1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* SCTP kernel implementation
3 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
5 * This file is part of the SCTP kernel implementation
7 * Please send any bug reports or fixes you make to the
9 * lksctp developers <linux-sctp@vger.kernel.org>
11 * Written or modified by:
12 * Vlad Yasevich <vladislav.yasevich@hp.com>
15 #include <crypto/hash.h>
16 #include <linux/slab.h>
17 #include <linux/types.h>
18 #include <linux/scatterlist.h>
19 #include <net/sctp/sctp.h>
20 #include <net/sctp/auth.h>
22 static struct sctp_hmac sctp_hmac_list
[SCTP_AUTH_NUM_HMACS
] = {
24 /* id 0 is reserved. as all 0 */
25 .hmac_id
= SCTP_AUTH_HMAC_ID_RESERVED_0
,
28 .hmac_id
= SCTP_AUTH_HMAC_ID_SHA1
,
29 .hmac_name
= "hmac(sha1)",
30 .hmac_len
= SCTP_SHA1_SIG_SIZE
,
33 /* id 2 is reserved as well */
34 .hmac_id
= SCTP_AUTH_HMAC_ID_RESERVED_2
,
36 #if IS_ENABLED(CONFIG_CRYPTO_SHA256)
38 .hmac_id
= SCTP_AUTH_HMAC_ID_SHA256
,
39 .hmac_name
= "hmac(sha256)",
40 .hmac_len
= SCTP_SHA256_SIG_SIZE
,
46 void sctp_auth_key_put(struct sctp_auth_bytes
*key
)
51 if (refcount_dec_and_test(&key
->refcnt
)) {
53 SCTP_DBG_OBJCNT_DEC(keys
);
57 /* Create a new key structure of a given length */
58 static struct sctp_auth_bytes
*sctp_auth_create_key(__u32 key_len
, gfp_t gfp
)
60 struct sctp_auth_bytes
*key
;
62 /* Verify that we are not going to overflow INT_MAX */
63 if (key_len
> (INT_MAX
- sizeof(struct sctp_auth_bytes
)))
66 /* Allocate the shared key */
67 key
= kmalloc(sizeof(struct sctp_auth_bytes
) + key_len
, gfp
);
72 refcount_set(&key
->refcnt
, 1);
73 SCTP_DBG_OBJCNT_INC(keys
);
78 /* Create a new shared key container with a give key id */
79 struct sctp_shared_key
*sctp_auth_shkey_create(__u16 key_id
, gfp_t gfp
)
81 struct sctp_shared_key
*new;
83 /* Allocate the shared key container */
84 new = kzalloc(sizeof(struct sctp_shared_key
), gfp
);
88 INIT_LIST_HEAD(&new->key_list
);
89 refcount_set(&new->refcnt
, 1);
95 /* Free the shared key structure */
96 static void sctp_auth_shkey_destroy(struct sctp_shared_key
*sh_key
)
98 BUG_ON(!list_empty(&sh_key
->key_list
));
99 sctp_auth_key_put(sh_key
->key
);
104 void sctp_auth_shkey_release(struct sctp_shared_key
*sh_key
)
106 if (refcount_dec_and_test(&sh_key
->refcnt
))
107 sctp_auth_shkey_destroy(sh_key
);
110 void sctp_auth_shkey_hold(struct sctp_shared_key
*sh_key
)
112 refcount_inc(&sh_key
->refcnt
);
115 /* Destroy the entire key list. This is done during the
116 * associon and endpoint free process.
118 void sctp_auth_destroy_keys(struct list_head
*keys
)
120 struct sctp_shared_key
*ep_key
;
121 struct sctp_shared_key
*tmp
;
123 if (list_empty(keys
))
126 key_for_each_safe(ep_key
, tmp
, keys
) {
127 list_del_init(&ep_key
->key_list
);
128 sctp_auth_shkey_release(ep_key
);
132 /* Compare two byte vectors as numbers. Return values
134 * 0 - vectors are equal
135 * < 0 - vector 1 is smaller than vector2
136 * > 0 - vector 1 is greater than vector2
139 * This is performed by selecting the numerically smaller key vector...
140 * If the key vectors are equal as numbers but differ in length ...
141 * the shorter vector is considered smaller
143 * Examples (with small values):
144 * 000123456789 > 123456789 (first number is longer)
145 * 000123456789 < 234567891 (second number is larger numerically)
146 * 123456789 > 2345678 (first number is both larger & longer)
148 static int sctp_auth_compare_vectors(struct sctp_auth_bytes
*vector1
,
149 struct sctp_auth_bytes
*vector2
)
155 diff
= vector1
->len
- vector2
->len
;
157 longer
= (diff
> 0) ? vector1
->data
: vector2
->data
;
159 /* Check to see if the longer number is
160 * lead-zero padded. If it is not, it
161 * is automatically larger numerically.
163 for (i
= 0; i
< abs(diff
); i
++) {
169 /* lengths are the same, compare numbers */
170 return memcmp(vector1
->data
, vector2
->data
, vector1
->len
);
174 * Create a key vector as described in SCTP-AUTH, Section 6.1
175 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
176 * parameter sent by each endpoint are concatenated as byte vectors.
177 * These parameters include the parameter type, parameter length, and
178 * the parameter value, but padding is omitted; all padding MUST be
179 * removed from this concatenation before proceeding with further
180 * computation of keys. Parameters which were not sent are simply
181 * omitted from the concatenation process. The resulting two vectors
182 * are called the two key vectors.
184 static struct sctp_auth_bytes
*sctp_auth_make_key_vector(
185 struct sctp_random_param
*random
,
186 struct sctp_chunks_param
*chunks
,
187 struct sctp_hmac_algo_param
*hmacs
,
190 struct sctp_auth_bytes
*new;
193 __u16 random_len
, hmacs_len
, chunks_len
= 0;
195 random_len
= ntohs(random
->param_hdr
.length
);
196 hmacs_len
= ntohs(hmacs
->param_hdr
.length
);
198 chunks_len
= ntohs(chunks
->param_hdr
.length
);
200 len
= random_len
+ hmacs_len
+ chunks_len
;
202 new = sctp_auth_create_key(len
, gfp
);
206 memcpy(new->data
, random
, random_len
);
207 offset
+= random_len
;
210 memcpy(new->data
+ offset
, chunks
, chunks_len
);
211 offset
+= chunks_len
;
214 memcpy(new->data
+ offset
, hmacs
, hmacs_len
);
220 /* Make a key vector based on our local parameters */
221 static struct sctp_auth_bytes
*sctp_auth_make_local_vector(
222 const struct sctp_association
*asoc
,
225 return sctp_auth_make_key_vector(
226 (struct sctp_random_param
*)asoc
->c
.auth_random
,
227 (struct sctp_chunks_param
*)asoc
->c
.auth_chunks
,
228 (struct sctp_hmac_algo_param
*)asoc
->c
.auth_hmacs
, gfp
);
231 /* Make a key vector based on peer's parameters */
232 static struct sctp_auth_bytes
*sctp_auth_make_peer_vector(
233 const struct sctp_association
*asoc
,
236 return sctp_auth_make_key_vector(asoc
->peer
.peer_random
,
237 asoc
->peer
.peer_chunks
,
238 asoc
->peer
.peer_hmacs
,
243 /* Set the value of the association shared key base on the parameters
244 * given. The algorithm is:
245 * From the endpoint pair shared keys and the key vectors the
246 * association shared keys are computed. This is performed by selecting
247 * the numerically smaller key vector and concatenating it to the
248 * endpoint pair shared key, and then concatenating the numerically
249 * larger key vector to that. The result of the concatenation is the
250 * association shared key.
252 static struct sctp_auth_bytes
*sctp_auth_asoc_set_secret(
253 struct sctp_shared_key
*ep_key
,
254 struct sctp_auth_bytes
*first_vector
,
255 struct sctp_auth_bytes
*last_vector
,
258 struct sctp_auth_bytes
*secret
;
262 auth_len
= first_vector
->len
+ last_vector
->len
;
264 auth_len
+= ep_key
->key
->len
;
266 secret
= sctp_auth_create_key(auth_len
, gfp
);
271 memcpy(secret
->data
, ep_key
->key
->data
, ep_key
->key
->len
);
272 offset
+= ep_key
->key
->len
;
275 memcpy(secret
->data
+ offset
, first_vector
->data
, first_vector
->len
);
276 offset
+= first_vector
->len
;
278 memcpy(secret
->data
+ offset
, last_vector
->data
, last_vector
->len
);
283 /* Create an association shared key. Follow the algorithm
284 * described in SCTP-AUTH, Section 6.1
286 static struct sctp_auth_bytes
*sctp_auth_asoc_create_secret(
287 const struct sctp_association
*asoc
,
288 struct sctp_shared_key
*ep_key
,
291 struct sctp_auth_bytes
*local_key_vector
;
292 struct sctp_auth_bytes
*peer_key_vector
;
293 struct sctp_auth_bytes
*first_vector
,
295 struct sctp_auth_bytes
*secret
= NULL
;
299 /* Now we need to build the key vectors
300 * SCTP-AUTH , Section 6.1
301 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
302 * parameter sent by each endpoint are concatenated as byte vectors.
303 * These parameters include the parameter type, parameter length, and
304 * the parameter value, but padding is omitted; all padding MUST be
305 * removed from this concatenation before proceeding with further
306 * computation of keys. Parameters which were not sent are simply
307 * omitted from the concatenation process. The resulting two vectors
308 * are called the two key vectors.
311 local_key_vector
= sctp_auth_make_local_vector(asoc
, gfp
);
312 peer_key_vector
= sctp_auth_make_peer_vector(asoc
, gfp
);
314 if (!peer_key_vector
|| !local_key_vector
)
317 /* Figure out the order in which the key_vectors will be
318 * added to the endpoint shared key.
319 * SCTP-AUTH, Section 6.1:
320 * This is performed by selecting the numerically smaller key
321 * vector and concatenating it to the endpoint pair shared
322 * key, and then concatenating the numerically larger key
323 * vector to that. If the key vectors are equal as numbers
324 * but differ in length, then the concatenation order is the
325 * endpoint shared key, followed by the shorter key vector,
326 * followed by the longer key vector. Otherwise, the key
327 * vectors are identical, and may be concatenated to the
328 * endpoint pair key in any order.
330 cmp
= sctp_auth_compare_vectors(local_key_vector
,
333 first_vector
= local_key_vector
;
334 last_vector
= peer_key_vector
;
336 first_vector
= peer_key_vector
;
337 last_vector
= local_key_vector
;
340 secret
= sctp_auth_asoc_set_secret(ep_key
, first_vector
, last_vector
,
343 sctp_auth_key_put(local_key_vector
);
344 sctp_auth_key_put(peer_key_vector
);
350 * Populate the association overlay list with the list
353 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint
*ep
,
354 struct sctp_association
*asoc
,
357 struct sctp_shared_key
*sh_key
;
358 struct sctp_shared_key
*new;
360 BUG_ON(!list_empty(&asoc
->endpoint_shared_keys
));
362 key_for_each(sh_key
, &ep
->endpoint_shared_keys
) {
363 new = sctp_auth_shkey_create(sh_key
->key_id
, gfp
);
367 new->key
= sh_key
->key
;
368 sctp_auth_key_hold(new->key
);
369 list_add(&new->key_list
, &asoc
->endpoint_shared_keys
);
375 sctp_auth_destroy_keys(&asoc
->endpoint_shared_keys
);
380 /* Public interface to create the association shared key.
381 * See code above for the algorithm.
383 int sctp_auth_asoc_init_active_key(struct sctp_association
*asoc
, gfp_t gfp
)
385 struct sctp_auth_bytes
*secret
;
386 struct sctp_shared_key
*ep_key
;
387 struct sctp_chunk
*chunk
;
389 /* If we don't support AUTH, or peer is not capable
390 * we don't need to do anything.
392 if (!asoc
->peer
.auth_capable
)
395 /* If the key_id is non-zero and we couldn't find an
396 * endpoint pair shared key, we can't compute the
398 * For key_id 0, endpoint pair shared key is a NULL key.
400 ep_key
= sctp_auth_get_shkey(asoc
, asoc
->active_key_id
);
403 secret
= sctp_auth_asoc_create_secret(asoc
, ep_key
, gfp
);
407 sctp_auth_key_put(asoc
->asoc_shared_key
);
408 asoc
->asoc_shared_key
= secret
;
409 asoc
->shkey
= ep_key
;
411 /* Update send queue in case any chunk already in there now
412 * needs authenticating
414 list_for_each_entry(chunk
, &asoc
->outqueue
.out_chunk_list
, list
) {
415 if (sctp_auth_send_cid(chunk
->chunk_hdr
->type
, asoc
)) {
418 chunk
->shkey
= asoc
->shkey
;
419 sctp_auth_shkey_hold(chunk
->shkey
);
428 /* Find the endpoint pair shared key based on the key_id */
429 struct sctp_shared_key
*sctp_auth_get_shkey(
430 const struct sctp_association
*asoc
,
433 struct sctp_shared_key
*key
;
435 /* First search associations set of endpoint pair shared keys */
436 key_for_each(key
, &asoc
->endpoint_shared_keys
) {
437 if (key
->key_id
== key_id
) {
438 if (!key
->deactivated
)
448 * Initialize all the possible digest transforms that we can use. Right
449 * now, the supported digests are SHA1 and SHA256. We do this here once
450 * because of the restrictiong that transforms may only be allocated in
451 * user context. This forces us to pre-allocated all possible transforms
452 * at the endpoint init time.
454 int sctp_auth_init_hmacs(struct sctp_endpoint
*ep
, gfp_t gfp
)
456 struct crypto_shash
*tfm
= NULL
;
459 /* If the transforms are already allocated, we are done */
463 /* Allocated the array of pointers to transorms */
464 ep
->auth_hmacs
= kcalloc(SCTP_AUTH_NUM_HMACS
,
465 sizeof(struct crypto_shash
*),
470 for (id
= 0; id
< SCTP_AUTH_NUM_HMACS
; id
++) {
472 /* See is we support the id. Supported IDs have name and
473 * length fields set, so that we can allocated and use
474 * them. We can safely just check for name, for without the
475 * name, we can't allocate the TFM.
477 if (!sctp_hmac_list
[id
].hmac_name
)
480 /* If this TFM has been allocated, we are all set */
481 if (ep
->auth_hmacs
[id
])
484 /* Allocate the ID */
485 tfm
= crypto_alloc_shash(sctp_hmac_list
[id
].hmac_name
, 0, 0);
489 ep
->auth_hmacs
[id
] = tfm
;
495 /* Clean up any successful allocations */
496 sctp_auth_destroy_hmacs(ep
->auth_hmacs
);
497 ep
->auth_hmacs
= NULL
;
501 /* Destroy the hmac tfm array */
502 void sctp_auth_destroy_hmacs(struct crypto_shash
*auth_hmacs
[])
509 for (i
= 0; i
< SCTP_AUTH_NUM_HMACS
; i
++) {
510 crypto_free_shash(auth_hmacs
[i
]);
516 struct sctp_hmac
*sctp_auth_get_hmac(__u16 hmac_id
)
518 return &sctp_hmac_list
[hmac_id
];
521 /* Get an hmac description information that we can use to build
524 struct sctp_hmac
*sctp_auth_asoc_get_hmac(const struct sctp_association
*asoc
)
526 struct sctp_hmac_algo_param
*hmacs
;
531 /* If we have a default entry, use it */
532 if (asoc
->default_hmac_id
)
533 return &sctp_hmac_list
[asoc
->default_hmac_id
];
535 /* Since we do not have a default entry, find the first entry
536 * we support and return that. Do not cache that id.
538 hmacs
= asoc
->peer
.peer_hmacs
;
542 n_elt
= (ntohs(hmacs
->param_hdr
.length
) -
543 sizeof(struct sctp_paramhdr
)) >> 1;
544 for (i
= 0; i
< n_elt
; i
++) {
545 id
= ntohs(hmacs
->hmac_ids
[i
]);
547 /* Check the id is in the supported range. And
548 * see if we support the id. Supported IDs have name and
549 * length fields set, so that we can allocate and use
550 * them. We can safely just check for name, for without the
551 * name, we can't allocate the TFM.
553 if (id
> SCTP_AUTH_HMAC_ID_MAX
||
554 !sctp_hmac_list
[id
].hmac_name
) {
565 return &sctp_hmac_list
[id
];
568 static int __sctp_auth_find_hmacid(__be16
*hmacs
, int n_elts
, __be16 hmac_id
)
573 for (i
= 0; i
< n_elts
; i
++) {
574 if (hmac_id
== hmacs
[i
]) {
583 /* See if the HMAC_ID is one that we claim as supported */
584 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association
*asoc
,
587 struct sctp_hmac_algo_param
*hmacs
;
593 hmacs
= (struct sctp_hmac_algo_param
*)asoc
->c
.auth_hmacs
;
594 n_elt
= (ntohs(hmacs
->param_hdr
.length
) -
595 sizeof(struct sctp_paramhdr
)) >> 1;
597 return __sctp_auth_find_hmacid(hmacs
->hmac_ids
, n_elt
, hmac_id
);
601 /* Cache the default HMAC id. This to follow this text from SCTP-AUTH:
603 * The receiver of a HMAC-ALGO parameter SHOULD use the first listed
604 * algorithm it supports.
606 void sctp_auth_asoc_set_default_hmac(struct sctp_association
*asoc
,
607 struct sctp_hmac_algo_param
*hmacs
)
609 struct sctp_endpoint
*ep
;
614 /* if the default id is already set, use it */
615 if (asoc
->default_hmac_id
)
618 n_params
= (ntohs(hmacs
->param_hdr
.length
) -
619 sizeof(struct sctp_paramhdr
)) >> 1;
621 for (i
= 0; i
< n_params
; i
++) {
622 id
= ntohs(hmacs
->hmac_ids
[i
]);
624 /* Check the id is in the supported range */
625 if (id
> SCTP_AUTH_HMAC_ID_MAX
)
628 /* If this TFM has been allocated, use this id */
629 if (ep
->auth_hmacs
[id
]) {
630 asoc
->default_hmac_id
= id
;
637 /* Check to see if the given chunk is supposed to be authenticated */
638 static int __sctp_auth_cid(enum sctp_cid chunk
, struct sctp_chunks_param
*param
)
644 if (!param
|| param
->param_hdr
.length
== 0)
647 len
= ntohs(param
->param_hdr
.length
) - sizeof(struct sctp_paramhdr
);
649 /* SCTP-AUTH, Section 3.2
650 * The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
651 * chunks MUST NOT be listed in the CHUNKS parameter. However, if
652 * a CHUNKS parameter is received then the types for INIT, INIT-ACK,
653 * SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
655 for (i
= 0; !found
&& i
< len
; i
++) {
656 switch (param
->chunks
[i
]) {
658 case SCTP_CID_INIT_ACK
:
659 case SCTP_CID_SHUTDOWN_COMPLETE
:
664 if (param
->chunks
[i
] == chunk
)
673 /* Check if peer requested that this chunk is authenticated */
674 int sctp_auth_send_cid(enum sctp_cid chunk
, const struct sctp_association
*asoc
)
679 if (!asoc
->peer
.auth_capable
)
682 return __sctp_auth_cid(chunk
, asoc
->peer
.peer_chunks
);
685 /* Check if we requested that peer authenticate this chunk. */
686 int sctp_auth_recv_cid(enum sctp_cid chunk
, const struct sctp_association
*asoc
)
691 if (!asoc
->peer
.auth_capable
)
694 return __sctp_auth_cid(chunk
,
695 (struct sctp_chunks_param
*)asoc
->c
.auth_chunks
);
698 /* SCTP-AUTH: Section 6.2:
699 * The sender MUST calculate the MAC as described in RFC2104 [2] using
700 * the hash function H as described by the MAC Identifier and the shared
701 * association key K based on the endpoint pair shared key described by
702 * the shared key identifier. The 'data' used for the computation of
703 * the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
704 * zero (as shown in Figure 6) followed by all chunks that are placed
705 * after the AUTH chunk in the SCTP packet.
707 void sctp_auth_calculate_hmac(const struct sctp_association
*asoc
,
708 struct sk_buff
*skb
, struct sctp_auth_chunk
*auth
,
709 struct sctp_shared_key
*ep_key
, gfp_t gfp
)
711 struct sctp_auth_bytes
*asoc_key
;
712 struct crypto_shash
*tfm
;
713 __u16 key_id
, hmac_id
;
718 /* Extract the info we need:
722 key_id
= ntohs(auth
->auth_hdr
.shkey_id
);
723 hmac_id
= ntohs(auth
->auth_hdr
.hmac_id
);
725 if (key_id
== asoc
->active_key_id
)
726 asoc_key
= asoc
->asoc_shared_key
;
728 /* ep_key can't be NULL here */
729 asoc_key
= sctp_auth_asoc_create_secret(asoc
, ep_key
, gfp
);
736 /* set up scatter list */
737 end
= skb_tail_pointer(skb
);
739 tfm
= asoc
->ep
->auth_hmacs
[hmac_id
];
741 digest
= (u8
*)(&auth
->auth_hdr
+ 1);
742 if (crypto_shash_setkey(tfm
, &asoc_key
->data
[0], asoc_key
->len
))
745 crypto_shash_tfm_digest(tfm
, (u8
*)auth
, end
- (unsigned char *)auth
,
750 sctp_auth_key_put(asoc_key
);
755 /* Add a chunk to the endpoint authenticated chunk list */
756 int sctp_auth_ep_add_chunkid(struct sctp_endpoint
*ep
, __u8 chunk_id
)
758 struct sctp_chunks_param
*p
= ep
->auth_chunk_list
;
762 /* If this chunk is already specified, we are done */
763 if (__sctp_auth_cid(chunk_id
, p
))
766 /* Check if we can add this chunk to the array */
767 param_len
= ntohs(p
->param_hdr
.length
);
768 nchunks
= param_len
- sizeof(struct sctp_paramhdr
);
769 if (nchunks
== SCTP_NUM_CHUNK_TYPES
)
772 p
->chunks
[nchunks
] = chunk_id
;
773 p
->param_hdr
.length
= htons(param_len
+ 1);
777 /* Add hmac identifires to the endpoint list of supported hmac ids */
778 int sctp_auth_ep_set_hmacs(struct sctp_endpoint
*ep
,
779 struct sctp_hmacalgo
*hmacs
)
785 /* Scan the list looking for unsupported id. Also make sure that
788 for (i
= 0; i
< hmacs
->shmac_num_idents
; i
++) {
789 id
= hmacs
->shmac_idents
[i
];
791 if (id
> SCTP_AUTH_HMAC_ID_MAX
)
794 if (SCTP_AUTH_HMAC_ID_SHA1
== id
)
797 if (!sctp_hmac_list
[id
].hmac_name
)
804 for (i
= 0; i
< hmacs
->shmac_num_idents
; i
++)
805 ep
->auth_hmacs_list
->hmac_ids
[i
] =
806 htons(hmacs
->shmac_idents
[i
]);
807 ep
->auth_hmacs_list
->param_hdr
.length
=
808 htons(sizeof(struct sctp_paramhdr
) +
809 hmacs
->shmac_num_idents
* sizeof(__u16
));
813 /* Set a new shared key on either endpoint or association. If the
814 * key with a same ID already exists, replace the key (remove the
815 * old key and add a new one).
817 int sctp_auth_set_key(struct sctp_endpoint
*ep
,
818 struct sctp_association
*asoc
,
819 struct sctp_authkey
*auth_key
)
821 struct sctp_shared_key
*cur_key
, *shkey
;
822 struct sctp_auth_bytes
*key
;
823 struct list_head
*sh_keys
;
826 /* Try to find the given key id to see if
827 * we are doing a replace, or adding a new key
830 if (!asoc
->peer
.auth_capable
)
832 sh_keys
= &asoc
->endpoint_shared_keys
;
834 if (!ep
->auth_enable
)
836 sh_keys
= &ep
->endpoint_shared_keys
;
839 key_for_each(shkey
, sh_keys
) {
840 if (shkey
->key_id
== auth_key
->sca_keynumber
) {
846 cur_key
= sctp_auth_shkey_create(auth_key
->sca_keynumber
, GFP_KERNEL
);
850 /* Create a new key data based on the info passed in */
851 key
= sctp_auth_create_key(auth_key
->sca_keylength
, GFP_KERNEL
);
857 memcpy(key
->data
, &auth_key
->sca_key
[0], auth_key
->sca_keylength
);
861 list_add(&cur_key
->key_list
, sh_keys
);
865 list_del_init(&shkey
->key_list
);
866 list_add(&cur_key
->key_list
, sh_keys
);
868 if (asoc
&& asoc
->active_key_id
== auth_key
->sca_keynumber
&&
869 sctp_auth_asoc_init_active_key(asoc
, GFP_KERNEL
)) {
870 list_del_init(&cur_key
->key_list
);
871 sctp_auth_shkey_release(cur_key
);
872 list_add(&shkey
->key_list
, sh_keys
);
876 sctp_auth_shkey_release(shkey
);
880 int sctp_auth_set_active_key(struct sctp_endpoint
*ep
,
881 struct sctp_association
*asoc
,
884 struct sctp_shared_key
*key
;
885 struct list_head
*sh_keys
;
888 /* The key identifier MUST correst to an existing key */
890 if (!asoc
->peer
.auth_capable
)
892 sh_keys
= &asoc
->endpoint_shared_keys
;
894 if (!ep
->auth_enable
)
896 sh_keys
= &ep
->endpoint_shared_keys
;
899 key_for_each(key
, sh_keys
) {
900 if (key
->key_id
== key_id
) {
906 if (!found
|| key
->deactivated
)
910 __u16 active_key_id
= asoc
->active_key_id
;
912 asoc
->active_key_id
= key_id
;
913 if (sctp_auth_asoc_init_active_key(asoc
, GFP_KERNEL
)) {
914 asoc
->active_key_id
= active_key_id
;
918 ep
->active_key_id
= key_id
;
923 int sctp_auth_del_key_id(struct sctp_endpoint
*ep
,
924 struct sctp_association
*asoc
,
927 struct sctp_shared_key
*key
;
928 struct list_head
*sh_keys
;
931 /* The key identifier MUST NOT be the current active key
932 * The key identifier MUST correst to an existing key
935 if (!asoc
->peer
.auth_capable
)
937 if (asoc
->active_key_id
== key_id
)
940 sh_keys
= &asoc
->endpoint_shared_keys
;
942 if (!ep
->auth_enable
)
944 if (ep
->active_key_id
== key_id
)
947 sh_keys
= &ep
->endpoint_shared_keys
;
950 key_for_each(key
, sh_keys
) {
951 if (key
->key_id
== key_id
) {
960 /* Delete the shared key */
961 list_del_init(&key
->key_list
);
962 sctp_auth_shkey_release(key
);
967 int sctp_auth_deact_key_id(struct sctp_endpoint
*ep
,
968 struct sctp_association
*asoc
, __u16 key_id
)
970 struct sctp_shared_key
*key
;
971 struct list_head
*sh_keys
;
974 /* The key identifier MUST NOT be the current active key
975 * The key identifier MUST correst to an existing key
978 if (!asoc
->peer
.auth_capable
)
980 if (asoc
->active_key_id
== key_id
)
983 sh_keys
= &asoc
->endpoint_shared_keys
;
985 if (!ep
->auth_enable
)
987 if (ep
->active_key_id
== key_id
)
990 sh_keys
= &ep
->endpoint_shared_keys
;
993 key_for_each(key
, sh_keys
) {
994 if (key
->key_id
== key_id
) {
1003 /* refcnt == 1 and !list_empty mean it's not being used anywhere
1004 * and deactivated will be set, so it's time to notify userland
1005 * that this shkey can be freed.
1007 if (asoc
&& !list_empty(&key
->key_list
) &&
1008 refcount_read(&key
->refcnt
) == 1) {
1009 struct sctp_ulpevent
*ev
;
1011 ev
= sctp_ulpevent_make_authkey(asoc
, key
->key_id
,
1012 SCTP_AUTH_FREE_KEY
, GFP_KERNEL
);
1014 asoc
->stream
.si
->enqueue_event(&asoc
->ulpq
, ev
);
1017 key
->deactivated
= 1;
1022 int sctp_auth_init(struct sctp_endpoint
*ep
, gfp_t gfp
)
1026 /* Allocate space for HMACS and CHUNKS authentication
1027 * variables. There are arrays that we encode directly
1028 * into parameters to make the rest of the operations easier.
1030 if (!ep
->auth_hmacs_list
) {
1031 struct sctp_hmac_algo_param
*auth_hmacs
;
1033 auth_hmacs
= kzalloc(struct_size(auth_hmacs
, hmac_ids
,
1034 SCTP_AUTH_NUM_HMACS
), gfp
);
1037 /* Initialize the HMACS parameter.
1038 * SCTP-AUTH: Section 3.3
1039 * Every endpoint supporting SCTP chunk authentication MUST
1040 * support the HMAC based on the SHA-1 algorithm.
1042 auth_hmacs
->param_hdr
.type
= SCTP_PARAM_HMAC_ALGO
;
1043 auth_hmacs
->param_hdr
.length
=
1044 htons(sizeof(struct sctp_paramhdr
) + 2);
1045 auth_hmacs
->hmac_ids
[0] = htons(SCTP_AUTH_HMAC_ID_SHA1
);
1046 ep
->auth_hmacs_list
= auth_hmacs
;
1049 if (!ep
->auth_chunk_list
) {
1050 struct sctp_chunks_param
*auth_chunks
;
1052 auth_chunks
= kzalloc(sizeof(*auth_chunks
) +
1053 SCTP_NUM_CHUNK_TYPES
, gfp
);
1056 /* Initialize the CHUNKS parameter */
1057 auth_chunks
->param_hdr
.type
= SCTP_PARAM_CHUNKS
;
1058 auth_chunks
->param_hdr
.length
=
1059 htons(sizeof(struct sctp_paramhdr
));
1060 ep
->auth_chunk_list
= auth_chunks
;
1063 /* Allocate and initialize transorms arrays for supported
1066 err
= sctp_auth_init_hmacs(ep
, gfp
);
1073 /* Free all allocations */
1074 kfree(ep
->auth_hmacs_list
);
1075 kfree(ep
->auth_chunk_list
);
1076 ep
->auth_hmacs_list
= NULL
;
1077 ep
->auth_chunk_list
= NULL
;
1081 void sctp_auth_free(struct sctp_endpoint
*ep
)
1083 kfree(ep
->auth_hmacs_list
);
1084 kfree(ep
->auth_chunk_list
);
1085 ep
->auth_hmacs_list
= NULL
;
1086 ep
->auth_chunk_list
= NULL
;
1087 sctp_auth_destroy_hmacs(ep
->auth_hmacs
);
1088 ep
->auth_hmacs
= NULL
;