_ADD_STAMP_FORCE
| RB_ADD_STAMP_EXTEND
))
4456 info
.length
-= RB_LEN_TIME_EXTEND
;
4463 rb_end_commit(cpu_buffer
);
4468 * ring_buffer_lock_reserve - reserve a part of the buffer
4469 * @buffer: the ring buffer to reserve from
4470 * @length: the length of the data to reserve (excluding event header)
4472 * Returns a reserved event on the ring buffer to copy directly to.
4473 * The user of this interface will need to get the body to write into
4474 * and can use the ring_buffer_event_data() interface.
4476 * The length is the length of the data needed, not the event length
4477 * which also includes the event header.
4479 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
4480 * If NULL is returned, then nothing has been allocated or locked.
4482 struct ring_buffer_event
*
4483 ring_buffer_lock_reserve(struct trace_buffer
*buffer
, unsigned long length
)
4485 struct ring_buffer_per_cpu
*cpu_buffer
;
4486 struct ring_buffer_event
*event
;
4489 /* If we are tracing schedule, we don't want to recurse */
4490 preempt_disable_notrace();
4492 if (unlikely(atomic_read(&buffer
->record_disabled
)))
4495 cpu
= raw_smp_processor_id();
4497 if (unlikely(!cpumask_test_cpu(cpu
, buffer
->cpumask
)))
4500 cpu_buffer
= buffer
->buffers
[cpu
];
4502 if (unlikely(atomic_read(&cpu_buffer
->record_disabled
)))
4505 if (unlikely(length
> buffer
->max_data_size
))
4508 if (unlikely(trace_recursive_lock(cpu_buffer
)))
4511 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
4518 trace_recursive_unlock(cpu_buffer
);
4520 preempt_enable_notrace();
4523 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve
);
4526 * Decrement the entries to the page that an event is on.
4527 * The event does not even need to exist, only the pointer
4528 * to the page it is on. This may only be called before the commit
4532 rb_decrement_entry(struct ring_buffer_per_cpu
*cpu_buffer
,
4533 struct ring_buffer_event
*event
)
4535 unsigned long addr
= (unsigned long)event
;
4536 struct buffer_page
*bpage
= cpu_buffer
->commit_page
;
4537 struct buffer_page
*start
;
4539 addr
&= ~((PAGE_SIZE
<< cpu_buffer
->buffer
->subbuf_order
) - 1);
4541 /* Do the likely case first */
4542 if (likely(bpage
->page
== (void *)addr
)) {
4543 local_dec(&bpage
->entries
);
4548 * Because the commit page may be on the reader page we
4549 * start with the next page and check the end loop there.
4551 rb_inc_page(&bpage
);
4554 if (bpage
->page
== (void *)addr
) {
4555 local_dec(&bpage
->entries
);
4558 rb_inc_page(&bpage
);
4559 } while (bpage
!= start
);
4561 /* commit not part of this buffer?? */
4562 RB_WARN_ON(cpu_buffer
, 1);
4566 * ring_buffer_discard_commit - discard an event that has not been committed
4567 * @buffer: the ring buffer
4568 * @event: non committed event to discard
4570 * Sometimes an event that is in the ring buffer needs to be ignored.
4571 * This function lets the user discard an event in the ring buffer
4572 * and then that event will not be read later.
4574 * This function only works if it is called before the item has been
4575 * committed. It will try to free the event from the ring buffer
4576 * if another event has not been added behind it.
4578 * If another event has been added behind it, it will set the event
4579 * up as discarded, and perform the commit.
4581 * If this function is called, do not call ring_buffer_unlock_commit on
4584 void ring_buffer_discard_commit(struct trace_buffer
*buffer
,
4585 struct ring_buffer_event
*event
)
4587 struct ring_buffer_per_cpu
*cpu_buffer
;
4590 /* The event is discarded regardless */
4591 rb_event_discard(event
);
4593 cpu
= smp_processor_id();
4594 cpu_buffer
= buffer
->buffers
[cpu
];
4597 * This must only be called if the event has not been
4598 * committed yet. Thus we can assume that preemption
4599 * is still disabled.
4601 RB_WARN_ON(buffer
, !local_read(&cpu_buffer
->committing
));
4603 rb_decrement_entry(cpu_buffer
, event
);
4604 if (rb_try_to_discard(cpu_buffer
, event
))
4608 rb_end_commit(cpu_buffer
);
4610 trace_recursive_unlock(cpu_buffer
);
4612 preempt_enable_notrace();
4615 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit
);
4618 * ring_buffer_write - write data to the buffer without reserving
4619 * @buffer: The ring buffer to write to.
4620 * @length: The length of the data being written (excluding the event header)
4621 * @data: The data to write to the buffer.
4623 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
4624 * one function. If you already have the data to write to the buffer, it
4625 * may be easier to simply call this function.
4627 * Note, like ring_buffer_lock_reserve, the length is the length of the data
4628 * and not the length of the event which would hold the header.
4630 int ring_buffer_write(struct trace_buffer
*buffer
,
4631 unsigned long length
,
4634 struct ring_buffer_per_cpu
*cpu_buffer
;
4635 struct ring_buffer_event
*event
;
4640 preempt_disable_notrace();
4642 if (atomic_read(&buffer
->record_disabled
))
4645 cpu
= raw_smp_processor_id();
4647 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4650 cpu_buffer
= buffer
->buffers
[cpu
];
4652 if (atomic_read(&cpu_buffer
->record_disabled
))
4655 if (length
> buffer
->max_data_size
)
4658 if (unlikely(trace_recursive_lock(cpu_buffer
)))
4661 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
4665 body
= rb_event_data(event
);
4667 memcpy(body
, data
, length
);
4669 rb_commit(cpu_buffer
);
4671 rb_wakeups(buffer
, cpu_buffer
);
4676 trace_recursive_unlock(cpu_buffer
);
4679 preempt_enable_notrace();
4683 EXPORT_SYMBOL_GPL(ring_buffer_write
);
4685 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu
*cpu_buffer
)
4687 struct buffer_page
*reader
= cpu_buffer
->reader_page
;
4688 struct buffer_page
*head
= rb_set_head_page(cpu_buffer
);
4689 struct buffer_page
*commit
= cpu_buffer
->commit_page
;
4691 /* In case of error, head will be NULL */
4692 if (unlikely(!head
))
4695 /* Reader should exhaust content in reader page */
4696 if (reader
->read
!= rb_page_size(reader
))
4700 * If writers are committing on the reader page, knowing all
4701 * committed content has been read, the ring buffer is empty.
4703 if (commit
== reader
)
4707 * If writers are committing on a page other than reader page
4708 * and head page, there should always be content to read.
4714 * Writers are committing on the head page, we just need
4715 * to care about there're committed data, and the reader will
4716 * swap reader page with head page when it is to read data.
4718 return rb_page_commit(commit
) == 0;
4722 * ring_buffer_record_disable - stop all writes into the buffer
4723 * @buffer: The ring buffer to stop writes to.
4725 * This prevents all writes to the buffer. Any attempt to write
4726 * to the buffer after this will fail and return NULL.
4728 * The caller should call synchronize_rcu() after this.
4730 void ring_buffer_record_disable(struct trace_buffer
*buffer
)
4732 atomic_inc(&buffer
->record_disabled
);
4734 EXPORT_SYMBOL_GPL(ring_buffer_record_disable
);
4737 * ring_buffer_record_enable - enable writes to the buffer
4738 * @buffer: The ring buffer to enable writes
4740 * Note, multiple disables will need the same number of enables
4741 * to truly enable the writing (much like preempt_disable).
4743 void ring_buffer_record_enable(struct trace_buffer
*buffer
)
4745 atomic_dec(&buffer
->record_disabled
);
4747 EXPORT_SYMBOL_GPL(ring_buffer_record_enable
);
4750 * ring_buffer_record_off - stop all writes into the buffer
4751 * @buffer: The ring buffer to stop writes to.
4753 * This prevents all writes to the buffer. Any attempt to write
4754 * to the buffer after this will fail and return NULL.
4756 * This is different than ring_buffer_record_disable() as
4757 * it works like an on/off switch, where as the disable() version
4758 * must be paired with a enable().
4760 void ring_buffer_record_off(struct trace_buffer
*buffer
)
4763 unsigned int new_rd
;
4765 rd
= atomic_read(&buffer
->record_disabled
);
4767 new_rd
= rd
| RB_BUFFER_OFF
;
4768 } while (!atomic_try_cmpxchg(&buffer
->record_disabled
, &rd
, new_rd
));
4770 EXPORT_SYMBOL_GPL(ring_buffer_record_off
);
4773 * ring_buffer_record_on - restart writes into the buffer
4774 * @buffer: The ring buffer to start writes to.
4776 * This enables all writes to the buffer that was disabled by
4777 * ring_buffer_record_off().
4779 * This is different than ring_buffer_record_enable() as
4780 * it works like an on/off switch, where as the enable() version
4781 * must be paired with a disable().
4783 void ring_buffer_record_on(struct trace_buffer
*buffer
)
4786 unsigned int new_rd
;
4788 rd
= atomic_read(&buffer
->record_disabled
);
4790 new_rd
= rd
& ~RB_BUFFER_OFF
;
4791 } while (!atomic_try_cmpxchg(&buffer
->record_disabled
, &rd
, new_rd
));
4793 EXPORT_SYMBOL_GPL(ring_buffer_record_on
);
4796 * ring_buffer_record_is_on - return true if the ring buffer can write
4797 * @buffer: The ring buffer to see if write is enabled
4799 * Returns true if the ring buffer is in a state that it accepts writes.
4801 bool ring_buffer_record_is_on(struct trace_buffer
*buffer
)
4803 return !atomic_read(&buffer
->record_disabled
);
4807 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4808 * @buffer: The ring buffer to see if write is set enabled
4810 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4811 * Note that this does NOT mean it is in a writable state.
4813 * It may return true when the ring buffer has been disabled by
4814 * ring_buffer_record_disable(), as that is a temporary disabling of
4817 bool ring_buffer_record_is_set_on(struct trace_buffer
*buffer
)
4819 return !(atomic_read(&buffer
->record_disabled
) & RB_BUFFER_OFF
);
4823 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4824 * @buffer: The ring buffer to stop writes to.
4825 * @cpu: The CPU buffer to stop
4827 * This prevents all writes to the buffer. Any attempt to write
4828 * to the buffer after this will fail and return NULL.
4830 * The caller should call synchronize_rcu() after this.
4832 void ring_buffer_record_disable_cpu(struct trace_buffer
*buffer
, int cpu
)
4834 struct ring_buffer_per_cpu
*cpu_buffer
;
4836 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4839 cpu_buffer
= buffer
->buffers
[cpu
];
4840 atomic_inc(&cpu_buffer
->record_disabled
);
4842 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu
);
4845 * ring_buffer_record_enable_cpu - enable writes to the buffer
4846 * @buffer: The ring buffer to enable writes
4847 * @cpu: The CPU to enable.
4849 * Note, multiple disables will need the same number of enables
4850 * to truly enable the writing (much like preempt_disable).
4852 void ring_buffer_record_enable_cpu(struct trace_buffer
*buffer
, int cpu
)
4854 struct ring_buffer_per_cpu
*cpu_buffer
;
4856 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4859 cpu_buffer
= buffer
->buffers
[cpu
];
4860 atomic_dec(&cpu_buffer
->record_disabled
);
4862 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu
);
4865 * The total entries in the ring buffer is the running counter
4866 * of entries entered into the ring buffer, minus the sum of
4867 * the entries read from the ring buffer and the number of
4868 * entries that were overwritten.
4870 static inline unsigned long
4871 rb_num_of_entries(struct ring_buffer_per_cpu
*cpu_buffer
)
4873 return local_read(&cpu_buffer
->entries
) -
4874 (local_read(&cpu_buffer
->overrun
) + cpu_buffer
->read
);
4878 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4879 * @buffer: The ring buffer
4880 * @cpu: The per CPU buffer to read from.
4882 u64
ring_buffer_oldest_event_ts(struct trace_buffer
*buffer
, int cpu
)
4884 unsigned long flags
;
4885 struct ring_buffer_per_cpu
*cpu_buffer
;
4886 struct buffer_page
*bpage
;
4889 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4892 cpu_buffer
= buffer
->buffers
[cpu
];
4893 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4895 * if the tail is on reader_page, oldest time stamp is on the reader
4898 if (cpu_buffer
->tail_page
== cpu_buffer
->reader_page
)
4899 bpage
= cpu_buffer
->reader_page
;
4901 bpage
= rb_set_head_page(cpu_buffer
);
4903 ret
= bpage
->page
->time_stamp
;
4904 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4908 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts
);
4911 * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
4912 * @buffer: The ring buffer
4913 * @cpu: The per CPU buffer to read from.
4915 unsigned long ring_buffer_bytes_cpu(struct trace_buffer
*buffer
, int cpu
)
4917 struct ring_buffer_per_cpu
*cpu_buffer
;
4920 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4923 cpu_buffer
= buffer
->buffers
[cpu
];
4924 ret
= local_read(&cpu_buffer
->entries_bytes
) - cpu_buffer
->read_bytes
;
4928 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu
);
4931 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4932 * @buffer: The ring buffer
4933 * @cpu: The per CPU buffer to get the entries from.
4935 unsigned long ring_buffer_entries_cpu(struct trace_buffer
*buffer
, int cpu
)
4937 struct ring_buffer_per_cpu
*cpu_buffer
;
4939 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4942 cpu_buffer
= buffer
->buffers
[cpu
];
4944 return rb_num_of_entries(cpu_buffer
);
4946 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu
);
4949 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4950 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4951 * @buffer: The ring buffer
4952 * @cpu: The per CPU buffer to get the number of overruns from
4954 unsigned long ring_buffer_overrun_cpu(struct trace_buffer
*buffer
, int cpu
)
4956 struct ring_buffer_per_cpu
*cpu_buffer
;
4959 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4962 cpu_buffer
= buffer
->buffers
[cpu
];
4963 ret
= local_read(&cpu_buffer
->overrun
);
4967 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu
);
4970 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4971 * commits failing due to the buffer wrapping around while there are uncommitted
4972 * events, such as during an interrupt storm.
4973 * @buffer: The ring buffer
4974 * @cpu: The per CPU buffer to get the number of overruns from
4977 ring_buffer_commit_overrun_cpu(struct trace_buffer
*buffer
, int cpu
)
4979 struct ring_buffer_per_cpu
*cpu_buffer
;
4982 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4985 cpu_buffer
= buffer
->buffers
[cpu
];
4986 ret
= local_read(&cpu_buffer
->commit_overrun
);
4990 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu
);
4993 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4994 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4995 * @buffer: The ring buffer
4996 * @cpu: The per CPU buffer to get the number of overruns from
4999 ring_buffer_dropped_events_cpu(struct trace_buffer
*buffer
, int cpu
)
5001 struct ring_buffer_per_cpu
*cpu_buffer
;
5004 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
5007 cpu_buffer
= buffer
->buffers
[cpu
];
5008 ret
= local_read(&cpu_buffer
->dropped_events
);
5012 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu
);
5015 * ring_buffer_read_events_cpu - get the number of events successfully read
5016 * @buffer: The ring buffer
5017 * @cpu: The per CPU buffer to get the number of events read
5020 ring_buffer_read_events_cpu(struct trace_buffer
*buffer
, int cpu
)
5022 struct ring_buffer_per_cpu
*cpu_buffer
;
5024 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
5027 cpu_buffer
= buffer
->buffers
[cpu
];
5028 return cpu_buffer
->read
;
5030 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu
);
5033 * ring_buffer_entries - get the number of entries in a buffer
5034 * @buffer: The ring buffer
5036 * Returns the total number of entries in the ring buffer
5039 unsigned long ring_buffer_entries(struct trace_buffer
*buffer
)
5041 struct ring_buffer_per_cpu
*cpu_buffer
;
5042 unsigned long entries
= 0;
5045 /* if you care about this being correct, lock the buffer */
5046 for_each_buffer_cpu(buffer
, cpu
) {
5047 cpu_buffer
= buffer
->buffers
[cpu
];
5048 entries
+= rb_num_of_entries(cpu_buffer
);
5053 EXPORT_SYMBOL_GPL(ring_buffer_entries
);
5056 * ring_buffer_overruns - get the number of overruns in buffer
5057 * @buffer: The ring buffer
5059 * Returns the total number of overruns in the ring buffer
5062 unsigned long ring_buffer_overruns(struct trace_buffer
*buffer
)
5064 struct ring_buffer_per_cpu
*cpu_buffer
;
5065 unsigned long overruns
= 0;
5068 /* if you care about this being correct, lock the buffer */
5069 for_each_buffer_cpu(buffer
, cpu
) {
5070 cpu_buffer
= buffer
->buffers
[cpu
];
5071 overruns
+= local_read(&cpu_buffer
->overrun
);
5076 EXPORT_SYMBOL_GPL(ring_buffer_overruns
);
5078 static void rb_iter_reset(struct ring_buffer_iter
*iter
)
5080 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
5082 /* Iterator usage is expected to have record disabled */
5083 iter
->head_page
= cpu_buffer
->reader_page
;
5084 iter
->head
= cpu_buffer
->reader_page
->read
;
5085 iter
->next_event
= iter
->head
;
5087 iter
->cache_reader_page
= iter
->head_page
;
5088 iter
->cache_read
= cpu_buffer
->read
;
5089 iter
->cache_pages_removed
= cpu_buffer
->pages_removed
;
5092 iter
->read_stamp
= cpu_buffer
->read_stamp
;
5093 iter
->page_stamp
= cpu_buffer
->reader_page
->page
->time_stamp
;
5095 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
5096 iter
->page_stamp
= iter
->read_stamp
;
5101 * ring_buffer_iter_reset - reset an iterator
5102 * @iter: The iterator to reset
5104 * Resets the iterator, so that it will start from the beginning
5107 void ring_buffer_iter_reset(struct ring_buffer_iter
*iter
)
5109 struct ring_buffer_per_cpu
*cpu_buffer
;
5110 unsigned long flags
;
5115 cpu_buffer
= iter
->cpu_buffer
;
5117 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
5118 rb_iter_reset(iter
);
5119 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
5121 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset
);
5124 * ring_buffer_iter_empty - check if an iterator has no more to read
5125 * @iter: The iterator to check
5127 int ring_buffer_iter_empty(struct ring_buffer_iter
*iter
)
5129 struct ring_buffer_per_cpu
*cpu_buffer
;
5130 struct buffer_page
*reader
;
5131 struct buffer_page
*head_page
;
5132 struct buffer_page
*commit_page
;
5133 struct buffer_page
*curr_commit_page
;
5138 cpu_buffer
= iter
->cpu_buffer
;
5139 reader
= cpu_buffer
->reader_page
;
5140 head_page
= cpu_buffer
->head_page
;
5141 commit_page
= READ_ONCE(cpu_buffer
->commit_page
);
5142 commit_ts
= commit_page
->page
->time_stamp
;
5145 * When the writer goes across pages, it issues a cmpxchg which
5146 * is a mb(), which will synchronize with the rmb here.
5147 * (see rb_tail_page_update())
5150 commit
= rb_page_commit(commit_page
);
5151 /* We want to make sure that the commit page doesn't change */
5154 /* Make sure commit page didn't change */
5155 curr_commit_page
= READ_ONCE(cpu_buffer
->commit_page
);
5156 curr_commit_ts
= READ_ONCE(curr_commit_page
->page
->time_stamp
);
5158 /* If the commit page changed, then there's more data */
5159 if (curr_commit_page
!= commit_page
||
5160 curr_commit_ts
!= commit_ts
)
5163 /* Still racy, as it may return a false positive, but that's OK */
5164 return ((iter
->head_page
== commit_page
&& iter
->head
>= commit
) ||
5165 (iter
->head_page
== reader
&& commit_page
== head_page
&&
5166 head_page
->read
== commit
&&
5167 iter
->head
== rb_page_size(cpu_buffer
->reader_page
)));
5169 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty
);
5172 rb_update_read_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
5173 struct ring_buffer_event
*event
)
5177 switch (event
->type_len
) {
5178 case RINGBUF_TYPE_PADDING
:
5181 case RINGBUF_TYPE_TIME_EXTEND
:
5182 delta
= rb_event_time_stamp(event
);
5183 cpu_buffer
->read_stamp
+= delta
;
5186 case RINGBUF_TYPE_TIME_STAMP
:
5187 delta
= rb_event_time_stamp(event
);
5188 delta
= rb_fix_abs_ts(delta
, cpu_buffer
->read_stamp
);
5189 cpu_buffer
->read_stamp
= delta
;
5192 case RINGBUF_TYPE_DATA
:
5193 cpu_buffer
->read_stamp
+= event
->time_delta
;
5197 RB_WARN_ON(cpu_buffer
, 1);
5202 rb_update_iter_read_stamp(struct ring_buffer_iter
*iter
,
5203 struct ring_buffer_event
*event
)
5207 switch (event
->type_len
) {
5208 case RINGBUF_TYPE_PADDING
:
5211 case RINGBUF_TYPE_TIME_EXTEND
:
5212 delta
= rb_event_time_stamp(event
);
5213 iter
->read_stamp
+= delta
;
5216 case RINGBUF_TYPE_TIME_STAMP
:
5217 delta
= rb_event_time_stamp(event
);
5218 delta
= rb_fix_abs_ts(delta
, iter
->read_stamp
);
5219 iter
->read_stamp
= delta
;
5222 case RINGBUF_TYPE_DATA
:
5223 iter
->read_stamp
+= event
->time_delta
;
5227 RB_WARN_ON(iter
->cpu_buffer
, 1);
5231 static struct buffer_page
*
5232 rb_get_reader_page(struct ring_buffer_per_cpu
*cpu_buffer
)
5234 struct buffer_page
*reader
= NULL
;
5235 unsigned long bsize
= READ_ONCE(cpu_buffer
->buffer
->subbuf_size
);
5236 unsigned long overwrite
;
5237 unsigned long flags
;
5241 local_irq_save(flags
);
5242 arch_spin_lock(&cpu_buffer
->lock
);
5246 * This should normally only loop twice. But because the
5247 * start of the reader inserts an empty page, it causes
5248 * a case where we will loop three times. There should be no
5249 * reason to loop four times (that I know of).
5251 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 3)) {
5256 reader
= cpu_buffer
->reader_page
;
5258 /* If there's more to read, return this page */
5259 if (cpu_buffer
->reader_page
->read
< rb_page_size(reader
))
5262 /* Never should we have an index greater than the size */
5263 if (RB_WARN_ON(cpu_buffer
,
5264 cpu_buffer
->reader_page
->read
> rb_page_size(reader
)))
5267 /* check if we caught up to the tail */
5269 if (cpu_buffer
->commit_page
== cpu_buffer
->reader_page
)
5272 /* Don't bother swapping if the ring buffer is empty */
5273 if (rb_num_of_entries(cpu_buffer
) == 0)
5277 * Reset the reader page to size zero.
5279 local_set(&cpu_buffer
->reader_page
->write
, 0);
5280 local_set(&cpu_buffer
->reader_page
->entries
, 0);
5281 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
5282 cpu_buffer
->reader_page
->real_end
= 0;
5286 * Splice the empty reader page into the list around the head.
5288 reader
= rb_set_head_page(cpu_buffer
);
5291 cpu_buffer
->reader_page
->list
.next
= rb_list_head(reader
->list
.next
);
5292 cpu_buffer
->reader_page
->list
.prev
= reader
->list
.prev
;
5295 * cpu_buffer->pages just needs to point to the buffer, it
5296 * has no specific buffer page to point to. Lets move it out
5297 * of our way so we don't accidentally swap it.
5299 cpu_buffer
->pages
= reader
->list
.prev
;
5301 /* The reader page will be pointing to the new head */
5302 rb_set_list_to_head(&cpu_buffer
->reader_page
->list
);
5305 * We want to make sure we read the overruns after we set up our
5306 * pointers to the next object. The writer side does a
5307 * cmpxchg to cross pages which acts as the mb on the writer
5308 * side. Note, the reader will constantly fail the swap
5309 * while the writer is updating the pointers, so this
5310 * guarantees that the overwrite recorded here is the one we
5311 * want to compare with the last_overrun.
5314 overwrite
= local_read(&(cpu_buffer
->overrun
));
5317 * Here's the tricky part.
5319 * We need to move the pointer past the header page.
5320 * But we can only do that if a writer is not currently
5321 * moving it. The page before the header page has the
5322 * flag bit '1' set if it is pointing to the page we want.
5323 * but if the writer is in the process of moving it
5324 * than it will be '2' or already moved '0'.
5327 ret
= rb_head_page_replace(reader
, cpu_buffer
->reader_page
);
5330 * If we did not convert it, then we must try again.
5335 if (cpu_buffer
->ring_meta
)
5336 rb_update_meta_reader(cpu_buffer
, reader
);
5339 * Yay! We succeeded in replacing the page.
5341 * Now make the new head point back to the reader page.
5343 rb_list_head(reader
->list
.next
)->prev
= &cpu_buffer
->reader_page
->list
;
5344 rb_inc_page(&cpu_buffer
->head_page
);
5347 local_inc(&cpu_buffer
->pages_read
);
5349 /* Finally update the reader page to the new head */
5350 cpu_buffer
->reader_page
= reader
;
5351 cpu_buffer
->reader_page
->read
= 0;
5353 if (overwrite
!= cpu_buffer
->last_overrun
) {
5354 cpu_buffer
->lost_events
= overwrite
- cpu_buffer
->last_overrun
;
5355 cpu_buffer
->last_overrun
= overwrite
;
5361 /* Update the read_stamp on the first event */
5362 if (reader
&& reader
->read
== 0)
5363 cpu_buffer
->read_stamp
= reader
->page
->time_stamp
;
5365 arch_spin_unlock(&cpu_buffer
->lock
);
5366 local_irq_restore(flags
);
5369 * The writer has preempt disable, wait for it. But not forever
5370 * Although, 1 second is pretty much "forever"
5372 #define USECS_WAIT 1000000
5373 for (nr_loops
= 0; nr_loops
< USECS_WAIT
; nr_loops
++) {
5374 /* If the write is past the end of page, a writer is still updating it */
5375 if (likely(!reader
|| rb_page_write(reader
) <= bsize
))
5380 /* Get the latest version of the reader write value */
5384 /* The writer is not moving forward? Something is wrong */
5385 if (RB_WARN_ON(cpu_buffer
, nr_loops
== USECS_WAIT
))
5389 * Make sure we see any padding after the write update
5390 * (see rb_reset_tail()).
5392 * In addition, a writer may be writing on the reader page
5393 * if the page has not been fully filled, so the read barrier
5394 * is also needed to make sure we see the content of what is
5395 * committed by the writer (see rb_set_commit_to_write()).
5403 static void rb_advance_reader(struct ring_buffer_per_cpu
*cpu_buffer
)
5405 struct ring_buffer_event
*event
;
5406 struct buffer_page
*reader
;
5409 reader
= rb_get_reader_page(cpu_buffer
);
5411 /* This function should not be called when buffer is empty */
5412 if (RB_WARN_ON(cpu_buffer
, !reader
))
5415 event
= rb_reader_event(cpu_buffer
);
5417 if (event
->type_len
<= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
5420 rb_update_read_stamp(cpu_buffer
, event
);
5422 length
= rb_event_length(event
);
5423 cpu_buffer
->reader_page
->read
+= length
;
5424 cpu_buffer
->read_bytes
+= length
;
5427 static void rb_advance_iter(struct ring_buffer_iter
*iter
)
5429 struct ring_buffer_per_cpu
*cpu_buffer
;
5431 cpu_buffer
= iter
->cpu_buffer
;
5433 /* If head == next_event then we need to jump to the next event */
5434 if (iter
->head
== iter
->next_event
) {
5435 /* If the event gets overwritten again, there's nothing to do */
5436 if (rb_iter_head_event(iter
) == NULL
)
5440 iter
->head
= iter
->next_event
;
5443 * Check if we are at the end of the buffer.
5445 if (iter
->next_event
>= rb_page_size(iter
->head_page
)) {
5446 /* discarded commits can make the page empty */
5447 if (iter
->head_page
== cpu_buffer
->commit_page
)
5453 rb_update_iter_read_stamp(iter
, iter
->event
);
5456 static int rb_lost_events(struct ring_buffer_per_cpu
*cpu_buffer
)
5458 return cpu_buffer
->lost_events
;
5461 static struct ring_buffer_event
*
5462 rb_buffer_peek(struct ring_buffer_per_cpu
*cpu_buffer
, u64
*ts
,
5463 unsigned long *lost_events
)
5465 struct ring_buffer_event
*event
;
5466 struct buffer_page
*reader
;
5473 * We repeat when a time extend is encountered.
5474 * Since the time extend is always attached to a data event,
5475 * we should never loop more than once.
5476 * (We never hit the following condition more than twice).
5478 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 2))
5481 reader
= rb_get_reader_page(cpu_buffer
);
5485 event
= rb_reader_event(cpu_buffer
);
5487 switch (event
->type_len
) {
5488 case RINGBUF_TYPE_PADDING
:
5489 if (rb_null_event(event
))
5490 RB_WARN_ON(cpu_buffer
, 1);
5492 * Because the writer could be discarding every
5493 * event it creates (which would probably be bad)
5494 * if we were to go back to "again" then we may never
5495 * catch up, and will trigger the warn on, or lock
5496 * the box. Return the padding, and we will release
5497 * the current locks, and try again.
5501 case RINGBUF_TYPE_TIME_EXTEND
:
5502 /* Internal data, OK to advance */
5503 rb_advance_reader(cpu_buffer
);
5506 case RINGBUF_TYPE_TIME_STAMP
:
5508 *ts
= rb_event_time_stamp(event
);
5509 *ts
= rb_fix_abs_ts(*ts
, reader
->page
->time_stamp
);
5510 ring_buffer_normalize_time_stamp(cpu_buffer
->buffer
,
5511 cpu_buffer
->cpu
, ts
);
5513 /* Internal data, OK to advance */
5514 rb_advance_reader(cpu_buffer
);
5517 case RINGBUF_TYPE_DATA
:
5519 *ts
= cpu_buffer
->read_stamp
+ event
->time_delta
;
5520 ring_buffer_normalize_time_stamp(cpu_buffer
->buffer
,
5521 cpu_buffer
->cpu
, ts
);
5524 *lost_events
= rb_lost_events(cpu_buffer
);
5528 RB_WARN_ON(cpu_buffer
, 1);
5533 EXPORT_SYMBOL_GPL(ring_buffer_peek
);
5535 static struct ring_buffer_event
*
5536 rb_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
5538 struct trace_buffer
*buffer
;
5539 struct ring_buffer_per_cpu
*cpu_buffer
;
5540 struct ring_buffer_event
*event
;
5546 cpu_buffer
= iter
->cpu_buffer
;
5547 buffer
= cpu_buffer
->buffer
;
5550 * Check if someone performed a consuming read to the buffer
5551 * or removed some pages from the buffer. In these cases,
5552 * iterator was invalidated and we need to reset it.
5554 if (unlikely(iter
->cache_read
!= cpu_buffer
->read
||
5555 iter
->cache_reader_page
!= cpu_buffer
->reader_page
||
5556 iter
->cache_pages_removed
!= cpu_buffer
->pages_removed
))
5557 rb_iter_reset(iter
);
5560 if (ring_buffer_iter_empty(iter
))
5564 * As the writer can mess with what the iterator is trying
5565 * to read, just give up if we fail to get an event after
5566 * three tries. The iterator is not as reliable when reading
5567 * the ring buffer with an active write as the consumer is.
5568 * Do not warn if the three failures is reached.
5573 if (rb_per_cpu_empty(cpu_buffer
))
5576 if (iter
->head
>= rb_page_size(iter
->head_page
)) {
5581 event
= rb_iter_head_event(iter
);
5585 switch (event
->type_len
) {
5586 case RINGBUF_TYPE_PADDING
:
5587 if (rb_null_event(event
)) {
5591 rb_advance_iter(iter
);
5594 case RINGBUF_TYPE_TIME_EXTEND
:
5595 /* Internal data, OK to advance */
5596 rb_advance_iter(iter
);
5599 case RINGBUF_TYPE_TIME_STAMP
:
5601 *ts
= rb_event_time_stamp(event
);
5602 *ts
= rb_fix_abs_ts(*ts
, iter
->head_page
->page
->time_stamp
);
5603 ring_buffer_normalize_time_stamp(cpu_buffer
->buffer
,
5604 cpu_buffer
->cpu
, ts
);
5606 /* Internal data, OK to advance */
5607 rb_advance_iter(iter
);
5610 case RINGBUF_TYPE_DATA
:
5612 *ts
= iter
->read_stamp
+ event
->time_delta
;
5613 ring_buffer_normalize_time_stamp(buffer
,
5614 cpu_buffer
->cpu
, ts
);
5619 RB_WARN_ON(cpu_buffer
, 1);
5624 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek
);
5626 static inline bool rb_reader_lock(struct ring_buffer_per_cpu
*cpu_buffer
)
5628 if (likely(!in_nmi())) {
5629 raw_spin_lock(&cpu_buffer
->reader_lock
);
5634 * If an NMI die dumps out the content of the ring buffer
5635 * trylock must be used to prevent a deadlock if the NMI
5636 * preempted a task that holds the ring buffer locks. If
5637 * we get the lock then all is fine, if not, then continue
5638 * to do the read, but this can corrupt the ring buffer,
5639 * so it must be permanently disabled from future writes.
5640 * Reading from NMI is a oneshot deal.
5642 if (raw_spin_trylock(&cpu_buffer
->reader_lock
))
5645 /* Continue without locking, but disable the ring buffer */
5646 atomic_inc(&cpu_buffer
->record_disabled
);
5651 rb_reader_unlock(struct ring_buffer_per_cpu
*cpu_buffer
, bool locked
)
5654 raw_spin_unlock(&cpu_buffer
->reader_lock
);
5658 * ring_buffer_peek - peek at the next event to be read
5659 * @buffer: The ring buffer to read
5660 * @cpu: The cpu to peak at
5661 * @ts: The timestamp counter of this event.
5662 * @lost_events: a variable to store if events were lost (may be NULL)
5664 * This will return the event that will be read next, but does
5665 * not consume the data.
5667 struct ring_buffer_event
*
5668 ring_buffer_peek(struct trace_buffer
*buffer
, int cpu
, u64
*ts
,
5669 unsigned long *lost_events
)
5671 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
5672 struct ring_buffer_event
*event
;
5673 unsigned long flags
;
5676 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
5680 local_irq_save(flags
);
5681 dolock
= rb_reader_lock(cpu_buffer
);
5682 event
= rb_buffer_peek(cpu_buffer
, ts
, lost_events
);
5683 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
5684 rb_advance_reader(cpu_buffer
);
5685 rb_reader_unlock(cpu_buffer
, dolock
);
5686 local_irq_restore(flags
);
5688 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
5694 /** ring_buffer_iter_dropped - report if there are dropped events
5695 * @iter: The ring buffer iterator
5697 * Returns true if there was dropped events since the last peek.
5699 bool ring_buffer_iter_dropped(struct ring_buffer_iter
*iter
)
5701 bool ret
= iter
->missed_events
!= 0;
5703 iter
->missed_events
= 0;
5706 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped
);
5709 * ring_buffer_iter_peek - peek at the next event to be read
5710 * @iter: The ring buffer iterator
5711 * @ts: The timestamp counter of this event.
5713 * This will return the event that will be read next, but does
5714 * not increment the iterator.
5716 struct ring_buffer_event
*
5717 ring_buffer_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
5719 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
5720 struct ring_buffer_event
*event
;
5721 unsigned long flags
;
5724 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
5725 event
= rb_iter_peek(iter
, ts
);
5726 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
5728 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
5735 * ring_buffer_consume - return an event and consume it
5736 * @buffer: The ring buffer to get the next event from
5737 * @cpu: the cpu to read the buffer from
5738 * @ts: a variable to store the timestamp (may be NULL)
5739 * @lost_events: a variable to store if events were lost (may be NULL)
5741 * Returns the next event in the ring buffer, and that event is consumed.
5742 * Meaning, that sequential reads will keep returning a different event,
5743 * and eventually empty the ring buffer if the producer is slower.
5745 struct ring_buffer_event
*
5746 ring_buffer_consume(struct trace_buffer
*buffer
, int cpu
, u64
*ts
,
5747 unsigned long *lost_events
)
5749 struct ring_buffer_per_cpu
*cpu_buffer
;
5750 struct ring_buffer_event
*event
= NULL
;
5751 unsigned long flags
;
5755 /* might be called in atomic */
5758 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
5761 cpu_buffer
= buffer
->buffers
[cpu
];
5762 local_irq_save(flags
);
5763 dolock
= rb_reader_lock(cpu_buffer
);
5765 event
= rb_buffer_peek(cpu_buffer
, ts
, lost_events
);
5767 cpu_buffer
->lost_events
= 0;
5768 rb_advance_reader(cpu_buffer
);
5771 rb_reader_unlock(cpu_buffer
, dolock
);
5772 local_irq_restore(flags
);
5777 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
5782 EXPORT_SYMBOL_GPL(ring_buffer_consume
);
5785 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5786 * @buffer: The ring buffer to read from
5787 * @cpu: The cpu buffer to iterate over
5788 * @flags: gfp flags to use for memory allocation
5790 * This performs the initial preparations necessary to iterate
5791 * through the buffer. Memory is allocated, buffer resizing
5792 * is disabled, and the iterator pointer is returned to the caller.
5794 * After a sequence of ring_buffer_read_prepare calls, the user is
5795 * expected to make at least one call to ring_buffer_read_prepare_sync.
5796 * Afterwards, ring_buffer_read_start is invoked to get things going
5799 * This overall must be paired with ring_buffer_read_finish.
5801 struct ring_buffer_iter
*
5802 ring_buffer_read_prepare(struct trace_buffer
*buffer
, int cpu
, gfp_t flags
)
5804 struct ring_buffer_per_cpu
*cpu_buffer
;
5805 struct ring_buffer_iter
*iter
;
5807 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
5810 iter
= kzalloc(sizeof(*iter
), flags
);
5814 /* Holds the entire event: data and meta data */
5815 iter
->event_size
= buffer
->subbuf_size
;
5816 iter
->event
= kmalloc(iter
->event_size
, flags
);
5822 cpu_buffer
= buffer
->buffers
[cpu
];
5824 iter
->cpu_buffer
= cpu_buffer
;
5826 atomic_inc(&cpu_buffer
->resize_disabled
);
5830 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare
);
5833 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5835 * All previously invoked ring_buffer_read_prepare calls to prepare
5836 * iterators will be synchronized. Afterwards, read_buffer_read_start
5837 * calls on those iterators are allowed.
5840 ring_buffer_read_prepare_sync(void)
5844 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync
);
5847 * ring_buffer_read_start - start a non consuming read of the buffer
5848 * @iter: The iterator returned by ring_buffer_read_prepare
5850 * This finalizes the startup of an iteration through the buffer.
5851 * The iterator comes from a call to ring_buffer_read_prepare and
5852 * an intervening ring_buffer_read_prepare_sync must have been
5855 * Must be paired with ring_buffer_read_finish.
5858 ring_buffer_read_start(struct ring_buffer_iter
*iter
)
5860 struct ring_buffer_per_cpu
*cpu_buffer
;
5861 unsigned long flags
;
5866 cpu_buffer
= iter
->cpu_buffer
;
5868 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
5869 arch_spin_lock(&cpu_buffer
->lock
);
5870 rb_iter_reset(iter
);
5871 arch_spin_unlock(&cpu_buffer
->lock
);
5872 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
5874 EXPORT_SYMBOL_GPL(ring_buffer_read_start
);
5877 * ring_buffer_read_finish - finish reading the iterator of the buffer
5878 * @iter: The iterator retrieved by ring_buffer_start
5880 * This re-enables resizing of the buffer, and frees the iterator.
5883 ring_buffer_read_finish(struct ring_buffer_iter
*iter
)
5885 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
5887 /* Use this opportunity to check the integrity of the ring buffer. */
5888 rb_check_pages(cpu_buffer
);
5890 atomic_dec(&cpu_buffer
->resize_disabled
);
5894 EXPORT_SYMBOL_GPL(ring_buffer_read_finish
);
5897 * ring_buffer_iter_advance - advance the iterator to the next location
5898 * @iter: The ring buffer iterator
5900 * Move the location of the iterator such that the next read will
5901 * be the next location of the iterator.
5903 void ring_buffer_iter_advance(struct ring_buffer_iter
*iter
)
5905 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
5906 unsigned long flags
;
5908 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
5910 rb_advance_iter(iter
);
5912 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
5914 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance
);
5917 * ring_buffer_size - return the size of the ring buffer (in bytes)
5918 * @buffer: The ring buffer.
5919 * @cpu: The CPU to get ring buffer size from.
5921 unsigned long ring_buffer_size(struct trace_buffer
*buffer
, int cpu
)
5923 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
5926 return buffer
->subbuf_size
* buffer
->buffers
[cpu
]->nr_pages
;
5928 EXPORT_SYMBOL_GPL(ring_buffer_size
);
5931 * ring_buffer_max_event_size - return the max data size of an event
5932 * @buffer: The ring buffer.
5934 * Returns the maximum size an event can be.
5936 unsigned long ring_buffer_max_event_size(struct trace_buffer
*buffer
)
5938 /* If abs timestamp is requested, events have a timestamp too */
5939 if (ring_buffer_time_stamp_abs(buffer
))
5940 return buffer
->max_data_size
- RB_LEN_TIME_EXTEND
;
5941 return buffer
->max_data_size
;
5943 EXPORT_SYMBOL_GPL(ring_buffer_max_event_size
);
5945 static void rb_clear_buffer_page(struct buffer_page
*page
)
5947 local_set(&page
->write
, 0);
5948 local_set(&page
->entries
, 0);
5949 rb_init_page(page
->page
);
5953 static void rb_update_meta_page(struct ring_buffer_per_cpu
*cpu_buffer
)
5955 struct trace_buffer_meta
*meta
= cpu_buffer
->meta_page
;
5960 meta
->reader
.read
= cpu_buffer
->reader_page
->read
;
5961 meta
->reader
.id
= cpu_buffer
->reader_page
->id
;
5962 meta
->reader
.lost_events
= cpu_buffer
->lost_events
;
5964 meta
->entries
= local_read(&cpu_buffer
->entries
);
5965 meta
->overrun
= local_read(&cpu_buffer
->overrun
);
5966 meta
->read
= cpu_buffer
->read
;
5968 /* Some archs do not have data cache coherency between kernel and user-space */
5969 flush_dcache_folio(virt_to_folio(cpu_buffer
->meta_page
));
5973 rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
)
5975 struct buffer_page
*page
;
5977 rb_head_page_deactivate(cpu_buffer
);
5979 cpu_buffer
->head_page
5980 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
5981 rb_clear_buffer_page(cpu_buffer
->head_page
);
5982 list_for_each_entry(page
, cpu_buffer
->pages
, list
) {
5983 rb_clear_buffer_page(page
);
5986 cpu_buffer
->tail_page
= cpu_buffer
->head_page
;
5987 cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
5989 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
5990 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
5991 rb_clear_buffer_page(cpu_buffer
->reader_page
);
5993 local_set(&cpu_buffer
->entries_bytes
, 0);
5994 local_set(&cpu_buffer
->overrun
, 0);
5995 local_set(&cpu_buffer
->commit_overrun
, 0);
5996 local_set(&cpu_buffer
->dropped_events
, 0);
5997 local_set(&cpu_buffer
->entries
, 0);
5998 local_set(&cpu_buffer
->committing
, 0);
5999 local_set(&cpu_buffer
->commits
, 0);
6000 local_set(&cpu_buffer
->pages_touched
, 0);
6001 local_set(&cpu_buffer
->pages_lost
, 0);
6002 local_set(&cpu_buffer
->pages_read
, 0);
6003 cpu_buffer
->last_pages_touch
= 0;
6004 cpu_buffer
->shortest_full
= 0;
6005 cpu_buffer
->read
= 0;
6006 cpu_buffer
->read_bytes
= 0;
6008 rb_time_set(&cpu_buffer
->write_stamp
, 0);
6009 rb_time_set(&cpu_buffer
->before_stamp
, 0);
6011 memset(cpu_buffer
->event_stamp
, 0, sizeof(cpu_buffer
->event_stamp
));
6013 cpu_buffer
->lost_events
= 0;
6014 cpu_buffer
->last_overrun
= 0;
6016 rb_head_page_activate(cpu_buffer
);
6017 cpu_buffer
->pages_removed
= 0;
6019 if (cpu_buffer
->mapped
) {
6020 rb_update_meta_page(cpu_buffer
);
6021 if (cpu_buffer
->ring_meta
) {
6022 struct ring_buffer_meta
*meta
= cpu_buffer
->ring_meta
;
6023 meta
->commit_buffer
= meta
->head_buffer
;
6028 /* Must have disabled the cpu buffer then done a synchronize_rcu */
6029 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu
*cpu_buffer
)
6031 unsigned long flags
;
6033 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
6035 if (RB_WARN_ON(cpu_buffer
, local_read(&cpu_buffer
->committing
)))
6038 arch_spin_lock(&cpu_buffer
->lock
);
6040 rb_reset_cpu(cpu_buffer
);
6042 arch_spin_unlock(&cpu_buffer
->lock
);
6045 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
6049 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
6050 * @buffer: The ring buffer to reset a per cpu buffer of
6051 * @cpu: The CPU buffer to be reset
6053 void ring_buffer_reset_cpu(struct trace_buffer
*buffer
, int cpu
)
6055 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
6056 struct ring_buffer_meta
*meta
;
6058 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
6061 /* prevent another thread from changing buffer sizes */
6062 mutex_lock(&buffer
->mutex
);
6064 atomic_inc(&cpu_buffer
->resize_disabled
);
6065 atomic_inc(&cpu_buffer
->record_disabled
);
6067 /* Make sure all commits have finished */
6070 reset_disabled_cpu_buffer(cpu_buffer
);
6072 atomic_dec(&cpu_buffer
->record_disabled
);
6073 atomic_dec(&cpu_buffer
->resize_disabled
);
6075 /* Make sure persistent meta now uses this buffer's addresses */
6076 meta
= rb_range_meta(buffer
, 0, cpu_buffer
->cpu
);
6078 rb_meta_init_text_addr(meta
);
6080 mutex_unlock(&buffer
->mutex
);
6082 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu
);
6084 /* Flag to ensure proper resetting of atomic variables */
6085 #define RESET_BIT (1 << 30)
6088 * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
6089 * @buffer: The ring buffer to reset a per cpu buffer of
6091 void ring_buffer_reset_online_cpus(struct trace_buffer
*buffer
)
6093 struct ring_buffer_per_cpu
*cpu_buffer
;
6094 struct ring_buffer_meta
*meta
;
6097 /* prevent another thread from changing buffer sizes */
6098 mutex_lock(&buffer
->mutex
);
6100 for_each_online_buffer_cpu(buffer
, cpu
) {
6101 cpu_buffer
= buffer
->buffers
[cpu
];
6103 atomic_add(RESET_BIT
, &cpu_buffer
->resize_disabled
);
6104 atomic_inc(&cpu_buffer
->record_disabled
);
6107 /* Make sure all commits have finished */
6110 for_each_buffer_cpu(buffer
, cpu
) {
6111 cpu_buffer
= buffer
->buffers
[cpu
];
6114 * If a CPU came online during the synchronize_rcu(), then
6117 if (!(atomic_read(&cpu_buffer
->resize_disabled
) & RESET_BIT
))
6120 reset_disabled_cpu_buffer(cpu_buffer
);
6122 /* Make sure persistent meta now uses this buffer's addresses */
6123 meta
= rb_range_meta(buffer
, 0, cpu_buffer
->cpu
);
6125 rb_meta_init_text_addr(meta
);
6127 atomic_dec(&cpu_buffer
->record_disabled
);
6128 atomic_sub(RESET_BIT
, &cpu_buffer
->resize_disabled
);
6131 mutex_unlock(&buffer
->mutex
);
6135 * ring_buffer_reset - reset a ring buffer
6136 * @buffer: The ring buffer to reset all cpu buffers
6138 void ring_buffer_reset(struct trace_buffer
*buffer
)
6140 struct ring_buffer_per_cpu
*cpu_buffer
;
6143 /* prevent another thread from changing buffer sizes */
6144 mutex_lock(&buffer
->mutex
);
6146 for_each_buffer_cpu(buffer
, cpu
) {
6147 cpu_buffer
= buffer
->buffers
[cpu
];
6149 atomic_inc(&cpu_buffer
->resize_disabled
);
6150 atomic_inc(&cpu_buffer
->record_disabled
);
6153 /* Make sure all commits have finished */
6156 for_each_buffer_cpu(buffer
, cpu
) {
6157 cpu_buffer
= buffer
->buffers
[cpu
];
6159 reset_disabled_cpu_buffer(cpu_buffer
);
6161 atomic_dec(&cpu_buffer
->record_disabled
);
6162 atomic_dec(&cpu_buffer
->resize_disabled
);
6165 mutex_unlock(&buffer
->mutex
);
6167 EXPORT_SYMBOL_GPL(ring_buffer_reset
);
6170 * ring_buffer_empty - is the ring buffer empty?
6171 * @buffer: The ring buffer to test
6173 bool ring_buffer_empty(struct trace_buffer
*buffer
)
6175 struct ring_buffer_per_cpu
*cpu_buffer
;
6176 unsigned long flags
;
6181 /* yes this is racy, but if you don't like the race, lock the buffer */
6182 for_each_buffer_cpu(buffer
, cpu
) {
6183 cpu_buffer
= buffer
->buffers
[cpu
];
6184 local_irq_save(flags
);
6185 dolock
= rb_reader_lock(cpu_buffer
);
6186 ret
= rb_per_cpu_empty(cpu_buffer
);
6187 rb_reader_unlock(cpu_buffer
, dolock
);
6188 local_irq_restore(flags
);
6196 EXPORT_SYMBOL_GPL(ring_buffer_empty
);
6199 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
6200 * @buffer: The ring buffer
6201 * @cpu: The CPU buffer to test
6203 bool ring_buffer_empty_cpu(struct trace_buffer
*buffer
, int cpu
)
6205 struct ring_buffer_per_cpu
*cpu_buffer
;
6206 unsigned long flags
;
6210 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
6213 cpu_buffer
= buffer
->buffers
[cpu
];
6214 local_irq_save(flags
);
6215 dolock
= rb_reader_lock(cpu_buffer
);
6216 ret
= rb_per_cpu_empty(cpu_buffer
);
6217 rb_reader_unlock(cpu_buffer
, dolock
);
6218 local_irq_restore(flags
);
6222 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu
);
6224 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
6226 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
6227 * @buffer_a: One buffer to swap with
6228 * @buffer_b: The other buffer to swap with
6229 * @cpu: the CPU of the buffers to swap
6231 * This function is useful for tracers that want to take a "snapshot"
6232 * of a CPU buffer and has another back up buffer lying around.
6233 * it is expected that the tracer handles the cpu buffer not being
6234 * used at the moment.
6236 int ring_buffer_swap_cpu(struct trace_buffer
*buffer_a
,
6237 struct trace_buffer
*buffer_b
, int cpu
)
6239 struct ring_buffer_per_cpu
*cpu_buffer_a
;
6240 struct ring_buffer_per_cpu
*cpu_buffer_b
;
6243 if (!cpumask_test_cpu(cpu
, buffer_a
->cpumask
) ||
6244 !cpumask_test_cpu(cpu
, buffer_b
->cpumask
))
6247 cpu_buffer_a
= buffer_a
->buffers
[cpu
];
6248 cpu_buffer_b
= buffer_b
->buffers
[cpu
];
6250 /* It's up to the callers to not try to swap mapped buffers */
6251 if (WARN_ON_ONCE(cpu_buffer_a
->mapped
|| cpu_buffer_b
->mapped
)) {
6256 /* At least make sure the two buffers are somewhat the same */
6257 if (cpu_buffer_a
->nr_pages
!= cpu_buffer_b
->nr_pages
)
6260 if (buffer_a
->subbuf_order
!= buffer_b
->subbuf_order
)
6265 if (atomic_read(&buffer_a
->record_disabled
))
6268 if (atomic_read(&buffer_b
->record_disabled
))
6271 if (atomic_read(&cpu_buffer_a
->record_disabled
))
6274 if (atomic_read(&cpu_buffer_b
->record_disabled
))
6278 * We can't do a synchronize_rcu here because this
6279 * function can be called in atomic context.
6280 * Normally this will be called from the same CPU as cpu.
6281 * If not it's up to the caller to protect this.
6283 atomic_inc(&cpu_buffer_a
->record_disabled
);
6284 atomic_inc(&cpu_buffer_b
->record_disabled
);
6287 if (local_read(&cpu_buffer_a
->committing
))
6289 if (local_read(&cpu_buffer_b
->committing
))
6293 * When resize is in progress, we cannot swap it because
6294 * it will mess the state of the cpu buffer.
6296 if (atomic_read(&buffer_a
->resizing
))
6298 if (atomic_read(&buffer_b
->resizing
))
6301 buffer_a
->buffers
[cpu
] = cpu_buffer_b
;
6302 buffer_b
->buffers
[cpu
] = cpu_buffer_a
;
6304 cpu_buffer_b
->buffer
= buffer_a
;
6305 cpu_buffer_a
->buffer
= buffer_b
;
6310 atomic_dec(&cpu_buffer_a
->record_disabled
);
6311 atomic_dec(&cpu_buffer_b
->record_disabled
);
6315 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu
);
6316 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
6319 * ring_buffer_alloc_read_page - allocate a page to read from buffer
6320 * @buffer: the buffer to allocate for.
6321 * @cpu: the cpu buffer to allocate.
6323 * This function is used in conjunction with ring_buffer_read_page.
6324 * When reading a full page from the ring buffer, these functions
6325 * can be used to speed up the process. The calling function should
6326 * allocate a few pages first with this function. Then when it
6327 * needs to get pages from the ring buffer, it passes the result
6328 * of this function into ring_buffer_read_page, which will swap
6329 * the page that was allocated, with the read page of the buffer.
6332 * The page allocated, or ERR_PTR
6334 struct buffer_data_read_page
*
6335 ring_buffer_alloc_read_page(struct trace_buffer
*buffer
, int cpu
)
6337 struct ring_buffer_per_cpu
*cpu_buffer
;
6338 struct buffer_data_read_page
*bpage
= NULL
;
6339 unsigned long flags
;
6342 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
6343 return ERR_PTR(-ENODEV
);
6345 bpage
= kzalloc(sizeof(*bpage
), GFP_KERNEL
);
6347 return ERR_PTR(-ENOMEM
);
6349 bpage
->order
= buffer
->subbuf_order
;
6350 cpu_buffer
= buffer
->buffers
[cpu
];
6351 local_irq_save(flags
);
6352 arch_spin_lock(&cpu_buffer
->lock
);
6354 if (cpu_buffer
->free_page
) {
6355 bpage
->data
= cpu_buffer
->free_page
;
6356 cpu_buffer
->free_page
= NULL
;
6359 arch_spin_unlock(&cpu_buffer
->lock
);
6360 local_irq_restore(flags
);
6365 page
= alloc_pages_node(cpu_to_node(cpu
),
6366 GFP_KERNEL
| __GFP_NORETRY
| __GFP_COMP
| __GFP_ZERO
,
6367 cpu_buffer
->buffer
->subbuf_order
);
6370 return ERR_PTR(-ENOMEM
);
6373 bpage
->data
= page_address(page
);
6376 rb_init_page(bpage
->data
);
6380 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page
);
6383 * ring_buffer_free_read_page - free an allocated read page
6384 * @buffer: the buffer the page was allocate for
6385 * @cpu: the cpu buffer the page came from
6386 * @data_page: the page to free
6388 * Free a page allocated from ring_buffer_alloc_read_page.
6390 void ring_buffer_free_read_page(struct trace_buffer
*buffer
, int cpu
,
6391 struct buffer_data_read_page
*data_page
)
6393 struct ring_buffer_per_cpu
*cpu_buffer
;
6394 struct buffer_data_page
*bpage
= data_page
->data
;
6395 struct page
*page
= virt_to_page(bpage
);
6396 unsigned long flags
;
6398 if (!buffer
|| !buffer
->buffers
|| !buffer
->buffers
[cpu
])
6401 cpu_buffer
= buffer
->buffers
[cpu
];
6404 * If the page is still in use someplace else, or order of the page
6405 * is different from the subbuffer order of the buffer -
6408 if (page_ref_count(page
) > 1 || data_page
->order
!= buffer
->subbuf_order
)
6411 local_irq_save(flags
);
6412 arch_spin_lock(&cpu_buffer
->lock
);
6414 if (!cpu_buffer
->free_page
) {
6415 cpu_buffer
->free_page
= bpage
;
6419 arch_spin_unlock(&cpu_buffer
->lock
);
6420 local_irq_restore(flags
);
6423 free_pages((unsigned long)bpage
, data_page
->order
);
6426 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page
);
6429 * ring_buffer_read_page - extract a page from the ring buffer
6430 * @buffer: buffer to extract from
6431 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
6432 * @len: amount to extract
6433 * @cpu: the cpu of the buffer to extract
6434 * @full: should the extraction only happen when the page is full.
6436 * This function will pull out a page from the ring buffer and consume it.
6437 * @data_page must be the address of the variable that was returned
6438 * from ring_buffer_alloc_read_page. This is because the page might be used
6439 * to swap with a page in the ring buffer.
6442 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
6443 * if (IS_ERR(rpage))
6444 * return PTR_ERR(rpage);
6445 * ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0);
6447 * process_page(ring_buffer_read_page_data(rpage), ret);
6448 * ring_buffer_free_read_page(buffer, cpu, rpage);
6450 * When @full is set, the function will not return true unless
6451 * the writer is off the reader page.
6453 * Note: it is up to the calling functions to handle sleeps and wakeups.
6454 * The ring buffer can be used anywhere in the kernel and can not
6455 * blindly call wake_up. The layer that uses the ring buffer must be
6456 * responsible for that.
6459 * >=0 if data has been transferred, returns the offset of consumed data.
6460 * <0 if no data has been transferred.
6462 int ring_buffer_read_page(struct trace_buffer
*buffer
,
6463 struct buffer_data_read_page
*data_page
,
6464 size_t len
, int cpu
, int full
)
6466 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
6467 struct ring_buffer_event
*event
;
6468 struct buffer_data_page
*bpage
;
6469 struct buffer_page
*reader
;
6470 unsigned long missed_events
;
6471 unsigned long flags
;
6472 unsigned int commit
;
6477 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
6481 * If len is not big enough to hold the page header, then
6482 * we can not copy anything.
6484 if (len
<= BUF_PAGE_HDR_SIZE
)
6487 len
-= BUF_PAGE_HDR_SIZE
;
6489 if (!data_page
|| !data_page
->data
)
6491 if (data_page
->order
!= buffer
->subbuf_order
)
6494 bpage
= data_page
->data
;
6498 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
6500 reader
= rb_get_reader_page(cpu_buffer
);
6504 event
= rb_reader_event(cpu_buffer
);
6506 read
= reader
->read
;
6507 commit
= rb_page_size(reader
);
6509 /* Check if any events were dropped */
6510 missed_events
= cpu_buffer
->lost_events
;
6513 * If this page has been partially read or
6514 * if len is not big enough to read the rest of the page or
6515 * a writer is still on the page, then
6516 * we must copy the data from the page to the buffer.
6517 * Otherwise, we can simply swap the page with the one passed in.
6519 if (read
|| (len
< (commit
- read
)) ||
6520 cpu_buffer
->reader_page
== cpu_buffer
->commit_page
||
6521 cpu_buffer
->mapped
) {
6522 struct buffer_data_page
*rpage
= cpu_buffer
->reader_page
->page
;
6523 unsigned int rpos
= read
;
6524 unsigned int pos
= 0;
6528 * If a full page is expected, this can still be returned
6529 * if there's been a previous partial read and the
6530 * rest of the page can be read and the commit page is off
6534 (!read
|| (len
< (commit
- read
)) ||
6535 cpu_buffer
->reader_page
== cpu_buffer
->commit_page
))
6538 if (len
> (commit
- read
))
6539 len
= (commit
- read
);
6541 /* Always keep the time extend and data together */
6542 size
= rb_event_ts_length(event
);
6547 /* save the current timestamp, since the user will need it */
6548 save_timestamp
= cpu_buffer
->read_stamp
;
6550 /* Need to copy one event at a time */
6552 /* We need the size of one event, because
6553 * rb_advance_reader only advances by one event,
6554 * whereas rb_event_ts_length may include the size of
6555 * one or two events.
6556 * We have already ensured there's enough space if this
6557 * is a time extend. */
6558 size
= rb_event_length(event
);
6559 memcpy(bpage
->data
+ pos
, rpage
->data
+ rpos
, size
);
6563 rb_advance_reader(cpu_buffer
);
6564 rpos
= reader
->read
;
6570 event
= rb_reader_event(cpu_buffer
);
6571 /* Always keep the time extend and data together */
6572 size
= rb_event_ts_length(event
);
6573 } while (len
>= size
);
6576 local_set(&bpage
->commit
, pos
);
6577 bpage
->time_stamp
= save_timestamp
;
6579 /* we copied everything to the beginning */
6582 /* update the entry counter */
6583 cpu_buffer
->read
+= rb_page_entries(reader
);
6584 cpu_buffer
->read_bytes
+= rb_page_size(reader
);
6586 /* swap the pages */
6587 rb_init_page(bpage
);
6588 bpage
= reader
->page
;
6589 reader
->page
= data_page
->data
;
6590 local_set(&reader
->write
, 0);
6591 local_set(&reader
->entries
, 0);
6593 data_page
->data
= bpage
;
6596 * Use the real_end for the data size,
6597 * This gives us a chance to store the lost events
6600 if (reader
->real_end
)
6601 local_set(&bpage
->commit
, reader
->real_end
);
6605 cpu_buffer
->lost_events
= 0;
6607 commit
= local_read(&bpage
->commit
);
6609 * Set a flag in the commit field if we lost events
6611 if (missed_events
) {
6612 /* If there is room at the end of the page to save the
6613 * missed events, then record it there.
6615 if (buffer
->subbuf_size
- commit
>= sizeof(missed_events
)) {
6616 memcpy(&bpage
->data
[commit
], &missed_events
,
6617 sizeof(missed_events
));
6618 local_add(RB_MISSED_STORED
, &bpage
->commit
);
6619 commit
+= sizeof(missed_events
);
6621 local_add(RB_MISSED_EVENTS
, &bpage
->commit
);
6625 * This page may be off to user land. Zero it out here.
6627 if (commit
< buffer
->subbuf_size
)
6628 memset(&bpage
->data
[commit
], 0, buffer
->subbuf_size
- commit
);
6631 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
6636 EXPORT_SYMBOL_GPL(ring_buffer_read_page
);
6639 * ring_buffer_read_page_data - get pointer to the data in the page.
6640 * @page: the page to get the data from
6642 * Returns pointer to the actual data in this page.
6644 void *ring_buffer_read_page_data(struct buffer_data_read_page
*page
)
6648 EXPORT_SYMBOL_GPL(ring_buffer_read_page_data
);
6651 * ring_buffer_subbuf_size_get - get size of the sub buffer.
6652 * @buffer: the buffer to get the sub buffer size from
6654 * Returns size of the sub buffer, in bytes.
6656 int ring_buffer_subbuf_size_get(struct trace_buffer
*buffer
)
6658 return buffer
->subbuf_size
+ BUF_PAGE_HDR_SIZE
;
6660 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get
);
6663 * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page.
6664 * @buffer: The ring_buffer to get the system sub page order from
6666 * By default, one ring buffer sub page equals to one system page. This parameter
6667 * is configurable, per ring buffer. The size of the ring buffer sub page can be
6668 * extended, but must be an order of system page size.
6670 * Returns the order of buffer sub page size, in system pages:
6671 * 0 means the sub buffer size is 1 system page and so forth.
6672 * In case of an error < 0 is returned.
6674 int ring_buffer_subbuf_order_get(struct trace_buffer
*buffer
)
6679 return buffer
->subbuf_order
;
6681 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get
);
6684 * ring_buffer_subbuf_order_set - set the size of ring buffer sub page.
6685 * @buffer: The ring_buffer to set the new page size.
6686 * @order: Order of the system pages in one sub buffer page
6688 * By default, one ring buffer pages equals to one system page. This API can be
6689 * used to set new size of the ring buffer page. The size must be order of
6690 * system page size, that's why the input parameter @order is the order of
6691 * system pages that are allocated for one ring buffer page:
6693 * 1 - 2 system pages
6694 * 3 - 4 system pages
6697 * Returns 0 on success or < 0 in case of an error.
6699 int ring_buffer_subbuf_order_set(struct trace_buffer
*buffer
, int order
)
6701 struct ring_buffer_per_cpu
*cpu_buffer
;
6702 struct buffer_page
*bpage
, *tmp
;
6703 int old_order
, old_size
;
6709 if (!buffer
|| order
< 0)
6712 if (buffer
->subbuf_order
== order
)
6715 psize
= (1 << order
) * PAGE_SIZE
;
6716 if (psize
<= BUF_PAGE_HDR_SIZE
)
6719 /* Size of a subbuf cannot be greater than the write counter */
6720 if (psize
> RB_WRITE_MASK
+ 1)
6723 old_order
= buffer
->subbuf_order
;
6724 old_size
= buffer
->subbuf_size
;
6726 /* prevent another thread from changing buffer sizes */
6727 mutex_lock(&buffer
->mutex
);
6728 atomic_inc(&buffer
->record_disabled
);
6730 /* Make sure all commits have finished */
6733 buffer
->subbuf_order
= order
;
6734 buffer
->subbuf_size
= psize
- BUF_PAGE_HDR_SIZE
;
6736 /* Make sure all new buffers are allocated, before deleting the old ones */
6737 for_each_buffer_cpu(buffer
, cpu
) {
6739 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
6742 cpu_buffer
= buffer
->buffers
[cpu
];
6744 if (cpu_buffer
->mapped
) {
6749 /* Update the number of pages to match the new size */
6750 nr_pages
= old_size
* buffer
->buffers
[cpu
]->nr_pages
;
6751 nr_pages
= DIV_ROUND_UP(nr_pages
, buffer
->subbuf_size
);
6753 /* we need a minimum of two pages */
6757 cpu_buffer
->nr_pages_to_update
= nr_pages
;
6759 /* Include the reader page */
6762 /* Allocate the new size buffer */
6763 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
6764 if (__rb_allocate_pages(cpu_buffer
, nr_pages
,
6765 &cpu_buffer
->new_pages
)) {
6766 /* not enough memory for new pages */
6772 for_each_buffer_cpu(buffer
, cpu
) {
6773 struct buffer_data_page
*old_free_data_page
;
6774 struct list_head old_pages
;
6775 unsigned long flags
;
6777 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
6780 cpu_buffer
= buffer
->buffers
[cpu
];
6782 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
6784 /* Clear the head bit to make the link list normal to read */
6785 rb_head_page_deactivate(cpu_buffer
);
6788 * Collect buffers from the cpu_buffer pages list and the
6789 * reader_page on old_pages, so they can be freed later when not
6790 * under a spinlock. The pages list is a linked list with no
6791 * head, adding old_pages turns it into a regular list with
6792 * old_pages being the head.
6794 list_add(&old_pages
, cpu_buffer
->pages
);
6795 list_add(&cpu_buffer
->reader_page
->list
, &old_pages
);
6797 /* One page was allocated for the reader page */
6798 cpu_buffer
->reader_page
= list_entry(cpu_buffer
->new_pages
.next
,
6799 struct buffer_page
, list
);
6800 list_del_init(&cpu_buffer
->reader_page
->list
);
6802 /* Install the new pages, remove the head from the list */
6803 cpu_buffer
->pages
= cpu_buffer
->new_pages
.next
;
6804 list_del_init(&cpu_buffer
->new_pages
);
6807 cpu_buffer
->head_page
6808 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
6809 cpu_buffer
->tail_page
= cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
6811 cpu_buffer
->nr_pages
= cpu_buffer
->nr_pages_to_update
;
6812 cpu_buffer
->nr_pages_to_update
= 0;
6814 old_free_data_page
= cpu_buffer
->free_page
;
6815 cpu_buffer
->free_page
= NULL
;
6817 rb_head_page_activate(cpu_buffer
);
6819 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
6821 /* Free old sub buffers */
6822 list_for_each_entry_safe(bpage
, tmp
, &old_pages
, list
) {
6823 list_del_init(&bpage
->list
);
6824 free_buffer_page(bpage
);
6826 free_pages((unsigned long)old_free_data_page
, old_order
);
6828 rb_check_pages(cpu_buffer
);
6831 atomic_dec(&buffer
->record_disabled
);
6832 mutex_unlock(&buffer
->mutex
);
6837 buffer
->subbuf_order
= old_order
;
6838 buffer
->subbuf_size
= old_size
;
6840 atomic_dec(&buffer
->record_disabled
);
6841 mutex_unlock(&buffer
->mutex
);
6843 for_each_buffer_cpu(buffer
, cpu
) {
6844 cpu_buffer
= buffer
->buffers
[cpu
];
6846 if (!cpu_buffer
->nr_pages_to_update
)
6849 list_for_each_entry_safe(bpage
, tmp
, &cpu_buffer
->new_pages
, list
) {
6850 list_del_init(&bpage
->list
);
6851 free_buffer_page(bpage
);
6857 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set
);
6859 static int rb_alloc_meta_page(struct ring_buffer_per_cpu
*cpu_buffer
)
6863 if (cpu_buffer
->meta_page
)
6866 page
= alloc_page(GFP_USER
| __GFP_ZERO
);
6870 cpu_buffer
->meta_page
= page_to_virt(page
);
6875 static void rb_free_meta_page(struct ring_buffer_per_cpu
*cpu_buffer
)
6877 unsigned long addr
= (unsigned long)cpu_buffer
->meta_page
;
6880 cpu_buffer
->meta_page
= NULL
;
6883 static void rb_setup_ids_meta_page(struct ring_buffer_per_cpu
*cpu_buffer
,
6884 unsigned long *subbuf_ids
)
6886 struct trace_buffer_meta
*meta
= cpu_buffer
->meta_page
;
6887 unsigned int nr_subbufs
= cpu_buffer
->nr_pages
+ 1;
6888 struct buffer_page
*first_subbuf
, *subbuf
;
6891 subbuf_ids
[id
] = (unsigned long)cpu_buffer
->reader_page
->page
;
6892 cpu_buffer
->reader_page
->id
= id
++;
6894 first_subbuf
= subbuf
= rb_set_head_page(cpu_buffer
);
6896 if (WARN_ON(id
>= nr_subbufs
))
6899 subbuf_ids
[id
] = (unsigned long)subbuf
->page
;
6902 rb_inc_page(&subbuf
);
6904 } while (subbuf
!= first_subbuf
);
6906 /* install subbuf ID to kern VA translation */
6907 cpu_buffer
->subbuf_ids
= subbuf_ids
;
6909 meta
->meta_struct_len
= sizeof(*meta
);
6910 meta
->nr_subbufs
= nr_subbufs
;
6911 meta
->subbuf_size
= cpu_buffer
->buffer
->subbuf_size
+ BUF_PAGE_HDR_SIZE
;
6912 meta
->meta_page_size
= meta
->subbuf_size
;
6914 rb_update_meta_page(cpu_buffer
);
6917 static struct ring_buffer_per_cpu
*
6918 rb_get_mapped_buffer(struct trace_buffer
*buffer
, int cpu
)
6920 struct ring_buffer_per_cpu
*cpu_buffer
;
6922 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
6923 return ERR_PTR(-EINVAL
);
6925 cpu_buffer
= buffer
->buffers
[cpu
];
6927 mutex_lock(&cpu_buffer
->mapping_lock
);
6929 if (!cpu_buffer
->user_mapped
) {
6930 mutex_unlock(&cpu_buffer
->mapping_lock
);
6931 return ERR_PTR(-ENODEV
);
6937 static void rb_put_mapped_buffer(struct ring_buffer_per_cpu
*cpu_buffer
)
6939 mutex_unlock(&cpu_buffer
->mapping_lock
);
6943 * Fast-path for rb_buffer_(un)map(). Called whenever the meta-page doesn't need
6944 * to be set-up or torn-down.
6946 static int __rb_inc_dec_mapped(struct ring_buffer_per_cpu
*cpu_buffer
,
6949 unsigned long flags
;
6951 lockdep_assert_held(&cpu_buffer
->mapping_lock
);
6953 /* mapped is always greater or equal to user_mapped */
6954 if (WARN_ON(cpu_buffer
->mapped
< cpu_buffer
->user_mapped
))
6957 if (inc
&& cpu_buffer
->mapped
== UINT_MAX
)
6960 if (WARN_ON(!inc
&& cpu_buffer
->user_mapped
== 0))
6963 mutex_lock(&cpu_buffer
->buffer
->mutex
);
6964 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
6967 cpu_buffer
->user_mapped
++;
6968 cpu_buffer
->mapped
++;
6970 cpu_buffer
->user_mapped
--;
6971 cpu_buffer
->mapped
--;
6974 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
6975 mutex_unlock(&cpu_buffer
->buffer
->mutex
);
6981 * +--------------+ pgoff == 0
6983 * +--------------+ pgoff == 1
6986 * +--------------+ pgoff == (1 + (1 << subbuf_order))
6992 static int __rb_map_vma(struct ring_buffer_per_cpu
*cpu_buffer
,
6993 struct vm_area_struct
*vma
)
6995 unsigned long nr_subbufs
, nr_pages
, nr_vma_pages
, pgoff
= vma
->vm_pgoff
;
6996 unsigned int subbuf_pages
, subbuf_order
;
6997 struct page
**pages
;
7001 /* Refuse MP_PRIVATE or writable mappings */
7002 if (vma
->vm_flags
& VM_WRITE
|| vma
->vm_flags
& VM_EXEC
||
7003 !(vma
->vm_flags
& VM_MAYSHARE
))
7006 subbuf_order
= cpu_buffer
->buffer
->subbuf_order
;
7007 subbuf_pages
= 1 << subbuf_order
;
7009 if (subbuf_order
&& pgoff
% subbuf_pages
)
7013 * Make sure the mapping cannot become writable later. Also tell the VM
7014 * to not touch these pages (VM_DONTCOPY | VM_DONTEXPAND).
7016 vm_flags_mod(vma
, VM_DONTCOPY
| VM_DONTEXPAND
| VM_DONTDUMP
,
7019 lockdep_assert_held(&cpu_buffer
->mapping_lock
);
7021 nr_subbufs
= cpu_buffer
->nr_pages
+ 1; /* + reader-subbuf */
7022 nr_pages
= ((nr_subbufs
+ 1) << subbuf_order
) - pgoff
; /* + meta-page */
7024 nr_vma_pages
= vma_pages(vma
);
7025 if (!nr_vma_pages
|| nr_vma_pages
> nr_pages
)
7028 nr_pages
= nr_vma_pages
;
7030 pages
= kcalloc(nr_pages
, sizeof(*pages
), GFP_KERNEL
);
7035 unsigned long meta_page_padding
;
7037 pages
[p
++] = virt_to_page(cpu_buffer
->meta_page
);
7040 * Pad with the zero-page to align the meta-page with the
7043 meta_page_padding
= subbuf_pages
- 1;
7044 while (meta_page_padding
-- && p
< nr_pages
) {
7045 unsigned long __maybe_unused zero_addr
=
7046 vma
->vm_start
+ (PAGE_SIZE
* p
);
7048 pages
[p
++] = ZERO_PAGE(zero_addr
);
7051 /* Skip the meta-page */
7052 pgoff
-= subbuf_pages
;
7054 s
+= pgoff
/ subbuf_pages
;
7057 while (p
< nr_pages
) {
7058 struct page
*page
= virt_to_page((void *)cpu_buffer
->subbuf_ids
[s
]);
7061 if (WARN_ON_ONCE(s
>= nr_subbufs
)) {
7066 for (; off
< (1 << (subbuf_order
)); off
++, page
++) {
7075 err
= vm_insert_pages(vma
, vma
->vm_start
, pages
, &nr_pages
);
7083 static int __rb_map_vma(struct ring_buffer_per_cpu
*cpu_buffer
,
7084 struct vm_area_struct
*vma
)
7090 int ring_buffer_map(struct trace_buffer
*buffer
, int cpu
,
7091 struct vm_area_struct
*vma
)
7093 struct ring_buffer_per_cpu
*cpu_buffer
;
7094 unsigned long flags
, *subbuf_ids
;
7097 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
7100 cpu_buffer
= buffer
->buffers
[cpu
];
7102 mutex_lock(&cpu_buffer
->mapping_lock
);
7104 if (cpu_buffer
->user_mapped
) {
7105 err
= __rb_map_vma(cpu_buffer
, vma
);
7107 err
= __rb_inc_dec_mapped(cpu_buffer
, true);
7108 mutex_unlock(&cpu_buffer
->mapping_lock
);
7112 /* prevent another thread from changing buffer/sub-buffer sizes */
7113 mutex_lock(&buffer
->mutex
);
7115 err
= rb_alloc_meta_page(cpu_buffer
);
7119 /* subbuf_ids include the reader while nr_pages does not */
7120 subbuf_ids
= kcalloc(cpu_buffer
->nr_pages
+ 1, sizeof(*subbuf_ids
), GFP_KERNEL
);
7122 rb_free_meta_page(cpu_buffer
);
7127 atomic_inc(&cpu_buffer
->resize_disabled
);
7130 * Lock all readers to block any subbuf swap until the subbuf IDs are
7133 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
7134 rb_setup_ids_meta_page(cpu_buffer
, subbuf_ids
);
7136 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
7138 err
= __rb_map_vma(cpu_buffer
, vma
);
7140 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
7141 /* This is the first time it is mapped by user */
7142 cpu_buffer
->mapped
++;
7143 cpu_buffer
->user_mapped
= 1;
7144 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
7146 kfree(cpu_buffer
->subbuf_ids
);
7147 cpu_buffer
->subbuf_ids
= NULL
;
7148 rb_free_meta_page(cpu_buffer
);
7152 mutex_unlock(&buffer
->mutex
);
7153 mutex_unlock(&cpu_buffer
->mapping_lock
);
7158 int ring_buffer_unmap(struct trace_buffer
*buffer
, int cpu
)
7160 struct ring_buffer_per_cpu
*cpu_buffer
;
7161 unsigned long flags
;
7164 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
7167 cpu_buffer
= buffer
->buffers
[cpu
];
7169 mutex_lock(&cpu_buffer
->mapping_lock
);
7171 if (!cpu_buffer
->user_mapped
) {
7174 } else if (cpu_buffer
->user_mapped
> 1) {
7175 __rb_inc_dec_mapped(cpu_buffer
, false);
7179 mutex_lock(&buffer
->mutex
);
7180 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
7182 /* This is the last user space mapping */
7183 if (!WARN_ON_ONCE(cpu_buffer
->mapped
< cpu_buffer
->user_mapped
))
7184 cpu_buffer
->mapped
--;
7185 cpu_buffer
->user_mapped
= 0;
7187 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
7189 kfree(cpu_buffer
->subbuf_ids
);
7190 cpu_buffer
->subbuf_ids
= NULL
;
7191 rb_free_meta_page(cpu_buffer
);
7192 atomic_dec(&cpu_buffer
->resize_disabled
);
7194 mutex_unlock(&buffer
->mutex
);
7197 mutex_unlock(&cpu_buffer
->mapping_lock
);
7202 int ring_buffer_map_get_reader(struct trace_buffer
*buffer
, int cpu
)
7204 struct ring_buffer_per_cpu
*cpu_buffer
;
7205 struct buffer_page
*reader
;
7206 unsigned long missed_events
;
7207 unsigned long reader_size
;
7208 unsigned long flags
;
7210 cpu_buffer
= rb_get_mapped_buffer(buffer
, cpu
);
7211 if (IS_ERR(cpu_buffer
))
7212 return (int)PTR_ERR(cpu_buffer
);
7214 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
7217 if (rb_per_cpu_empty(cpu_buffer
))
7220 reader_size
= rb_page_size(cpu_buffer
->reader_page
);
7223 * There are data to be read on the current reader page, we can
7224 * return to the caller. But before that, we assume the latter will read
7225 * everything. Let's update the kernel reader accordingly.
7227 if (cpu_buffer
->reader_page
->read
< reader_size
) {
7228 while (cpu_buffer
->reader_page
->read
< reader_size
)
7229 rb_advance_reader(cpu_buffer
);
7233 reader
= rb_get_reader_page(cpu_buffer
);
7234 if (WARN_ON(!reader
))
7237 /* Check if any events were dropped */
7238 missed_events
= cpu_buffer
->lost_events
;
7240 if (cpu_buffer
->reader_page
!= cpu_buffer
->commit_page
) {
7241 if (missed_events
) {
7242 struct buffer_data_page
*bpage
= reader
->page
;
7243 unsigned int commit
;
7245 * Use the real_end for the data size,
7246 * This gives us a chance to store the lost events
7249 if (reader
->real_end
)
7250 local_set(&bpage
->commit
, reader
->real_end
);
7252 * If there is room at the end of the page to save the
7253 * missed events, then record it there.
7255 commit
= rb_page_size(reader
);
7256 if (buffer
->subbuf_size
- commit
>= sizeof(missed_events
)) {
7257 memcpy(&bpage
->data
[commit
], &missed_events
,
7258 sizeof(missed_events
));
7259 local_add(RB_MISSED_STORED
, &bpage
->commit
);
7261 local_add(RB_MISSED_EVENTS
, &bpage
->commit
);
7265 * There really shouldn't be any missed events if the commit
7266 * is on the reader page.
7268 WARN_ON_ONCE(missed_events
);
7271 cpu_buffer
->lost_events
= 0;
7276 /* Some archs do not have data cache coherency between kernel and user-space */
7277 flush_dcache_folio(virt_to_folio(cpu_buffer
->reader_page
->page
));
7279 rb_update_meta_page(cpu_buffer
);
7281 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
7282 rb_put_mapped_buffer(cpu_buffer
);
7288 * We only allocate new buffers, never free them if the CPU goes down.
7289 * If we were to free the buffer, then the user would lose any trace that was in
7292 int trace_rb_cpu_prepare(unsigned int cpu
, struct hlist_node
*node
)
7294 struct trace_buffer
*buffer
;
7297 unsigned long nr_pages
;
7299 buffer
= container_of(node
, struct trace_buffer
, node
);
7300 if (cpumask_test_cpu(cpu
, buffer
->cpumask
))
7305 /* check if all cpu sizes are same */
7306 for_each_buffer_cpu(buffer
, cpu_i
) {
7307 /* fill in the size from first enabled cpu */
7309 nr_pages
= buffer
->buffers
[cpu_i
]->nr_pages
;
7310 if (nr_pages
!= buffer
->buffers
[cpu_i
]->nr_pages
) {
7315 /* allocate minimum pages, user can later expand it */
7318 buffer
->buffers
[cpu
] =
7319 rb_allocate_cpu_buffer(buffer
, nr_pages
, cpu
);
7320 if (!buffer
->buffers
[cpu
]) {
7321 WARN(1, "failed to allocate ring buffer on CPU %u\n",
7326 cpumask_set_cpu(cpu
, buffer
->cpumask
);
7330 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
7332 * This is a basic integrity check of the ring buffer.
7333 * Late in the boot cycle this test will run when configured in.
7334 * It will kick off a thread per CPU that will go into a loop
7335 * writing to the per cpu ring buffer various sizes of data.
7336 * Some of the data will be large items, some small.
7338 * Another thread is created that goes into a spin, sending out
7339 * IPIs to the other CPUs to also write into the ring buffer.
7340 * this is to test the nesting ability of the buffer.
7342 * Basic stats are recorded and reported. If something in the
7343 * ring buffer should happen that's not expected, a big warning
7344 * is displayed and all ring buffers are disabled.
7346 static struct task_struct
*rb_threads
[NR_CPUS
] __initdata
;
7348 struct rb_test_data
{
7349 struct trace_buffer
*buffer
;
7350 unsigned long events
;
7351 unsigned long bytes_written
;
7352 unsigned long bytes_alloc
;
7353 unsigned long bytes_dropped
;
7354 unsigned long events_nested
;
7355 unsigned long bytes_written_nested
;
7356 unsigned long bytes_alloc_nested
;
7357 unsigned long bytes_dropped_nested
;
7358 int min_size_nested
;
7359 int max_size_nested
;
7366 static struct rb_test_data rb_data
[NR_CPUS
] __initdata
;
7369 #define RB_TEST_BUFFER_SIZE 1048576
7371 static char rb_string
[] __initdata
=
7372 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
7373 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
7374 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
7376 static bool rb_test_started __initdata
;
7383 static __init
int rb_write_something(struct rb_test_data
*data
, bool nested
)
7385 struct ring_buffer_event
*event
;
7386 struct rb_item
*item
;
7393 /* Have nested writes different that what is written */
7394 cnt
= data
->cnt
+ (nested
? 27 : 0);
7396 /* Multiply cnt by ~e, to make some unique increment */
7397 size
= (cnt
* 68 / 25) % (sizeof(rb_string
) - 1);
7399 len
= size
+ sizeof(struct rb_item
);
7401 started
= rb_test_started
;
7402 /* read rb_test_started before checking buffer enabled */
7405 event
= ring_buffer_lock_reserve(data
->buffer
, len
);
7407 /* Ignore dropped events before test starts. */
7410 data
->bytes_dropped
+= len
;
7412 data
->bytes_dropped_nested
+= len
;
7417 event_len
= ring_buffer_event_length(event
);
7419 if (RB_WARN_ON(data
->buffer
, event_len
< len
))
7422 item
= ring_buffer_event_data(event
);
7424 memcpy(item
->str
, rb_string
, size
);
7427 data
->bytes_alloc_nested
+= event_len
;
7428 data
->bytes_written_nested
+= len
;
7429 data
->events_nested
++;
7430 if (!data
->min_size_nested
|| len
< data
->min_size_nested
)
7431 data
->min_size_nested
= len
;
7432 if (len
> data
->max_size_nested
)
7433 data
->max_size_nested
= len
;
7435 data
->bytes_alloc
+= event_len
;
7436 data
->bytes_written
+= len
;
7438 if (!data
->min_size
|| len
< data
->min_size
)
7439 data
->max_size
= len
;
7440 if (len
> data
->max_size
)
7441 data
->max_size
= len
;
7445 ring_buffer_unlock_commit(data
->buffer
);
7450 static __init
int rb_test(void *arg
)
7452 struct rb_test_data
*data
= arg
;
7454 while (!kthread_should_stop()) {
7455 rb_write_something(data
, false);
7458 set_current_state(TASK_INTERRUPTIBLE
);
7459 /* Now sleep between a min of 100-300us and a max of 1ms */
7460 usleep_range(((data
->cnt
% 3) + 1) * 100, 1000);
7466 static __init
void rb_ipi(void *ignore
)
7468 struct rb_test_data
*data
;
7469 int cpu
= smp_processor_id();
7471 data
= &rb_data
[cpu
];
7472 rb_write_something(data
, true);
7475 static __init
int rb_hammer_test(void *arg
)
7477 while (!kthread_should_stop()) {
7479 /* Send an IPI to all cpus to write data! */
7480 smp_call_function(rb_ipi
, NULL
, 1);
7481 /* No sleep, but for non preempt, let others run */
7488 static __init
int test_ringbuffer(void)
7490 struct task_struct
*rb_hammer
;
7491 struct trace_buffer
*buffer
;
7495 if (security_locked_down(LOCKDOWN_TRACEFS
)) {
7496 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
7500 pr_info("Running ring buffer tests...\n");
7502 buffer
= ring_buffer_alloc(RB_TEST_BUFFER_SIZE
, RB_FL_OVERWRITE
);
7503 if (WARN_ON(!buffer
))
7506 /* Disable buffer so that threads can't write to it yet */
7507 ring_buffer_record_off(buffer
);
7509 for_each_online_cpu(cpu
) {
7510 rb_data
[cpu
].buffer
= buffer
;
7511 rb_data
[cpu
].cpu
= cpu
;
7512 rb_data
[cpu
].cnt
= cpu
;
7513 rb_threads
[cpu
] = kthread_run_on_cpu(rb_test
, &rb_data
[cpu
],
7514 cpu
, "rbtester/%u");
7515 if (WARN_ON(IS_ERR(rb_threads
[cpu
]))) {
7516 pr_cont("FAILED\n");
7517 ret
= PTR_ERR(rb_threads
[cpu
]);
7522 /* Now create the rb hammer! */
7523 rb_hammer
= kthread_run(rb_hammer_test
, NULL
, "rbhammer");
7524 if (WARN_ON(IS_ERR(rb_hammer
))) {
7525 pr_cont("FAILED\n");
7526 ret
= PTR_ERR(rb_hammer
);
7530 ring_buffer_record_on(buffer
);
7532 * Show buffer is enabled before setting rb_test_started.
7533 * Yes there's a small race window where events could be
7534 * dropped and the thread wont catch it. But when a ring
7535 * buffer gets enabled, there will always be some kind of
7536 * delay before other CPUs see it. Thus, we don't care about
7537 * those dropped events. We care about events dropped after
7538 * the threads see that the buffer is active.
7541 rb_test_started
= true;
7543 set_current_state(TASK_INTERRUPTIBLE
);
7544 /* Just run for 10 seconds */;
7545 schedule_timeout(10 * HZ
);
7547 kthread_stop(rb_hammer
);
7550 for_each_online_cpu(cpu
) {
7551 if (!rb_threads
[cpu
])
7553 kthread_stop(rb_threads
[cpu
]);
7556 ring_buffer_free(buffer
);
7561 pr_info("finished\n");
7562 for_each_online_cpu(cpu
) {
7563 struct ring_buffer_event
*event
;
7564 struct rb_test_data
*data
= &rb_data
[cpu
];
7565 struct rb_item
*item
;
7566 unsigned long total_events
;
7567 unsigned long total_dropped
;
7568 unsigned long total_written
;
7569 unsigned long total_alloc
;
7570 unsigned long total_read
= 0;
7571 unsigned long total_size
= 0;
7572 unsigned long total_len
= 0;
7573 unsigned long total_lost
= 0;
7576 int small_event_size
;
7580 total_events
= data
->events
+ data
->events_nested
;
7581 total_written
= data
->bytes_written
+ data
->bytes_written_nested
;
7582 total_alloc
= data
->bytes_alloc
+ data
->bytes_alloc_nested
;
7583 total_dropped
= data
->bytes_dropped
+ data
->bytes_dropped_nested
;
7585 big_event_size
= data
->max_size
+ data
->max_size_nested
;
7586 small_event_size
= data
->min_size
+ data
->min_size_nested
;
7588 pr_info("CPU %d:\n", cpu
);
7589 pr_info(" events: %ld\n", total_events
);
7590 pr_info(" dropped bytes: %ld\n", total_dropped
);
7591 pr_info(" alloced bytes: %ld\n", total_alloc
);
7592 pr_info(" written bytes: %ld\n", total_written
);
7593 pr_info(" biggest event: %d\n", big_event_size
);
7594 pr_info(" smallest event: %d\n", small_event_size
);
7596 if (RB_WARN_ON(buffer
, total_dropped
))
7601 while ((event
= ring_buffer_consume(buffer
, cpu
, NULL
, &lost
))) {
7603 item
= ring_buffer_event_data(event
);
7604 total_len
+= ring_buffer_event_length(event
);
7605 total_size
+= item
->size
+ sizeof(struct rb_item
);
7606 if (memcmp(&item
->str
[0], rb_string
, item
->size
) != 0) {
7607 pr_info("FAILED!\n");
7608 pr_info("buffer had: %.*s\n", item
->size
, item
->str
);
7609 pr_info("expected: %.*s\n", item
->size
, rb_string
);
7610 RB_WARN_ON(buffer
, 1);
7621 pr_info(" read events: %ld\n", total_read
);
7622 pr_info(" lost events: %ld\n", total_lost
);
7623 pr_info(" total events: %ld\n", total_lost
+ total_read
);
7624 pr_info(" recorded len bytes: %ld\n", total_len
);
7625 pr_info(" recorded size bytes: %ld\n", total_size
);
7627 pr_info(" With dropped events, record len and size may not match\n"
7628 " alloced and written from above\n");
7630 if (RB_WARN_ON(buffer
, total_len
!= total_alloc
||
7631 total_size
!= total_written
))
7634 if (RB_WARN_ON(buffer
, total_lost
+ total_read
!= total_events
))
7640 pr_info("Ring buffer PASSED!\n");
7642 ring_buffer_free(buffer
);
7646 late_initcall(test_ringbuffer
);
7647 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */