drm/modes: Fix drm_mode_vrefres() docs
[drm/drm-misc.git] / kernel / trace / ring_buffer.c
blob7e257e855dd19b7f8d5fc1348e8f4069b0fcf363
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Generic ring buffer
5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/cacheflush.h>
13 #include <linux/trace_seq.h>
14 #include <linux/spinlock.h>
15 #include <linux/irq_work.h>
16 #include <linux/security.h>
17 #include <linux/uaccess.h>
18 #include <linux/hardirq.h>
19 #include <linux/kthread.h> /* for self test */
20 #include <linux/module.h>
21 #include <linux/percpu.h>
22 #include <linux/mutex.h>
23 #include <linux/delay.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/list.h>
28 #include <linux/cpu.h>
29 #include <linux/oom.h>
30 #include <linux/mm.h>
32 #include <asm/local64.h>
33 #include <asm/local.h>
35 #include "trace.h"
38 * The "absolute" timestamp in the buffer is only 59 bits.
39 * If a clock has the 5 MSBs set, it needs to be saved and
40 * reinserted.
42 #define TS_MSB (0xf8ULL << 56)
43 #define ABS_TS_MASK (~TS_MSB)
45 static void update_pages_handler(struct work_struct *work);
47 #define RING_BUFFER_META_MAGIC 0xBADFEED
49 struct ring_buffer_meta {
50 int magic;
51 int struct_size;
52 unsigned long text_addr;
53 unsigned long data_addr;
54 unsigned long first_buffer;
55 unsigned long head_buffer;
56 unsigned long commit_buffer;
57 __u32 subbuf_size;
58 __u32 nr_subbufs;
59 int buffers[];
63 * The ring buffer header is special. We must manually up keep it.
65 int ring_buffer_print_entry_header(struct trace_seq *s)
67 trace_seq_puts(s, "# compressed entry header\n");
68 trace_seq_puts(s, "\ttype_len : 5 bits\n");
69 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
70 trace_seq_puts(s, "\tarray : 32 bits\n");
71 trace_seq_putc(s, '\n');
72 trace_seq_printf(s, "\tpadding : type == %d\n",
73 RINGBUF_TYPE_PADDING);
74 trace_seq_printf(s, "\ttime_extend : type == %d\n",
75 RINGBUF_TYPE_TIME_EXTEND);
76 trace_seq_printf(s, "\ttime_stamp : type == %d\n",
77 RINGBUF_TYPE_TIME_STAMP);
78 trace_seq_printf(s, "\tdata max type_len == %d\n",
79 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
81 return !trace_seq_has_overflowed(s);
85 * The ring buffer is made up of a list of pages. A separate list of pages is
86 * allocated for each CPU. A writer may only write to a buffer that is
87 * associated with the CPU it is currently executing on. A reader may read
88 * from any per cpu buffer.
90 * The reader is special. For each per cpu buffer, the reader has its own
91 * reader page. When a reader has read the entire reader page, this reader
92 * page is swapped with another page in the ring buffer.
94 * Now, as long as the writer is off the reader page, the reader can do what
95 * ever it wants with that page. The writer will never write to that page
96 * again (as long as it is out of the ring buffer).
98 * Here's some silly ASCII art.
100 * +------+
101 * |reader| RING BUFFER
102 * |page |
103 * +------+ +---+ +---+ +---+
104 * | |-->| |-->| |
105 * +---+ +---+ +---+
106 * ^ |
107 * | |
108 * +---------------+
111 * +------+
112 * |reader| RING BUFFER
113 * |page |------------------v
114 * +------+ +---+ +---+ +---+
115 * | |-->| |-->| |
116 * +---+ +---+ +---+
117 * ^ |
118 * | |
119 * +---------------+
122 * +------+
123 * |reader| RING BUFFER
124 * |page |------------------v
125 * +------+ +---+ +---+ +---+
126 * ^ | |-->| |-->| |
127 * | +---+ +---+ +---+
128 * | |
129 * | |
130 * +------------------------------+
133 * +------+
134 * |buffer| RING BUFFER
135 * |page |------------------v
136 * +------+ +---+ +---+ +---+
137 * ^ | | | |-->| |
138 * | New +---+ +---+ +---+
139 * | Reader------^ |
140 * | page |
141 * +------------------------------+
144 * After we make this swap, the reader can hand this page off to the splice
145 * code and be done with it. It can even allocate a new page if it needs to
146 * and swap that into the ring buffer.
148 * We will be using cmpxchg soon to make all this lockless.
152 /* Used for individual buffers (after the counter) */
153 #define RB_BUFFER_OFF (1 << 20)
155 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
157 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
158 #define RB_ALIGNMENT 4U
159 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
160 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
162 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
163 # define RB_FORCE_8BYTE_ALIGNMENT 0
164 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
165 #else
166 # define RB_FORCE_8BYTE_ALIGNMENT 1
167 # define RB_ARCH_ALIGNMENT 8U
168 #endif
170 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
172 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
173 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
175 enum {
176 RB_LEN_TIME_EXTEND = 8,
177 RB_LEN_TIME_STAMP = 8,
180 #define skip_time_extend(event) \
181 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
183 #define extended_time(event) \
184 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
186 static inline bool rb_null_event(struct ring_buffer_event *event)
188 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
191 static void rb_event_set_padding(struct ring_buffer_event *event)
193 /* padding has a NULL time_delta */
194 event->type_len = RINGBUF_TYPE_PADDING;
195 event->time_delta = 0;
198 static unsigned
199 rb_event_data_length(struct ring_buffer_event *event)
201 unsigned length;
203 if (event->type_len)
204 length = event->type_len * RB_ALIGNMENT;
205 else
206 length = event->array[0];
207 return length + RB_EVNT_HDR_SIZE;
211 * Return the length of the given event. Will return
212 * the length of the time extend if the event is a
213 * time extend.
215 static inline unsigned
216 rb_event_length(struct ring_buffer_event *event)
218 switch (event->type_len) {
219 case RINGBUF_TYPE_PADDING:
220 if (rb_null_event(event))
221 /* undefined */
222 return -1;
223 return event->array[0] + RB_EVNT_HDR_SIZE;
225 case RINGBUF_TYPE_TIME_EXTEND:
226 return RB_LEN_TIME_EXTEND;
228 case RINGBUF_TYPE_TIME_STAMP:
229 return RB_LEN_TIME_STAMP;
231 case RINGBUF_TYPE_DATA:
232 return rb_event_data_length(event);
233 default:
234 WARN_ON_ONCE(1);
236 /* not hit */
237 return 0;
241 * Return total length of time extend and data,
242 * or just the event length for all other events.
244 static inline unsigned
245 rb_event_ts_length(struct ring_buffer_event *event)
247 unsigned len = 0;
249 if (extended_time(event)) {
250 /* time extends include the data event after it */
251 len = RB_LEN_TIME_EXTEND;
252 event = skip_time_extend(event);
254 return len + rb_event_length(event);
258 * ring_buffer_event_length - return the length of the event
259 * @event: the event to get the length of
261 * Returns the size of the data load of a data event.
262 * If the event is something other than a data event, it
263 * returns the size of the event itself. With the exception
264 * of a TIME EXTEND, where it still returns the size of the
265 * data load of the data event after it.
267 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
269 unsigned length;
271 if (extended_time(event))
272 event = skip_time_extend(event);
274 length = rb_event_length(event);
275 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
276 return length;
277 length -= RB_EVNT_HDR_SIZE;
278 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
279 length -= sizeof(event->array[0]);
280 return length;
282 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
284 /* inline for ring buffer fast paths */
285 static __always_inline void *
286 rb_event_data(struct ring_buffer_event *event)
288 if (extended_time(event))
289 event = skip_time_extend(event);
290 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
291 /* If length is in len field, then array[0] has the data */
292 if (event->type_len)
293 return (void *)&event->array[0];
294 /* Otherwise length is in array[0] and array[1] has the data */
295 return (void *)&event->array[1];
299 * ring_buffer_event_data - return the data of the event
300 * @event: the event to get the data from
302 void *ring_buffer_event_data(struct ring_buffer_event *event)
304 return rb_event_data(event);
306 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
308 #define for_each_buffer_cpu(buffer, cpu) \
309 for_each_cpu(cpu, buffer->cpumask)
311 #define for_each_online_buffer_cpu(buffer, cpu) \
312 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
314 #define TS_SHIFT 27
315 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
316 #define TS_DELTA_TEST (~TS_MASK)
318 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
320 u64 ts;
322 ts = event->array[0];
323 ts <<= TS_SHIFT;
324 ts += event->time_delta;
326 return ts;
329 /* Flag when events were overwritten */
330 #define RB_MISSED_EVENTS (1 << 31)
331 /* Missed count stored at end */
332 #define RB_MISSED_STORED (1 << 30)
334 #define RB_MISSED_MASK (3 << 30)
336 struct buffer_data_page {
337 u64 time_stamp; /* page time stamp */
338 local_t commit; /* write committed index */
339 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
342 struct buffer_data_read_page {
343 unsigned order; /* order of the page */
344 struct buffer_data_page *data; /* actual data, stored in this page */
348 * Note, the buffer_page list must be first. The buffer pages
349 * are allocated in cache lines, which means that each buffer
350 * page will be at the beginning of a cache line, and thus
351 * the least significant bits will be zero. We use this to
352 * add flags in the list struct pointers, to make the ring buffer
353 * lockless.
355 struct buffer_page {
356 struct list_head list; /* list of buffer pages */
357 local_t write; /* index for next write */
358 unsigned read; /* index for next read */
359 local_t entries; /* entries on this page */
360 unsigned long real_end; /* real end of data */
361 unsigned order; /* order of the page */
362 u32 id:30; /* ID for external mapping */
363 u32 range:1; /* Mapped via a range */
364 struct buffer_data_page *page; /* Actual data page */
368 * The buffer page counters, write and entries, must be reset
369 * atomically when crossing page boundaries. To synchronize this
370 * update, two counters are inserted into the number. One is
371 * the actual counter for the write position or count on the page.
373 * The other is a counter of updaters. Before an update happens
374 * the update partition of the counter is incremented. This will
375 * allow the updater to update the counter atomically.
377 * The counter is 20 bits, and the state data is 12.
379 #define RB_WRITE_MASK 0xfffff
380 #define RB_WRITE_INTCNT (1 << 20)
382 static void rb_init_page(struct buffer_data_page *bpage)
384 local_set(&bpage->commit, 0);
387 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
389 return local_read(&bpage->page->commit);
392 static void free_buffer_page(struct buffer_page *bpage)
394 /* Range pages are not to be freed */
395 if (!bpage->range)
396 free_pages((unsigned long)bpage->page, bpage->order);
397 kfree(bpage);
401 * We need to fit the time_stamp delta into 27 bits.
403 static inline bool test_time_stamp(u64 delta)
405 return !!(delta & TS_DELTA_TEST);
408 struct rb_irq_work {
409 struct irq_work work;
410 wait_queue_head_t waiters;
411 wait_queue_head_t full_waiters;
412 atomic_t seq;
413 bool waiters_pending;
414 bool full_waiters_pending;
415 bool wakeup_full;
419 * Structure to hold event state and handle nested events.
421 struct rb_event_info {
422 u64 ts;
423 u64 delta;
424 u64 before;
425 u64 after;
426 unsigned long length;
427 struct buffer_page *tail_page;
428 int add_timestamp;
432 * Used for the add_timestamp
433 * NONE
434 * EXTEND - wants a time extend
435 * ABSOLUTE - the buffer requests all events to have absolute time stamps
436 * FORCE - force a full time stamp.
438 enum {
439 RB_ADD_STAMP_NONE = 0,
440 RB_ADD_STAMP_EXTEND = BIT(1),
441 RB_ADD_STAMP_ABSOLUTE = BIT(2),
442 RB_ADD_STAMP_FORCE = BIT(3)
445 * Used for which event context the event is in.
446 * TRANSITION = 0
447 * NMI = 1
448 * IRQ = 2
449 * SOFTIRQ = 3
450 * NORMAL = 4
452 * See trace_recursive_lock() comment below for more details.
454 enum {
455 RB_CTX_TRANSITION,
456 RB_CTX_NMI,
457 RB_CTX_IRQ,
458 RB_CTX_SOFTIRQ,
459 RB_CTX_NORMAL,
460 RB_CTX_MAX
463 struct rb_time_struct {
464 local64_t time;
466 typedef struct rb_time_struct rb_time_t;
468 #define MAX_NEST 5
471 * head_page == tail_page && head == tail then buffer is empty.
473 struct ring_buffer_per_cpu {
474 int cpu;
475 atomic_t record_disabled;
476 atomic_t resize_disabled;
477 struct trace_buffer *buffer;
478 raw_spinlock_t reader_lock; /* serialize readers */
479 arch_spinlock_t lock;
480 struct lock_class_key lock_key;
481 struct buffer_data_page *free_page;
482 unsigned long nr_pages;
483 unsigned int current_context;
484 struct list_head *pages;
485 /* pages generation counter, incremented when the list changes */
486 unsigned long cnt;
487 struct buffer_page *head_page; /* read from head */
488 struct buffer_page *tail_page; /* write to tail */
489 struct buffer_page *commit_page; /* committed pages */
490 struct buffer_page *reader_page;
491 unsigned long lost_events;
492 unsigned long last_overrun;
493 unsigned long nest;
494 local_t entries_bytes;
495 local_t entries;
496 local_t overrun;
497 local_t commit_overrun;
498 local_t dropped_events;
499 local_t committing;
500 local_t commits;
501 local_t pages_touched;
502 local_t pages_lost;
503 local_t pages_read;
504 long last_pages_touch;
505 size_t shortest_full;
506 unsigned long read;
507 unsigned long read_bytes;
508 rb_time_t write_stamp;
509 rb_time_t before_stamp;
510 u64 event_stamp[MAX_NEST];
511 u64 read_stamp;
512 /* pages removed since last reset */
513 unsigned long pages_removed;
515 unsigned int mapped;
516 unsigned int user_mapped; /* user space mapping */
517 struct mutex mapping_lock;
518 unsigned long *subbuf_ids; /* ID to subbuf VA */
519 struct trace_buffer_meta *meta_page;
520 struct ring_buffer_meta *ring_meta;
522 /* ring buffer pages to update, > 0 to add, < 0 to remove */
523 long nr_pages_to_update;
524 struct list_head new_pages; /* new pages to add */
525 struct work_struct update_pages_work;
526 struct completion update_done;
528 struct rb_irq_work irq_work;
531 struct trace_buffer {
532 unsigned flags;
533 int cpus;
534 atomic_t record_disabled;
535 atomic_t resizing;
536 cpumask_var_t cpumask;
538 struct lock_class_key *reader_lock_key;
540 struct mutex mutex;
542 struct ring_buffer_per_cpu **buffers;
544 struct hlist_node node;
545 u64 (*clock)(void);
547 struct rb_irq_work irq_work;
548 bool time_stamp_abs;
550 unsigned long range_addr_start;
551 unsigned long range_addr_end;
553 long last_text_delta;
554 long last_data_delta;
556 unsigned int subbuf_size;
557 unsigned int subbuf_order;
558 unsigned int max_data_size;
561 struct ring_buffer_iter {
562 struct ring_buffer_per_cpu *cpu_buffer;
563 unsigned long head;
564 unsigned long next_event;
565 struct buffer_page *head_page;
566 struct buffer_page *cache_reader_page;
567 unsigned long cache_read;
568 unsigned long cache_pages_removed;
569 u64 read_stamp;
570 u64 page_stamp;
571 struct ring_buffer_event *event;
572 size_t event_size;
573 int missed_events;
576 int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s)
578 struct buffer_data_page field;
580 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
581 "offset:0;\tsize:%u;\tsigned:%u;\n",
582 (unsigned int)sizeof(field.time_stamp),
583 (unsigned int)is_signed_type(u64));
585 trace_seq_printf(s, "\tfield: local_t commit;\t"
586 "offset:%u;\tsize:%u;\tsigned:%u;\n",
587 (unsigned int)offsetof(typeof(field), commit),
588 (unsigned int)sizeof(field.commit),
589 (unsigned int)is_signed_type(long));
591 trace_seq_printf(s, "\tfield: int overwrite;\t"
592 "offset:%u;\tsize:%u;\tsigned:%u;\n",
593 (unsigned int)offsetof(typeof(field), commit),
595 (unsigned int)is_signed_type(long));
597 trace_seq_printf(s, "\tfield: char data;\t"
598 "offset:%u;\tsize:%u;\tsigned:%u;\n",
599 (unsigned int)offsetof(typeof(field), data),
600 (unsigned int)buffer->subbuf_size,
601 (unsigned int)is_signed_type(char));
603 return !trace_seq_has_overflowed(s);
606 static inline void rb_time_read(rb_time_t *t, u64 *ret)
608 *ret = local64_read(&t->time);
610 static void rb_time_set(rb_time_t *t, u64 val)
612 local64_set(&t->time, val);
616 * Enable this to make sure that the event passed to
617 * ring_buffer_event_time_stamp() is not committed and also
618 * is on the buffer that it passed in.
620 //#define RB_VERIFY_EVENT
621 #ifdef RB_VERIFY_EVENT
622 static struct list_head *rb_list_head(struct list_head *list);
623 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
624 void *event)
626 struct buffer_page *page = cpu_buffer->commit_page;
627 struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
628 struct list_head *next;
629 long commit, write;
630 unsigned long addr = (unsigned long)event;
631 bool done = false;
632 int stop = 0;
634 /* Make sure the event exists and is not committed yet */
635 do {
636 if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
637 done = true;
638 commit = local_read(&page->page->commit);
639 write = local_read(&page->write);
640 if (addr >= (unsigned long)&page->page->data[commit] &&
641 addr < (unsigned long)&page->page->data[write])
642 return;
644 next = rb_list_head(page->list.next);
645 page = list_entry(next, struct buffer_page, list);
646 } while (!done);
647 WARN_ON_ONCE(1);
649 #else
650 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
651 void *event)
654 #endif
657 * The absolute time stamp drops the 5 MSBs and some clocks may
658 * require them. The rb_fix_abs_ts() will take a previous full
659 * time stamp, and add the 5 MSB of that time stamp on to the
660 * saved absolute time stamp. Then they are compared in case of
661 * the unlikely event that the latest time stamp incremented
662 * the 5 MSB.
664 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
666 if (save_ts & TS_MSB) {
667 abs |= save_ts & TS_MSB;
668 /* Check for overflow */
669 if (unlikely(abs < save_ts))
670 abs += 1ULL << 59;
672 return abs;
675 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
678 * ring_buffer_event_time_stamp - return the event's current time stamp
679 * @buffer: The buffer that the event is on
680 * @event: the event to get the time stamp of
682 * Note, this must be called after @event is reserved, and before it is
683 * committed to the ring buffer. And must be called from the same
684 * context where the event was reserved (normal, softirq, irq, etc).
686 * Returns the time stamp associated with the current event.
687 * If the event has an extended time stamp, then that is used as
688 * the time stamp to return.
689 * In the highly unlikely case that the event was nested more than
690 * the max nesting, then the write_stamp of the buffer is returned,
691 * otherwise current time is returned, but that really neither of
692 * the last two cases should ever happen.
694 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
695 struct ring_buffer_event *event)
697 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
698 unsigned int nest;
699 u64 ts;
701 /* If the event includes an absolute time, then just use that */
702 if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
703 ts = rb_event_time_stamp(event);
704 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
707 nest = local_read(&cpu_buffer->committing);
708 verify_event(cpu_buffer, event);
709 if (WARN_ON_ONCE(!nest))
710 goto fail;
712 /* Read the current saved nesting level time stamp */
713 if (likely(--nest < MAX_NEST))
714 return cpu_buffer->event_stamp[nest];
716 /* Shouldn't happen, warn if it does */
717 WARN_ONCE(1, "nest (%d) greater than max", nest);
719 fail:
720 rb_time_read(&cpu_buffer->write_stamp, &ts);
722 return ts;
726 * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
727 * @buffer: The ring_buffer to get the number of pages from
728 * @cpu: The cpu of the ring_buffer to get the number of pages from
730 * Returns the number of pages that have content in the ring buffer.
732 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
734 size_t read;
735 size_t lost;
736 size_t cnt;
738 read = local_read(&buffer->buffers[cpu]->pages_read);
739 lost = local_read(&buffer->buffers[cpu]->pages_lost);
740 cnt = local_read(&buffer->buffers[cpu]->pages_touched);
742 if (WARN_ON_ONCE(cnt < lost))
743 return 0;
745 cnt -= lost;
747 /* The reader can read an empty page, but not more than that */
748 if (cnt < read) {
749 WARN_ON_ONCE(read > cnt + 1);
750 return 0;
753 return cnt - read;
756 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
758 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
759 size_t nr_pages;
760 size_t dirty;
762 nr_pages = cpu_buffer->nr_pages;
763 if (!nr_pages || !full)
764 return true;
767 * Add one as dirty will never equal nr_pages, as the sub-buffer
768 * that the writer is on is not counted as dirty.
769 * This is needed if "buffer_percent" is set to 100.
771 dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1;
773 return (dirty * 100) >= (full * nr_pages);
777 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
779 * Schedules a delayed work to wake up any task that is blocked on the
780 * ring buffer waiters queue.
782 static void rb_wake_up_waiters(struct irq_work *work)
784 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
786 /* For waiters waiting for the first wake up */
787 (void)atomic_fetch_inc_release(&rbwork->seq);
789 wake_up_all(&rbwork->waiters);
790 if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
791 /* Only cpu_buffer sets the above flags */
792 struct ring_buffer_per_cpu *cpu_buffer =
793 container_of(rbwork, struct ring_buffer_per_cpu, irq_work);
795 /* Called from interrupt context */
796 raw_spin_lock(&cpu_buffer->reader_lock);
797 rbwork->wakeup_full = false;
798 rbwork->full_waiters_pending = false;
800 /* Waking up all waiters, they will reset the shortest full */
801 cpu_buffer->shortest_full = 0;
802 raw_spin_unlock(&cpu_buffer->reader_lock);
804 wake_up_all(&rbwork->full_waiters);
809 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
810 * @buffer: The ring buffer to wake waiters on
811 * @cpu: The CPU buffer to wake waiters on
813 * In the case of a file that represents a ring buffer is closing,
814 * it is prudent to wake up any waiters that are on this.
816 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
818 struct ring_buffer_per_cpu *cpu_buffer;
819 struct rb_irq_work *rbwork;
821 if (!buffer)
822 return;
824 if (cpu == RING_BUFFER_ALL_CPUS) {
826 /* Wake up individual ones too. One level recursion */
827 for_each_buffer_cpu(buffer, cpu)
828 ring_buffer_wake_waiters(buffer, cpu);
830 rbwork = &buffer->irq_work;
831 } else {
832 if (WARN_ON_ONCE(!buffer->buffers))
833 return;
834 if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
835 return;
837 cpu_buffer = buffer->buffers[cpu];
838 /* The CPU buffer may not have been initialized yet */
839 if (!cpu_buffer)
840 return;
841 rbwork = &cpu_buffer->irq_work;
844 /* This can be called in any context */
845 irq_work_queue(&rbwork->work);
848 static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full)
850 struct ring_buffer_per_cpu *cpu_buffer;
851 bool ret = false;
853 /* Reads of all CPUs always waits for any data */
854 if (cpu == RING_BUFFER_ALL_CPUS)
855 return !ring_buffer_empty(buffer);
857 cpu_buffer = buffer->buffers[cpu];
859 if (!ring_buffer_empty_cpu(buffer, cpu)) {
860 unsigned long flags;
861 bool pagebusy;
863 if (!full)
864 return true;
866 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
867 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
868 ret = !pagebusy && full_hit(buffer, cpu, full);
870 if (!ret && (!cpu_buffer->shortest_full ||
871 cpu_buffer->shortest_full > full)) {
872 cpu_buffer->shortest_full = full;
874 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
876 return ret;
879 static inline bool
880 rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer,
881 int cpu, int full, ring_buffer_cond_fn cond, void *data)
883 if (rb_watermark_hit(buffer, cpu, full))
884 return true;
886 if (cond(data))
887 return true;
890 * The events can happen in critical sections where
891 * checking a work queue can cause deadlocks.
892 * After adding a task to the queue, this flag is set
893 * only to notify events to try to wake up the queue
894 * using irq_work.
896 * We don't clear it even if the buffer is no longer
897 * empty. The flag only causes the next event to run
898 * irq_work to do the work queue wake up. The worse
899 * that can happen if we race with !trace_empty() is that
900 * an event will cause an irq_work to try to wake up
901 * an empty queue.
903 * There's no reason to protect this flag either, as
904 * the work queue and irq_work logic will do the necessary
905 * synchronization for the wake ups. The only thing
906 * that is necessary is that the wake up happens after
907 * a task has been queued. It's OK for spurious wake ups.
909 if (full)
910 rbwork->full_waiters_pending = true;
911 else
912 rbwork->waiters_pending = true;
914 return false;
917 struct rb_wait_data {
918 struct rb_irq_work *irq_work;
919 int seq;
923 * The default wait condition for ring_buffer_wait() is to just to exit the
924 * wait loop the first time it is woken up.
926 static bool rb_wait_once(void *data)
928 struct rb_wait_data *rdata = data;
929 struct rb_irq_work *rbwork = rdata->irq_work;
931 return atomic_read_acquire(&rbwork->seq) != rdata->seq;
935 * ring_buffer_wait - wait for input to the ring buffer
936 * @buffer: buffer to wait on
937 * @cpu: the cpu buffer to wait on
938 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
939 * @cond: condition function to break out of wait (NULL to run once)
940 * @data: the data to pass to @cond.
942 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
943 * as data is added to any of the @buffer's cpu buffers. Otherwise
944 * it will wait for data to be added to a specific cpu buffer.
946 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full,
947 ring_buffer_cond_fn cond, void *data)
949 struct ring_buffer_per_cpu *cpu_buffer;
950 struct wait_queue_head *waitq;
951 struct rb_irq_work *rbwork;
952 struct rb_wait_data rdata;
953 int ret = 0;
956 * Depending on what the caller is waiting for, either any
957 * data in any cpu buffer, or a specific buffer, put the
958 * caller on the appropriate wait queue.
960 if (cpu == RING_BUFFER_ALL_CPUS) {
961 rbwork = &buffer->irq_work;
962 /* Full only makes sense on per cpu reads */
963 full = 0;
964 } else {
965 if (!cpumask_test_cpu(cpu, buffer->cpumask))
966 return -ENODEV;
967 cpu_buffer = buffer->buffers[cpu];
968 rbwork = &cpu_buffer->irq_work;
971 if (full)
972 waitq = &rbwork->full_waiters;
973 else
974 waitq = &rbwork->waiters;
976 /* Set up to exit loop as soon as it is woken */
977 if (!cond) {
978 cond = rb_wait_once;
979 rdata.irq_work = rbwork;
980 rdata.seq = atomic_read_acquire(&rbwork->seq);
981 data = &rdata;
984 ret = wait_event_interruptible((*waitq),
985 rb_wait_cond(rbwork, buffer, cpu, full, cond, data));
987 return ret;
991 * ring_buffer_poll_wait - poll on buffer input
992 * @buffer: buffer to wait on
993 * @cpu: the cpu buffer to wait on
994 * @filp: the file descriptor
995 * @poll_table: The poll descriptor
996 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
998 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
999 * as data is added to any of the @buffer's cpu buffers. Otherwise
1000 * it will wait for data to be added to a specific cpu buffer.
1002 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1003 * zero otherwise.
1005 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1006 struct file *filp, poll_table *poll_table, int full)
1008 struct ring_buffer_per_cpu *cpu_buffer;
1009 struct rb_irq_work *rbwork;
1011 if (cpu == RING_BUFFER_ALL_CPUS) {
1012 rbwork = &buffer->irq_work;
1013 full = 0;
1014 } else {
1015 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1016 return EPOLLERR;
1018 cpu_buffer = buffer->buffers[cpu];
1019 rbwork = &cpu_buffer->irq_work;
1022 if (full) {
1023 poll_wait(filp, &rbwork->full_waiters, poll_table);
1025 if (rb_watermark_hit(buffer, cpu, full))
1026 return EPOLLIN | EPOLLRDNORM;
1028 * Only allow full_waiters_pending update to be seen after
1029 * the shortest_full is set (in rb_watermark_hit). If the
1030 * writer sees the full_waiters_pending flag set, it will
1031 * compare the amount in the ring buffer to shortest_full.
1032 * If the amount in the ring buffer is greater than the
1033 * shortest_full percent, it will call the irq_work handler
1034 * to wake up this list. The irq_handler will reset shortest_full
1035 * back to zero. That's done under the reader_lock, but
1036 * the below smp_mb() makes sure that the update to
1037 * full_waiters_pending doesn't leak up into the above.
1039 smp_mb();
1040 rbwork->full_waiters_pending = true;
1041 return 0;
1044 poll_wait(filp, &rbwork->waiters, poll_table);
1045 rbwork->waiters_pending = true;
1048 * There's a tight race between setting the waiters_pending and
1049 * checking if the ring buffer is empty. Once the waiters_pending bit
1050 * is set, the next event will wake the task up, but we can get stuck
1051 * if there's only a single event in.
1053 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1054 * but adding a memory barrier to all events will cause too much of a
1055 * performance hit in the fast path. We only need a memory barrier when
1056 * the buffer goes from empty to having content. But as this race is
1057 * extremely small, and it's not a problem if another event comes in, we
1058 * will fix it later.
1060 smp_mb();
1062 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1063 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1064 return EPOLLIN | EPOLLRDNORM;
1065 return 0;
1068 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1069 #define RB_WARN_ON(b, cond) \
1070 ({ \
1071 int _____ret = unlikely(cond); \
1072 if (_____ret) { \
1073 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1074 struct ring_buffer_per_cpu *__b = \
1075 (void *)b; \
1076 atomic_inc(&__b->buffer->record_disabled); \
1077 } else \
1078 atomic_inc(&b->record_disabled); \
1079 WARN_ON(1); \
1081 _____ret; \
1084 /* Up this if you want to test the TIME_EXTENTS and normalization */
1085 #define DEBUG_SHIFT 0
1087 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1089 u64 ts;
1091 /* Skip retpolines :-( */
1092 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1093 ts = trace_clock_local();
1094 else
1095 ts = buffer->clock();
1097 /* shift to debug/test normalization and TIME_EXTENTS */
1098 return ts << DEBUG_SHIFT;
1101 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1103 u64 time;
1105 preempt_disable_notrace();
1106 time = rb_time_stamp(buffer);
1107 preempt_enable_notrace();
1109 return time;
1111 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1113 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1114 int cpu, u64 *ts)
1116 /* Just stupid testing the normalize function and deltas */
1117 *ts >>= DEBUG_SHIFT;
1119 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1122 * Making the ring buffer lockless makes things tricky.
1123 * Although writes only happen on the CPU that they are on,
1124 * and they only need to worry about interrupts. Reads can
1125 * happen on any CPU.
1127 * The reader page is always off the ring buffer, but when the
1128 * reader finishes with a page, it needs to swap its page with
1129 * a new one from the buffer. The reader needs to take from
1130 * the head (writes go to the tail). But if a writer is in overwrite
1131 * mode and wraps, it must push the head page forward.
1133 * Here lies the problem.
1135 * The reader must be careful to replace only the head page, and
1136 * not another one. As described at the top of the file in the
1137 * ASCII art, the reader sets its old page to point to the next
1138 * page after head. It then sets the page after head to point to
1139 * the old reader page. But if the writer moves the head page
1140 * during this operation, the reader could end up with the tail.
1142 * We use cmpxchg to help prevent this race. We also do something
1143 * special with the page before head. We set the LSB to 1.
1145 * When the writer must push the page forward, it will clear the
1146 * bit that points to the head page, move the head, and then set
1147 * the bit that points to the new head page.
1149 * We also don't want an interrupt coming in and moving the head
1150 * page on another writer. Thus we use the second LSB to catch
1151 * that too. Thus:
1153 * head->list->prev->next bit 1 bit 0
1154 * ------- -------
1155 * Normal page 0 0
1156 * Points to head page 0 1
1157 * New head page 1 0
1159 * Note we can not trust the prev pointer of the head page, because:
1161 * +----+ +-----+ +-----+
1162 * | |------>| T |---X--->| N |
1163 * | |<------| | | |
1164 * +----+ +-----+ +-----+
1165 * ^ ^ |
1166 * | +-----+ | |
1167 * +----------| R |----------+ |
1168 * | |<-----------+
1169 * +-----+
1171 * Key: ---X--> HEAD flag set in pointer
1172 * T Tail page
1173 * R Reader page
1174 * N Next page
1176 * (see __rb_reserve_next() to see where this happens)
1178 * What the above shows is that the reader just swapped out
1179 * the reader page with a page in the buffer, but before it
1180 * could make the new header point back to the new page added
1181 * it was preempted by a writer. The writer moved forward onto
1182 * the new page added by the reader and is about to move forward
1183 * again.
1185 * You can see, it is legitimate for the previous pointer of
1186 * the head (or any page) not to point back to itself. But only
1187 * temporarily.
1190 #define RB_PAGE_NORMAL 0UL
1191 #define RB_PAGE_HEAD 1UL
1192 #define RB_PAGE_UPDATE 2UL
1195 #define RB_FLAG_MASK 3UL
1197 /* PAGE_MOVED is not part of the mask */
1198 #define RB_PAGE_MOVED 4UL
1201 * rb_list_head - remove any bit
1203 static struct list_head *rb_list_head(struct list_head *list)
1205 unsigned long val = (unsigned long)list;
1207 return (struct list_head *)(val & ~RB_FLAG_MASK);
1211 * rb_is_head_page - test if the given page is the head page
1213 * Because the reader may move the head_page pointer, we can
1214 * not trust what the head page is (it may be pointing to
1215 * the reader page). But if the next page is a header page,
1216 * its flags will be non zero.
1218 static inline int
1219 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1221 unsigned long val;
1223 val = (unsigned long)list->next;
1225 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1226 return RB_PAGE_MOVED;
1228 return val & RB_FLAG_MASK;
1232 * rb_is_reader_page
1234 * The unique thing about the reader page, is that, if the
1235 * writer is ever on it, the previous pointer never points
1236 * back to the reader page.
1238 static bool rb_is_reader_page(struct buffer_page *page)
1240 struct list_head *list = page->list.prev;
1242 return rb_list_head(list->next) != &page->list;
1246 * rb_set_list_to_head - set a list_head to be pointing to head.
1248 static void rb_set_list_to_head(struct list_head *list)
1250 unsigned long *ptr;
1252 ptr = (unsigned long *)&list->next;
1253 *ptr |= RB_PAGE_HEAD;
1254 *ptr &= ~RB_PAGE_UPDATE;
1258 * rb_head_page_activate - sets up head page
1260 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1262 struct buffer_page *head;
1264 head = cpu_buffer->head_page;
1265 if (!head)
1266 return;
1269 * Set the previous list pointer to have the HEAD flag.
1271 rb_set_list_to_head(head->list.prev);
1273 if (cpu_buffer->ring_meta) {
1274 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1275 meta->head_buffer = (unsigned long)head->page;
1279 static void rb_list_head_clear(struct list_head *list)
1281 unsigned long *ptr = (unsigned long *)&list->next;
1283 *ptr &= ~RB_FLAG_MASK;
1287 * rb_head_page_deactivate - clears head page ptr (for free list)
1289 static void
1290 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1292 struct list_head *hd;
1294 /* Go through the whole list and clear any pointers found. */
1295 rb_list_head_clear(cpu_buffer->pages);
1297 list_for_each(hd, cpu_buffer->pages)
1298 rb_list_head_clear(hd);
1301 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1302 struct buffer_page *head,
1303 struct buffer_page *prev,
1304 int old_flag, int new_flag)
1306 struct list_head *list;
1307 unsigned long val = (unsigned long)&head->list;
1308 unsigned long ret;
1310 list = &prev->list;
1312 val &= ~RB_FLAG_MASK;
1314 ret = cmpxchg((unsigned long *)&list->next,
1315 val | old_flag, val | new_flag);
1317 /* check if the reader took the page */
1318 if ((ret & ~RB_FLAG_MASK) != val)
1319 return RB_PAGE_MOVED;
1321 return ret & RB_FLAG_MASK;
1324 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1325 struct buffer_page *head,
1326 struct buffer_page *prev,
1327 int old_flag)
1329 return rb_head_page_set(cpu_buffer, head, prev,
1330 old_flag, RB_PAGE_UPDATE);
1333 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1334 struct buffer_page *head,
1335 struct buffer_page *prev,
1336 int old_flag)
1338 return rb_head_page_set(cpu_buffer, head, prev,
1339 old_flag, RB_PAGE_HEAD);
1342 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1343 struct buffer_page *head,
1344 struct buffer_page *prev,
1345 int old_flag)
1347 return rb_head_page_set(cpu_buffer, head, prev,
1348 old_flag, RB_PAGE_NORMAL);
1351 static inline void rb_inc_page(struct buffer_page **bpage)
1353 struct list_head *p = rb_list_head((*bpage)->list.next);
1355 *bpage = list_entry(p, struct buffer_page, list);
1358 static struct buffer_page *
1359 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1361 struct buffer_page *head;
1362 struct buffer_page *page;
1363 struct list_head *list;
1364 int i;
1366 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1367 return NULL;
1369 /* sanity check */
1370 list = cpu_buffer->pages;
1371 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1372 return NULL;
1374 page = head = cpu_buffer->head_page;
1376 * It is possible that the writer moves the header behind
1377 * where we started, and we miss in one loop.
1378 * A second loop should grab the header, but we'll do
1379 * three loops just because I'm paranoid.
1381 for (i = 0; i < 3; i++) {
1382 do {
1383 if (rb_is_head_page(page, page->list.prev)) {
1384 cpu_buffer->head_page = page;
1385 return page;
1387 rb_inc_page(&page);
1388 } while (page != head);
1391 RB_WARN_ON(cpu_buffer, 1);
1393 return NULL;
1396 static bool rb_head_page_replace(struct buffer_page *old,
1397 struct buffer_page *new)
1399 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1400 unsigned long val;
1402 val = *ptr & ~RB_FLAG_MASK;
1403 val |= RB_PAGE_HEAD;
1405 return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1409 * rb_tail_page_update - move the tail page forward
1411 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1412 struct buffer_page *tail_page,
1413 struct buffer_page *next_page)
1415 unsigned long old_entries;
1416 unsigned long old_write;
1419 * The tail page now needs to be moved forward.
1421 * We need to reset the tail page, but without messing
1422 * with possible erasing of data brought in by interrupts
1423 * that have moved the tail page and are currently on it.
1425 * We add a counter to the write field to denote this.
1427 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1428 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1431 * Just make sure we have seen our old_write and synchronize
1432 * with any interrupts that come in.
1434 barrier();
1437 * If the tail page is still the same as what we think
1438 * it is, then it is up to us to update the tail
1439 * pointer.
1441 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1442 /* Zero the write counter */
1443 unsigned long val = old_write & ~RB_WRITE_MASK;
1444 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1447 * This will only succeed if an interrupt did
1448 * not come in and change it. In which case, we
1449 * do not want to modify it.
1451 * We add (void) to let the compiler know that we do not care
1452 * about the return value of these functions. We use the
1453 * cmpxchg to only update if an interrupt did not already
1454 * do it for us. If the cmpxchg fails, we don't care.
1456 (void)local_cmpxchg(&next_page->write, old_write, val);
1457 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1460 * No need to worry about races with clearing out the commit.
1461 * it only can increment when a commit takes place. But that
1462 * only happens in the outer most nested commit.
1464 local_set(&next_page->page->commit, 0);
1466 /* Either we update tail_page or an interrupt does */
1467 if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page))
1468 local_inc(&cpu_buffer->pages_touched);
1472 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1473 struct buffer_page *bpage)
1475 unsigned long val = (unsigned long)bpage;
1477 RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1480 static bool rb_check_links(struct ring_buffer_per_cpu *cpu_buffer,
1481 struct list_head *list)
1483 if (RB_WARN_ON(cpu_buffer,
1484 rb_list_head(rb_list_head(list->next)->prev) != list))
1485 return false;
1487 if (RB_WARN_ON(cpu_buffer,
1488 rb_list_head(rb_list_head(list->prev)->next) != list))
1489 return false;
1491 return true;
1495 * rb_check_pages - integrity check of buffer pages
1496 * @cpu_buffer: CPU buffer with pages to test
1498 * As a safety measure we check to make sure the data pages have not
1499 * been corrupted.
1501 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1503 struct list_head *head, *tmp;
1504 unsigned long buffer_cnt;
1505 unsigned long flags;
1506 int nr_loops = 0;
1509 * Walk the linked list underpinning the ring buffer and validate all
1510 * its next and prev links.
1512 * The check acquires the reader_lock to avoid concurrent processing
1513 * with code that could be modifying the list. However, the lock cannot
1514 * be held for the entire duration of the walk, as this would make the
1515 * time when interrupts are disabled non-deterministic, dependent on the
1516 * ring buffer size. Therefore, the code releases and re-acquires the
1517 * lock after checking each page. The ring_buffer_per_cpu.cnt variable
1518 * is then used to detect if the list was modified while the lock was
1519 * not held, in which case the check needs to be restarted.
1521 * The code attempts to perform the check at most three times before
1522 * giving up. This is acceptable because this is only a self-validation
1523 * to detect problems early on. In practice, the list modification
1524 * operations are fairly spaced, and so this check typically succeeds at
1525 * most on the second try.
1527 again:
1528 if (++nr_loops > 3)
1529 return;
1531 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1532 head = rb_list_head(cpu_buffer->pages);
1533 if (!rb_check_links(cpu_buffer, head))
1534 goto out_locked;
1535 buffer_cnt = cpu_buffer->cnt;
1536 tmp = head;
1537 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1539 while (true) {
1540 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1542 if (buffer_cnt != cpu_buffer->cnt) {
1543 /* The list was updated, try again. */
1544 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1545 goto again;
1548 tmp = rb_list_head(tmp->next);
1549 if (tmp == head)
1550 /* The iteration circled back, all is done. */
1551 goto out_locked;
1553 if (!rb_check_links(cpu_buffer, tmp))
1554 goto out_locked;
1556 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1559 out_locked:
1560 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1564 * Take an address, add the meta data size as well as the array of
1565 * array subbuffer indexes, then align it to a subbuffer size.
1567 * This is used to help find the next per cpu subbuffer within a mapped range.
1569 static unsigned long
1570 rb_range_align_subbuf(unsigned long addr, int subbuf_size, int nr_subbufs)
1572 addr += sizeof(struct ring_buffer_meta) +
1573 sizeof(int) * nr_subbufs;
1574 return ALIGN(addr, subbuf_size);
1578 * Return the ring_buffer_meta for a given @cpu.
1580 static void *rb_range_meta(struct trace_buffer *buffer, int nr_pages, int cpu)
1582 int subbuf_size = buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
1583 unsigned long ptr = buffer->range_addr_start;
1584 struct ring_buffer_meta *meta;
1585 int nr_subbufs;
1587 if (!ptr)
1588 return NULL;
1590 /* When nr_pages passed in is zero, the first meta has already been initialized */
1591 if (!nr_pages) {
1592 meta = (struct ring_buffer_meta *)ptr;
1593 nr_subbufs = meta->nr_subbufs;
1594 } else {
1595 meta = NULL;
1596 /* Include the reader page */
1597 nr_subbufs = nr_pages + 1;
1601 * The first chunk may not be subbuffer aligned, where as
1602 * the rest of the chunks are.
1604 if (cpu) {
1605 ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1606 ptr += subbuf_size * nr_subbufs;
1608 /* We can use multiplication to find chunks greater than 1 */
1609 if (cpu > 1) {
1610 unsigned long size;
1611 unsigned long p;
1613 /* Save the beginning of this CPU chunk */
1614 p = ptr;
1615 ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1616 ptr += subbuf_size * nr_subbufs;
1618 /* Now all chunks after this are the same size */
1619 size = ptr - p;
1620 ptr += size * (cpu - 2);
1623 return (void *)ptr;
1626 /* Return the start of subbufs given the meta pointer */
1627 static void *rb_subbufs_from_meta(struct ring_buffer_meta *meta)
1629 int subbuf_size = meta->subbuf_size;
1630 unsigned long ptr;
1632 ptr = (unsigned long)meta;
1633 ptr = rb_range_align_subbuf(ptr, subbuf_size, meta->nr_subbufs);
1635 return (void *)ptr;
1639 * Return a specific sub-buffer for a given @cpu defined by @idx.
1641 static void *rb_range_buffer(struct ring_buffer_per_cpu *cpu_buffer, int idx)
1643 struct ring_buffer_meta *meta;
1644 unsigned long ptr;
1645 int subbuf_size;
1647 meta = rb_range_meta(cpu_buffer->buffer, 0, cpu_buffer->cpu);
1648 if (!meta)
1649 return NULL;
1651 if (WARN_ON_ONCE(idx >= meta->nr_subbufs))
1652 return NULL;
1654 subbuf_size = meta->subbuf_size;
1656 /* Map this buffer to the order that's in meta->buffers[] */
1657 idx = meta->buffers[idx];
1659 ptr = (unsigned long)rb_subbufs_from_meta(meta);
1661 ptr += subbuf_size * idx;
1662 if (ptr + subbuf_size > cpu_buffer->buffer->range_addr_end)
1663 return NULL;
1665 return (void *)ptr;
1669 * See if the existing memory contains valid ring buffer data.
1670 * As the previous kernel must be the same as this kernel, all
1671 * the calculations (size of buffers and number of buffers)
1672 * must be the same.
1674 static bool rb_meta_valid(struct ring_buffer_meta *meta, int cpu,
1675 struct trace_buffer *buffer, int nr_pages)
1677 int subbuf_size = PAGE_SIZE;
1678 struct buffer_data_page *subbuf;
1679 unsigned long buffers_start;
1680 unsigned long buffers_end;
1681 int i;
1683 /* Check the meta magic and meta struct size */
1684 if (meta->magic != RING_BUFFER_META_MAGIC ||
1685 meta->struct_size != sizeof(*meta)) {
1686 pr_info("Ring buffer boot meta[%d] mismatch of magic or struct size\n", cpu);
1687 return false;
1690 /* The subbuffer's size and number of subbuffers must match */
1691 if (meta->subbuf_size != subbuf_size ||
1692 meta->nr_subbufs != nr_pages + 1) {
1693 pr_info("Ring buffer boot meta [%d] mismatch of subbuf_size/nr_pages\n", cpu);
1694 return false;
1697 buffers_start = meta->first_buffer;
1698 buffers_end = meta->first_buffer + (subbuf_size * meta->nr_subbufs);
1700 /* Is the head and commit buffers within the range of buffers? */
1701 if (meta->head_buffer < buffers_start ||
1702 meta->head_buffer >= buffers_end) {
1703 pr_info("Ring buffer boot meta [%d] head buffer out of range\n", cpu);
1704 return false;
1707 if (meta->commit_buffer < buffers_start ||
1708 meta->commit_buffer >= buffers_end) {
1709 pr_info("Ring buffer boot meta [%d] commit buffer out of range\n", cpu);
1710 return false;
1713 subbuf = rb_subbufs_from_meta(meta);
1715 /* Is the meta buffers and the subbufs themselves have correct data? */
1716 for (i = 0; i < meta->nr_subbufs; i++) {
1717 if (meta->buffers[i] < 0 ||
1718 meta->buffers[i] >= meta->nr_subbufs) {
1719 pr_info("Ring buffer boot meta [%d] array out of range\n", cpu);
1720 return false;
1723 if ((unsigned)local_read(&subbuf->commit) > subbuf_size) {
1724 pr_info("Ring buffer boot meta [%d] buffer invalid commit\n", cpu);
1725 return false;
1728 subbuf = (void *)subbuf + subbuf_size;
1731 return true;
1734 static int rb_meta_subbuf_idx(struct ring_buffer_meta *meta, void *subbuf);
1736 static int rb_read_data_buffer(struct buffer_data_page *dpage, int tail, int cpu,
1737 unsigned long long *timestamp, u64 *delta_ptr)
1739 struct ring_buffer_event *event;
1740 u64 ts, delta;
1741 int events = 0;
1742 int e;
1744 *delta_ptr = 0;
1745 *timestamp = 0;
1747 ts = dpage->time_stamp;
1749 for (e = 0; e < tail; e += rb_event_length(event)) {
1751 event = (struct ring_buffer_event *)(dpage->data + e);
1753 switch (event->type_len) {
1755 case RINGBUF_TYPE_TIME_EXTEND:
1756 delta = rb_event_time_stamp(event);
1757 ts += delta;
1758 break;
1760 case RINGBUF_TYPE_TIME_STAMP:
1761 delta = rb_event_time_stamp(event);
1762 delta = rb_fix_abs_ts(delta, ts);
1763 if (delta < ts) {
1764 *delta_ptr = delta;
1765 *timestamp = ts;
1766 return -1;
1768 ts = delta;
1769 break;
1771 case RINGBUF_TYPE_PADDING:
1772 if (event->time_delta == 1)
1773 break;
1774 fallthrough;
1775 case RINGBUF_TYPE_DATA:
1776 events++;
1777 ts += event->time_delta;
1778 break;
1780 default:
1781 return -1;
1784 *timestamp = ts;
1785 return events;
1788 static int rb_validate_buffer(struct buffer_data_page *dpage, int cpu)
1790 unsigned long long ts;
1791 u64 delta;
1792 int tail;
1794 tail = local_read(&dpage->commit);
1795 return rb_read_data_buffer(dpage, tail, cpu, &ts, &delta);
1798 /* If the meta data has been validated, now validate the events */
1799 static void rb_meta_validate_events(struct ring_buffer_per_cpu *cpu_buffer)
1801 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1802 struct buffer_page *head_page;
1803 unsigned long entry_bytes = 0;
1804 unsigned long entries = 0;
1805 int ret;
1806 int i;
1808 if (!meta || !meta->head_buffer)
1809 return;
1811 /* Do the reader page first */
1812 ret = rb_validate_buffer(cpu_buffer->reader_page->page, cpu_buffer->cpu);
1813 if (ret < 0) {
1814 pr_info("Ring buffer reader page is invalid\n");
1815 goto invalid;
1817 entries += ret;
1818 entry_bytes += local_read(&cpu_buffer->reader_page->page->commit);
1819 local_set(&cpu_buffer->reader_page->entries, ret);
1821 head_page = cpu_buffer->head_page;
1823 /* If both the head and commit are on the reader_page then we are done. */
1824 if (head_page == cpu_buffer->reader_page &&
1825 head_page == cpu_buffer->commit_page)
1826 goto done;
1828 /* Iterate until finding the commit page */
1829 for (i = 0; i < meta->nr_subbufs + 1; i++, rb_inc_page(&head_page)) {
1831 /* Reader page has already been done */
1832 if (head_page == cpu_buffer->reader_page)
1833 continue;
1835 ret = rb_validate_buffer(head_page->page, cpu_buffer->cpu);
1836 if (ret < 0) {
1837 pr_info("Ring buffer meta [%d] invalid buffer page\n",
1838 cpu_buffer->cpu);
1839 goto invalid;
1841 entries += ret;
1842 entry_bytes += local_read(&head_page->page->commit);
1843 local_set(&cpu_buffer->head_page->entries, ret);
1845 if (head_page == cpu_buffer->commit_page)
1846 break;
1849 if (head_page != cpu_buffer->commit_page) {
1850 pr_info("Ring buffer meta [%d] commit page not found\n",
1851 cpu_buffer->cpu);
1852 goto invalid;
1854 done:
1855 local_set(&cpu_buffer->entries, entries);
1856 local_set(&cpu_buffer->entries_bytes, entry_bytes);
1858 pr_info("Ring buffer meta [%d] is from previous boot!\n", cpu_buffer->cpu);
1859 return;
1861 invalid:
1862 /* The content of the buffers are invalid, reset the meta data */
1863 meta->head_buffer = 0;
1864 meta->commit_buffer = 0;
1866 /* Reset the reader page */
1867 local_set(&cpu_buffer->reader_page->entries, 0);
1868 local_set(&cpu_buffer->reader_page->page->commit, 0);
1870 /* Reset all the subbuffers */
1871 for (i = 0; i < meta->nr_subbufs - 1; i++, rb_inc_page(&head_page)) {
1872 local_set(&head_page->entries, 0);
1873 local_set(&head_page->page->commit, 0);
1877 /* Used to calculate data delta */
1878 static char rb_data_ptr[] = "";
1880 #define THIS_TEXT_PTR ((unsigned long)rb_meta_init_text_addr)
1881 #define THIS_DATA_PTR ((unsigned long)rb_data_ptr)
1883 static void rb_meta_init_text_addr(struct ring_buffer_meta *meta)
1885 meta->text_addr = THIS_TEXT_PTR;
1886 meta->data_addr = THIS_DATA_PTR;
1889 static void rb_range_meta_init(struct trace_buffer *buffer, int nr_pages)
1891 struct ring_buffer_meta *meta;
1892 unsigned long delta;
1893 void *subbuf;
1894 int cpu;
1895 int i;
1897 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1898 void *next_meta;
1900 meta = rb_range_meta(buffer, nr_pages, cpu);
1902 if (rb_meta_valid(meta, cpu, buffer, nr_pages)) {
1903 /* Make the mappings match the current address */
1904 subbuf = rb_subbufs_from_meta(meta);
1905 delta = (unsigned long)subbuf - meta->first_buffer;
1906 meta->first_buffer += delta;
1907 meta->head_buffer += delta;
1908 meta->commit_buffer += delta;
1909 buffer->last_text_delta = THIS_TEXT_PTR - meta->text_addr;
1910 buffer->last_data_delta = THIS_DATA_PTR - meta->data_addr;
1911 continue;
1914 if (cpu < nr_cpu_ids - 1)
1915 next_meta = rb_range_meta(buffer, nr_pages, cpu + 1);
1916 else
1917 next_meta = (void *)buffer->range_addr_end;
1919 memset(meta, 0, next_meta - (void *)meta);
1921 meta->magic = RING_BUFFER_META_MAGIC;
1922 meta->struct_size = sizeof(*meta);
1924 meta->nr_subbufs = nr_pages + 1;
1925 meta->subbuf_size = PAGE_SIZE;
1927 subbuf = rb_subbufs_from_meta(meta);
1929 meta->first_buffer = (unsigned long)subbuf;
1930 rb_meta_init_text_addr(meta);
1933 * The buffers[] array holds the order of the sub-buffers
1934 * that are after the meta data. The sub-buffers may
1935 * be swapped out when read and inserted into a different
1936 * location of the ring buffer. Although their addresses
1937 * remain the same, the buffers[] array contains the
1938 * index into the sub-buffers holding their actual order.
1940 for (i = 0; i < meta->nr_subbufs; i++) {
1941 meta->buffers[i] = i;
1942 rb_init_page(subbuf);
1943 subbuf += meta->subbuf_size;
1948 static void *rbm_start(struct seq_file *m, loff_t *pos)
1950 struct ring_buffer_per_cpu *cpu_buffer = m->private;
1951 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1952 unsigned long val;
1954 if (!meta)
1955 return NULL;
1957 if (*pos > meta->nr_subbufs)
1958 return NULL;
1960 val = *pos;
1961 val++;
1963 return (void *)val;
1966 static void *rbm_next(struct seq_file *m, void *v, loff_t *pos)
1968 (*pos)++;
1970 return rbm_start(m, pos);
1973 static int rbm_show(struct seq_file *m, void *v)
1975 struct ring_buffer_per_cpu *cpu_buffer = m->private;
1976 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1977 unsigned long val = (unsigned long)v;
1979 if (val == 1) {
1980 seq_printf(m, "head_buffer: %d\n",
1981 rb_meta_subbuf_idx(meta, (void *)meta->head_buffer));
1982 seq_printf(m, "commit_buffer: %d\n",
1983 rb_meta_subbuf_idx(meta, (void *)meta->commit_buffer));
1984 seq_printf(m, "subbuf_size: %d\n", meta->subbuf_size);
1985 seq_printf(m, "nr_subbufs: %d\n", meta->nr_subbufs);
1986 return 0;
1989 val -= 2;
1990 seq_printf(m, "buffer[%ld]: %d\n", val, meta->buffers[val]);
1992 return 0;
1995 static void rbm_stop(struct seq_file *m, void *p)
1999 static const struct seq_operations rb_meta_seq_ops = {
2000 .start = rbm_start,
2001 .next = rbm_next,
2002 .show = rbm_show,
2003 .stop = rbm_stop,
2006 int ring_buffer_meta_seq_init(struct file *file, struct trace_buffer *buffer, int cpu)
2008 struct seq_file *m;
2009 int ret;
2011 ret = seq_open(file, &rb_meta_seq_ops);
2012 if (ret)
2013 return ret;
2015 m = file->private_data;
2016 m->private = buffer->buffers[cpu];
2018 return 0;
2021 /* Map the buffer_pages to the previous head and commit pages */
2022 static void rb_meta_buffer_update(struct ring_buffer_per_cpu *cpu_buffer,
2023 struct buffer_page *bpage)
2025 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
2027 if (meta->head_buffer == (unsigned long)bpage->page)
2028 cpu_buffer->head_page = bpage;
2030 if (meta->commit_buffer == (unsigned long)bpage->page) {
2031 cpu_buffer->commit_page = bpage;
2032 cpu_buffer->tail_page = bpage;
2036 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2037 long nr_pages, struct list_head *pages)
2039 struct trace_buffer *buffer = cpu_buffer->buffer;
2040 struct ring_buffer_meta *meta = NULL;
2041 struct buffer_page *bpage, *tmp;
2042 bool user_thread = current->mm != NULL;
2043 gfp_t mflags;
2044 long i;
2047 * Check if the available memory is there first.
2048 * Note, si_mem_available() only gives us a rough estimate of available
2049 * memory. It may not be accurate. But we don't care, we just want
2050 * to prevent doing any allocation when it is obvious that it is
2051 * not going to succeed.
2053 i = si_mem_available();
2054 if (i < nr_pages)
2055 return -ENOMEM;
2058 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
2059 * gracefully without invoking oom-killer and the system is not
2060 * destabilized.
2062 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
2065 * If a user thread allocates too much, and si_mem_available()
2066 * reports there's enough memory, even though there is not.
2067 * Make sure the OOM killer kills this thread. This can happen
2068 * even with RETRY_MAYFAIL because another task may be doing
2069 * an allocation after this task has taken all memory.
2070 * This is the task the OOM killer needs to take out during this
2071 * loop, even if it was triggered by an allocation somewhere else.
2073 if (user_thread)
2074 set_current_oom_origin();
2076 if (buffer->range_addr_start)
2077 meta = rb_range_meta(buffer, nr_pages, cpu_buffer->cpu);
2079 for (i = 0; i < nr_pages; i++) {
2080 struct page *page;
2082 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2083 mflags, cpu_to_node(cpu_buffer->cpu));
2084 if (!bpage)
2085 goto free_pages;
2087 rb_check_bpage(cpu_buffer, bpage);
2090 * Append the pages as for mapped buffers we want to keep
2091 * the order
2093 list_add_tail(&bpage->list, pages);
2095 if (meta) {
2096 /* A range was given. Use that for the buffer page */
2097 bpage->page = rb_range_buffer(cpu_buffer, i + 1);
2098 if (!bpage->page)
2099 goto free_pages;
2100 /* If this is valid from a previous boot */
2101 if (meta->head_buffer)
2102 rb_meta_buffer_update(cpu_buffer, bpage);
2103 bpage->range = 1;
2104 bpage->id = i + 1;
2105 } else {
2106 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu),
2107 mflags | __GFP_COMP | __GFP_ZERO,
2108 cpu_buffer->buffer->subbuf_order);
2109 if (!page)
2110 goto free_pages;
2111 bpage->page = page_address(page);
2112 rb_init_page(bpage->page);
2114 bpage->order = cpu_buffer->buffer->subbuf_order;
2116 if (user_thread && fatal_signal_pending(current))
2117 goto free_pages;
2119 if (user_thread)
2120 clear_current_oom_origin();
2122 return 0;
2124 free_pages:
2125 list_for_each_entry_safe(bpage, tmp, pages, list) {
2126 list_del_init(&bpage->list);
2127 free_buffer_page(bpage);
2129 if (user_thread)
2130 clear_current_oom_origin();
2132 return -ENOMEM;
2135 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2136 unsigned long nr_pages)
2138 LIST_HEAD(pages);
2140 WARN_ON(!nr_pages);
2142 if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
2143 return -ENOMEM;
2146 * The ring buffer page list is a circular list that does not
2147 * start and end with a list head. All page list items point to
2148 * other pages.
2150 cpu_buffer->pages = pages.next;
2151 list_del(&pages);
2153 cpu_buffer->nr_pages = nr_pages;
2155 rb_check_pages(cpu_buffer);
2157 return 0;
2160 static struct ring_buffer_per_cpu *
2161 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
2163 struct ring_buffer_per_cpu *cpu_buffer;
2164 struct ring_buffer_meta *meta;
2165 struct buffer_page *bpage;
2166 struct page *page;
2167 int ret;
2169 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
2170 GFP_KERNEL, cpu_to_node(cpu));
2171 if (!cpu_buffer)
2172 return NULL;
2174 cpu_buffer->cpu = cpu;
2175 cpu_buffer->buffer = buffer;
2176 raw_spin_lock_init(&cpu_buffer->reader_lock);
2177 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
2178 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
2179 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
2180 init_completion(&cpu_buffer->update_done);
2181 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
2182 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
2183 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
2184 mutex_init(&cpu_buffer->mapping_lock);
2186 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2187 GFP_KERNEL, cpu_to_node(cpu));
2188 if (!bpage)
2189 goto fail_free_buffer;
2191 rb_check_bpage(cpu_buffer, bpage);
2193 cpu_buffer->reader_page = bpage;
2195 if (buffer->range_addr_start) {
2197 * Range mapped buffers have the same restrictions as memory
2198 * mapped ones do.
2200 cpu_buffer->mapped = 1;
2201 cpu_buffer->ring_meta = rb_range_meta(buffer, nr_pages, cpu);
2202 bpage->page = rb_range_buffer(cpu_buffer, 0);
2203 if (!bpage->page)
2204 goto fail_free_reader;
2205 if (cpu_buffer->ring_meta->head_buffer)
2206 rb_meta_buffer_update(cpu_buffer, bpage);
2207 bpage->range = 1;
2208 } else {
2209 page = alloc_pages_node(cpu_to_node(cpu),
2210 GFP_KERNEL | __GFP_COMP | __GFP_ZERO,
2211 cpu_buffer->buffer->subbuf_order);
2212 if (!page)
2213 goto fail_free_reader;
2214 bpage->page = page_address(page);
2215 rb_init_page(bpage->page);
2218 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2219 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2221 ret = rb_allocate_pages(cpu_buffer, nr_pages);
2222 if (ret < 0)
2223 goto fail_free_reader;
2225 rb_meta_validate_events(cpu_buffer);
2227 /* If the boot meta was valid then this has already been updated */
2228 meta = cpu_buffer->ring_meta;
2229 if (!meta || !meta->head_buffer ||
2230 !cpu_buffer->head_page || !cpu_buffer->commit_page || !cpu_buffer->tail_page) {
2231 if (meta && meta->head_buffer &&
2232 (cpu_buffer->head_page || cpu_buffer->commit_page || cpu_buffer->tail_page)) {
2233 pr_warn("Ring buffer meta buffers not all mapped\n");
2234 if (!cpu_buffer->head_page)
2235 pr_warn(" Missing head_page\n");
2236 if (!cpu_buffer->commit_page)
2237 pr_warn(" Missing commit_page\n");
2238 if (!cpu_buffer->tail_page)
2239 pr_warn(" Missing tail_page\n");
2242 cpu_buffer->head_page
2243 = list_entry(cpu_buffer->pages, struct buffer_page, list);
2244 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
2246 rb_head_page_activate(cpu_buffer);
2248 if (cpu_buffer->ring_meta)
2249 meta->commit_buffer = meta->head_buffer;
2250 } else {
2251 /* The valid meta buffer still needs to activate the head page */
2252 rb_head_page_activate(cpu_buffer);
2255 return cpu_buffer;
2257 fail_free_reader:
2258 free_buffer_page(cpu_buffer->reader_page);
2260 fail_free_buffer:
2261 kfree(cpu_buffer);
2262 return NULL;
2265 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
2267 struct list_head *head = cpu_buffer->pages;
2268 struct buffer_page *bpage, *tmp;
2270 irq_work_sync(&cpu_buffer->irq_work.work);
2272 free_buffer_page(cpu_buffer->reader_page);
2274 if (head) {
2275 rb_head_page_deactivate(cpu_buffer);
2277 list_for_each_entry_safe(bpage, tmp, head, list) {
2278 list_del_init(&bpage->list);
2279 free_buffer_page(bpage);
2281 bpage = list_entry(head, struct buffer_page, list);
2282 free_buffer_page(bpage);
2285 free_page((unsigned long)cpu_buffer->free_page);
2287 kfree(cpu_buffer);
2290 static struct trace_buffer *alloc_buffer(unsigned long size, unsigned flags,
2291 int order, unsigned long start,
2292 unsigned long end,
2293 struct lock_class_key *key)
2295 struct trace_buffer *buffer;
2296 long nr_pages;
2297 int subbuf_size;
2298 int bsize;
2299 int cpu;
2300 int ret;
2302 /* keep it in its own cache line */
2303 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
2304 GFP_KERNEL);
2305 if (!buffer)
2306 return NULL;
2308 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
2309 goto fail_free_buffer;
2311 buffer->subbuf_order = order;
2312 subbuf_size = (PAGE_SIZE << order);
2313 buffer->subbuf_size = subbuf_size - BUF_PAGE_HDR_SIZE;
2315 /* Max payload is buffer page size - header (8bytes) */
2316 buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2);
2318 buffer->flags = flags;
2319 buffer->clock = trace_clock_local;
2320 buffer->reader_lock_key = key;
2322 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
2323 init_waitqueue_head(&buffer->irq_work.waiters);
2325 buffer->cpus = nr_cpu_ids;
2327 bsize = sizeof(void *) * nr_cpu_ids;
2328 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
2329 GFP_KERNEL);
2330 if (!buffer->buffers)
2331 goto fail_free_cpumask;
2333 /* If start/end are specified, then that overrides size */
2334 if (start && end) {
2335 unsigned long ptr;
2336 int n;
2338 size = end - start;
2339 size = size / nr_cpu_ids;
2342 * The number of sub-buffers (nr_pages) is determined by the
2343 * total size allocated minus the meta data size.
2344 * Then that is divided by the number of per CPU buffers
2345 * needed, plus account for the integer array index that
2346 * will be appended to the meta data.
2348 nr_pages = (size - sizeof(struct ring_buffer_meta)) /
2349 (subbuf_size + sizeof(int));
2350 /* Need at least two pages plus the reader page */
2351 if (nr_pages < 3)
2352 goto fail_free_buffers;
2354 again:
2355 /* Make sure that the size fits aligned */
2356 for (n = 0, ptr = start; n < nr_cpu_ids; n++) {
2357 ptr += sizeof(struct ring_buffer_meta) +
2358 sizeof(int) * nr_pages;
2359 ptr = ALIGN(ptr, subbuf_size);
2360 ptr += subbuf_size * nr_pages;
2362 if (ptr > end) {
2363 if (nr_pages <= 3)
2364 goto fail_free_buffers;
2365 nr_pages--;
2366 goto again;
2369 /* nr_pages should not count the reader page */
2370 nr_pages--;
2371 buffer->range_addr_start = start;
2372 buffer->range_addr_end = end;
2374 rb_range_meta_init(buffer, nr_pages);
2375 } else {
2377 /* need at least two pages */
2378 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2379 if (nr_pages < 2)
2380 nr_pages = 2;
2383 cpu = raw_smp_processor_id();
2384 cpumask_set_cpu(cpu, buffer->cpumask);
2385 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
2386 if (!buffer->buffers[cpu])
2387 goto fail_free_buffers;
2389 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2390 if (ret < 0)
2391 goto fail_free_buffers;
2393 mutex_init(&buffer->mutex);
2395 return buffer;
2397 fail_free_buffers:
2398 for_each_buffer_cpu(buffer, cpu) {
2399 if (buffer->buffers[cpu])
2400 rb_free_cpu_buffer(buffer->buffers[cpu]);
2402 kfree(buffer->buffers);
2404 fail_free_cpumask:
2405 free_cpumask_var(buffer->cpumask);
2407 fail_free_buffer:
2408 kfree(buffer);
2409 return NULL;
2413 * __ring_buffer_alloc - allocate a new ring_buffer
2414 * @size: the size in bytes per cpu that is needed.
2415 * @flags: attributes to set for the ring buffer.
2416 * @key: ring buffer reader_lock_key.
2418 * Currently the only flag that is available is the RB_FL_OVERWRITE
2419 * flag. This flag means that the buffer will overwrite old data
2420 * when the buffer wraps. If this flag is not set, the buffer will
2421 * drop data when the tail hits the head.
2423 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
2424 struct lock_class_key *key)
2426 /* Default buffer page size - one system page */
2427 return alloc_buffer(size, flags, 0, 0, 0,key);
2430 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
2433 * __ring_buffer_alloc_range - allocate a new ring_buffer from existing memory
2434 * @size: the size in bytes per cpu that is needed.
2435 * @flags: attributes to set for the ring buffer.
2436 * @order: sub-buffer order
2437 * @start: start of allocated range
2438 * @range_size: size of allocated range
2439 * @key: ring buffer reader_lock_key.
2441 * Currently the only flag that is available is the RB_FL_OVERWRITE
2442 * flag. This flag means that the buffer will overwrite old data
2443 * when the buffer wraps. If this flag is not set, the buffer will
2444 * drop data when the tail hits the head.
2446 struct trace_buffer *__ring_buffer_alloc_range(unsigned long size, unsigned flags,
2447 int order, unsigned long start,
2448 unsigned long range_size,
2449 struct lock_class_key *key)
2451 return alloc_buffer(size, flags, order, start, start + range_size, key);
2455 * ring_buffer_last_boot_delta - return the delta offset from last boot
2456 * @buffer: The buffer to return the delta from
2457 * @text: Return text delta
2458 * @data: Return data delta
2460 * Returns: The true if the delta is non zero
2462 bool ring_buffer_last_boot_delta(struct trace_buffer *buffer, long *text,
2463 long *data)
2465 if (!buffer)
2466 return false;
2468 if (!buffer->last_text_delta)
2469 return false;
2471 *text = buffer->last_text_delta;
2472 *data = buffer->last_data_delta;
2474 return true;
2478 * ring_buffer_free - free a ring buffer.
2479 * @buffer: the buffer to free.
2481 void
2482 ring_buffer_free(struct trace_buffer *buffer)
2484 int cpu;
2486 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2488 irq_work_sync(&buffer->irq_work.work);
2490 for_each_buffer_cpu(buffer, cpu)
2491 rb_free_cpu_buffer(buffer->buffers[cpu]);
2493 kfree(buffer->buffers);
2494 free_cpumask_var(buffer->cpumask);
2496 kfree(buffer);
2498 EXPORT_SYMBOL_GPL(ring_buffer_free);
2500 void ring_buffer_set_clock(struct trace_buffer *buffer,
2501 u64 (*clock)(void))
2503 buffer->clock = clock;
2506 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
2508 buffer->time_stamp_abs = abs;
2511 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
2513 return buffer->time_stamp_abs;
2516 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
2518 return local_read(&bpage->entries) & RB_WRITE_MASK;
2521 static inline unsigned long rb_page_write(struct buffer_page *bpage)
2523 return local_read(&bpage->write) & RB_WRITE_MASK;
2526 static bool
2527 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
2529 struct list_head *tail_page, *to_remove, *next_page;
2530 struct buffer_page *to_remove_page, *tmp_iter_page;
2531 struct buffer_page *last_page, *first_page;
2532 unsigned long nr_removed;
2533 unsigned long head_bit;
2534 int page_entries;
2536 head_bit = 0;
2538 raw_spin_lock_irq(&cpu_buffer->reader_lock);
2539 atomic_inc(&cpu_buffer->record_disabled);
2541 * We don't race with the readers since we have acquired the reader
2542 * lock. We also don't race with writers after disabling recording.
2543 * This makes it easy to figure out the first and the last page to be
2544 * removed from the list. We unlink all the pages in between including
2545 * the first and last pages. This is done in a busy loop so that we
2546 * lose the least number of traces.
2547 * The pages are freed after we restart recording and unlock readers.
2549 tail_page = &cpu_buffer->tail_page->list;
2552 * tail page might be on reader page, we remove the next page
2553 * from the ring buffer
2555 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2556 tail_page = rb_list_head(tail_page->next);
2557 to_remove = tail_page;
2559 /* start of pages to remove */
2560 first_page = list_entry(rb_list_head(to_remove->next),
2561 struct buffer_page, list);
2563 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
2564 to_remove = rb_list_head(to_remove)->next;
2565 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
2567 /* Read iterators need to reset themselves when some pages removed */
2568 cpu_buffer->pages_removed += nr_removed;
2570 next_page = rb_list_head(to_remove)->next;
2573 * Now we remove all pages between tail_page and next_page.
2574 * Make sure that we have head_bit value preserved for the
2575 * next page
2577 tail_page->next = (struct list_head *)((unsigned long)next_page |
2578 head_bit);
2579 next_page = rb_list_head(next_page);
2580 next_page->prev = tail_page;
2582 /* make sure pages points to a valid page in the ring buffer */
2583 cpu_buffer->pages = next_page;
2584 cpu_buffer->cnt++;
2586 /* update head page */
2587 if (head_bit)
2588 cpu_buffer->head_page = list_entry(next_page,
2589 struct buffer_page, list);
2591 /* pages are removed, resume tracing and then free the pages */
2592 atomic_dec(&cpu_buffer->record_disabled);
2593 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
2595 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
2597 /* last buffer page to remove */
2598 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
2599 list);
2600 tmp_iter_page = first_page;
2602 do {
2603 cond_resched();
2605 to_remove_page = tmp_iter_page;
2606 rb_inc_page(&tmp_iter_page);
2608 /* update the counters */
2609 page_entries = rb_page_entries(to_remove_page);
2610 if (page_entries) {
2612 * If something was added to this page, it was full
2613 * since it is not the tail page. So we deduct the
2614 * bytes consumed in ring buffer from here.
2615 * Increment overrun to account for the lost events.
2617 local_add(page_entries, &cpu_buffer->overrun);
2618 local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
2619 local_inc(&cpu_buffer->pages_lost);
2623 * We have already removed references to this list item, just
2624 * free up the buffer_page and its page
2626 free_buffer_page(to_remove_page);
2627 nr_removed--;
2629 } while (to_remove_page != last_page);
2631 RB_WARN_ON(cpu_buffer, nr_removed);
2633 return nr_removed == 0;
2636 static bool
2637 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2639 struct list_head *pages = &cpu_buffer->new_pages;
2640 unsigned long flags;
2641 bool success;
2642 int retries;
2644 /* Can be called at early boot up, where interrupts must not been enabled */
2645 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2647 * We are holding the reader lock, so the reader page won't be swapped
2648 * in the ring buffer. Now we are racing with the writer trying to
2649 * move head page and the tail page.
2650 * We are going to adapt the reader page update process where:
2651 * 1. We first splice the start and end of list of new pages between
2652 * the head page and its previous page.
2653 * 2. We cmpxchg the prev_page->next to point from head page to the
2654 * start of new pages list.
2655 * 3. Finally, we update the head->prev to the end of new list.
2657 * We will try this process 10 times, to make sure that we don't keep
2658 * spinning.
2660 retries = 10;
2661 success = false;
2662 while (retries--) {
2663 struct list_head *head_page, *prev_page;
2664 struct list_head *last_page, *first_page;
2665 struct list_head *head_page_with_bit;
2666 struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
2668 if (!hpage)
2669 break;
2670 head_page = &hpage->list;
2671 prev_page = head_page->prev;
2673 first_page = pages->next;
2674 last_page = pages->prev;
2676 head_page_with_bit = (struct list_head *)
2677 ((unsigned long)head_page | RB_PAGE_HEAD);
2679 last_page->next = head_page_with_bit;
2680 first_page->prev = prev_page;
2682 /* caution: head_page_with_bit gets updated on cmpxchg failure */
2683 if (try_cmpxchg(&prev_page->next,
2684 &head_page_with_bit, first_page)) {
2686 * yay, we replaced the page pointer to our new list,
2687 * now, we just have to update to head page's prev
2688 * pointer to point to end of list
2690 head_page->prev = last_page;
2691 cpu_buffer->cnt++;
2692 success = true;
2693 break;
2697 if (success)
2698 INIT_LIST_HEAD(pages);
2700 * If we weren't successful in adding in new pages, warn and stop
2701 * tracing
2703 RB_WARN_ON(cpu_buffer, !success);
2704 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2706 /* free pages if they weren't inserted */
2707 if (!success) {
2708 struct buffer_page *bpage, *tmp;
2709 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2710 list) {
2711 list_del_init(&bpage->list);
2712 free_buffer_page(bpage);
2715 return success;
2718 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2720 bool success;
2722 if (cpu_buffer->nr_pages_to_update > 0)
2723 success = rb_insert_pages(cpu_buffer);
2724 else
2725 success = rb_remove_pages(cpu_buffer,
2726 -cpu_buffer->nr_pages_to_update);
2728 if (success)
2729 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2732 static void update_pages_handler(struct work_struct *work)
2734 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2735 struct ring_buffer_per_cpu, update_pages_work);
2736 rb_update_pages(cpu_buffer);
2737 complete(&cpu_buffer->update_done);
2741 * ring_buffer_resize - resize the ring buffer
2742 * @buffer: the buffer to resize.
2743 * @size: the new size.
2744 * @cpu_id: the cpu buffer to resize
2746 * Minimum size is 2 * buffer->subbuf_size.
2748 * Returns 0 on success and < 0 on failure.
2750 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2751 int cpu_id)
2753 struct ring_buffer_per_cpu *cpu_buffer;
2754 unsigned long nr_pages;
2755 int cpu, err;
2758 * Always succeed at resizing a non-existent buffer:
2760 if (!buffer)
2761 return 0;
2763 /* Make sure the requested buffer exists */
2764 if (cpu_id != RING_BUFFER_ALL_CPUS &&
2765 !cpumask_test_cpu(cpu_id, buffer->cpumask))
2766 return 0;
2768 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2770 /* we need a minimum of two pages */
2771 if (nr_pages < 2)
2772 nr_pages = 2;
2774 /* prevent another thread from changing buffer sizes */
2775 mutex_lock(&buffer->mutex);
2776 atomic_inc(&buffer->resizing);
2778 if (cpu_id == RING_BUFFER_ALL_CPUS) {
2780 * Don't succeed if resizing is disabled, as a reader might be
2781 * manipulating the ring buffer and is expecting a sane state while
2782 * this is true.
2784 for_each_buffer_cpu(buffer, cpu) {
2785 cpu_buffer = buffer->buffers[cpu];
2786 if (atomic_read(&cpu_buffer->resize_disabled)) {
2787 err = -EBUSY;
2788 goto out_err_unlock;
2792 /* calculate the pages to update */
2793 for_each_buffer_cpu(buffer, cpu) {
2794 cpu_buffer = buffer->buffers[cpu];
2796 cpu_buffer->nr_pages_to_update = nr_pages -
2797 cpu_buffer->nr_pages;
2799 * nothing more to do for removing pages or no update
2801 if (cpu_buffer->nr_pages_to_update <= 0)
2802 continue;
2804 * to add pages, make sure all new pages can be
2805 * allocated without receiving ENOMEM
2807 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2808 if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2809 &cpu_buffer->new_pages)) {
2810 /* not enough memory for new pages */
2811 err = -ENOMEM;
2812 goto out_err;
2815 cond_resched();
2818 cpus_read_lock();
2820 * Fire off all the required work handlers
2821 * We can't schedule on offline CPUs, but it's not necessary
2822 * since we can change their buffer sizes without any race.
2824 for_each_buffer_cpu(buffer, cpu) {
2825 cpu_buffer = buffer->buffers[cpu];
2826 if (!cpu_buffer->nr_pages_to_update)
2827 continue;
2829 /* Can't run something on an offline CPU. */
2830 if (!cpu_online(cpu)) {
2831 rb_update_pages(cpu_buffer);
2832 cpu_buffer->nr_pages_to_update = 0;
2833 } else {
2834 /* Run directly if possible. */
2835 migrate_disable();
2836 if (cpu != smp_processor_id()) {
2837 migrate_enable();
2838 schedule_work_on(cpu,
2839 &cpu_buffer->update_pages_work);
2840 } else {
2841 update_pages_handler(&cpu_buffer->update_pages_work);
2842 migrate_enable();
2847 /* wait for all the updates to complete */
2848 for_each_buffer_cpu(buffer, cpu) {
2849 cpu_buffer = buffer->buffers[cpu];
2850 if (!cpu_buffer->nr_pages_to_update)
2851 continue;
2853 if (cpu_online(cpu))
2854 wait_for_completion(&cpu_buffer->update_done);
2855 cpu_buffer->nr_pages_to_update = 0;
2858 cpus_read_unlock();
2859 } else {
2860 cpu_buffer = buffer->buffers[cpu_id];
2862 if (nr_pages == cpu_buffer->nr_pages)
2863 goto out;
2866 * Don't succeed if resizing is disabled, as a reader might be
2867 * manipulating the ring buffer and is expecting a sane state while
2868 * this is true.
2870 if (atomic_read(&cpu_buffer->resize_disabled)) {
2871 err = -EBUSY;
2872 goto out_err_unlock;
2875 cpu_buffer->nr_pages_to_update = nr_pages -
2876 cpu_buffer->nr_pages;
2878 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2879 if (cpu_buffer->nr_pages_to_update > 0 &&
2880 __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2881 &cpu_buffer->new_pages)) {
2882 err = -ENOMEM;
2883 goto out_err;
2886 cpus_read_lock();
2888 /* Can't run something on an offline CPU. */
2889 if (!cpu_online(cpu_id))
2890 rb_update_pages(cpu_buffer);
2891 else {
2892 /* Run directly if possible. */
2893 migrate_disable();
2894 if (cpu_id == smp_processor_id()) {
2895 rb_update_pages(cpu_buffer);
2896 migrate_enable();
2897 } else {
2898 migrate_enable();
2899 schedule_work_on(cpu_id,
2900 &cpu_buffer->update_pages_work);
2901 wait_for_completion(&cpu_buffer->update_done);
2905 cpu_buffer->nr_pages_to_update = 0;
2906 cpus_read_unlock();
2909 out:
2911 * The ring buffer resize can happen with the ring buffer
2912 * enabled, so that the update disturbs the tracing as little
2913 * as possible. But if the buffer is disabled, we do not need
2914 * to worry about that, and we can take the time to verify
2915 * that the buffer is not corrupt.
2917 if (atomic_read(&buffer->record_disabled)) {
2918 atomic_inc(&buffer->record_disabled);
2920 * Even though the buffer was disabled, we must make sure
2921 * that it is truly disabled before calling rb_check_pages.
2922 * There could have been a race between checking
2923 * record_disable and incrementing it.
2925 synchronize_rcu();
2926 for_each_buffer_cpu(buffer, cpu) {
2927 cpu_buffer = buffer->buffers[cpu];
2928 rb_check_pages(cpu_buffer);
2930 atomic_dec(&buffer->record_disabled);
2933 atomic_dec(&buffer->resizing);
2934 mutex_unlock(&buffer->mutex);
2935 return 0;
2937 out_err:
2938 for_each_buffer_cpu(buffer, cpu) {
2939 struct buffer_page *bpage, *tmp;
2941 cpu_buffer = buffer->buffers[cpu];
2942 cpu_buffer->nr_pages_to_update = 0;
2944 if (list_empty(&cpu_buffer->new_pages))
2945 continue;
2947 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2948 list) {
2949 list_del_init(&bpage->list);
2950 free_buffer_page(bpage);
2953 out_err_unlock:
2954 atomic_dec(&buffer->resizing);
2955 mutex_unlock(&buffer->mutex);
2956 return err;
2958 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2960 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2962 mutex_lock(&buffer->mutex);
2963 if (val)
2964 buffer->flags |= RB_FL_OVERWRITE;
2965 else
2966 buffer->flags &= ~RB_FL_OVERWRITE;
2967 mutex_unlock(&buffer->mutex);
2969 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2971 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2973 return bpage->page->data + index;
2976 static __always_inline struct ring_buffer_event *
2977 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2979 return __rb_page_index(cpu_buffer->reader_page,
2980 cpu_buffer->reader_page->read);
2983 static struct ring_buffer_event *
2984 rb_iter_head_event(struct ring_buffer_iter *iter)
2986 struct ring_buffer_event *event;
2987 struct buffer_page *iter_head_page = iter->head_page;
2988 unsigned long commit;
2989 unsigned length;
2991 if (iter->head != iter->next_event)
2992 return iter->event;
2995 * When the writer goes across pages, it issues a cmpxchg which
2996 * is a mb(), which will synchronize with the rmb here.
2997 * (see rb_tail_page_update() and __rb_reserve_next())
2999 commit = rb_page_commit(iter_head_page);
3000 smp_rmb();
3002 /* An event needs to be at least 8 bytes in size */
3003 if (iter->head > commit - 8)
3004 goto reset;
3006 event = __rb_page_index(iter_head_page, iter->head);
3007 length = rb_event_length(event);
3010 * READ_ONCE() doesn't work on functions and we don't want the
3011 * compiler doing any crazy optimizations with length.
3013 barrier();
3015 if ((iter->head + length) > commit || length > iter->event_size)
3016 /* Writer corrupted the read? */
3017 goto reset;
3019 memcpy(iter->event, event, length);
3021 * If the page stamp is still the same after this rmb() then the
3022 * event was safely copied without the writer entering the page.
3024 smp_rmb();
3026 /* Make sure the page didn't change since we read this */
3027 if (iter->page_stamp != iter_head_page->page->time_stamp ||
3028 commit > rb_page_commit(iter_head_page))
3029 goto reset;
3031 iter->next_event = iter->head + length;
3032 return iter->event;
3033 reset:
3034 /* Reset to the beginning */
3035 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3036 iter->head = 0;
3037 iter->next_event = 0;
3038 iter->missed_events = 1;
3039 return NULL;
3042 /* Size is determined by what has been committed */
3043 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
3045 return rb_page_commit(bpage) & ~RB_MISSED_MASK;
3048 static __always_inline unsigned
3049 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
3051 return rb_page_commit(cpu_buffer->commit_page);
3054 static __always_inline unsigned
3055 rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event)
3057 unsigned long addr = (unsigned long)event;
3059 addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1;
3061 return addr - BUF_PAGE_HDR_SIZE;
3064 static void rb_inc_iter(struct ring_buffer_iter *iter)
3066 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3069 * The iterator could be on the reader page (it starts there).
3070 * But the head could have moved, since the reader was
3071 * found. Check for this case and assign the iterator
3072 * to the head page instead of next.
3074 if (iter->head_page == cpu_buffer->reader_page)
3075 iter->head_page = rb_set_head_page(cpu_buffer);
3076 else
3077 rb_inc_page(&iter->head_page);
3079 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3080 iter->head = 0;
3081 iter->next_event = 0;
3084 /* Return the index into the sub-buffers for a given sub-buffer */
3085 static int rb_meta_subbuf_idx(struct ring_buffer_meta *meta, void *subbuf)
3087 void *subbuf_array;
3089 subbuf_array = (void *)meta + sizeof(int) * meta->nr_subbufs;
3090 subbuf_array = (void *)ALIGN((unsigned long)subbuf_array, meta->subbuf_size);
3091 return (subbuf - subbuf_array) / meta->subbuf_size;
3094 static void rb_update_meta_head(struct ring_buffer_per_cpu *cpu_buffer,
3095 struct buffer_page *next_page)
3097 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3098 unsigned long old_head = (unsigned long)next_page->page;
3099 unsigned long new_head;
3101 rb_inc_page(&next_page);
3102 new_head = (unsigned long)next_page->page;
3105 * Only move it forward once, if something else came in and
3106 * moved it forward, then we don't want to touch it.
3108 (void)cmpxchg(&meta->head_buffer, old_head, new_head);
3111 static void rb_update_meta_reader(struct ring_buffer_per_cpu *cpu_buffer,
3112 struct buffer_page *reader)
3114 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3115 void *old_reader = cpu_buffer->reader_page->page;
3116 void *new_reader = reader->page;
3117 int id;
3119 id = reader->id;
3120 cpu_buffer->reader_page->id = id;
3121 reader->id = 0;
3123 meta->buffers[0] = rb_meta_subbuf_idx(meta, new_reader);
3124 meta->buffers[id] = rb_meta_subbuf_idx(meta, old_reader);
3126 /* The head pointer is the one after the reader */
3127 rb_update_meta_head(cpu_buffer, reader);
3131 * rb_handle_head_page - writer hit the head page
3133 * Returns: +1 to retry page
3134 * 0 to continue
3135 * -1 on error
3137 static int
3138 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
3139 struct buffer_page *tail_page,
3140 struct buffer_page *next_page)
3142 struct buffer_page *new_head;
3143 int entries;
3144 int type;
3145 int ret;
3147 entries = rb_page_entries(next_page);
3150 * The hard part is here. We need to move the head
3151 * forward, and protect against both readers on
3152 * other CPUs and writers coming in via interrupts.
3154 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
3155 RB_PAGE_HEAD);
3158 * type can be one of four:
3159 * NORMAL - an interrupt already moved it for us
3160 * HEAD - we are the first to get here.
3161 * UPDATE - we are the interrupt interrupting
3162 * a current move.
3163 * MOVED - a reader on another CPU moved the next
3164 * pointer to its reader page. Give up
3165 * and try again.
3168 switch (type) {
3169 case RB_PAGE_HEAD:
3171 * We changed the head to UPDATE, thus
3172 * it is our responsibility to update
3173 * the counters.
3175 local_add(entries, &cpu_buffer->overrun);
3176 local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
3177 local_inc(&cpu_buffer->pages_lost);
3179 if (cpu_buffer->ring_meta)
3180 rb_update_meta_head(cpu_buffer, next_page);
3182 * The entries will be zeroed out when we move the
3183 * tail page.
3186 /* still more to do */
3187 break;
3189 case RB_PAGE_UPDATE:
3191 * This is an interrupt that interrupt the
3192 * previous update. Still more to do.
3194 break;
3195 case RB_PAGE_NORMAL:
3197 * An interrupt came in before the update
3198 * and processed this for us.
3199 * Nothing left to do.
3201 return 1;
3202 case RB_PAGE_MOVED:
3204 * The reader is on another CPU and just did
3205 * a swap with our next_page.
3206 * Try again.
3208 return 1;
3209 default:
3210 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
3211 return -1;
3215 * Now that we are here, the old head pointer is
3216 * set to UPDATE. This will keep the reader from
3217 * swapping the head page with the reader page.
3218 * The reader (on another CPU) will spin till
3219 * we are finished.
3221 * We just need to protect against interrupts
3222 * doing the job. We will set the next pointer
3223 * to HEAD. After that, we set the old pointer
3224 * to NORMAL, but only if it was HEAD before.
3225 * otherwise we are an interrupt, and only
3226 * want the outer most commit to reset it.
3228 new_head = next_page;
3229 rb_inc_page(&new_head);
3231 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
3232 RB_PAGE_NORMAL);
3235 * Valid returns are:
3236 * HEAD - an interrupt came in and already set it.
3237 * NORMAL - One of two things:
3238 * 1) We really set it.
3239 * 2) A bunch of interrupts came in and moved
3240 * the page forward again.
3242 switch (ret) {
3243 case RB_PAGE_HEAD:
3244 case RB_PAGE_NORMAL:
3245 /* OK */
3246 break;
3247 default:
3248 RB_WARN_ON(cpu_buffer, 1);
3249 return -1;
3253 * It is possible that an interrupt came in,
3254 * set the head up, then more interrupts came in
3255 * and moved it again. When we get back here,
3256 * the page would have been set to NORMAL but we
3257 * just set it back to HEAD.
3259 * How do you detect this? Well, if that happened
3260 * the tail page would have moved.
3262 if (ret == RB_PAGE_NORMAL) {
3263 struct buffer_page *buffer_tail_page;
3265 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
3267 * If the tail had moved passed next, then we need
3268 * to reset the pointer.
3270 if (buffer_tail_page != tail_page &&
3271 buffer_tail_page != next_page)
3272 rb_head_page_set_normal(cpu_buffer, new_head,
3273 next_page,
3274 RB_PAGE_HEAD);
3278 * If this was the outer most commit (the one that
3279 * changed the original pointer from HEAD to UPDATE),
3280 * then it is up to us to reset it to NORMAL.
3282 if (type == RB_PAGE_HEAD) {
3283 ret = rb_head_page_set_normal(cpu_buffer, next_page,
3284 tail_page,
3285 RB_PAGE_UPDATE);
3286 if (RB_WARN_ON(cpu_buffer,
3287 ret != RB_PAGE_UPDATE))
3288 return -1;
3291 return 0;
3294 static inline void
3295 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
3296 unsigned long tail, struct rb_event_info *info)
3298 unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
3299 struct buffer_page *tail_page = info->tail_page;
3300 struct ring_buffer_event *event;
3301 unsigned long length = info->length;
3304 * Only the event that crossed the page boundary
3305 * must fill the old tail_page with padding.
3307 if (tail >= bsize) {
3309 * If the page was filled, then we still need
3310 * to update the real_end. Reset it to zero
3311 * and the reader will ignore it.
3313 if (tail == bsize)
3314 tail_page->real_end = 0;
3316 local_sub(length, &tail_page->write);
3317 return;
3320 event = __rb_page_index(tail_page, tail);
3323 * Save the original length to the meta data.
3324 * This will be used by the reader to add lost event
3325 * counter.
3327 tail_page->real_end = tail;
3330 * If this event is bigger than the minimum size, then
3331 * we need to be careful that we don't subtract the
3332 * write counter enough to allow another writer to slip
3333 * in on this page.
3334 * We put in a discarded commit instead, to make sure
3335 * that this space is not used again, and this space will
3336 * not be accounted into 'entries_bytes'.
3338 * If we are less than the minimum size, we don't need to
3339 * worry about it.
3341 if (tail > (bsize - RB_EVNT_MIN_SIZE)) {
3342 /* No room for any events */
3344 /* Mark the rest of the page with padding */
3345 rb_event_set_padding(event);
3347 /* Make sure the padding is visible before the write update */
3348 smp_wmb();
3350 /* Set the write back to the previous setting */
3351 local_sub(length, &tail_page->write);
3352 return;
3355 /* Put in a discarded event */
3356 event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE;
3357 event->type_len = RINGBUF_TYPE_PADDING;
3358 /* time delta must be non zero */
3359 event->time_delta = 1;
3361 /* account for padding bytes */
3362 local_add(bsize - tail, &cpu_buffer->entries_bytes);
3364 /* Make sure the padding is visible before the tail_page->write update */
3365 smp_wmb();
3367 /* Set write to end of buffer */
3368 length = (tail + length) - bsize;
3369 local_sub(length, &tail_page->write);
3372 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
3375 * This is the slow path, force gcc not to inline it.
3377 static noinline struct ring_buffer_event *
3378 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
3379 unsigned long tail, struct rb_event_info *info)
3381 struct buffer_page *tail_page = info->tail_page;
3382 struct buffer_page *commit_page = cpu_buffer->commit_page;
3383 struct trace_buffer *buffer = cpu_buffer->buffer;
3384 struct buffer_page *next_page;
3385 int ret;
3387 next_page = tail_page;
3389 rb_inc_page(&next_page);
3392 * If for some reason, we had an interrupt storm that made
3393 * it all the way around the buffer, bail, and warn
3394 * about it.
3396 if (unlikely(next_page == commit_page)) {
3397 local_inc(&cpu_buffer->commit_overrun);
3398 goto out_reset;
3402 * This is where the fun begins!
3404 * We are fighting against races between a reader that
3405 * could be on another CPU trying to swap its reader
3406 * page with the buffer head.
3408 * We are also fighting against interrupts coming in and
3409 * moving the head or tail on us as well.
3411 * If the next page is the head page then we have filled
3412 * the buffer, unless the commit page is still on the
3413 * reader page.
3415 if (rb_is_head_page(next_page, &tail_page->list)) {
3418 * If the commit is not on the reader page, then
3419 * move the header page.
3421 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
3423 * If we are not in overwrite mode,
3424 * this is easy, just stop here.
3426 if (!(buffer->flags & RB_FL_OVERWRITE)) {
3427 local_inc(&cpu_buffer->dropped_events);
3428 goto out_reset;
3431 ret = rb_handle_head_page(cpu_buffer,
3432 tail_page,
3433 next_page);
3434 if (ret < 0)
3435 goto out_reset;
3436 if (ret)
3437 goto out_again;
3438 } else {
3440 * We need to be careful here too. The
3441 * commit page could still be on the reader
3442 * page. We could have a small buffer, and
3443 * have filled up the buffer with events
3444 * from interrupts and such, and wrapped.
3446 * Note, if the tail page is also on the
3447 * reader_page, we let it move out.
3449 if (unlikely((cpu_buffer->commit_page !=
3450 cpu_buffer->tail_page) &&
3451 (cpu_buffer->commit_page ==
3452 cpu_buffer->reader_page))) {
3453 local_inc(&cpu_buffer->commit_overrun);
3454 goto out_reset;
3459 rb_tail_page_update(cpu_buffer, tail_page, next_page);
3461 out_again:
3463 rb_reset_tail(cpu_buffer, tail, info);
3465 /* Commit what we have for now. */
3466 rb_end_commit(cpu_buffer);
3467 /* rb_end_commit() decs committing */
3468 local_inc(&cpu_buffer->committing);
3470 /* fail and let the caller try again */
3471 return ERR_PTR(-EAGAIN);
3473 out_reset:
3474 /* reset write */
3475 rb_reset_tail(cpu_buffer, tail, info);
3477 return NULL;
3480 /* Slow path */
3481 static struct ring_buffer_event *
3482 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3483 struct ring_buffer_event *event, u64 delta, bool abs)
3485 if (abs)
3486 event->type_len = RINGBUF_TYPE_TIME_STAMP;
3487 else
3488 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
3490 /* Not the first event on the page, or not delta? */
3491 if (abs || rb_event_index(cpu_buffer, event)) {
3492 event->time_delta = delta & TS_MASK;
3493 event->array[0] = delta >> TS_SHIFT;
3494 } else {
3495 /* nope, just zero it */
3496 event->time_delta = 0;
3497 event->array[0] = 0;
3500 return skip_time_extend(event);
3503 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
3504 static inline bool sched_clock_stable(void)
3506 return true;
3508 #endif
3510 static void
3511 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3512 struct rb_event_info *info)
3514 u64 write_stamp;
3516 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
3517 (unsigned long long)info->delta,
3518 (unsigned long long)info->ts,
3519 (unsigned long long)info->before,
3520 (unsigned long long)info->after,
3521 (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}),
3522 sched_clock_stable() ? "" :
3523 "If you just came from a suspend/resume,\n"
3524 "please switch to the trace global clock:\n"
3525 " echo global > /sys/kernel/tracing/trace_clock\n"
3526 "or add trace_clock=global to the kernel command line\n");
3529 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3530 struct ring_buffer_event **event,
3531 struct rb_event_info *info,
3532 u64 *delta,
3533 unsigned int *length)
3535 bool abs = info->add_timestamp &
3536 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
3538 if (unlikely(info->delta > (1ULL << 59))) {
3540 * Some timers can use more than 59 bits, and when a timestamp
3541 * is added to the buffer, it will lose those bits.
3543 if (abs && (info->ts & TS_MSB)) {
3544 info->delta &= ABS_TS_MASK;
3546 /* did the clock go backwards */
3547 } else if (info->before == info->after && info->before > info->ts) {
3548 /* not interrupted */
3549 static int once;
3552 * This is possible with a recalibrating of the TSC.
3553 * Do not produce a call stack, but just report it.
3555 if (!once) {
3556 once++;
3557 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
3558 info->before, info->ts);
3560 } else
3561 rb_check_timestamp(cpu_buffer, info);
3562 if (!abs)
3563 info->delta = 0;
3565 *event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs);
3566 *length -= RB_LEN_TIME_EXTEND;
3567 *delta = 0;
3571 * rb_update_event - update event type and data
3572 * @cpu_buffer: The per cpu buffer of the @event
3573 * @event: the event to update
3574 * @info: The info to update the @event with (contains length and delta)
3576 * Update the type and data fields of the @event. The length
3577 * is the actual size that is written to the ring buffer,
3578 * and with this, we can determine what to place into the
3579 * data field.
3581 static void
3582 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
3583 struct ring_buffer_event *event,
3584 struct rb_event_info *info)
3586 unsigned length = info->length;
3587 u64 delta = info->delta;
3588 unsigned int nest = local_read(&cpu_buffer->committing) - 1;
3590 if (!WARN_ON_ONCE(nest >= MAX_NEST))
3591 cpu_buffer->event_stamp[nest] = info->ts;
3594 * If we need to add a timestamp, then we
3595 * add it to the start of the reserved space.
3597 if (unlikely(info->add_timestamp))
3598 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
3600 event->time_delta = delta;
3601 length -= RB_EVNT_HDR_SIZE;
3602 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
3603 event->type_len = 0;
3604 event->array[0] = length;
3605 } else
3606 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
3609 static unsigned rb_calculate_event_length(unsigned length)
3611 struct ring_buffer_event event; /* Used only for sizeof array */
3613 /* zero length can cause confusions */
3614 if (!length)
3615 length++;
3617 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
3618 length += sizeof(event.array[0]);
3620 length += RB_EVNT_HDR_SIZE;
3621 length = ALIGN(length, RB_ARCH_ALIGNMENT);
3624 * In case the time delta is larger than the 27 bits for it
3625 * in the header, we need to add a timestamp. If another
3626 * event comes in when trying to discard this one to increase
3627 * the length, then the timestamp will be added in the allocated
3628 * space of this event. If length is bigger than the size needed
3629 * for the TIME_EXTEND, then padding has to be used. The events
3630 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
3631 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
3632 * As length is a multiple of 4, we only need to worry if it
3633 * is 12 (RB_LEN_TIME_EXTEND + 4).
3635 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
3636 length += RB_ALIGNMENT;
3638 return length;
3641 static inline bool
3642 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
3643 struct ring_buffer_event *event)
3645 unsigned long new_index, old_index;
3646 struct buffer_page *bpage;
3647 unsigned long addr;
3649 new_index = rb_event_index(cpu_buffer, event);
3650 old_index = new_index + rb_event_ts_length(event);
3651 addr = (unsigned long)event;
3652 addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
3654 bpage = READ_ONCE(cpu_buffer->tail_page);
3657 * Make sure the tail_page is still the same and
3658 * the next write location is the end of this event
3660 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3661 unsigned long write_mask =
3662 local_read(&bpage->write) & ~RB_WRITE_MASK;
3663 unsigned long event_length = rb_event_length(event);
3666 * For the before_stamp to be different than the write_stamp
3667 * to make sure that the next event adds an absolute
3668 * value and does not rely on the saved write stamp, which
3669 * is now going to be bogus.
3671 * By setting the before_stamp to zero, the next event
3672 * is not going to use the write_stamp and will instead
3673 * create an absolute timestamp. This means there's no
3674 * reason to update the wirte_stamp!
3676 rb_time_set(&cpu_buffer->before_stamp, 0);
3679 * If an event were to come in now, it would see that the
3680 * write_stamp and the before_stamp are different, and assume
3681 * that this event just added itself before updating
3682 * the write stamp. The interrupting event will fix the
3683 * write stamp for us, and use an absolute timestamp.
3687 * This is on the tail page. It is possible that
3688 * a write could come in and move the tail page
3689 * and write to the next page. That is fine
3690 * because we just shorten what is on this page.
3692 old_index += write_mask;
3693 new_index += write_mask;
3695 /* caution: old_index gets updated on cmpxchg failure */
3696 if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
3697 /* update counters */
3698 local_sub(event_length, &cpu_buffer->entries_bytes);
3699 return true;
3703 /* could not discard */
3704 return false;
3707 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3709 local_inc(&cpu_buffer->committing);
3710 local_inc(&cpu_buffer->commits);
3713 static __always_inline void
3714 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3716 unsigned long max_count;
3719 * We only race with interrupts and NMIs on this CPU.
3720 * If we own the commit event, then we can commit
3721 * all others that interrupted us, since the interruptions
3722 * are in stack format (they finish before they come
3723 * back to us). This allows us to do a simple loop to
3724 * assign the commit to the tail.
3726 again:
3727 max_count = cpu_buffer->nr_pages * 100;
3729 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3730 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3731 return;
3732 if (RB_WARN_ON(cpu_buffer,
3733 rb_is_reader_page(cpu_buffer->tail_page)))
3734 return;
3736 * No need for a memory barrier here, as the update
3737 * of the tail_page did it for this page.
3739 local_set(&cpu_buffer->commit_page->page->commit,
3740 rb_page_write(cpu_buffer->commit_page));
3741 rb_inc_page(&cpu_buffer->commit_page);
3742 if (cpu_buffer->ring_meta) {
3743 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3744 meta->commit_buffer = (unsigned long)cpu_buffer->commit_page->page;
3746 /* add barrier to keep gcc from optimizing too much */
3747 barrier();
3749 while (rb_commit_index(cpu_buffer) !=
3750 rb_page_write(cpu_buffer->commit_page)) {
3752 /* Make sure the readers see the content of what is committed. */
3753 smp_wmb();
3754 local_set(&cpu_buffer->commit_page->page->commit,
3755 rb_page_write(cpu_buffer->commit_page));
3756 RB_WARN_ON(cpu_buffer,
3757 local_read(&cpu_buffer->commit_page->page->commit) &
3758 ~RB_WRITE_MASK);
3759 barrier();
3762 /* again, keep gcc from optimizing */
3763 barrier();
3766 * If an interrupt came in just after the first while loop
3767 * and pushed the tail page forward, we will be left with
3768 * a dangling commit that will never go forward.
3770 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3771 goto again;
3774 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3776 unsigned long commits;
3778 if (RB_WARN_ON(cpu_buffer,
3779 !local_read(&cpu_buffer->committing)))
3780 return;
3782 again:
3783 commits = local_read(&cpu_buffer->commits);
3784 /* synchronize with interrupts */
3785 barrier();
3786 if (local_read(&cpu_buffer->committing) == 1)
3787 rb_set_commit_to_write(cpu_buffer);
3789 local_dec(&cpu_buffer->committing);
3791 /* synchronize with interrupts */
3792 barrier();
3795 * Need to account for interrupts coming in between the
3796 * updating of the commit page and the clearing of the
3797 * committing counter.
3799 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3800 !local_read(&cpu_buffer->committing)) {
3801 local_inc(&cpu_buffer->committing);
3802 goto again;
3806 static inline void rb_event_discard(struct ring_buffer_event *event)
3808 if (extended_time(event))
3809 event = skip_time_extend(event);
3811 /* array[0] holds the actual length for the discarded event */
3812 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3813 event->type_len = RINGBUF_TYPE_PADDING;
3814 /* time delta must be non zero */
3815 if (!event->time_delta)
3816 event->time_delta = 1;
3819 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3821 local_inc(&cpu_buffer->entries);
3822 rb_end_commit(cpu_buffer);
3825 static __always_inline void
3826 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3828 if (buffer->irq_work.waiters_pending) {
3829 buffer->irq_work.waiters_pending = false;
3830 /* irq_work_queue() supplies it's own memory barriers */
3831 irq_work_queue(&buffer->irq_work.work);
3834 if (cpu_buffer->irq_work.waiters_pending) {
3835 cpu_buffer->irq_work.waiters_pending = false;
3836 /* irq_work_queue() supplies it's own memory barriers */
3837 irq_work_queue(&cpu_buffer->irq_work.work);
3840 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3841 return;
3843 if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3844 return;
3846 if (!cpu_buffer->irq_work.full_waiters_pending)
3847 return;
3849 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3851 if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3852 return;
3854 cpu_buffer->irq_work.wakeup_full = true;
3855 cpu_buffer->irq_work.full_waiters_pending = false;
3856 /* irq_work_queue() supplies it's own memory barriers */
3857 irq_work_queue(&cpu_buffer->irq_work.work);
3860 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3861 # define do_ring_buffer_record_recursion() \
3862 do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3863 #else
3864 # define do_ring_buffer_record_recursion() do { } while (0)
3865 #endif
3868 * The lock and unlock are done within a preempt disable section.
3869 * The current_context per_cpu variable can only be modified
3870 * by the current task between lock and unlock. But it can
3871 * be modified more than once via an interrupt. To pass this
3872 * information from the lock to the unlock without having to
3873 * access the 'in_interrupt()' functions again (which do show
3874 * a bit of overhead in something as critical as function tracing,
3875 * we use a bitmask trick.
3877 * bit 1 = NMI context
3878 * bit 2 = IRQ context
3879 * bit 3 = SoftIRQ context
3880 * bit 4 = normal context.
3882 * This works because this is the order of contexts that can
3883 * preempt other contexts. A SoftIRQ never preempts an IRQ
3884 * context.
3886 * When the context is determined, the corresponding bit is
3887 * checked and set (if it was set, then a recursion of that context
3888 * happened).
3890 * On unlock, we need to clear this bit. To do so, just subtract
3891 * 1 from the current_context and AND it to itself.
3893 * (binary)
3894 * 101 - 1 = 100
3895 * 101 & 100 = 100 (clearing bit zero)
3897 * 1010 - 1 = 1001
3898 * 1010 & 1001 = 1000 (clearing bit 1)
3900 * The least significant bit can be cleared this way, and it
3901 * just so happens that it is the same bit corresponding to
3902 * the current context.
3904 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3905 * is set when a recursion is detected at the current context, and if
3906 * the TRANSITION bit is already set, it will fail the recursion.
3907 * This is needed because there's a lag between the changing of
3908 * interrupt context and updating the preempt count. In this case,
3909 * a false positive will be found. To handle this, one extra recursion
3910 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3911 * bit is already set, then it is considered a recursion and the function
3912 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3914 * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3915 * to be cleared. Even if it wasn't the context that set it. That is,
3916 * if an interrupt comes in while NORMAL bit is set and the ring buffer
3917 * is called before preempt_count() is updated, since the check will
3918 * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3919 * NMI then comes in, it will set the NMI bit, but when the NMI code
3920 * does the trace_recursive_unlock() it will clear the TRANSITION bit
3921 * and leave the NMI bit set. But this is fine, because the interrupt
3922 * code that set the TRANSITION bit will then clear the NMI bit when it
3923 * calls trace_recursive_unlock(). If another NMI comes in, it will
3924 * set the TRANSITION bit and continue.
3926 * Note: The TRANSITION bit only handles a single transition between context.
3929 static __always_inline bool
3930 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3932 unsigned int val = cpu_buffer->current_context;
3933 int bit = interrupt_context_level();
3935 bit = RB_CTX_NORMAL - bit;
3937 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3939 * It is possible that this was called by transitioning
3940 * between interrupt context, and preempt_count() has not
3941 * been updated yet. In this case, use the TRANSITION bit.
3943 bit = RB_CTX_TRANSITION;
3944 if (val & (1 << (bit + cpu_buffer->nest))) {
3945 do_ring_buffer_record_recursion();
3946 return true;
3950 val |= (1 << (bit + cpu_buffer->nest));
3951 cpu_buffer->current_context = val;
3953 return false;
3956 static __always_inline void
3957 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3959 cpu_buffer->current_context &=
3960 cpu_buffer->current_context - (1 << cpu_buffer->nest);
3963 /* The recursive locking above uses 5 bits */
3964 #define NESTED_BITS 5
3967 * ring_buffer_nest_start - Allow to trace while nested
3968 * @buffer: The ring buffer to modify
3970 * The ring buffer has a safety mechanism to prevent recursion.
3971 * But there may be a case where a trace needs to be done while
3972 * tracing something else. In this case, calling this function
3973 * will allow this function to nest within a currently active
3974 * ring_buffer_lock_reserve().
3976 * Call this function before calling another ring_buffer_lock_reserve() and
3977 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3979 void ring_buffer_nest_start(struct trace_buffer *buffer)
3981 struct ring_buffer_per_cpu *cpu_buffer;
3982 int cpu;
3984 /* Enabled by ring_buffer_nest_end() */
3985 preempt_disable_notrace();
3986 cpu = raw_smp_processor_id();
3987 cpu_buffer = buffer->buffers[cpu];
3988 /* This is the shift value for the above recursive locking */
3989 cpu_buffer->nest += NESTED_BITS;
3993 * ring_buffer_nest_end - Allow to trace while nested
3994 * @buffer: The ring buffer to modify
3996 * Must be called after ring_buffer_nest_start() and after the
3997 * ring_buffer_unlock_commit().
3999 void ring_buffer_nest_end(struct trace_buffer *buffer)
4001 struct ring_buffer_per_cpu *cpu_buffer;
4002 int cpu;
4004 /* disabled by ring_buffer_nest_start() */
4005 cpu = raw_smp_processor_id();
4006 cpu_buffer = buffer->buffers[cpu];
4007 /* This is the shift value for the above recursive locking */
4008 cpu_buffer->nest -= NESTED_BITS;
4009 preempt_enable_notrace();
4013 * ring_buffer_unlock_commit - commit a reserved
4014 * @buffer: The buffer to commit to
4016 * This commits the data to the ring buffer, and releases any locks held.
4018 * Must be paired with ring_buffer_lock_reserve.
4020 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
4022 struct ring_buffer_per_cpu *cpu_buffer;
4023 int cpu = raw_smp_processor_id();
4025 cpu_buffer = buffer->buffers[cpu];
4027 rb_commit(cpu_buffer);
4029 rb_wakeups(buffer, cpu_buffer);
4031 trace_recursive_unlock(cpu_buffer);
4033 preempt_enable_notrace();
4035 return 0;
4037 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
4039 /* Special value to validate all deltas on a page. */
4040 #define CHECK_FULL_PAGE 1L
4042 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
4044 static const char *show_irq_str(int bits)
4046 const char *type[] = {
4047 ".", // 0
4048 "s", // 1
4049 "h", // 2
4050 "Hs", // 3
4051 "n", // 4
4052 "Ns", // 5
4053 "Nh", // 6
4054 "NHs", // 7
4057 return type[bits];
4060 /* Assume this is a trace event */
4061 static const char *show_flags(struct ring_buffer_event *event)
4063 struct trace_entry *entry;
4064 int bits = 0;
4066 if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4067 return "X";
4069 entry = ring_buffer_event_data(event);
4071 if (entry->flags & TRACE_FLAG_SOFTIRQ)
4072 bits |= 1;
4074 if (entry->flags & TRACE_FLAG_HARDIRQ)
4075 bits |= 2;
4077 if (entry->flags & TRACE_FLAG_NMI)
4078 bits |= 4;
4080 return show_irq_str(bits);
4083 static const char *show_irq(struct ring_buffer_event *event)
4085 struct trace_entry *entry;
4087 if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4088 return "";
4090 entry = ring_buffer_event_data(event);
4091 if (entry->flags & TRACE_FLAG_IRQS_OFF)
4092 return "d";
4093 return "";
4096 static const char *show_interrupt_level(void)
4098 unsigned long pc = preempt_count();
4099 unsigned char level = 0;
4101 if (pc & SOFTIRQ_OFFSET)
4102 level |= 1;
4104 if (pc & HARDIRQ_MASK)
4105 level |= 2;
4107 if (pc & NMI_MASK)
4108 level |= 4;
4110 return show_irq_str(level);
4113 static void dump_buffer_page(struct buffer_data_page *bpage,
4114 struct rb_event_info *info,
4115 unsigned long tail)
4117 struct ring_buffer_event *event;
4118 u64 ts, delta;
4119 int e;
4121 ts = bpage->time_stamp;
4122 pr_warn(" [%lld] PAGE TIME STAMP\n", ts);
4124 for (e = 0; e < tail; e += rb_event_length(event)) {
4126 event = (struct ring_buffer_event *)(bpage->data + e);
4128 switch (event->type_len) {
4130 case RINGBUF_TYPE_TIME_EXTEND:
4131 delta = rb_event_time_stamp(event);
4132 ts += delta;
4133 pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n",
4134 e, ts, delta);
4135 break;
4137 case RINGBUF_TYPE_TIME_STAMP:
4138 delta = rb_event_time_stamp(event);
4139 ts = rb_fix_abs_ts(delta, ts);
4140 pr_warn(" 0x%x: [%lld] absolute:%lld TIME STAMP\n",
4141 e, ts, delta);
4142 break;
4144 case RINGBUF_TYPE_PADDING:
4145 ts += event->time_delta;
4146 pr_warn(" 0x%x: [%lld] delta:%d PADDING\n",
4147 e, ts, event->time_delta);
4148 break;
4150 case RINGBUF_TYPE_DATA:
4151 ts += event->time_delta;
4152 pr_warn(" 0x%x: [%lld] delta:%d %s%s\n",
4153 e, ts, event->time_delta,
4154 show_flags(event), show_irq(event));
4155 break;
4157 default:
4158 break;
4161 pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e);
4164 static DEFINE_PER_CPU(atomic_t, checking);
4165 static atomic_t ts_dump;
4167 #define buffer_warn_return(fmt, ...) \
4168 do { \
4169 /* If another report is happening, ignore this one */ \
4170 if (atomic_inc_return(&ts_dump) != 1) { \
4171 atomic_dec(&ts_dump); \
4172 goto out; \
4174 atomic_inc(&cpu_buffer->record_disabled); \
4175 pr_warn(fmt, ##__VA_ARGS__); \
4176 dump_buffer_page(bpage, info, tail); \
4177 atomic_dec(&ts_dump); \
4178 /* There's some cases in boot up that this can happen */ \
4179 if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING)) \
4180 /* Do not re-enable checking */ \
4181 return; \
4182 } while (0)
4185 * Check if the current event time stamp matches the deltas on
4186 * the buffer page.
4188 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4189 struct rb_event_info *info,
4190 unsigned long tail)
4192 struct buffer_data_page *bpage;
4193 u64 ts, delta;
4194 bool full = false;
4195 int ret;
4197 bpage = info->tail_page->page;
4199 if (tail == CHECK_FULL_PAGE) {
4200 full = true;
4201 tail = local_read(&bpage->commit);
4202 } else if (info->add_timestamp &
4203 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
4204 /* Ignore events with absolute time stamps */
4205 return;
4209 * Do not check the first event (skip possible extends too).
4210 * Also do not check if previous events have not been committed.
4212 if (tail <= 8 || tail > local_read(&bpage->commit))
4213 return;
4216 * If this interrupted another event,
4218 if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
4219 goto out;
4221 ret = rb_read_data_buffer(bpage, tail, cpu_buffer->cpu, &ts, &delta);
4222 if (ret < 0) {
4223 if (delta < ts) {
4224 buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n",
4225 cpu_buffer->cpu, ts, delta);
4226 goto out;
4229 if ((full && ts > info->ts) ||
4230 (!full && ts + info->delta != info->ts)) {
4231 buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n",
4232 cpu_buffer->cpu,
4233 ts + info->delta, info->ts, info->delta,
4234 info->before, info->after,
4235 full ? " (full)" : "", show_interrupt_level());
4237 out:
4238 atomic_dec(this_cpu_ptr(&checking));
4240 #else
4241 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4242 struct rb_event_info *info,
4243 unsigned long tail)
4246 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
4248 static struct ring_buffer_event *
4249 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
4250 struct rb_event_info *info)
4252 struct ring_buffer_event *event;
4253 struct buffer_page *tail_page;
4254 unsigned long tail, write, w;
4256 /* Don't let the compiler play games with cpu_buffer->tail_page */
4257 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
4259 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK;
4260 barrier();
4261 rb_time_read(&cpu_buffer->before_stamp, &info->before);
4262 rb_time_read(&cpu_buffer->write_stamp, &info->after);
4263 barrier();
4264 info->ts = rb_time_stamp(cpu_buffer->buffer);
4266 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
4267 info->delta = info->ts;
4268 } else {
4270 * If interrupting an event time update, we may need an
4271 * absolute timestamp.
4272 * Don't bother if this is the start of a new page (w == 0).
4274 if (!w) {
4275 /* Use the sub-buffer timestamp */
4276 info->delta = 0;
4277 } else if (unlikely(info->before != info->after)) {
4278 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
4279 info->length += RB_LEN_TIME_EXTEND;
4280 } else {
4281 info->delta = info->ts - info->after;
4282 if (unlikely(test_time_stamp(info->delta))) {
4283 info->add_timestamp |= RB_ADD_STAMP_EXTEND;
4284 info->length += RB_LEN_TIME_EXTEND;
4289 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts);
4291 /*C*/ write = local_add_return(info->length, &tail_page->write);
4293 /* set write to only the index of the write */
4294 write &= RB_WRITE_MASK;
4296 tail = write - info->length;
4298 /* See if we shot pass the end of this buffer page */
4299 if (unlikely(write > cpu_buffer->buffer->subbuf_size)) {
4300 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
4301 return rb_move_tail(cpu_buffer, tail, info);
4304 if (likely(tail == w)) {
4305 /* Nothing interrupted us between A and C */
4306 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts);
4308 * If something came in between C and D, the write stamp
4309 * may now not be in sync. But that's fine as the before_stamp
4310 * will be different and then next event will just be forced
4311 * to use an absolute timestamp.
4313 if (likely(!(info->add_timestamp &
4314 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4315 /* This did not interrupt any time update */
4316 info->delta = info->ts - info->after;
4317 else
4318 /* Just use full timestamp for interrupting event */
4319 info->delta = info->ts;
4320 check_buffer(cpu_buffer, info, tail);
4321 } else {
4322 u64 ts;
4323 /* SLOW PATH - Interrupted between A and C */
4325 /* Save the old before_stamp */
4326 rb_time_read(&cpu_buffer->before_stamp, &info->before);
4329 * Read a new timestamp and update the before_stamp to make
4330 * the next event after this one force using an absolute
4331 * timestamp. This is in case an interrupt were to come in
4332 * between E and F.
4334 ts = rb_time_stamp(cpu_buffer->buffer);
4335 rb_time_set(&cpu_buffer->before_stamp, ts);
4337 barrier();
4338 /*E*/ rb_time_read(&cpu_buffer->write_stamp, &info->after);
4339 barrier();
4340 /*F*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
4341 info->after == info->before && info->after < ts) {
4343 * Nothing came after this event between C and F, it is
4344 * safe to use info->after for the delta as it
4345 * matched info->before and is still valid.
4347 info->delta = ts - info->after;
4348 } else {
4350 * Interrupted between C and F:
4351 * Lost the previous events time stamp. Just set the
4352 * delta to zero, and this will be the same time as
4353 * the event this event interrupted. And the events that
4354 * came after this will still be correct (as they would
4355 * have built their delta on the previous event.
4357 info->delta = 0;
4359 info->ts = ts;
4360 info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
4364 * If this is the first commit on the page, then it has the same
4365 * timestamp as the page itself.
4367 if (unlikely(!tail && !(info->add_timestamp &
4368 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4369 info->delta = 0;
4371 /* We reserved something on the buffer */
4373 event = __rb_page_index(tail_page, tail);
4374 rb_update_event(cpu_buffer, event, info);
4376 local_inc(&tail_page->entries);
4379 * If this is the first commit on the page, then update
4380 * its timestamp.
4382 if (unlikely(!tail))
4383 tail_page->page->time_stamp = info->ts;
4385 /* account for these added bytes */
4386 local_add(info->length, &cpu_buffer->entries_bytes);
4388 return event;
4391 static __always_inline struct ring_buffer_event *
4392 rb_reserve_next_event(struct trace_buffer *buffer,
4393 struct ring_buffer_per_cpu *cpu_buffer,
4394 unsigned long length)
4396 struct ring_buffer_event *event;
4397 struct rb_event_info info;
4398 int nr_loops = 0;
4399 int add_ts_default;
4401 /* ring buffer does cmpxchg, make sure it is safe in NMI context */
4402 if (!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) &&
4403 (unlikely(in_nmi()))) {
4404 return NULL;
4407 rb_start_commit(cpu_buffer);
4408 /* The commit page can not change after this */
4410 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4412 * Due to the ability to swap a cpu buffer from a buffer
4413 * it is possible it was swapped before we committed.
4414 * (committing stops a swap). We check for it here and
4415 * if it happened, we have to fail the write.
4417 barrier();
4418 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
4419 local_dec(&cpu_buffer->committing);
4420 local_dec(&cpu_buffer->commits);
4421 return NULL;
4423 #endif
4425 info.length = rb_calculate_event_length(length);
4427 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
4428 add_ts_default = RB_ADD_STAMP_ABSOLUTE;
4429 info.length += RB_LEN_TIME_EXTEND;
4430 if (info.length > cpu_buffer->buffer->max_data_size)
4431 goto out_fail;
4432 } else {
4433 add_ts_default = RB_ADD_STAMP_NONE;
4436 again:
4437 info.add_timestamp = add_ts_default;
4438 info.delta = 0;
4441 * We allow for interrupts to reenter here and do a trace.
4442 * If one does, it will cause this original code to loop
4443 * back here. Even with heavy interrupts happening, this
4444 * should only happen a few times in a row. If this happens
4445 * 1000 times in a row, there must be either an interrupt
4446 * storm or we have something buggy.
4447 * Bail!
4449 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
4450 goto out_fail;
4452 event = __rb_reserve_next(cpu_buffer, &info);
4454 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
4455 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
4456 info.length -= RB_LEN_TIME_EXTEND;
4457 goto again;
4460 if (likely(event))
4461 return event;
4462 out_fail:
4463 rb_end_commit(cpu_buffer);
4464 return NULL;
4468 * ring_buffer_lock_reserve - reserve a part of the buffer
4469 * @buffer: the ring buffer to reserve from
4470 * @length: the length of the data to reserve (excluding event header)
4472 * Returns a reserved event on the ring buffer to copy directly to.
4473 * The user of this interface will need to get the body to write into
4474 * and can use the ring_buffer_event_data() interface.
4476 * The length is the length of the data needed, not the event length
4477 * which also includes the event header.
4479 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
4480 * If NULL is returned, then nothing has been allocated or locked.
4482 struct ring_buffer_event *
4483 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
4485 struct ring_buffer_per_cpu *cpu_buffer;
4486 struct ring_buffer_event *event;
4487 int cpu;
4489 /* If we are tracing schedule, we don't want to recurse */
4490 preempt_disable_notrace();
4492 if (unlikely(atomic_read(&buffer->record_disabled)))
4493 goto out;
4495 cpu = raw_smp_processor_id();
4497 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
4498 goto out;
4500 cpu_buffer = buffer->buffers[cpu];
4502 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
4503 goto out;
4505 if (unlikely(length > buffer->max_data_size))
4506 goto out;
4508 if (unlikely(trace_recursive_lock(cpu_buffer)))
4509 goto out;
4511 event = rb_reserve_next_event(buffer, cpu_buffer, length);
4512 if (!event)
4513 goto out_unlock;
4515 return event;
4517 out_unlock:
4518 trace_recursive_unlock(cpu_buffer);
4519 out:
4520 preempt_enable_notrace();
4521 return NULL;
4523 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
4526 * Decrement the entries to the page that an event is on.
4527 * The event does not even need to exist, only the pointer
4528 * to the page it is on. This may only be called before the commit
4529 * takes place.
4531 static inline void
4532 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
4533 struct ring_buffer_event *event)
4535 unsigned long addr = (unsigned long)event;
4536 struct buffer_page *bpage = cpu_buffer->commit_page;
4537 struct buffer_page *start;
4539 addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
4541 /* Do the likely case first */
4542 if (likely(bpage->page == (void *)addr)) {
4543 local_dec(&bpage->entries);
4544 return;
4548 * Because the commit page may be on the reader page we
4549 * start with the next page and check the end loop there.
4551 rb_inc_page(&bpage);
4552 start = bpage;
4553 do {
4554 if (bpage->page == (void *)addr) {
4555 local_dec(&bpage->entries);
4556 return;
4558 rb_inc_page(&bpage);
4559 } while (bpage != start);
4561 /* commit not part of this buffer?? */
4562 RB_WARN_ON(cpu_buffer, 1);
4566 * ring_buffer_discard_commit - discard an event that has not been committed
4567 * @buffer: the ring buffer
4568 * @event: non committed event to discard
4570 * Sometimes an event that is in the ring buffer needs to be ignored.
4571 * This function lets the user discard an event in the ring buffer
4572 * and then that event will not be read later.
4574 * This function only works if it is called before the item has been
4575 * committed. It will try to free the event from the ring buffer
4576 * if another event has not been added behind it.
4578 * If another event has been added behind it, it will set the event
4579 * up as discarded, and perform the commit.
4581 * If this function is called, do not call ring_buffer_unlock_commit on
4582 * the event.
4584 void ring_buffer_discard_commit(struct trace_buffer *buffer,
4585 struct ring_buffer_event *event)
4587 struct ring_buffer_per_cpu *cpu_buffer;
4588 int cpu;
4590 /* The event is discarded regardless */
4591 rb_event_discard(event);
4593 cpu = smp_processor_id();
4594 cpu_buffer = buffer->buffers[cpu];
4597 * This must only be called if the event has not been
4598 * committed yet. Thus we can assume that preemption
4599 * is still disabled.
4601 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
4603 rb_decrement_entry(cpu_buffer, event);
4604 if (rb_try_to_discard(cpu_buffer, event))
4605 goto out;
4607 out:
4608 rb_end_commit(cpu_buffer);
4610 trace_recursive_unlock(cpu_buffer);
4612 preempt_enable_notrace();
4615 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
4618 * ring_buffer_write - write data to the buffer without reserving
4619 * @buffer: The ring buffer to write to.
4620 * @length: The length of the data being written (excluding the event header)
4621 * @data: The data to write to the buffer.
4623 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
4624 * one function. If you already have the data to write to the buffer, it
4625 * may be easier to simply call this function.
4627 * Note, like ring_buffer_lock_reserve, the length is the length of the data
4628 * and not the length of the event which would hold the header.
4630 int ring_buffer_write(struct trace_buffer *buffer,
4631 unsigned long length,
4632 void *data)
4634 struct ring_buffer_per_cpu *cpu_buffer;
4635 struct ring_buffer_event *event;
4636 void *body;
4637 int ret = -EBUSY;
4638 int cpu;
4640 preempt_disable_notrace();
4642 if (atomic_read(&buffer->record_disabled))
4643 goto out;
4645 cpu = raw_smp_processor_id();
4647 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4648 goto out;
4650 cpu_buffer = buffer->buffers[cpu];
4652 if (atomic_read(&cpu_buffer->record_disabled))
4653 goto out;
4655 if (length > buffer->max_data_size)
4656 goto out;
4658 if (unlikely(trace_recursive_lock(cpu_buffer)))
4659 goto out;
4661 event = rb_reserve_next_event(buffer, cpu_buffer, length);
4662 if (!event)
4663 goto out_unlock;
4665 body = rb_event_data(event);
4667 memcpy(body, data, length);
4669 rb_commit(cpu_buffer);
4671 rb_wakeups(buffer, cpu_buffer);
4673 ret = 0;
4675 out_unlock:
4676 trace_recursive_unlock(cpu_buffer);
4678 out:
4679 preempt_enable_notrace();
4681 return ret;
4683 EXPORT_SYMBOL_GPL(ring_buffer_write);
4685 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
4687 struct buffer_page *reader = cpu_buffer->reader_page;
4688 struct buffer_page *head = rb_set_head_page(cpu_buffer);
4689 struct buffer_page *commit = cpu_buffer->commit_page;
4691 /* In case of error, head will be NULL */
4692 if (unlikely(!head))
4693 return true;
4695 /* Reader should exhaust content in reader page */
4696 if (reader->read != rb_page_size(reader))
4697 return false;
4700 * If writers are committing on the reader page, knowing all
4701 * committed content has been read, the ring buffer is empty.
4703 if (commit == reader)
4704 return true;
4707 * If writers are committing on a page other than reader page
4708 * and head page, there should always be content to read.
4710 if (commit != head)
4711 return false;
4714 * Writers are committing on the head page, we just need
4715 * to care about there're committed data, and the reader will
4716 * swap reader page with head page when it is to read data.
4718 return rb_page_commit(commit) == 0;
4722 * ring_buffer_record_disable - stop all writes into the buffer
4723 * @buffer: The ring buffer to stop writes to.
4725 * This prevents all writes to the buffer. Any attempt to write
4726 * to the buffer after this will fail and return NULL.
4728 * The caller should call synchronize_rcu() after this.
4730 void ring_buffer_record_disable(struct trace_buffer *buffer)
4732 atomic_inc(&buffer->record_disabled);
4734 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4737 * ring_buffer_record_enable - enable writes to the buffer
4738 * @buffer: The ring buffer to enable writes
4740 * Note, multiple disables will need the same number of enables
4741 * to truly enable the writing (much like preempt_disable).
4743 void ring_buffer_record_enable(struct trace_buffer *buffer)
4745 atomic_dec(&buffer->record_disabled);
4747 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4750 * ring_buffer_record_off - stop all writes into the buffer
4751 * @buffer: The ring buffer to stop writes to.
4753 * This prevents all writes to the buffer. Any attempt to write
4754 * to the buffer after this will fail and return NULL.
4756 * This is different than ring_buffer_record_disable() as
4757 * it works like an on/off switch, where as the disable() version
4758 * must be paired with a enable().
4760 void ring_buffer_record_off(struct trace_buffer *buffer)
4762 unsigned int rd;
4763 unsigned int new_rd;
4765 rd = atomic_read(&buffer->record_disabled);
4766 do {
4767 new_rd = rd | RB_BUFFER_OFF;
4768 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4770 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4773 * ring_buffer_record_on - restart writes into the buffer
4774 * @buffer: The ring buffer to start writes to.
4776 * This enables all writes to the buffer that was disabled by
4777 * ring_buffer_record_off().
4779 * This is different than ring_buffer_record_enable() as
4780 * it works like an on/off switch, where as the enable() version
4781 * must be paired with a disable().
4783 void ring_buffer_record_on(struct trace_buffer *buffer)
4785 unsigned int rd;
4786 unsigned int new_rd;
4788 rd = atomic_read(&buffer->record_disabled);
4789 do {
4790 new_rd = rd & ~RB_BUFFER_OFF;
4791 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4793 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4796 * ring_buffer_record_is_on - return true if the ring buffer can write
4797 * @buffer: The ring buffer to see if write is enabled
4799 * Returns true if the ring buffer is in a state that it accepts writes.
4801 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4803 return !atomic_read(&buffer->record_disabled);
4807 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4808 * @buffer: The ring buffer to see if write is set enabled
4810 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4811 * Note that this does NOT mean it is in a writable state.
4813 * It may return true when the ring buffer has been disabled by
4814 * ring_buffer_record_disable(), as that is a temporary disabling of
4815 * the ring buffer.
4817 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4819 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4823 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4824 * @buffer: The ring buffer to stop writes to.
4825 * @cpu: The CPU buffer to stop
4827 * This prevents all writes to the buffer. Any attempt to write
4828 * to the buffer after this will fail and return NULL.
4830 * The caller should call synchronize_rcu() after this.
4832 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4834 struct ring_buffer_per_cpu *cpu_buffer;
4836 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4837 return;
4839 cpu_buffer = buffer->buffers[cpu];
4840 atomic_inc(&cpu_buffer->record_disabled);
4842 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4845 * ring_buffer_record_enable_cpu - enable writes to the buffer
4846 * @buffer: The ring buffer to enable writes
4847 * @cpu: The CPU to enable.
4849 * Note, multiple disables will need the same number of enables
4850 * to truly enable the writing (much like preempt_disable).
4852 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4854 struct ring_buffer_per_cpu *cpu_buffer;
4856 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4857 return;
4859 cpu_buffer = buffer->buffers[cpu];
4860 atomic_dec(&cpu_buffer->record_disabled);
4862 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4865 * The total entries in the ring buffer is the running counter
4866 * of entries entered into the ring buffer, minus the sum of
4867 * the entries read from the ring buffer and the number of
4868 * entries that were overwritten.
4870 static inline unsigned long
4871 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4873 return local_read(&cpu_buffer->entries) -
4874 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4878 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4879 * @buffer: The ring buffer
4880 * @cpu: The per CPU buffer to read from.
4882 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4884 unsigned long flags;
4885 struct ring_buffer_per_cpu *cpu_buffer;
4886 struct buffer_page *bpage;
4887 u64 ret = 0;
4889 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4890 return 0;
4892 cpu_buffer = buffer->buffers[cpu];
4893 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4895 * if the tail is on reader_page, oldest time stamp is on the reader
4896 * page
4898 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4899 bpage = cpu_buffer->reader_page;
4900 else
4901 bpage = rb_set_head_page(cpu_buffer);
4902 if (bpage)
4903 ret = bpage->page->time_stamp;
4904 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4906 return ret;
4908 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4911 * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
4912 * @buffer: The ring buffer
4913 * @cpu: The per CPU buffer to read from.
4915 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4917 struct ring_buffer_per_cpu *cpu_buffer;
4918 unsigned long ret;
4920 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4921 return 0;
4923 cpu_buffer = buffer->buffers[cpu];
4924 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4926 return ret;
4928 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4931 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4932 * @buffer: The ring buffer
4933 * @cpu: The per CPU buffer to get the entries from.
4935 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4937 struct ring_buffer_per_cpu *cpu_buffer;
4939 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4940 return 0;
4942 cpu_buffer = buffer->buffers[cpu];
4944 return rb_num_of_entries(cpu_buffer);
4946 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4949 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4950 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4951 * @buffer: The ring buffer
4952 * @cpu: The per CPU buffer to get the number of overruns from
4954 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4956 struct ring_buffer_per_cpu *cpu_buffer;
4957 unsigned long ret;
4959 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4960 return 0;
4962 cpu_buffer = buffer->buffers[cpu];
4963 ret = local_read(&cpu_buffer->overrun);
4965 return ret;
4967 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4970 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4971 * commits failing due to the buffer wrapping around while there are uncommitted
4972 * events, such as during an interrupt storm.
4973 * @buffer: The ring buffer
4974 * @cpu: The per CPU buffer to get the number of overruns from
4976 unsigned long
4977 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4979 struct ring_buffer_per_cpu *cpu_buffer;
4980 unsigned long ret;
4982 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4983 return 0;
4985 cpu_buffer = buffer->buffers[cpu];
4986 ret = local_read(&cpu_buffer->commit_overrun);
4988 return ret;
4990 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4993 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4994 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4995 * @buffer: The ring buffer
4996 * @cpu: The per CPU buffer to get the number of overruns from
4998 unsigned long
4999 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
5001 struct ring_buffer_per_cpu *cpu_buffer;
5002 unsigned long ret;
5004 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5005 return 0;
5007 cpu_buffer = buffer->buffers[cpu];
5008 ret = local_read(&cpu_buffer->dropped_events);
5010 return ret;
5012 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
5015 * ring_buffer_read_events_cpu - get the number of events successfully read
5016 * @buffer: The ring buffer
5017 * @cpu: The per CPU buffer to get the number of events read
5019 unsigned long
5020 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
5022 struct ring_buffer_per_cpu *cpu_buffer;
5024 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5025 return 0;
5027 cpu_buffer = buffer->buffers[cpu];
5028 return cpu_buffer->read;
5030 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
5033 * ring_buffer_entries - get the number of entries in a buffer
5034 * @buffer: The ring buffer
5036 * Returns the total number of entries in the ring buffer
5037 * (all CPU entries)
5039 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
5041 struct ring_buffer_per_cpu *cpu_buffer;
5042 unsigned long entries = 0;
5043 int cpu;
5045 /* if you care about this being correct, lock the buffer */
5046 for_each_buffer_cpu(buffer, cpu) {
5047 cpu_buffer = buffer->buffers[cpu];
5048 entries += rb_num_of_entries(cpu_buffer);
5051 return entries;
5053 EXPORT_SYMBOL_GPL(ring_buffer_entries);
5056 * ring_buffer_overruns - get the number of overruns in buffer
5057 * @buffer: The ring buffer
5059 * Returns the total number of overruns in the ring buffer
5060 * (all CPU entries)
5062 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
5064 struct ring_buffer_per_cpu *cpu_buffer;
5065 unsigned long overruns = 0;
5066 int cpu;
5068 /* if you care about this being correct, lock the buffer */
5069 for_each_buffer_cpu(buffer, cpu) {
5070 cpu_buffer = buffer->buffers[cpu];
5071 overruns += local_read(&cpu_buffer->overrun);
5074 return overruns;
5076 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
5078 static void rb_iter_reset(struct ring_buffer_iter *iter)
5080 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5082 /* Iterator usage is expected to have record disabled */
5083 iter->head_page = cpu_buffer->reader_page;
5084 iter->head = cpu_buffer->reader_page->read;
5085 iter->next_event = iter->head;
5087 iter->cache_reader_page = iter->head_page;
5088 iter->cache_read = cpu_buffer->read;
5089 iter->cache_pages_removed = cpu_buffer->pages_removed;
5091 if (iter->head) {
5092 iter->read_stamp = cpu_buffer->read_stamp;
5093 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
5094 } else {
5095 iter->read_stamp = iter->head_page->page->time_stamp;
5096 iter->page_stamp = iter->read_stamp;
5101 * ring_buffer_iter_reset - reset an iterator
5102 * @iter: The iterator to reset
5104 * Resets the iterator, so that it will start from the beginning
5105 * again.
5107 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
5109 struct ring_buffer_per_cpu *cpu_buffer;
5110 unsigned long flags;
5112 if (!iter)
5113 return;
5115 cpu_buffer = iter->cpu_buffer;
5117 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5118 rb_iter_reset(iter);
5119 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5121 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
5124 * ring_buffer_iter_empty - check if an iterator has no more to read
5125 * @iter: The iterator to check
5127 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
5129 struct ring_buffer_per_cpu *cpu_buffer;
5130 struct buffer_page *reader;
5131 struct buffer_page *head_page;
5132 struct buffer_page *commit_page;
5133 struct buffer_page *curr_commit_page;
5134 unsigned commit;
5135 u64 curr_commit_ts;
5136 u64 commit_ts;
5138 cpu_buffer = iter->cpu_buffer;
5139 reader = cpu_buffer->reader_page;
5140 head_page = cpu_buffer->head_page;
5141 commit_page = READ_ONCE(cpu_buffer->commit_page);
5142 commit_ts = commit_page->page->time_stamp;
5145 * When the writer goes across pages, it issues a cmpxchg which
5146 * is a mb(), which will synchronize with the rmb here.
5147 * (see rb_tail_page_update())
5149 smp_rmb();
5150 commit = rb_page_commit(commit_page);
5151 /* We want to make sure that the commit page doesn't change */
5152 smp_rmb();
5154 /* Make sure commit page didn't change */
5155 curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
5156 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
5158 /* If the commit page changed, then there's more data */
5159 if (curr_commit_page != commit_page ||
5160 curr_commit_ts != commit_ts)
5161 return 0;
5163 /* Still racy, as it may return a false positive, but that's OK */
5164 return ((iter->head_page == commit_page && iter->head >= commit) ||
5165 (iter->head_page == reader && commit_page == head_page &&
5166 head_page->read == commit &&
5167 iter->head == rb_page_size(cpu_buffer->reader_page)));
5169 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
5171 static void
5172 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
5173 struct ring_buffer_event *event)
5175 u64 delta;
5177 switch (event->type_len) {
5178 case RINGBUF_TYPE_PADDING:
5179 return;
5181 case RINGBUF_TYPE_TIME_EXTEND:
5182 delta = rb_event_time_stamp(event);
5183 cpu_buffer->read_stamp += delta;
5184 return;
5186 case RINGBUF_TYPE_TIME_STAMP:
5187 delta = rb_event_time_stamp(event);
5188 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
5189 cpu_buffer->read_stamp = delta;
5190 return;
5192 case RINGBUF_TYPE_DATA:
5193 cpu_buffer->read_stamp += event->time_delta;
5194 return;
5196 default:
5197 RB_WARN_ON(cpu_buffer, 1);
5201 static void
5202 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
5203 struct ring_buffer_event *event)
5205 u64 delta;
5207 switch (event->type_len) {
5208 case RINGBUF_TYPE_PADDING:
5209 return;
5211 case RINGBUF_TYPE_TIME_EXTEND:
5212 delta = rb_event_time_stamp(event);
5213 iter->read_stamp += delta;
5214 return;
5216 case RINGBUF_TYPE_TIME_STAMP:
5217 delta = rb_event_time_stamp(event);
5218 delta = rb_fix_abs_ts(delta, iter->read_stamp);
5219 iter->read_stamp = delta;
5220 return;
5222 case RINGBUF_TYPE_DATA:
5223 iter->read_stamp += event->time_delta;
5224 return;
5226 default:
5227 RB_WARN_ON(iter->cpu_buffer, 1);
5231 static struct buffer_page *
5232 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
5234 struct buffer_page *reader = NULL;
5235 unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
5236 unsigned long overwrite;
5237 unsigned long flags;
5238 int nr_loops = 0;
5239 bool ret;
5241 local_irq_save(flags);
5242 arch_spin_lock(&cpu_buffer->lock);
5244 again:
5246 * This should normally only loop twice. But because the
5247 * start of the reader inserts an empty page, it causes
5248 * a case where we will loop three times. There should be no
5249 * reason to loop four times (that I know of).
5251 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
5252 reader = NULL;
5253 goto out;
5256 reader = cpu_buffer->reader_page;
5258 /* If there's more to read, return this page */
5259 if (cpu_buffer->reader_page->read < rb_page_size(reader))
5260 goto out;
5262 /* Never should we have an index greater than the size */
5263 if (RB_WARN_ON(cpu_buffer,
5264 cpu_buffer->reader_page->read > rb_page_size(reader)))
5265 goto out;
5267 /* check if we caught up to the tail */
5268 reader = NULL;
5269 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
5270 goto out;
5272 /* Don't bother swapping if the ring buffer is empty */
5273 if (rb_num_of_entries(cpu_buffer) == 0)
5274 goto out;
5277 * Reset the reader page to size zero.
5279 local_set(&cpu_buffer->reader_page->write, 0);
5280 local_set(&cpu_buffer->reader_page->entries, 0);
5281 local_set(&cpu_buffer->reader_page->page->commit, 0);
5282 cpu_buffer->reader_page->real_end = 0;
5284 spin:
5286 * Splice the empty reader page into the list around the head.
5288 reader = rb_set_head_page(cpu_buffer);
5289 if (!reader)
5290 goto out;
5291 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
5292 cpu_buffer->reader_page->list.prev = reader->list.prev;
5295 * cpu_buffer->pages just needs to point to the buffer, it
5296 * has no specific buffer page to point to. Lets move it out
5297 * of our way so we don't accidentally swap it.
5299 cpu_buffer->pages = reader->list.prev;
5301 /* The reader page will be pointing to the new head */
5302 rb_set_list_to_head(&cpu_buffer->reader_page->list);
5305 * We want to make sure we read the overruns after we set up our
5306 * pointers to the next object. The writer side does a
5307 * cmpxchg to cross pages which acts as the mb on the writer
5308 * side. Note, the reader will constantly fail the swap
5309 * while the writer is updating the pointers, so this
5310 * guarantees that the overwrite recorded here is the one we
5311 * want to compare with the last_overrun.
5313 smp_mb();
5314 overwrite = local_read(&(cpu_buffer->overrun));
5317 * Here's the tricky part.
5319 * We need to move the pointer past the header page.
5320 * But we can only do that if a writer is not currently
5321 * moving it. The page before the header page has the
5322 * flag bit '1' set if it is pointing to the page we want.
5323 * but if the writer is in the process of moving it
5324 * than it will be '2' or already moved '0'.
5327 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
5330 * If we did not convert it, then we must try again.
5332 if (!ret)
5333 goto spin;
5335 if (cpu_buffer->ring_meta)
5336 rb_update_meta_reader(cpu_buffer, reader);
5339 * Yay! We succeeded in replacing the page.
5341 * Now make the new head point back to the reader page.
5343 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
5344 rb_inc_page(&cpu_buffer->head_page);
5346 cpu_buffer->cnt++;
5347 local_inc(&cpu_buffer->pages_read);
5349 /* Finally update the reader page to the new head */
5350 cpu_buffer->reader_page = reader;
5351 cpu_buffer->reader_page->read = 0;
5353 if (overwrite != cpu_buffer->last_overrun) {
5354 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
5355 cpu_buffer->last_overrun = overwrite;
5358 goto again;
5360 out:
5361 /* Update the read_stamp on the first event */
5362 if (reader && reader->read == 0)
5363 cpu_buffer->read_stamp = reader->page->time_stamp;
5365 arch_spin_unlock(&cpu_buffer->lock);
5366 local_irq_restore(flags);
5369 * The writer has preempt disable, wait for it. But not forever
5370 * Although, 1 second is pretty much "forever"
5372 #define USECS_WAIT 1000000
5373 for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
5374 /* If the write is past the end of page, a writer is still updating it */
5375 if (likely(!reader || rb_page_write(reader) <= bsize))
5376 break;
5378 udelay(1);
5380 /* Get the latest version of the reader write value */
5381 smp_rmb();
5384 /* The writer is not moving forward? Something is wrong */
5385 if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
5386 reader = NULL;
5389 * Make sure we see any padding after the write update
5390 * (see rb_reset_tail()).
5392 * In addition, a writer may be writing on the reader page
5393 * if the page has not been fully filled, so the read barrier
5394 * is also needed to make sure we see the content of what is
5395 * committed by the writer (see rb_set_commit_to_write()).
5397 smp_rmb();
5400 return reader;
5403 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
5405 struct ring_buffer_event *event;
5406 struct buffer_page *reader;
5407 unsigned length;
5409 reader = rb_get_reader_page(cpu_buffer);
5411 /* This function should not be called when buffer is empty */
5412 if (RB_WARN_ON(cpu_buffer, !reader))
5413 return;
5415 event = rb_reader_event(cpu_buffer);
5417 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
5418 cpu_buffer->read++;
5420 rb_update_read_stamp(cpu_buffer, event);
5422 length = rb_event_length(event);
5423 cpu_buffer->reader_page->read += length;
5424 cpu_buffer->read_bytes += length;
5427 static void rb_advance_iter(struct ring_buffer_iter *iter)
5429 struct ring_buffer_per_cpu *cpu_buffer;
5431 cpu_buffer = iter->cpu_buffer;
5433 /* If head == next_event then we need to jump to the next event */
5434 if (iter->head == iter->next_event) {
5435 /* If the event gets overwritten again, there's nothing to do */
5436 if (rb_iter_head_event(iter) == NULL)
5437 return;
5440 iter->head = iter->next_event;
5443 * Check if we are at the end of the buffer.
5445 if (iter->next_event >= rb_page_size(iter->head_page)) {
5446 /* discarded commits can make the page empty */
5447 if (iter->head_page == cpu_buffer->commit_page)
5448 return;
5449 rb_inc_iter(iter);
5450 return;
5453 rb_update_iter_read_stamp(iter, iter->event);
5456 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
5458 return cpu_buffer->lost_events;
5461 static struct ring_buffer_event *
5462 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
5463 unsigned long *lost_events)
5465 struct ring_buffer_event *event;
5466 struct buffer_page *reader;
5467 int nr_loops = 0;
5469 if (ts)
5470 *ts = 0;
5471 again:
5473 * We repeat when a time extend is encountered.
5474 * Since the time extend is always attached to a data event,
5475 * we should never loop more than once.
5476 * (We never hit the following condition more than twice).
5478 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
5479 return NULL;
5481 reader = rb_get_reader_page(cpu_buffer);
5482 if (!reader)
5483 return NULL;
5485 event = rb_reader_event(cpu_buffer);
5487 switch (event->type_len) {
5488 case RINGBUF_TYPE_PADDING:
5489 if (rb_null_event(event))
5490 RB_WARN_ON(cpu_buffer, 1);
5492 * Because the writer could be discarding every
5493 * event it creates (which would probably be bad)
5494 * if we were to go back to "again" then we may never
5495 * catch up, and will trigger the warn on, or lock
5496 * the box. Return the padding, and we will release
5497 * the current locks, and try again.
5499 return event;
5501 case RINGBUF_TYPE_TIME_EXTEND:
5502 /* Internal data, OK to advance */
5503 rb_advance_reader(cpu_buffer);
5504 goto again;
5506 case RINGBUF_TYPE_TIME_STAMP:
5507 if (ts) {
5508 *ts = rb_event_time_stamp(event);
5509 *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
5510 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5511 cpu_buffer->cpu, ts);
5513 /* Internal data, OK to advance */
5514 rb_advance_reader(cpu_buffer);
5515 goto again;
5517 case RINGBUF_TYPE_DATA:
5518 if (ts && !(*ts)) {
5519 *ts = cpu_buffer->read_stamp + event->time_delta;
5520 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5521 cpu_buffer->cpu, ts);
5523 if (lost_events)
5524 *lost_events = rb_lost_events(cpu_buffer);
5525 return event;
5527 default:
5528 RB_WARN_ON(cpu_buffer, 1);
5531 return NULL;
5533 EXPORT_SYMBOL_GPL(ring_buffer_peek);
5535 static struct ring_buffer_event *
5536 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5538 struct trace_buffer *buffer;
5539 struct ring_buffer_per_cpu *cpu_buffer;
5540 struct ring_buffer_event *event;
5541 int nr_loops = 0;
5543 if (ts)
5544 *ts = 0;
5546 cpu_buffer = iter->cpu_buffer;
5547 buffer = cpu_buffer->buffer;
5550 * Check if someone performed a consuming read to the buffer
5551 * or removed some pages from the buffer. In these cases,
5552 * iterator was invalidated and we need to reset it.
5554 if (unlikely(iter->cache_read != cpu_buffer->read ||
5555 iter->cache_reader_page != cpu_buffer->reader_page ||
5556 iter->cache_pages_removed != cpu_buffer->pages_removed))
5557 rb_iter_reset(iter);
5559 again:
5560 if (ring_buffer_iter_empty(iter))
5561 return NULL;
5564 * As the writer can mess with what the iterator is trying
5565 * to read, just give up if we fail to get an event after
5566 * three tries. The iterator is not as reliable when reading
5567 * the ring buffer with an active write as the consumer is.
5568 * Do not warn if the three failures is reached.
5570 if (++nr_loops > 3)
5571 return NULL;
5573 if (rb_per_cpu_empty(cpu_buffer))
5574 return NULL;
5576 if (iter->head >= rb_page_size(iter->head_page)) {
5577 rb_inc_iter(iter);
5578 goto again;
5581 event = rb_iter_head_event(iter);
5582 if (!event)
5583 goto again;
5585 switch (event->type_len) {
5586 case RINGBUF_TYPE_PADDING:
5587 if (rb_null_event(event)) {
5588 rb_inc_iter(iter);
5589 goto again;
5591 rb_advance_iter(iter);
5592 return event;
5594 case RINGBUF_TYPE_TIME_EXTEND:
5595 /* Internal data, OK to advance */
5596 rb_advance_iter(iter);
5597 goto again;
5599 case RINGBUF_TYPE_TIME_STAMP:
5600 if (ts) {
5601 *ts = rb_event_time_stamp(event);
5602 *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
5603 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5604 cpu_buffer->cpu, ts);
5606 /* Internal data, OK to advance */
5607 rb_advance_iter(iter);
5608 goto again;
5610 case RINGBUF_TYPE_DATA:
5611 if (ts && !(*ts)) {
5612 *ts = iter->read_stamp + event->time_delta;
5613 ring_buffer_normalize_time_stamp(buffer,
5614 cpu_buffer->cpu, ts);
5616 return event;
5618 default:
5619 RB_WARN_ON(cpu_buffer, 1);
5622 return NULL;
5624 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
5626 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
5628 if (likely(!in_nmi())) {
5629 raw_spin_lock(&cpu_buffer->reader_lock);
5630 return true;
5634 * If an NMI die dumps out the content of the ring buffer
5635 * trylock must be used to prevent a deadlock if the NMI
5636 * preempted a task that holds the ring buffer locks. If
5637 * we get the lock then all is fine, if not, then continue
5638 * to do the read, but this can corrupt the ring buffer,
5639 * so it must be permanently disabled from future writes.
5640 * Reading from NMI is a oneshot deal.
5642 if (raw_spin_trylock(&cpu_buffer->reader_lock))
5643 return true;
5645 /* Continue without locking, but disable the ring buffer */
5646 atomic_inc(&cpu_buffer->record_disabled);
5647 return false;
5650 static inline void
5651 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
5653 if (likely(locked))
5654 raw_spin_unlock(&cpu_buffer->reader_lock);
5658 * ring_buffer_peek - peek at the next event to be read
5659 * @buffer: The ring buffer to read
5660 * @cpu: The cpu to peak at
5661 * @ts: The timestamp counter of this event.
5662 * @lost_events: a variable to store if events were lost (may be NULL)
5664 * This will return the event that will be read next, but does
5665 * not consume the data.
5667 struct ring_buffer_event *
5668 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
5669 unsigned long *lost_events)
5671 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5672 struct ring_buffer_event *event;
5673 unsigned long flags;
5674 bool dolock;
5676 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5677 return NULL;
5679 again:
5680 local_irq_save(flags);
5681 dolock = rb_reader_lock(cpu_buffer);
5682 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5683 if (event && event->type_len == RINGBUF_TYPE_PADDING)
5684 rb_advance_reader(cpu_buffer);
5685 rb_reader_unlock(cpu_buffer, dolock);
5686 local_irq_restore(flags);
5688 if (event && event->type_len == RINGBUF_TYPE_PADDING)
5689 goto again;
5691 return event;
5694 /** ring_buffer_iter_dropped - report if there are dropped events
5695 * @iter: The ring buffer iterator
5697 * Returns true if there was dropped events since the last peek.
5699 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
5701 bool ret = iter->missed_events != 0;
5703 iter->missed_events = 0;
5704 return ret;
5706 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
5709 * ring_buffer_iter_peek - peek at the next event to be read
5710 * @iter: The ring buffer iterator
5711 * @ts: The timestamp counter of this event.
5713 * This will return the event that will be read next, but does
5714 * not increment the iterator.
5716 struct ring_buffer_event *
5717 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5719 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5720 struct ring_buffer_event *event;
5721 unsigned long flags;
5723 again:
5724 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5725 event = rb_iter_peek(iter, ts);
5726 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5728 if (event && event->type_len == RINGBUF_TYPE_PADDING)
5729 goto again;
5731 return event;
5735 * ring_buffer_consume - return an event and consume it
5736 * @buffer: The ring buffer to get the next event from
5737 * @cpu: the cpu to read the buffer from
5738 * @ts: a variable to store the timestamp (may be NULL)
5739 * @lost_events: a variable to store if events were lost (may be NULL)
5741 * Returns the next event in the ring buffer, and that event is consumed.
5742 * Meaning, that sequential reads will keep returning a different event,
5743 * and eventually empty the ring buffer if the producer is slower.
5745 struct ring_buffer_event *
5746 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5747 unsigned long *lost_events)
5749 struct ring_buffer_per_cpu *cpu_buffer;
5750 struct ring_buffer_event *event = NULL;
5751 unsigned long flags;
5752 bool dolock;
5754 again:
5755 /* might be called in atomic */
5756 preempt_disable();
5758 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5759 goto out;
5761 cpu_buffer = buffer->buffers[cpu];
5762 local_irq_save(flags);
5763 dolock = rb_reader_lock(cpu_buffer);
5765 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5766 if (event) {
5767 cpu_buffer->lost_events = 0;
5768 rb_advance_reader(cpu_buffer);
5771 rb_reader_unlock(cpu_buffer, dolock);
5772 local_irq_restore(flags);
5774 out:
5775 preempt_enable();
5777 if (event && event->type_len == RINGBUF_TYPE_PADDING)
5778 goto again;
5780 return event;
5782 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5785 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5786 * @buffer: The ring buffer to read from
5787 * @cpu: The cpu buffer to iterate over
5788 * @flags: gfp flags to use for memory allocation
5790 * This performs the initial preparations necessary to iterate
5791 * through the buffer. Memory is allocated, buffer resizing
5792 * is disabled, and the iterator pointer is returned to the caller.
5794 * After a sequence of ring_buffer_read_prepare calls, the user is
5795 * expected to make at least one call to ring_buffer_read_prepare_sync.
5796 * Afterwards, ring_buffer_read_start is invoked to get things going
5797 * for real.
5799 * This overall must be paired with ring_buffer_read_finish.
5801 struct ring_buffer_iter *
5802 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5804 struct ring_buffer_per_cpu *cpu_buffer;
5805 struct ring_buffer_iter *iter;
5807 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5808 return NULL;
5810 iter = kzalloc(sizeof(*iter), flags);
5811 if (!iter)
5812 return NULL;
5814 /* Holds the entire event: data and meta data */
5815 iter->event_size = buffer->subbuf_size;
5816 iter->event = kmalloc(iter->event_size, flags);
5817 if (!iter->event) {
5818 kfree(iter);
5819 return NULL;
5822 cpu_buffer = buffer->buffers[cpu];
5824 iter->cpu_buffer = cpu_buffer;
5826 atomic_inc(&cpu_buffer->resize_disabled);
5828 return iter;
5830 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5833 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5835 * All previously invoked ring_buffer_read_prepare calls to prepare
5836 * iterators will be synchronized. Afterwards, read_buffer_read_start
5837 * calls on those iterators are allowed.
5839 void
5840 ring_buffer_read_prepare_sync(void)
5842 synchronize_rcu();
5844 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5847 * ring_buffer_read_start - start a non consuming read of the buffer
5848 * @iter: The iterator returned by ring_buffer_read_prepare
5850 * This finalizes the startup of an iteration through the buffer.
5851 * The iterator comes from a call to ring_buffer_read_prepare and
5852 * an intervening ring_buffer_read_prepare_sync must have been
5853 * performed.
5855 * Must be paired with ring_buffer_read_finish.
5857 void
5858 ring_buffer_read_start(struct ring_buffer_iter *iter)
5860 struct ring_buffer_per_cpu *cpu_buffer;
5861 unsigned long flags;
5863 if (!iter)
5864 return;
5866 cpu_buffer = iter->cpu_buffer;
5868 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5869 arch_spin_lock(&cpu_buffer->lock);
5870 rb_iter_reset(iter);
5871 arch_spin_unlock(&cpu_buffer->lock);
5872 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5874 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5877 * ring_buffer_read_finish - finish reading the iterator of the buffer
5878 * @iter: The iterator retrieved by ring_buffer_start
5880 * This re-enables resizing of the buffer, and frees the iterator.
5882 void
5883 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5885 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5887 /* Use this opportunity to check the integrity of the ring buffer. */
5888 rb_check_pages(cpu_buffer);
5890 atomic_dec(&cpu_buffer->resize_disabled);
5891 kfree(iter->event);
5892 kfree(iter);
5894 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5897 * ring_buffer_iter_advance - advance the iterator to the next location
5898 * @iter: The ring buffer iterator
5900 * Move the location of the iterator such that the next read will
5901 * be the next location of the iterator.
5903 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5905 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5906 unsigned long flags;
5908 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5910 rb_advance_iter(iter);
5912 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5914 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5917 * ring_buffer_size - return the size of the ring buffer (in bytes)
5918 * @buffer: The ring buffer.
5919 * @cpu: The CPU to get ring buffer size from.
5921 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5923 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5924 return 0;
5926 return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages;
5928 EXPORT_SYMBOL_GPL(ring_buffer_size);
5931 * ring_buffer_max_event_size - return the max data size of an event
5932 * @buffer: The ring buffer.
5934 * Returns the maximum size an event can be.
5936 unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer)
5938 /* If abs timestamp is requested, events have a timestamp too */
5939 if (ring_buffer_time_stamp_abs(buffer))
5940 return buffer->max_data_size - RB_LEN_TIME_EXTEND;
5941 return buffer->max_data_size;
5943 EXPORT_SYMBOL_GPL(ring_buffer_max_event_size);
5945 static void rb_clear_buffer_page(struct buffer_page *page)
5947 local_set(&page->write, 0);
5948 local_set(&page->entries, 0);
5949 rb_init_page(page->page);
5950 page->read = 0;
5953 static void rb_update_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
5955 struct trace_buffer_meta *meta = cpu_buffer->meta_page;
5957 if (!meta)
5958 return;
5960 meta->reader.read = cpu_buffer->reader_page->read;
5961 meta->reader.id = cpu_buffer->reader_page->id;
5962 meta->reader.lost_events = cpu_buffer->lost_events;
5964 meta->entries = local_read(&cpu_buffer->entries);
5965 meta->overrun = local_read(&cpu_buffer->overrun);
5966 meta->read = cpu_buffer->read;
5968 /* Some archs do not have data cache coherency between kernel and user-space */
5969 flush_dcache_folio(virt_to_folio(cpu_buffer->meta_page));
5972 static void
5973 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5975 struct buffer_page *page;
5977 rb_head_page_deactivate(cpu_buffer);
5979 cpu_buffer->head_page
5980 = list_entry(cpu_buffer->pages, struct buffer_page, list);
5981 rb_clear_buffer_page(cpu_buffer->head_page);
5982 list_for_each_entry(page, cpu_buffer->pages, list) {
5983 rb_clear_buffer_page(page);
5986 cpu_buffer->tail_page = cpu_buffer->head_page;
5987 cpu_buffer->commit_page = cpu_buffer->head_page;
5989 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5990 INIT_LIST_HEAD(&cpu_buffer->new_pages);
5991 rb_clear_buffer_page(cpu_buffer->reader_page);
5993 local_set(&cpu_buffer->entries_bytes, 0);
5994 local_set(&cpu_buffer->overrun, 0);
5995 local_set(&cpu_buffer->commit_overrun, 0);
5996 local_set(&cpu_buffer->dropped_events, 0);
5997 local_set(&cpu_buffer->entries, 0);
5998 local_set(&cpu_buffer->committing, 0);
5999 local_set(&cpu_buffer->commits, 0);
6000 local_set(&cpu_buffer->pages_touched, 0);
6001 local_set(&cpu_buffer->pages_lost, 0);
6002 local_set(&cpu_buffer->pages_read, 0);
6003 cpu_buffer->last_pages_touch = 0;
6004 cpu_buffer->shortest_full = 0;
6005 cpu_buffer->read = 0;
6006 cpu_buffer->read_bytes = 0;
6008 rb_time_set(&cpu_buffer->write_stamp, 0);
6009 rb_time_set(&cpu_buffer->before_stamp, 0);
6011 memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
6013 cpu_buffer->lost_events = 0;
6014 cpu_buffer->last_overrun = 0;
6016 rb_head_page_activate(cpu_buffer);
6017 cpu_buffer->pages_removed = 0;
6019 if (cpu_buffer->mapped) {
6020 rb_update_meta_page(cpu_buffer);
6021 if (cpu_buffer->ring_meta) {
6022 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
6023 meta->commit_buffer = meta->head_buffer;
6028 /* Must have disabled the cpu buffer then done a synchronize_rcu */
6029 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6031 unsigned long flags;
6033 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6035 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
6036 goto out;
6038 arch_spin_lock(&cpu_buffer->lock);
6040 rb_reset_cpu(cpu_buffer);
6042 arch_spin_unlock(&cpu_buffer->lock);
6044 out:
6045 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6049 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
6050 * @buffer: The ring buffer to reset a per cpu buffer of
6051 * @cpu: The CPU buffer to be reset
6053 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
6055 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6056 struct ring_buffer_meta *meta;
6058 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6059 return;
6061 /* prevent another thread from changing buffer sizes */
6062 mutex_lock(&buffer->mutex);
6064 atomic_inc(&cpu_buffer->resize_disabled);
6065 atomic_inc(&cpu_buffer->record_disabled);
6067 /* Make sure all commits have finished */
6068 synchronize_rcu();
6070 reset_disabled_cpu_buffer(cpu_buffer);
6072 atomic_dec(&cpu_buffer->record_disabled);
6073 atomic_dec(&cpu_buffer->resize_disabled);
6075 /* Make sure persistent meta now uses this buffer's addresses */
6076 meta = rb_range_meta(buffer, 0, cpu_buffer->cpu);
6077 if (meta)
6078 rb_meta_init_text_addr(meta);
6080 mutex_unlock(&buffer->mutex);
6082 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
6084 /* Flag to ensure proper resetting of atomic variables */
6085 #define RESET_BIT (1 << 30)
6088 * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
6089 * @buffer: The ring buffer to reset a per cpu buffer of
6091 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
6093 struct ring_buffer_per_cpu *cpu_buffer;
6094 struct ring_buffer_meta *meta;
6095 int cpu;
6097 /* prevent another thread from changing buffer sizes */
6098 mutex_lock(&buffer->mutex);
6100 for_each_online_buffer_cpu(buffer, cpu) {
6101 cpu_buffer = buffer->buffers[cpu];
6103 atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
6104 atomic_inc(&cpu_buffer->record_disabled);
6107 /* Make sure all commits have finished */
6108 synchronize_rcu();
6110 for_each_buffer_cpu(buffer, cpu) {
6111 cpu_buffer = buffer->buffers[cpu];
6114 * If a CPU came online during the synchronize_rcu(), then
6115 * ignore it.
6117 if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
6118 continue;
6120 reset_disabled_cpu_buffer(cpu_buffer);
6122 /* Make sure persistent meta now uses this buffer's addresses */
6123 meta = rb_range_meta(buffer, 0, cpu_buffer->cpu);
6124 if (meta)
6125 rb_meta_init_text_addr(meta);
6127 atomic_dec(&cpu_buffer->record_disabled);
6128 atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
6131 mutex_unlock(&buffer->mutex);
6135 * ring_buffer_reset - reset a ring buffer
6136 * @buffer: The ring buffer to reset all cpu buffers
6138 void ring_buffer_reset(struct trace_buffer *buffer)
6140 struct ring_buffer_per_cpu *cpu_buffer;
6141 int cpu;
6143 /* prevent another thread from changing buffer sizes */
6144 mutex_lock(&buffer->mutex);
6146 for_each_buffer_cpu(buffer, cpu) {
6147 cpu_buffer = buffer->buffers[cpu];
6149 atomic_inc(&cpu_buffer->resize_disabled);
6150 atomic_inc(&cpu_buffer->record_disabled);
6153 /* Make sure all commits have finished */
6154 synchronize_rcu();
6156 for_each_buffer_cpu(buffer, cpu) {
6157 cpu_buffer = buffer->buffers[cpu];
6159 reset_disabled_cpu_buffer(cpu_buffer);
6161 atomic_dec(&cpu_buffer->record_disabled);
6162 atomic_dec(&cpu_buffer->resize_disabled);
6165 mutex_unlock(&buffer->mutex);
6167 EXPORT_SYMBOL_GPL(ring_buffer_reset);
6170 * ring_buffer_empty - is the ring buffer empty?
6171 * @buffer: The ring buffer to test
6173 bool ring_buffer_empty(struct trace_buffer *buffer)
6175 struct ring_buffer_per_cpu *cpu_buffer;
6176 unsigned long flags;
6177 bool dolock;
6178 bool ret;
6179 int cpu;
6181 /* yes this is racy, but if you don't like the race, lock the buffer */
6182 for_each_buffer_cpu(buffer, cpu) {
6183 cpu_buffer = buffer->buffers[cpu];
6184 local_irq_save(flags);
6185 dolock = rb_reader_lock(cpu_buffer);
6186 ret = rb_per_cpu_empty(cpu_buffer);
6187 rb_reader_unlock(cpu_buffer, dolock);
6188 local_irq_restore(flags);
6190 if (!ret)
6191 return false;
6194 return true;
6196 EXPORT_SYMBOL_GPL(ring_buffer_empty);
6199 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
6200 * @buffer: The ring buffer
6201 * @cpu: The CPU buffer to test
6203 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
6205 struct ring_buffer_per_cpu *cpu_buffer;
6206 unsigned long flags;
6207 bool dolock;
6208 bool ret;
6210 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6211 return true;
6213 cpu_buffer = buffer->buffers[cpu];
6214 local_irq_save(flags);
6215 dolock = rb_reader_lock(cpu_buffer);
6216 ret = rb_per_cpu_empty(cpu_buffer);
6217 rb_reader_unlock(cpu_buffer, dolock);
6218 local_irq_restore(flags);
6220 return ret;
6222 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
6224 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
6226 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
6227 * @buffer_a: One buffer to swap with
6228 * @buffer_b: The other buffer to swap with
6229 * @cpu: the CPU of the buffers to swap
6231 * This function is useful for tracers that want to take a "snapshot"
6232 * of a CPU buffer and has another back up buffer lying around.
6233 * it is expected that the tracer handles the cpu buffer not being
6234 * used at the moment.
6236 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
6237 struct trace_buffer *buffer_b, int cpu)
6239 struct ring_buffer_per_cpu *cpu_buffer_a;
6240 struct ring_buffer_per_cpu *cpu_buffer_b;
6241 int ret = -EINVAL;
6243 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
6244 !cpumask_test_cpu(cpu, buffer_b->cpumask))
6245 goto out;
6247 cpu_buffer_a = buffer_a->buffers[cpu];
6248 cpu_buffer_b = buffer_b->buffers[cpu];
6250 /* It's up to the callers to not try to swap mapped buffers */
6251 if (WARN_ON_ONCE(cpu_buffer_a->mapped || cpu_buffer_b->mapped)) {
6252 ret = -EBUSY;
6253 goto out;
6256 /* At least make sure the two buffers are somewhat the same */
6257 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
6258 goto out;
6260 if (buffer_a->subbuf_order != buffer_b->subbuf_order)
6261 goto out;
6263 ret = -EAGAIN;
6265 if (atomic_read(&buffer_a->record_disabled))
6266 goto out;
6268 if (atomic_read(&buffer_b->record_disabled))
6269 goto out;
6271 if (atomic_read(&cpu_buffer_a->record_disabled))
6272 goto out;
6274 if (atomic_read(&cpu_buffer_b->record_disabled))
6275 goto out;
6278 * We can't do a synchronize_rcu here because this
6279 * function can be called in atomic context.
6280 * Normally this will be called from the same CPU as cpu.
6281 * If not it's up to the caller to protect this.
6283 atomic_inc(&cpu_buffer_a->record_disabled);
6284 atomic_inc(&cpu_buffer_b->record_disabled);
6286 ret = -EBUSY;
6287 if (local_read(&cpu_buffer_a->committing))
6288 goto out_dec;
6289 if (local_read(&cpu_buffer_b->committing))
6290 goto out_dec;
6293 * When resize is in progress, we cannot swap it because
6294 * it will mess the state of the cpu buffer.
6296 if (atomic_read(&buffer_a->resizing))
6297 goto out_dec;
6298 if (atomic_read(&buffer_b->resizing))
6299 goto out_dec;
6301 buffer_a->buffers[cpu] = cpu_buffer_b;
6302 buffer_b->buffers[cpu] = cpu_buffer_a;
6304 cpu_buffer_b->buffer = buffer_a;
6305 cpu_buffer_a->buffer = buffer_b;
6307 ret = 0;
6309 out_dec:
6310 atomic_dec(&cpu_buffer_a->record_disabled);
6311 atomic_dec(&cpu_buffer_b->record_disabled);
6312 out:
6313 return ret;
6315 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
6316 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
6319 * ring_buffer_alloc_read_page - allocate a page to read from buffer
6320 * @buffer: the buffer to allocate for.
6321 * @cpu: the cpu buffer to allocate.
6323 * This function is used in conjunction with ring_buffer_read_page.
6324 * When reading a full page from the ring buffer, these functions
6325 * can be used to speed up the process. The calling function should
6326 * allocate a few pages first with this function. Then when it
6327 * needs to get pages from the ring buffer, it passes the result
6328 * of this function into ring_buffer_read_page, which will swap
6329 * the page that was allocated, with the read page of the buffer.
6331 * Returns:
6332 * The page allocated, or ERR_PTR
6334 struct buffer_data_read_page *
6335 ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
6337 struct ring_buffer_per_cpu *cpu_buffer;
6338 struct buffer_data_read_page *bpage = NULL;
6339 unsigned long flags;
6340 struct page *page;
6342 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6343 return ERR_PTR(-ENODEV);
6345 bpage = kzalloc(sizeof(*bpage), GFP_KERNEL);
6346 if (!bpage)
6347 return ERR_PTR(-ENOMEM);
6349 bpage->order = buffer->subbuf_order;
6350 cpu_buffer = buffer->buffers[cpu];
6351 local_irq_save(flags);
6352 arch_spin_lock(&cpu_buffer->lock);
6354 if (cpu_buffer->free_page) {
6355 bpage->data = cpu_buffer->free_page;
6356 cpu_buffer->free_page = NULL;
6359 arch_spin_unlock(&cpu_buffer->lock);
6360 local_irq_restore(flags);
6362 if (bpage->data)
6363 goto out;
6365 page = alloc_pages_node(cpu_to_node(cpu),
6366 GFP_KERNEL | __GFP_NORETRY | __GFP_COMP | __GFP_ZERO,
6367 cpu_buffer->buffer->subbuf_order);
6368 if (!page) {
6369 kfree(bpage);
6370 return ERR_PTR(-ENOMEM);
6373 bpage->data = page_address(page);
6375 out:
6376 rb_init_page(bpage->data);
6378 return bpage;
6380 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
6383 * ring_buffer_free_read_page - free an allocated read page
6384 * @buffer: the buffer the page was allocate for
6385 * @cpu: the cpu buffer the page came from
6386 * @data_page: the page to free
6388 * Free a page allocated from ring_buffer_alloc_read_page.
6390 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu,
6391 struct buffer_data_read_page *data_page)
6393 struct ring_buffer_per_cpu *cpu_buffer;
6394 struct buffer_data_page *bpage = data_page->data;
6395 struct page *page = virt_to_page(bpage);
6396 unsigned long flags;
6398 if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
6399 return;
6401 cpu_buffer = buffer->buffers[cpu];
6404 * If the page is still in use someplace else, or order of the page
6405 * is different from the subbuffer order of the buffer -
6406 * we can't reuse it
6408 if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order)
6409 goto out;
6411 local_irq_save(flags);
6412 arch_spin_lock(&cpu_buffer->lock);
6414 if (!cpu_buffer->free_page) {
6415 cpu_buffer->free_page = bpage;
6416 bpage = NULL;
6419 arch_spin_unlock(&cpu_buffer->lock);
6420 local_irq_restore(flags);
6422 out:
6423 free_pages((unsigned long)bpage, data_page->order);
6424 kfree(data_page);
6426 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
6429 * ring_buffer_read_page - extract a page from the ring buffer
6430 * @buffer: buffer to extract from
6431 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
6432 * @len: amount to extract
6433 * @cpu: the cpu of the buffer to extract
6434 * @full: should the extraction only happen when the page is full.
6436 * This function will pull out a page from the ring buffer and consume it.
6437 * @data_page must be the address of the variable that was returned
6438 * from ring_buffer_alloc_read_page. This is because the page might be used
6439 * to swap with a page in the ring buffer.
6441 * for example:
6442 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
6443 * if (IS_ERR(rpage))
6444 * return PTR_ERR(rpage);
6445 * ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0);
6446 * if (ret >= 0)
6447 * process_page(ring_buffer_read_page_data(rpage), ret);
6448 * ring_buffer_free_read_page(buffer, cpu, rpage);
6450 * When @full is set, the function will not return true unless
6451 * the writer is off the reader page.
6453 * Note: it is up to the calling functions to handle sleeps and wakeups.
6454 * The ring buffer can be used anywhere in the kernel and can not
6455 * blindly call wake_up. The layer that uses the ring buffer must be
6456 * responsible for that.
6458 * Returns:
6459 * >=0 if data has been transferred, returns the offset of consumed data.
6460 * <0 if no data has been transferred.
6462 int ring_buffer_read_page(struct trace_buffer *buffer,
6463 struct buffer_data_read_page *data_page,
6464 size_t len, int cpu, int full)
6466 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6467 struct ring_buffer_event *event;
6468 struct buffer_data_page *bpage;
6469 struct buffer_page *reader;
6470 unsigned long missed_events;
6471 unsigned long flags;
6472 unsigned int commit;
6473 unsigned int read;
6474 u64 save_timestamp;
6475 int ret = -1;
6477 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6478 goto out;
6481 * If len is not big enough to hold the page header, then
6482 * we can not copy anything.
6484 if (len <= BUF_PAGE_HDR_SIZE)
6485 goto out;
6487 len -= BUF_PAGE_HDR_SIZE;
6489 if (!data_page || !data_page->data)
6490 goto out;
6491 if (data_page->order != buffer->subbuf_order)
6492 goto out;
6494 bpage = data_page->data;
6495 if (!bpage)
6496 goto out;
6498 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6500 reader = rb_get_reader_page(cpu_buffer);
6501 if (!reader)
6502 goto out_unlock;
6504 event = rb_reader_event(cpu_buffer);
6506 read = reader->read;
6507 commit = rb_page_size(reader);
6509 /* Check if any events were dropped */
6510 missed_events = cpu_buffer->lost_events;
6513 * If this page has been partially read or
6514 * if len is not big enough to read the rest of the page or
6515 * a writer is still on the page, then
6516 * we must copy the data from the page to the buffer.
6517 * Otherwise, we can simply swap the page with the one passed in.
6519 if (read || (len < (commit - read)) ||
6520 cpu_buffer->reader_page == cpu_buffer->commit_page ||
6521 cpu_buffer->mapped) {
6522 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
6523 unsigned int rpos = read;
6524 unsigned int pos = 0;
6525 unsigned int size;
6528 * If a full page is expected, this can still be returned
6529 * if there's been a previous partial read and the
6530 * rest of the page can be read and the commit page is off
6531 * the reader page.
6533 if (full &&
6534 (!read || (len < (commit - read)) ||
6535 cpu_buffer->reader_page == cpu_buffer->commit_page))
6536 goto out_unlock;
6538 if (len > (commit - read))
6539 len = (commit - read);
6541 /* Always keep the time extend and data together */
6542 size = rb_event_ts_length(event);
6544 if (len < size)
6545 goto out_unlock;
6547 /* save the current timestamp, since the user will need it */
6548 save_timestamp = cpu_buffer->read_stamp;
6550 /* Need to copy one event at a time */
6551 do {
6552 /* We need the size of one event, because
6553 * rb_advance_reader only advances by one event,
6554 * whereas rb_event_ts_length may include the size of
6555 * one or two events.
6556 * We have already ensured there's enough space if this
6557 * is a time extend. */
6558 size = rb_event_length(event);
6559 memcpy(bpage->data + pos, rpage->data + rpos, size);
6561 len -= size;
6563 rb_advance_reader(cpu_buffer);
6564 rpos = reader->read;
6565 pos += size;
6567 if (rpos >= commit)
6568 break;
6570 event = rb_reader_event(cpu_buffer);
6571 /* Always keep the time extend and data together */
6572 size = rb_event_ts_length(event);
6573 } while (len >= size);
6575 /* update bpage */
6576 local_set(&bpage->commit, pos);
6577 bpage->time_stamp = save_timestamp;
6579 /* we copied everything to the beginning */
6580 read = 0;
6581 } else {
6582 /* update the entry counter */
6583 cpu_buffer->read += rb_page_entries(reader);
6584 cpu_buffer->read_bytes += rb_page_size(reader);
6586 /* swap the pages */
6587 rb_init_page(bpage);
6588 bpage = reader->page;
6589 reader->page = data_page->data;
6590 local_set(&reader->write, 0);
6591 local_set(&reader->entries, 0);
6592 reader->read = 0;
6593 data_page->data = bpage;
6596 * Use the real_end for the data size,
6597 * This gives us a chance to store the lost events
6598 * on the page.
6600 if (reader->real_end)
6601 local_set(&bpage->commit, reader->real_end);
6603 ret = read;
6605 cpu_buffer->lost_events = 0;
6607 commit = local_read(&bpage->commit);
6609 * Set a flag in the commit field if we lost events
6611 if (missed_events) {
6612 /* If there is room at the end of the page to save the
6613 * missed events, then record it there.
6615 if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
6616 memcpy(&bpage->data[commit], &missed_events,
6617 sizeof(missed_events));
6618 local_add(RB_MISSED_STORED, &bpage->commit);
6619 commit += sizeof(missed_events);
6621 local_add(RB_MISSED_EVENTS, &bpage->commit);
6625 * This page may be off to user land. Zero it out here.
6627 if (commit < buffer->subbuf_size)
6628 memset(&bpage->data[commit], 0, buffer->subbuf_size - commit);
6630 out_unlock:
6631 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6633 out:
6634 return ret;
6636 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
6639 * ring_buffer_read_page_data - get pointer to the data in the page.
6640 * @page: the page to get the data from
6642 * Returns pointer to the actual data in this page.
6644 void *ring_buffer_read_page_data(struct buffer_data_read_page *page)
6646 return page->data;
6648 EXPORT_SYMBOL_GPL(ring_buffer_read_page_data);
6651 * ring_buffer_subbuf_size_get - get size of the sub buffer.
6652 * @buffer: the buffer to get the sub buffer size from
6654 * Returns size of the sub buffer, in bytes.
6656 int ring_buffer_subbuf_size_get(struct trace_buffer *buffer)
6658 return buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6660 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get);
6663 * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page.
6664 * @buffer: The ring_buffer to get the system sub page order from
6666 * By default, one ring buffer sub page equals to one system page. This parameter
6667 * is configurable, per ring buffer. The size of the ring buffer sub page can be
6668 * extended, but must be an order of system page size.
6670 * Returns the order of buffer sub page size, in system pages:
6671 * 0 means the sub buffer size is 1 system page and so forth.
6672 * In case of an error < 0 is returned.
6674 int ring_buffer_subbuf_order_get(struct trace_buffer *buffer)
6676 if (!buffer)
6677 return -EINVAL;
6679 return buffer->subbuf_order;
6681 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get);
6684 * ring_buffer_subbuf_order_set - set the size of ring buffer sub page.
6685 * @buffer: The ring_buffer to set the new page size.
6686 * @order: Order of the system pages in one sub buffer page
6688 * By default, one ring buffer pages equals to one system page. This API can be
6689 * used to set new size of the ring buffer page. The size must be order of
6690 * system page size, that's why the input parameter @order is the order of
6691 * system pages that are allocated for one ring buffer page:
6692 * 0 - 1 system page
6693 * 1 - 2 system pages
6694 * 3 - 4 system pages
6695 * ...
6697 * Returns 0 on success or < 0 in case of an error.
6699 int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order)
6701 struct ring_buffer_per_cpu *cpu_buffer;
6702 struct buffer_page *bpage, *tmp;
6703 int old_order, old_size;
6704 int nr_pages;
6705 int psize;
6706 int err;
6707 int cpu;
6709 if (!buffer || order < 0)
6710 return -EINVAL;
6712 if (buffer->subbuf_order == order)
6713 return 0;
6715 psize = (1 << order) * PAGE_SIZE;
6716 if (psize <= BUF_PAGE_HDR_SIZE)
6717 return -EINVAL;
6719 /* Size of a subbuf cannot be greater than the write counter */
6720 if (psize > RB_WRITE_MASK + 1)
6721 return -EINVAL;
6723 old_order = buffer->subbuf_order;
6724 old_size = buffer->subbuf_size;
6726 /* prevent another thread from changing buffer sizes */
6727 mutex_lock(&buffer->mutex);
6728 atomic_inc(&buffer->record_disabled);
6730 /* Make sure all commits have finished */
6731 synchronize_rcu();
6733 buffer->subbuf_order = order;
6734 buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE;
6736 /* Make sure all new buffers are allocated, before deleting the old ones */
6737 for_each_buffer_cpu(buffer, cpu) {
6739 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6740 continue;
6742 cpu_buffer = buffer->buffers[cpu];
6744 if (cpu_buffer->mapped) {
6745 err = -EBUSY;
6746 goto error;
6749 /* Update the number of pages to match the new size */
6750 nr_pages = old_size * buffer->buffers[cpu]->nr_pages;
6751 nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size);
6753 /* we need a minimum of two pages */
6754 if (nr_pages < 2)
6755 nr_pages = 2;
6757 cpu_buffer->nr_pages_to_update = nr_pages;
6759 /* Include the reader page */
6760 nr_pages++;
6762 /* Allocate the new size buffer */
6763 INIT_LIST_HEAD(&cpu_buffer->new_pages);
6764 if (__rb_allocate_pages(cpu_buffer, nr_pages,
6765 &cpu_buffer->new_pages)) {
6766 /* not enough memory for new pages */
6767 err = -ENOMEM;
6768 goto error;
6772 for_each_buffer_cpu(buffer, cpu) {
6773 struct buffer_data_page *old_free_data_page;
6774 struct list_head old_pages;
6775 unsigned long flags;
6777 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6778 continue;
6780 cpu_buffer = buffer->buffers[cpu];
6782 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6784 /* Clear the head bit to make the link list normal to read */
6785 rb_head_page_deactivate(cpu_buffer);
6788 * Collect buffers from the cpu_buffer pages list and the
6789 * reader_page on old_pages, so they can be freed later when not
6790 * under a spinlock. The pages list is a linked list with no
6791 * head, adding old_pages turns it into a regular list with
6792 * old_pages being the head.
6794 list_add(&old_pages, cpu_buffer->pages);
6795 list_add(&cpu_buffer->reader_page->list, &old_pages);
6797 /* One page was allocated for the reader page */
6798 cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next,
6799 struct buffer_page, list);
6800 list_del_init(&cpu_buffer->reader_page->list);
6802 /* Install the new pages, remove the head from the list */
6803 cpu_buffer->pages = cpu_buffer->new_pages.next;
6804 list_del_init(&cpu_buffer->new_pages);
6805 cpu_buffer->cnt++;
6807 cpu_buffer->head_page
6808 = list_entry(cpu_buffer->pages, struct buffer_page, list);
6809 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
6811 cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update;
6812 cpu_buffer->nr_pages_to_update = 0;
6814 old_free_data_page = cpu_buffer->free_page;
6815 cpu_buffer->free_page = NULL;
6817 rb_head_page_activate(cpu_buffer);
6819 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6821 /* Free old sub buffers */
6822 list_for_each_entry_safe(bpage, tmp, &old_pages, list) {
6823 list_del_init(&bpage->list);
6824 free_buffer_page(bpage);
6826 free_pages((unsigned long)old_free_data_page, old_order);
6828 rb_check_pages(cpu_buffer);
6831 atomic_dec(&buffer->record_disabled);
6832 mutex_unlock(&buffer->mutex);
6834 return 0;
6836 error:
6837 buffer->subbuf_order = old_order;
6838 buffer->subbuf_size = old_size;
6840 atomic_dec(&buffer->record_disabled);
6841 mutex_unlock(&buffer->mutex);
6843 for_each_buffer_cpu(buffer, cpu) {
6844 cpu_buffer = buffer->buffers[cpu];
6846 if (!cpu_buffer->nr_pages_to_update)
6847 continue;
6849 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) {
6850 list_del_init(&bpage->list);
6851 free_buffer_page(bpage);
6855 return err;
6857 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set);
6859 static int rb_alloc_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6861 struct page *page;
6863 if (cpu_buffer->meta_page)
6864 return 0;
6866 page = alloc_page(GFP_USER | __GFP_ZERO);
6867 if (!page)
6868 return -ENOMEM;
6870 cpu_buffer->meta_page = page_to_virt(page);
6872 return 0;
6875 static void rb_free_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6877 unsigned long addr = (unsigned long)cpu_buffer->meta_page;
6879 free_page(addr);
6880 cpu_buffer->meta_page = NULL;
6883 static void rb_setup_ids_meta_page(struct ring_buffer_per_cpu *cpu_buffer,
6884 unsigned long *subbuf_ids)
6886 struct trace_buffer_meta *meta = cpu_buffer->meta_page;
6887 unsigned int nr_subbufs = cpu_buffer->nr_pages + 1;
6888 struct buffer_page *first_subbuf, *subbuf;
6889 int id = 0;
6891 subbuf_ids[id] = (unsigned long)cpu_buffer->reader_page->page;
6892 cpu_buffer->reader_page->id = id++;
6894 first_subbuf = subbuf = rb_set_head_page(cpu_buffer);
6895 do {
6896 if (WARN_ON(id >= nr_subbufs))
6897 break;
6899 subbuf_ids[id] = (unsigned long)subbuf->page;
6900 subbuf->id = id;
6902 rb_inc_page(&subbuf);
6903 id++;
6904 } while (subbuf != first_subbuf);
6906 /* install subbuf ID to kern VA translation */
6907 cpu_buffer->subbuf_ids = subbuf_ids;
6909 meta->meta_struct_len = sizeof(*meta);
6910 meta->nr_subbufs = nr_subbufs;
6911 meta->subbuf_size = cpu_buffer->buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6912 meta->meta_page_size = meta->subbuf_size;
6914 rb_update_meta_page(cpu_buffer);
6917 static struct ring_buffer_per_cpu *
6918 rb_get_mapped_buffer(struct trace_buffer *buffer, int cpu)
6920 struct ring_buffer_per_cpu *cpu_buffer;
6922 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6923 return ERR_PTR(-EINVAL);
6925 cpu_buffer = buffer->buffers[cpu];
6927 mutex_lock(&cpu_buffer->mapping_lock);
6929 if (!cpu_buffer->user_mapped) {
6930 mutex_unlock(&cpu_buffer->mapping_lock);
6931 return ERR_PTR(-ENODEV);
6934 return cpu_buffer;
6937 static void rb_put_mapped_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6939 mutex_unlock(&cpu_buffer->mapping_lock);
6943 * Fast-path for rb_buffer_(un)map(). Called whenever the meta-page doesn't need
6944 * to be set-up or torn-down.
6946 static int __rb_inc_dec_mapped(struct ring_buffer_per_cpu *cpu_buffer,
6947 bool inc)
6949 unsigned long flags;
6951 lockdep_assert_held(&cpu_buffer->mapping_lock);
6953 /* mapped is always greater or equal to user_mapped */
6954 if (WARN_ON(cpu_buffer->mapped < cpu_buffer->user_mapped))
6955 return -EINVAL;
6957 if (inc && cpu_buffer->mapped == UINT_MAX)
6958 return -EBUSY;
6960 if (WARN_ON(!inc && cpu_buffer->user_mapped == 0))
6961 return -EINVAL;
6963 mutex_lock(&cpu_buffer->buffer->mutex);
6964 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6966 if (inc) {
6967 cpu_buffer->user_mapped++;
6968 cpu_buffer->mapped++;
6969 } else {
6970 cpu_buffer->user_mapped--;
6971 cpu_buffer->mapped--;
6974 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6975 mutex_unlock(&cpu_buffer->buffer->mutex);
6977 return 0;
6981 * +--------------+ pgoff == 0
6982 * | meta page |
6983 * +--------------+ pgoff == 1
6984 * | subbuffer 0 |
6985 * | |
6986 * +--------------+ pgoff == (1 + (1 << subbuf_order))
6987 * | subbuffer 1 |
6988 * | |
6989 * ...
6991 #ifdef CONFIG_MMU
6992 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
6993 struct vm_area_struct *vma)
6995 unsigned long nr_subbufs, nr_pages, nr_vma_pages, pgoff = vma->vm_pgoff;
6996 unsigned int subbuf_pages, subbuf_order;
6997 struct page **pages;
6998 int p = 0, s = 0;
6999 int err;
7001 /* Refuse MP_PRIVATE or writable mappings */
7002 if (vma->vm_flags & VM_WRITE || vma->vm_flags & VM_EXEC ||
7003 !(vma->vm_flags & VM_MAYSHARE))
7004 return -EPERM;
7006 subbuf_order = cpu_buffer->buffer->subbuf_order;
7007 subbuf_pages = 1 << subbuf_order;
7009 if (subbuf_order && pgoff % subbuf_pages)
7010 return -EINVAL;
7013 * Make sure the mapping cannot become writable later. Also tell the VM
7014 * to not touch these pages (VM_DONTCOPY | VM_DONTEXPAND).
7016 vm_flags_mod(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP,
7017 VM_MAYWRITE);
7019 lockdep_assert_held(&cpu_buffer->mapping_lock);
7021 nr_subbufs = cpu_buffer->nr_pages + 1; /* + reader-subbuf */
7022 nr_pages = ((nr_subbufs + 1) << subbuf_order) - pgoff; /* + meta-page */
7024 nr_vma_pages = vma_pages(vma);
7025 if (!nr_vma_pages || nr_vma_pages > nr_pages)
7026 return -EINVAL;
7028 nr_pages = nr_vma_pages;
7030 pages = kcalloc(nr_pages, sizeof(*pages), GFP_KERNEL);
7031 if (!pages)
7032 return -ENOMEM;
7034 if (!pgoff) {
7035 unsigned long meta_page_padding;
7037 pages[p++] = virt_to_page(cpu_buffer->meta_page);
7040 * Pad with the zero-page to align the meta-page with the
7041 * sub-buffers.
7043 meta_page_padding = subbuf_pages - 1;
7044 while (meta_page_padding-- && p < nr_pages) {
7045 unsigned long __maybe_unused zero_addr =
7046 vma->vm_start + (PAGE_SIZE * p);
7048 pages[p++] = ZERO_PAGE(zero_addr);
7050 } else {
7051 /* Skip the meta-page */
7052 pgoff -= subbuf_pages;
7054 s += pgoff / subbuf_pages;
7057 while (p < nr_pages) {
7058 struct page *page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]);
7059 int off = 0;
7061 if (WARN_ON_ONCE(s >= nr_subbufs)) {
7062 err = -EINVAL;
7063 goto out;
7066 for (; off < (1 << (subbuf_order)); off++, page++) {
7067 if (p >= nr_pages)
7068 break;
7070 pages[p++] = page;
7072 s++;
7075 err = vm_insert_pages(vma, vma->vm_start, pages, &nr_pages);
7077 out:
7078 kfree(pages);
7080 return err;
7082 #else
7083 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
7084 struct vm_area_struct *vma)
7086 return -EOPNOTSUPP;
7088 #endif
7090 int ring_buffer_map(struct trace_buffer *buffer, int cpu,
7091 struct vm_area_struct *vma)
7093 struct ring_buffer_per_cpu *cpu_buffer;
7094 unsigned long flags, *subbuf_ids;
7095 int err = 0;
7097 if (!cpumask_test_cpu(cpu, buffer->cpumask))
7098 return -EINVAL;
7100 cpu_buffer = buffer->buffers[cpu];
7102 mutex_lock(&cpu_buffer->mapping_lock);
7104 if (cpu_buffer->user_mapped) {
7105 err = __rb_map_vma(cpu_buffer, vma);
7106 if (!err)
7107 err = __rb_inc_dec_mapped(cpu_buffer, true);
7108 mutex_unlock(&cpu_buffer->mapping_lock);
7109 return err;
7112 /* prevent another thread from changing buffer/sub-buffer sizes */
7113 mutex_lock(&buffer->mutex);
7115 err = rb_alloc_meta_page(cpu_buffer);
7116 if (err)
7117 goto unlock;
7119 /* subbuf_ids include the reader while nr_pages does not */
7120 subbuf_ids = kcalloc(cpu_buffer->nr_pages + 1, sizeof(*subbuf_ids), GFP_KERNEL);
7121 if (!subbuf_ids) {
7122 rb_free_meta_page(cpu_buffer);
7123 err = -ENOMEM;
7124 goto unlock;
7127 atomic_inc(&cpu_buffer->resize_disabled);
7130 * Lock all readers to block any subbuf swap until the subbuf IDs are
7131 * assigned.
7133 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7134 rb_setup_ids_meta_page(cpu_buffer, subbuf_ids);
7136 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7138 err = __rb_map_vma(cpu_buffer, vma);
7139 if (!err) {
7140 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7141 /* This is the first time it is mapped by user */
7142 cpu_buffer->mapped++;
7143 cpu_buffer->user_mapped = 1;
7144 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7145 } else {
7146 kfree(cpu_buffer->subbuf_ids);
7147 cpu_buffer->subbuf_ids = NULL;
7148 rb_free_meta_page(cpu_buffer);
7151 unlock:
7152 mutex_unlock(&buffer->mutex);
7153 mutex_unlock(&cpu_buffer->mapping_lock);
7155 return err;
7158 int ring_buffer_unmap(struct trace_buffer *buffer, int cpu)
7160 struct ring_buffer_per_cpu *cpu_buffer;
7161 unsigned long flags;
7162 int err = 0;
7164 if (!cpumask_test_cpu(cpu, buffer->cpumask))
7165 return -EINVAL;
7167 cpu_buffer = buffer->buffers[cpu];
7169 mutex_lock(&cpu_buffer->mapping_lock);
7171 if (!cpu_buffer->user_mapped) {
7172 err = -ENODEV;
7173 goto out;
7174 } else if (cpu_buffer->user_mapped > 1) {
7175 __rb_inc_dec_mapped(cpu_buffer, false);
7176 goto out;
7179 mutex_lock(&buffer->mutex);
7180 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7182 /* This is the last user space mapping */
7183 if (!WARN_ON_ONCE(cpu_buffer->mapped < cpu_buffer->user_mapped))
7184 cpu_buffer->mapped--;
7185 cpu_buffer->user_mapped = 0;
7187 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7189 kfree(cpu_buffer->subbuf_ids);
7190 cpu_buffer->subbuf_ids = NULL;
7191 rb_free_meta_page(cpu_buffer);
7192 atomic_dec(&cpu_buffer->resize_disabled);
7194 mutex_unlock(&buffer->mutex);
7196 out:
7197 mutex_unlock(&cpu_buffer->mapping_lock);
7199 return err;
7202 int ring_buffer_map_get_reader(struct trace_buffer *buffer, int cpu)
7204 struct ring_buffer_per_cpu *cpu_buffer;
7205 struct buffer_page *reader;
7206 unsigned long missed_events;
7207 unsigned long reader_size;
7208 unsigned long flags;
7210 cpu_buffer = rb_get_mapped_buffer(buffer, cpu);
7211 if (IS_ERR(cpu_buffer))
7212 return (int)PTR_ERR(cpu_buffer);
7214 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7216 consume:
7217 if (rb_per_cpu_empty(cpu_buffer))
7218 goto out;
7220 reader_size = rb_page_size(cpu_buffer->reader_page);
7223 * There are data to be read on the current reader page, we can
7224 * return to the caller. But before that, we assume the latter will read
7225 * everything. Let's update the kernel reader accordingly.
7227 if (cpu_buffer->reader_page->read < reader_size) {
7228 while (cpu_buffer->reader_page->read < reader_size)
7229 rb_advance_reader(cpu_buffer);
7230 goto out;
7233 reader = rb_get_reader_page(cpu_buffer);
7234 if (WARN_ON(!reader))
7235 goto out;
7237 /* Check if any events were dropped */
7238 missed_events = cpu_buffer->lost_events;
7240 if (cpu_buffer->reader_page != cpu_buffer->commit_page) {
7241 if (missed_events) {
7242 struct buffer_data_page *bpage = reader->page;
7243 unsigned int commit;
7245 * Use the real_end for the data size,
7246 * This gives us a chance to store the lost events
7247 * on the page.
7249 if (reader->real_end)
7250 local_set(&bpage->commit, reader->real_end);
7252 * If there is room at the end of the page to save the
7253 * missed events, then record it there.
7255 commit = rb_page_size(reader);
7256 if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
7257 memcpy(&bpage->data[commit], &missed_events,
7258 sizeof(missed_events));
7259 local_add(RB_MISSED_STORED, &bpage->commit);
7261 local_add(RB_MISSED_EVENTS, &bpage->commit);
7263 } else {
7265 * There really shouldn't be any missed events if the commit
7266 * is on the reader page.
7268 WARN_ON_ONCE(missed_events);
7271 cpu_buffer->lost_events = 0;
7273 goto consume;
7275 out:
7276 /* Some archs do not have data cache coherency between kernel and user-space */
7277 flush_dcache_folio(virt_to_folio(cpu_buffer->reader_page->page));
7279 rb_update_meta_page(cpu_buffer);
7281 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7282 rb_put_mapped_buffer(cpu_buffer);
7284 return 0;
7288 * We only allocate new buffers, never free them if the CPU goes down.
7289 * If we were to free the buffer, then the user would lose any trace that was in
7290 * the buffer.
7292 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
7294 struct trace_buffer *buffer;
7295 long nr_pages_same;
7296 int cpu_i;
7297 unsigned long nr_pages;
7299 buffer = container_of(node, struct trace_buffer, node);
7300 if (cpumask_test_cpu(cpu, buffer->cpumask))
7301 return 0;
7303 nr_pages = 0;
7304 nr_pages_same = 1;
7305 /* check if all cpu sizes are same */
7306 for_each_buffer_cpu(buffer, cpu_i) {
7307 /* fill in the size from first enabled cpu */
7308 if (nr_pages == 0)
7309 nr_pages = buffer->buffers[cpu_i]->nr_pages;
7310 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
7311 nr_pages_same = 0;
7312 break;
7315 /* allocate minimum pages, user can later expand it */
7316 if (!nr_pages_same)
7317 nr_pages = 2;
7318 buffer->buffers[cpu] =
7319 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7320 if (!buffer->buffers[cpu]) {
7321 WARN(1, "failed to allocate ring buffer on CPU %u\n",
7322 cpu);
7323 return -ENOMEM;
7325 smp_wmb();
7326 cpumask_set_cpu(cpu, buffer->cpumask);
7327 return 0;
7330 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
7332 * This is a basic integrity check of the ring buffer.
7333 * Late in the boot cycle this test will run when configured in.
7334 * It will kick off a thread per CPU that will go into a loop
7335 * writing to the per cpu ring buffer various sizes of data.
7336 * Some of the data will be large items, some small.
7338 * Another thread is created that goes into a spin, sending out
7339 * IPIs to the other CPUs to also write into the ring buffer.
7340 * this is to test the nesting ability of the buffer.
7342 * Basic stats are recorded and reported. If something in the
7343 * ring buffer should happen that's not expected, a big warning
7344 * is displayed and all ring buffers are disabled.
7346 static struct task_struct *rb_threads[NR_CPUS] __initdata;
7348 struct rb_test_data {
7349 struct trace_buffer *buffer;
7350 unsigned long events;
7351 unsigned long bytes_written;
7352 unsigned long bytes_alloc;
7353 unsigned long bytes_dropped;
7354 unsigned long events_nested;
7355 unsigned long bytes_written_nested;
7356 unsigned long bytes_alloc_nested;
7357 unsigned long bytes_dropped_nested;
7358 int min_size_nested;
7359 int max_size_nested;
7360 int max_size;
7361 int min_size;
7362 int cpu;
7363 int cnt;
7366 static struct rb_test_data rb_data[NR_CPUS] __initdata;
7368 /* 1 meg per cpu */
7369 #define RB_TEST_BUFFER_SIZE 1048576
7371 static char rb_string[] __initdata =
7372 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
7373 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
7374 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
7376 static bool rb_test_started __initdata;
7378 struct rb_item {
7379 int size;
7380 char str[];
7383 static __init int rb_write_something(struct rb_test_data *data, bool nested)
7385 struct ring_buffer_event *event;
7386 struct rb_item *item;
7387 bool started;
7388 int event_len;
7389 int size;
7390 int len;
7391 int cnt;
7393 /* Have nested writes different that what is written */
7394 cnt = data->cnt + (nested ? 27 : 0);
7396 /* Multiply cnt by ~e, to make some unique increment */
7397 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
7399 len = size + sizeof(struct rb_item);
7401 started = rb_test_started;
7402 /* read rb_test_started before checking buffer enabled */
7403 smp_rmb();
7405 event = ring_buffer_lock_reserve(data->buffer, len);
7406 if (!event) {
7407 /* Ignore dropped events before test starts. */
7408 if (started) {
7409 if (nested)
7410 data->bytes_dropped += len;
7411 else
7412 data->bytes_dropped_nested += len;
7414 return len;
7417 event_len = ring_buffer_event_length(event);
7419 if (RB_WARN_ON(data->buffer, event_len < len))
7420 goto out;
7422 item = ring_buffer_event_data(event);
7423 item->size = size;
7424 memcpy(item->str, rb_string, size);
7426 if (nested) {
7427 data->bytes_alloc_nested += event_len;
7428 data->bytes_written_nested += len;
7429 data->events_nested++;
7430 if (!data->min_size_nested || len < data->min_size_nested)
7431 data->min_size_nested = len;
7432 if (len > data->max_size_nested)
7433 data->max_size_nested = len;
7434 } else {
7435 data->bytes_alloc += event_len;
7436 data->bytes_written += len;
7437 data->events++;
7438 if (!data->min_size || len < data->min_size)
7439 data->max_size = len;
7440 if (len > data->max_size)
7441 data->max_size = len;
7444 out:
7445 ring_buffer_unlock_commit(data->buffer);
7447 return 0;
7450 static __init int rb_test(void *arg)
7452 struct rb_test_data *data = arg;
7454 while (!kthread_should_stop()) {
7455 rb_write_something(data, false);
7456 data->cnt++;
7458 set_current_state(TASK_INTERRUPTIBLE);
7459 /* Now sleep between a min of 100-300us and a max of 1ms */
7460 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
7463 return 0;
7466 static __init void rb_ipi(void *ignore)
7468 struct rb_test_data *data;
7469 int cpu = smp_processor_id();
7471 data = &rb_data[cpu];
7472 rb_write_something(data, true);
7475 static __init int rb_hammer_test(void *arg)
7477 while (!kthread_should_stop()) {
7479 /* Send an IPI to all cpus to write data! */
7480 smp_call_function(rb_ipi, NULL, 1);
7481 /* No sleep, but for non preempt, let others run */
7482 schedule();
7485 return 0;
7488 static __init int test_ringbuffer(void)
7490 struct task_struct *rb_hammer;
7491 struct trace_buffer *buffer;
7492 int cpu;
7493 int ret = 0;
7495 if (security_locked_down(LOCKDOWN_TRACEFS)) {
7496 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
7497 return 0;
7500 pr_info("Running ring buffer tests...\n");
7502 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
7503 if (WARN_ON(!buffer))
7504 return 0;
7506 /* Disable buffer so that threads can't write to it yet */
7507 ring_buffer_record_off(buffer);
7509 for_each_online_cpu(cpu) {
7510 rb_data[cpu].buffer = buffer;
7511 rb_data[cpu].cpu = cpu;
7512 rb_data[cpu].cnt = cpu;
7513 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
7514 cpu, "rbtester/%u");
7515 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
7516 pr_cont("FAILED\n");
7517 ret = PTR_ERR(rb_threads[cpu]);
7518 goto out_free;
7522 /* Now create the rb hammer! */
7523 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
7524 if (WARN_ON(IS_ERR(rb_hammer))) {
7525 pr_cont("FAILED\n");
7526 ret = PTR_ERR(rb_hammer);
7527 goto out_free;
7530 ring_buffer_record_on(buffer);
7532 * Show buffer is enabled before setting rb_test_started.
7533 * Yes there's a small race window where events could be
7534 * dropped and the thread wont catch it. But when a ring
7535 * buffer gets enabled, there will always be some kind of
7536 * delay before other CPUs see it. Thus, we don't care about
7537 * those dropped events. We care about events dropped after
7538 * the threads see that the buffer is active.
7540 smp_wmb();
7541 rb_test_started = true;
7543 set_current_state(TASK_INTERRUPTIBLE);
7544 /* Just run for 10 seconds */;
7545 schedule_timeout(10 * HZ);
7547 kthread_stop(rb_hammer);
7549 out_free:
7550 for_each_online_cpu(cpu) {
7551 if (!rb_threads[cpu])
7552 break;
7553 kthread_stop(rb_threads[cpu]);
7555 if (ret) {
7556 ring_buffer_free(buffer);
7557 return ret;
7560 /* Report! */
7561 pr_info("finished\n");
7562 for_each_online_cpu(cpu) {
7563 struct ring_buffer_event *event;
7564 struct rb_test_data *data = &rb_data[cpu];
7565 struct rb_item *item;
7566 unsigned long total_events;
7567 unsigned long total_dropped;
7568 unsigned long total_written;
7569 unsigned long total_alloc;
7570 unsigned long total_read = 0;
7571 unsigned long total_size = 0;
7572 unsigned long total_len = 0;
7573 unsigned long total_lost = 0;
7574 unsigned long lost;
7575 int big_event_size;
7576 int small_event_size;
7578 ret = -1;
7580 total_events = data->events + data->events_nested;
7581 total_written = data->bytes_written + data->bytes_written_nested;
7582 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
7583 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
7585 big_event_size = data->max_size + data->max_size_nested;
7586 small_event_size = data->min_size + data->min_size_nested;
7588 pr_info("CPU %d:\n", cpu);
7589 pr_info(" events: %ld\n", total_events);
7590 pr_info(" dropped bytes: %ld\n", total_dropped);
7591 pr_info(" alloced bytes: %ld\n", total_alloc);
7592 pr_info(" written bytes: %ld\n", total_written);
7593 pr_info(" biggest event: %d\n", big_event_size);
7594 pr_info(" smallest event: %d\n", small_event_size);
7596 if (RB_WARN_ON(buffer, total_dropped))
7597 break;
7599 ret = 0;
7601 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
7602 total_lost += lost;
7603 item = ring_buffer_event_data(event);
7604 total_len += ring_buffer_event_length(event);
7605 total_size += item->size + sizeof(struct rb_item);
7606 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
7607 pr_info("FAILED!\n");
7608 pr_info("buffer had: %.*s\n", item->size, item->str);
7609 pr_info("expected: %.*s\n", item->size, rb_string);
7610 RB_WARN_ON(buffer, 1);
7611 ret = -1;
7612 break;
7614 total_read++;
7616 if (ret)
7617 break;
7619 ret = -1;
7621 pr_info(" read events: %ld\n", total_read);
7622 pr_info(" lost events: %ld\n", total_lost);
7623 pr_info(" total events: %ld\n", total_lost + total_read);
7624 pr_info(" recorded len bytes: %ld\n", total_len);
7625 pr_info(" recorded size bytes: %ld\n", total_size);
7626 if (total_lost) {
7627 pr_info(" With dropped events, record len and size may not match\n"
7628 " alloced and written from above\n");
7629 } else {
7630 if (RB_WARN_ON(buffer, total_len != total_alloc ||
7631 total_size != total_written))
7632 break;
7634 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
7635 break;
7637 ret = 0;
7639 if (!ret)
7640 pr_info("Ring buffer PASSED!\n");
7642 ring_buffer_free(buffer);
7643 return 0;
7646 late_initcall(test_ringbuffer);
7647 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */