drm/tests: hdmi: Fix memory leaks in drm_display_mode_from_cea_vic()
[drm/drm-misc.git] / drivers / i2c / busses / i2c-aspeed.c
blobcc5a26637fd540d3781d11ab133a7e5908525855
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Aspeed 24XX/25XX I2C Controller.
5 * Copyright (C) 2012-2017 ASPEED Technology Inc.
6 * Copyright 2017 IBM Corporation
7 * Copyright 2017 Google, Inc.
8 */
10 #include <linux/clk.h>
11 #include <linux/completion.h>
12 #include <linux/err.h>
13 #include <linux/errno.h>
14 #include <linux/i2c.h>
15 #include <linux/init.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/irq.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/of_address.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/reset.h>
26 #include <linux/slab.h>
28 /* I2C Register */
29 #define ASPEED_I2C_FUN_CTRL_REG 0x00
30 #define ASPEED_I2C_AC_TIMING_REG1 0x04
31 #define ASPEED_I2C_AC_TIMING_REG2 0x08
32 #define ASPEED_I2C_INTR_CTRL_REG 0x0c
33 #define ASPEED_I2C_INTR_STS_REG 0x10
34 #define ASPEED_I2C_CMD_REG 0x14
35 #define ASPEED_I2C_DEV_ADDR_REG 0x18
36 #define ASPEED_I2C_BYTE_BUF_REG 0x20
38 /* Global Register Definition */
39 /* 0x00 : I2C Interrupt Status Register */
40 /* 0x08 : I2C Interrupt Target Assignment */
42 /* Device Register Definition */
43 /* 0x00 : I2CD Function Control Register */
44 #define ASPEED_I2CD_MULTI_MASTER_DIS BIT(15)
45 #define ASPEED_I2CD_SDA_DRIVE_1T_EN BIT(8)
46 #define ASPEED_I2CD_M_SDA_DRIVE_1T_EN BIT(7)
47 #define ASPEED_I2CD_M_HIGH_SPEED_EN BIT(6)
48 #define ASPEED_I2CD_SLAVE_EN BIT(1)
49 #define ASPEED_I2CD_MASTER_EN BIT(0)
51 /* 0x04 : I2CD Clock and AC Timing Control Register #1 */
52 #define ASPEED_I2CD_TIME_TBUF_MASK GENMASK(31, 28)
53 #define ASPEED_I2CD_TIME_THDSTA_MASK GENMASK(27, 24)
54 #define ASPEED_I2CD_TIME_TACST_MASK GENMASK(23, 20)
55 #define ASPEED_I2CD_TIME_SCL_HIGH_SHIFT 16
56 #define ASPEED_I2CD_TIME_SCL_HIGH_MASK GENMASK(19, 16)
57 #define ASPEED_I2CD_TIME_SCL_LOW_SHIFT 12
58 #define ASPEED_I2CD_TIME_SCL_LOW_MASK GENMASK(15, 12)
59 #define ASPEED_I2CD_TIME_BASE_DIVISOR_MASK GENMASK(3, 0)
60 #define ASPEED_I2CD_TIME_SCL_REG_MAX GENMASK(3, 0)
61 /* 0x08 : I2CD Clock and AC Timing Control Register #2 */
62 #define ASPEED_NO_TIMEOUT_CTRL 0
64 /* 0x0c : I2CD Interrupt Control Register &
65 * 0x10 : I2CD Interrupt Status Register
67 * These share bit definitions, so use the same values for the enable &
68 * status bits.
70 #define ASPEED_I2CD_INTR_RECV_MASK 0xf000ffff
71 #define ASPEED_I2CD_INTR_SDA_DL_TIMEOUT BIT(14)
72 #define ASPEED_I2CD_INTR_BUS_RECOVER_DONE BIT(13)
73 #define ASPEED_I2CD_INTR_SLAVE_MATCH BIT(7)
74 #define ASPEED_I2CD_INTR_SCL_TIMEOUT BIT(6)
75 #define ASPEED_I2CD_INTR_ABNORMAL BIT(5)
76 #define ASPEED_I2CD_INTR_NORMAL_STOP BIT(4)
77 #define ASPEED_I2CD_INTR_ARBIT_LOSS BIT(3)
78 #define ASPEED_I2CD_INTR_RX_DONE BIT(2)
79 #define ASPEED_I2CD_INTR_TX_NAK BIT(1)
80 #define ASPEED_I2CD_INTR_TX_ACK BIT(0)
81 #define ASPEED_I2CD_INTR_MASTER_ERRORS \
82 (ASPEED_I2CD_INTR_SDA_DL_TIMEOUT | \
83 ASPEED_I2CD_INTR_SCL_TIMEOUT | \
84 ASPEED_I2CD_INTR_ABNORMAL | \
85 ASPEED_I2CD_INTR_ARBIT_LOSS)
86 #define ASPEED_I2CD_INTR_ALL \
87 (ASPEED_I2CD_INTR_SDA_DL_TIMEOUT | \
88 ASPEED_I2CD_INTR_BUS_RECOVER_DONE | \
89 ASPEED_I2CD_INTR_SCL_TIMEOUT | \
90 ASPEED_I2CD_INTR_ABNORMAL | \
91 ASPEED_I2CD_INTR_NORMAL_STOP | \
92 ASPEED_I2CD_INTR_ARBIT_LOSS | \
93 ASPEED_I2CD_INTR_RX_DONE | \
94 ASPEED_I2CD_INTR_TX_NAK | \
95 ASPEED_I2CD_INTR_TX_ACK)
97 /* 0x14 : I2CD Command/Status Register */
98 #define ASPEED_I2CD_SCL_LINE_STS BIT(18)
99 #define ASPEED_I2CD_SDA_LINE_STS BIT(17)
100 #define ASPEED_I2CD_BUS_BUSY_STS BIT(16)
101 #define ASPEED_I2CD_BUS_RECOVER_CMD BIT(11)
103 /* Command Bit */
104 #define ASPEED_I2CD_M_STOP_CMD BIT(5)
105 #define ASPEED_I2CD_M_S_RX_CMD_LAST BIT(4)
106 #define ASPEED_I2CD_M_RX_CMD BIT(3)
107 #define ASPEED_I2CD_S_TX_CMD BIT(2)
108 #define ASPEED_I2CD_M_TX_CMD BIT(1)
109 #define ASPEED_I2CD_M_START_CMD BIT(0)
110 #define ASPEED_I2CD_MASTER_CMDS_MASK \
111 (ASPEED_I2CD_M_STOP_CMD | \
112 ASPEED_I2CD_M_S_RX_CMD_LAST | \
113 ASPEED_I2CD_M_RX_CMD | \
114 ASPEED_I2CD_M_TX_CMD | \
115 ASPEED_I2CD_M_START_CMD)
117 /* 0x18 : I2CD Slave Device Address Register */
118 #define ASPEED_I2CD_DEV_ADDR_MASK GENMASK(6, 0)
120 enum aspeed_i2c_master_state {
121 ASPEED_I2C_MASTER_INACTIVE,
122 ASPEED_I2C_MASTER_PENDING,
123 ASPEED_I2C_MASTER_START,
124 ASPEED_I2C_MASTER_TX_FIRST,
125 ASPEED_I2C_MASTER_TX,
126 ASPEED_I2C_MASTER_RX_FIRST,
127 ASPEED_I2C_MASTER_RX,
128 ASPEED_I2C_MASTER_STOP,
131 enum aspeed_i2c_slave_state {
132 ASPEED_I2C_SLAVE_INACTIVE,
133 ASPEED_I2C_SLAVE_START,
134 ASPEED_I2C_SLAVE_READ_REQUESTED,
135 ASPEED_I2C_SLAVE_READ_PROCESSED,
136 ASPEED_I2C_SLAVE_WRITE_REQUESTED,
137 ASPEED_I2C_SLAVE_WRITE_RECEIVED,
138 ASPEED_I2C_SLAVE_STOP,
141 struct aspeed_i2c_bus {
142 struct i2c_adapter adap;
143 struct device *dev;
144 void __iomem *base;
145 struct reset_control *rst;
146 /* Synchronizes I/O mem access to base. */
147 spinlock_t lock;
148 struct completion cmd_complete;
149 u32 (*get_clk_reg_val)(struct device *dev,
150 u32 divisor);
151 unsigned long parent_clk_frequency;
152 u32 bus_frequency;
153 /* Transaction state. */
154 enum aspeed_i2c_master_state master_state;
155 struct i2c_msg *msgs;
156 size_t buf_index;
157 size_t msgs_index;
158 size_t msgs_count;
159 bool send_stop;
160 int cmd_err;
161 /* Protected only by i2c_lock_bus */
162 int master_xfer_result;
163 /* Multi-master */
164 bool multi_master;
165 #if IS_ENABLED(CONFIG_I2C_SLAVE)
166 struct i2c_client *slave;
167 enum aspeed_i2c_slave_state slave_state;
168 #endif /* CONFIG_I2C_SLAVE */
171 static int aspeed_i2c_reset(struct aspeed_i2c_bus *bus);
173 /* precondition: bus.lock has been acquired. */
174 static void aspeed_i2c_do_stop(struct aspeed_i2c_bus *bus)
176 bus->master_state = ASPEED_I2C_MASTER_STOP;
177 writel(ASPEED_I2CD_M_STOP_CMD, bus->base + ASPEED_I2C_CMD_REG);
180 static int aspeed_i2c_recover_bus(struct aspeed_i2c_bus *bus)
182 unsigned long time_left, flags;
183 int ret = 0;
184 u32 command;
186 spin_lock_irqsave(&bus->lock, flags);
187 command = readl(bus->base + ASPEED_I2C_CMD_REG);
189 if (command & ASPEED_I2CD_SDA_LINE_STS) {
190 /* Bus is idle: no recovery needed. */
191 if (command & ASPEED_I2CD_SCL_LINE_STS)
192 goto out;
193 dev_dbg(bus->dev, "SCL hung (state %x), attempting recovery\n",
194 command);
196 reinit_completion(&bus->cmd_complete);
197 aspeed_i2c_do_stop(bus);
198 spin_unlock_irqrestore(&bus->lock, flags);
200 time_left = wait_for_completion_timeout(
201 &bus->cmd_complete, bus->adap.timeout);
203 spin_lock_irqsave(&bus->lock, flags);
204 if (time_left == 0)
205 goto reset_out;
206 else if (bus->cmd_err)
207 goto reset_out;
208 /* Recovery failed. */
209 else if (!(readl(bus->base + ASPEED_I2C_CMD_REG) &
210 ASPEED_I2CD_SCL_LINE_STS))
211 goto reset_out;
212 /* Bus error. */
213 } else {
214 dev_dbg(bus->dev, "SDA hung (state %x), attempting recovery\n",
215 command);
217 reinit_completion(&bus->cmd_complete);
218 /* Writes 1 to 8 SCL clock cycles until SDA is released. */
219 writel(ASPEED_I2CD_BUS_RECOVER_CMD,
220 bus->base + ASPEED_I2C_CMD_REG);
221 spin_unlock_irqrestore(&bus->lock, flags);
223 time_left = wait_for_completion_timeout(
224 &bus->cmd_complete, bus->adap.timeout);
226 spin_lock_irqsave(&bus->lock, flags);
227 if (time_left == 0)
228 goto reset_out;
229 else if (bus->cmd_err)
230 goto reset_out;
231 /* Recovery failed. */
232 else if (!(readl(bus->base + ASPEED_I2C_CMD_REG) &
233 ASPEED_I2CD_SDA_LINE_STS))
234 goto reset_out;
237 out:
238 spin_unlock_irqrestore(&bus->lock, flags);
240 return ret;
242 reset_out:
243 spin_unlock_irqrestore(&bus->lock, flags);
245 return aspeed_i2c_reset(bus);
248 #if IS_ENABLED(CONFIG_I2C_SLAVE)
249 static u32 aspeed_i2c_slave_irq(struct aspeed_i2c_bus *bus, u32 irq_status)
251 u32 command, irq_handled = 0;
252 struct i2c_client *slave = bus->slave;
253 u8 value;
254 int ret;
256 if (!slave)
257 return 0;
260 * Handle stop conditions early, prior to SLAVE_MATCH. Some masters may drive
261 * transfers with low enough latency between the nak/stop phase of the current
262 * command and the start/address phase of the following command that the
263 * interrupts are coalesced by the time we process them.
265 if (irq_status & ASPEED_I2CD_INTR_NORMAL_STOP) {
266 irq_handled |= ASPEED_I2CD_INTR_NORMAL_STOP;
267 bus->slave_state = ASPEED_I2C_SLAVE_STOP;
270 if (irq_status & ASPEED_I2CD_INTR_TX_NAK &&
271 bus->slave_state == ASPEED_I2C_SLAVE_READ_PROCESSED) {
272 irq_handled |= ASPEED_I2CD_INTR_TX_NAK;
273 bus->slave_state = ASPEED_I2C_SLAVE_STOP;
276 /* Propagate any stop conditions to the slave implementation. */
277 if (bus->slave_state == ASPEED_I2C_SLAVE_STOP) {
278 i2c_slave_event(slave, I2C_SLAVE_STOP, &value);
279 bus->slave_state = ASPEED_I2C_SLAVE_INACTIVE;
283 * Now that we've dealt with any potentially coalesced stop conditions,
284 * address any start conditions.
286 if (irq_status & ASPEED_I2CD_INTR_SLAVE_MATCH) {
287 irq_handled |= ASPEED_I2CD_INTR_SLAVE_MATCH;
288 bus->slave_state = ASPEED_I2C_SLAVE_START;
292 * If the slave has been stopped and not started then slave interrupt
293 * handling is complete.
295 if (bus->slave_state == ASPEED_I2C_SLAVE_INACTIVE)
296 return irq_handled;
298 command = readl(bus->base + ASPEED_I2C_CMD_REG);
299 dev_dbg(bus->dev, "slave irq status 0x%08x, cmd 0x%08x\n",
300 irq_status, command);
302 /* Slave was sent something. */
303 if (irq_status & ASPEED_I2CD_INTR_RX_DONE) {
304 value = readl(bus->base + ASPEED_I2C_BYTE_BUF_REG) >> 8;
305 /* Handle address frame. */
306 if (bus->slave_state == ASPEED_I2C_SLAVE_START) {
307 if (value & 0x1)
308 bus->slave_state =
309 ASPEED_I2C_SLAVE_READ_REQUESTED;
310 else
311 bus->slave_state =
312 ASPEED_I2C_SLAVE_WRITE_REQUESTED;
314 irq_handled |= ASPEED_I2CD_INTR_RX_DONE;
317 switch (bus->slave_state) {
318 case ASPEED_I2C_SLAVE_READ_REQUESTED:
319 if (unlikely(irq_status & ASPEED_I2CD_INTR_TX_ACK))
320 dev_err(bus->dev, "Unexpected ACK on read request.\n");
321 bus->slave_state = ASPEED_I2C_SLAVE_READ_PROCESSED;
322 i2c_slave_event(slave, I2C_SLAVE_READ_REQUESTED, &value);
323 writel(value, bus->base + ASPEED_I2C_BYTE_BUF_REG);
324 writel(ASPEED_I2CD_S_TX_CMD, bus->base + ASPEED_I2C_CMD_REG);
325 break;
326 case ASPEED_I2C_SLAVE_READ_PROCESSED:
327 if (unlikely(!(irq_status & ASPEED_I2CD_INTR_TX_ACK))) {
328 dev_err(bus->dev,
329 "Expected ACK after processed read.\n");
330 break;
332 irq_handled |= ASPEED_I2CD_INTR_TX_ACK;
333 i2c_slave_event(slave, I2C_SLAVE_READ_PROCESSED, &value);
334 writel(value, bus->base + ASPEED_I2C_BYTE_BUF_REG);
335 writel(ASPEED_I2CD_S_TX_CMD, bus->base + ASPEED_I2C_CMD_REG);
336 break;
337 case ASPEED_I2C_SLAVE_WRITE_REQUESTED:
338 bus->slave_state = ASPEED_I2C_SLAVE_WRITE_RECEIVED;
339 ret = i2c_slave_event(slave, I2C_SLAVE_WRITE_REQUESTED, &value);
341 * Slave ACK's on this address phase already but as the backend driver
342 * returns an errno, the bus driver should nack the next incoming byte.
344 if (ret < 0)
345 writel(ASPEED_I2CD_M_S_RX_CMD_LAST, bus->base + ASPEED_I2C_CMD_REG);
346 break;
347 case ASPEED_I2C_SLAVE_WRITE_RECEIVED:
348 i2c_slave_event(slave, I2C_SLAVE_WRITE_RECEIVED, &value);
349 break;
350 case ASPEED_I2C_SLAVE_STOP:
351 /* Stop event handling is done early. Unreachable. */
352 break;
353 case ASPEED_I2C_SLAVE_START:
354 /* Slave was just started. Waiting for the next event. */;
355 break;
356 default:
357 dev_err(bus->dev, "unknown slave_state: %d\n",
358 bus->slave_state);
359 bus->slave_state = ASPEED_I2C_SLAVE_INACTIVE;
360 break;
363 return irq_handled;
365 #endif /* CONFIG_I2C_SLAVE */
367 /* precondition: bus.lock has been acquired. */
368 static void aspeed_i2c_do_start(struct aspeed_i2c_bus *bus)
370 u32 command = ASPEED_I2CD_M_START_CMD | ASPEED_I2CD_M_TX_CMD;
371 struct i2c_msg *msg = &bus->msgs[bus->msgs_index];
372 u8 slave_addr = i2c_8bit_addr_from_msg(msg);
374 #if IS_ENABLED(CONFIG_I2C_SLAVE)
376 * If it's requested in the middle of a slave session, set the master
377 * state to 'pending' then H/W will continue handling this master
378 * command when the bus comes back to the idle state.
380 if (bus->slave_state != ASPEED_I2C_SLAVE_INACTIVE) {
381 bus->master_state = ASPEED_I2C_MASTER_PENDING;
382 return;
384 #endif /* CONFIG_I2C_SLAVE */
386 bus->master_state = ASPEED_I2C_MASTER_START;
387 bus->buf_index = 0;
389 if (msg->flags & I2C_M_RD) {
390 command |= ASPEED_I2CD_M_RX_CMD;
391 /* Need to let the hardware know to NACK after RX. */
392 if (msg->len == 1 && !(msg->flags & I2C_M_RECV_LEN))
393 command |= ASPEED_I2CD_M_S_RX_CMD_LAST;
396 writel(slave_addr, bus->base + ASPEED_I2C_BYTE_BUF_REG);
397 writel(command, bus->base + ASPEED_I2C_CMD_REG);
400 /* precondition: bus.lock has been acquired. */
401 static void aspeed_i2c_next_msg_or_stop(struct aspeed_i2c_bus *bus)
403 if (bus->msgs_index + 1 < bus->msgs_count) {
404 bus->msgs_index++;
405 aspeed_i2c_do_start(bus);
406 } else {
407 aspeed_i2c_do_stop(bus);
411 static int aspeed_i2c_is_irq_error(u32 irq_status)
413 if (irq_status & ASPEED_I2CD_INTR_ARBIT_LOSS)
414 return -EAGAIN;
415 if (irq_status & (ASPEED_I2CD_INTR_SDA_DL_TIMEOUT |
416 ASPEED_I2CD_INTR_SCL_TIMEOUT))
417 return -EBUSY;
418 if (irq_status & (ASPEED_I2CD_INTR_ABNORMAL))
419 return -EPROTO;
421 return 0;
424 static u32 aspeed_i2c_master_irq(struct aspeed_i2c_bus *bus, u32 irq_status)
426 u32 irq_handled = 0, command = 0;
427 struct i2c_msg *msg;
428 u8 recv_byte;
429 int ret;
431 if (irq_status & ASPEED_I2CD_INTR_BUS_RECOVER_DONE) {
432 bus->master_state = ASPEED_I2C_MASTER_INACTIVE;
433 irq_handled |= ASPEED_I2CD_INTR_BUS_RECOVER_DONE;
434 goto out_complete;
438 * We encountered an interrupt that reports an error: the hardware
439 * should clear the command queue effectively taking us back to the
440 * INACTIVE state.
442 ret = aspeed_i2c_is_irq_error(irq_status);
443 if (ret) {
444 dev_dbg(bus->dev, "received error interrupt: 0x%08x\n",
445 irq_status);
446 irq_handled |= (irq_status & ASPEED_I2CD_INTR_MASTER_ERRORS);
447 if (bus->master_state != ASPEED_I2C_MASTER_INACTIVE) {
448 irq_handled = irq_status;
449 bus->cmd_err = ret;
450 bus->master_state = ASPEED_I2C_MASTER_INACTIVE;
451 goto out_complete;
455 /* Master is not currently active, irq was for someone else. */
456 if (bus->master_state == ASPEED_I2C_MASTER_INACTIVE ||
457 bus->master_state == ASPEED_I2C_MASTER_PENDING)
458 goto out_no_complete;
460 /* We are in an invalid state; reset bus to a known state. */
461 if (!bus->msgs) {
462 dev_err(bus->dev, "bus in unknown state. irq_status: 0x%x\n",
463 irq_status);
464 bus->cmd_err = -EIO;
465 if (bus->master_state != ASPEED_I2C_MASTER_STOP &&
466 bus->master_state != ASPEED_I2C_MASTER_INACTIVE)
467 aspeed_i2c_do_stop(bus);
468 goto out_no_complete;
470 msg = &bus->msgs[bus->msgs_index];
473 * START is a special case because we still have to handle a subsequent
474 * TX or RX immediately after we handle it, so we handle it here and
475 * then update the state and handle the new state below.
477 if (bus->master_state == ASPEED_I2C_MASTER_START) {
478 #if IS_ENABLED(CONFIG_I2C_SLAVE)
480 * If a peer master starts a xfer immediately after it queues a
481 * master command, clear the queued master command and change
482 * its state to 'pending'. To simplify handling of pending
483 * cases, it uses S/W solution instead of H/W command queue
484 * handling.
486 if (unlikely(irq_status & ASPEED_I2CD_INTR_SLAVE_MATCH)) {
487 writel(readl(bus->base + ASPEED_I2C_CMD_REG) &
488 ~ASPEED_I2CD_MASTER_CMDS_MASK,
489 bus->base + ASPEED_I2C_CMD_REG);
490 bus->master_state = ASPEED_I2C_MASTER_PENDING;
491 dev_dbg(bus->dev,
492 "master goes pending due to a slave start\n");
493 goto out_no_complete;
495 #endif /* CONFIG_I2C_SLAVE */
496 if (unlikely(!(irq_status & ASPEED_I2CD_INTR_TX_ACK))) {
497 if (unlikely(!(irq_status & ASPEED_I2CD_INTR_TX_NAK))) {
498 bus->cmd_err = -ENXIO;
499 bus->master_state = ASPEED_I2C_MASTER_INACTIVE;
500 goto out_complete;
502 pr_devel("no slave present at %02x\n", msg->addr);
503 irq_handled |= ASPEED_I2CD_INTR_TX_NAK;
504 bus->cmd_err = -ENXIO;
505 aspeed_i2c_do_stop(bus);
506 goto out_no_complete;
508 irq_handled |= ASPEED_I2CD_INTR_TX_ACK;
509 if (msg->len == 0) { /* SMBUS_QUICK */
510 aspeed_i2c_do_stop(bus);
511 goto out_no_complete;
513 if (msg->flags & I2C_M_RD)
514 bus->master_state = ASPEED_I2C_MASTER_RX_FIRST;
515 else
516 bus->master_state = ASPEED_I2C_MASTER_TX_FIRST;
519 switch (bus->master_state) {
520 case ASPEED_I2C_MASTER_TX:
521 if (unlikely(irq_status & ASPEED_I2CD_INTR_TX_NAK)) {
522 dev_dbg(bus->dev, "slave NACKed TX\n");
523 irq_handled |= ASPEED_I2CD_INTR_TX_NAK;
524 goto error_and_stop;
525 } else if (unlikely(!(irq_status & ASPEED_I2CD_INTR_TX_ACK))) {
526 dev_err(bus->dev, "slave failed to ACK TX\n");
527 goto error_and_stop;
529 irq_handled |= ASPEED_I2CD_INTR_TX_ACK;
530 fallthrough;
531 case ASPEED_I2C_MASTER_TX_FIRST:
532 if (bus->buf_index < msg->len) {
533 bus->master_state = ASPEED_I2C_MASTER_TX;
534 writel(msg->buf[bus->buf_index++],
535 bus->base + ASPEED_I2C_BYTE_BUF_REG);
536 writel(ASPEED_I2CD_M_TX_CMD,
537 bus->base + ASPEED_I2C_CMD_REG);
538 } else {
539 aspeed_i2c_next_msg_or_stop(bus);
541 goto out_no_complete;
542 case ASPEED_I2C_MASTER_RX_FIRST:
543 /* RX may not have completed yet (only address cycle) */
544 if (!(irq_status & ASPEED_I2CD_INTR_RX_DONE))
545 goto out_no_complete;
546 fallthrough;
547 case ASPEED_I2C_MASTER_RX:
548 if (unlikely(!(irq_status & ASPEED_I2CD_INTR_RX_DONE))) {
549 dev_err(bus->dev, "master failed to RX\n");
550 goto error_and_stop;
552 irq_handled |= ASPEED_I2CD_INTR_RX_DONE;
554 recv_byte = readl(bus->base + ASPEED_I2C_BYTE_BUF_REG) >> 8;
555 msg->buf[bus->buf_index++] = recv_byte;
557 if (msg->flags & I2C_M_RECV_LEN) {
558 if (unlikely(recv_byte > I2C_SMBUS_BLOCK_MAX)) {
559 bus->cmd_err = -EPROTO;
560 aspeed_i2c_do_stop(bus);
561 goto out_no_complete;
563 msg->len = recv_byte +
564 ((msg->flags & I2C_CLIENT_PEC) ? 2 : 1);
565 msg->flags &= ~I2C_M_RECV_LEN;
568 if (bus->buf_index < msg->len) {
569 bus->master_state = ASPEED_I2C_MASTER_RX;
570 command = ASPEED_I2CD_M_RX_CMD;
571 if (bus->buf_index + 1 == msg->len)
572 command |= ASPEED_I2CD_M_S_RX_CMD_LAST;
573 writel(command, bus->base + ASPEED_I2C_CMD_REG);
574 } else {
575 aspeed_i2c_next_msg_or_stop(bus);
577 goto out_no_complete;
578 case ASPEED_I2C_MASTER_STOP:
579 if (unlikely(!(irq_status & ASPEED_I2CD_INTR_NORMAL_STOP))) {
580 dev_err(bus->dev,
581 "master failed to STOP. irq_status:0x%x\n",
582 irq_status);
583 bus->cmd_err = -EIO;
584 /* Do not STOP as we have already tried. */
585 } else {
586 irq_handled |= ASPEED_I2CD_INTR_NORMAL_STOP;
589 bus->master_state = ASPEED_I2C_MASTER_INACTIVE;
590 goto out_complete;
591 case ASPEED_I2C_MASTER_INACTIVE:
592 dev_err(bus->dev,
593 "master received interrupt 0x%08x, but is inactive\n",
594 irq_status);
595 bus->cmd_err = -EIO;
596 /* Do not STOP as we should be inactive. */
597 goto out_complete;
598 default:
599 WARN(1, "unknown master state\n");
600 bus->master_state = ASPEED_I2C_MASTER_INACTIVE;
601 bus->cmd_err = -EINVAL;
602 goto out_complete;
604 error_and_stop:
605 bus->cmd_err = -EIO;
606 aspeed_i2c_do_stop(bus);
607 goto out_no_complete;
608 out_complete:
609 bus->msgs = NULL;
610 if (bus->cmd_err)
611 bus->master_xfer_result = bus->cmd_err;
612 else
613 bus->master_xfer_result = bus->msgs_index + 1;
614 complete(&bus->cmd_complete);
615 out_no_complete:
616 return irq_handled;
619 static irqreturn_t aspeed_i2c_bus_irq(int irq, void *dev_id)
621 struct aspeed_i2c_bus *bus = dev_id;
622 u32 irq_received, irq_remaining, irq_handled;
624 spin_lock(&bus->lock);
625 irq_received = readl(bus->base + ASPEED_I2C_INTR_STS_REG);
626 /* Ack all interrupts except for Rx done */
627 writel(irq_received & ~ASPEED_I2CD_INTR_RX_DONE,
628 bus->base + ASPEED_I2C_INTR_STS_REG);
629 readl(bus->base + ASPEED_I2C_INTR_STS_REG);
630 irq_received &= ASPEED_I2CD_INTR_RECV_MASK;
631 irq_remaining = irq_received;
633 #if IS_ENABLED(CONFIG_I2C_SLAVE)
635 * In most cases, interrupt bits will be set one by one, although
636 * multiple interrupt bits could be set at the same time. It's also
637 * possible that master interrupt bits could be set along with slave
638 * interrupt bits. Each case needs to be handled using corresponding
639 * handlers depending on the current state.
641 if (bus->master_state != ASPEED_I2C_MASTER_INACTIVE &&
642 bus->master_state != ASPEED_I2C_MASTER_PENDING) {
643 irq_handled = aspeed_i2c_master_irq(bus, irq_remaining);
644 irq_remaining &= ~irq_handled;
645 if (irq_remaining)
646 irq_handled |= aspeed_i2c_slave_irq(bus, irq_remaining);
647 } else {
648 irq_handled = aspeed_i2c_slave_irq(bus, irq_remaining);
649 irq_remaining &= ~irq_handled;
650 if (irq_remaining)
651 irq_handled |= aspeed_i2c_master_irq(bus,
652 irq_remaining);
656 * Start a pending master command at here if a slave operation is
657 * completed.
659 if (bus->master_state == ASPEED_I2C_MASTER_PENDING &&
660 bus->slave_state == ASPEED_I2C_SLAVE_INACTIVE)
661 aspeed_i2c_do_start(bus);
662 #else
663 irq_handled = aspeed_i2c_master_irq(bus, irq_remaining);
664 #endif /* CONFIG_I2C_SLAVE */
666 irq_remaining &= ~irq_handled;
667 if (irq_remaining)
668 dev_err(bus->dev,
669 "irq handled != irq. expected 0x%08x, but was 0x%08x\n",
670 irq_received, irq_handled);
672 /* Ack Rx done */
673 if (irq_received & ASPEED_I2CD_INTR_RX_DONE) {
674 writel(ASPEED_I2CD_INTR_RX_DONE,
675 bus->base + ASPEED_I2C_INTR_STS_REG);
676 readl(bus->base + ASPEED_I2C_INTR_STS_REG);
678 spin_unlock(&bus->lock);
679 return irq_remaining ? IRQ_NONE : IRQ_HANDLED;
682 static int aspeed_i2c_master_xfer(struct i2c_adapter *adap,
683 struct i2c_msg *msgs, int num)
685 struct aspeed_i2c_bus *bus = i2c_get_adapdata(adap);
686 unsigned long time_left, flags;
688 spin_lock_irqsave(&bus->lock, flags);
689 bus->cmd_err = 0;
691 /* If bus is busy in a single master environment, attempt recovery. */
692 if (!bus->multi_master &&
693 (readl(bus->base + ASPEED_I2C_CMD_REG) &
694 ASPEED_I2CD_BUS_BUSY_STS)) {
695 int ret;
697 spin_unlock_irqrestore(&bus->lock, flags);
698 ret = aspeed_i2c_recover_bus(bus);
699 if (ret)
700 return ret;
701 spin_lock_irqsave(&bus->lock, flags);
704 bus->cmd_err = 0;
705 bus->msgs = msgs;
706 bus->msgs_index = 0;
707 bus->msgs_count = num;
709 reinit_completion(&bus->cmd_complete);
710 aspeed_i2c_do_start(bus);
711 spin_unlock_irqrestore(&bus->lock, flags);
713 time_left = wait_for_completion_timeout(&bus->cmd_complete,
714 bus->adap.timeout);
716 if (time_left == 0) {
718 * In a multi-master setup, if a timeout occurs, attempt
719 * recovery. But if the bus is idle, we still need to reset the
720 * i2c controller to clear the remaining interrupts.
722 if (bus->multi_master &&
723 (readl(bus->base + ASPEED_I2C_CMD_REG) &
724 ASPEED_I2CD_BUS_BUSY_STS))
725 aspeed_i2c_recover_bus(bus);
726 else
727 aspeed_i2c_reset(bus);
730 * If timed out and the state is still pending, drop the pending
731 * master command.
733 spin_lock_irqsave(&bus->lock, flags);
734 if (bus->master_state == ASPEED_I2C_MASTER_PENDING)
735 bus->master_state = ASPEED_I2C_MASTER_INACTIVE;
736 spin_unlock_irqrestore(&bus->lock, flags);
738 return -ETIMEDOUT;
741 return bus->master_xfer_result;
744 static u32 aspeed_i2c_functionality(struct i2c_adapter *adap)
746 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_SMBUS_BLOCK_DATA;
749 #if IS_ENABLED(CONFIG_I2C_SLAVE)
750 /* precondition: bus.lock has been acquired. */
751 static void __aspeed_i2c_reg_slave(struct aspeed_i2c_bus *bus, u16 slave_addr)
753 u32 addr_reg_val, func_ctrl_reg_val;
756 * Set slave addr. Reserved bits can all safely be written with zeros
757 * on all of ast2[456]00, so zero everything else to ensure we only
758 * enable a single slave address (ast2500 has two, ast2600 has three,
759 * the enable bits for which are also in this register) so that we don't
760 * end up with additional phantom devices responding on the bus.
762 addr_reg_val = slave_addr & ASPEED_I2CD_DEV_ADDR_MASK;
763 writel(addr_reg_val, bus->base + ASPEED_I2C_DEV_ADDR_REG);
765 /* Turn on slave mode. */
766 func_ctrl_reg_val = readl(bus->base + ASPEED_I2C_FUN_CTRL_REG);
767 func_ctrl_reg_val |= ASPEED_I2CD_SLAVE_EN;
768 writel(func_ctrl_reg_val, bus->base + ASPEED_I2C_FUN_CTRL_REG);
770 bus->slave_state = ASPEED_I2C_SLAVE_INACTIVE;
773 static int aspeed_i2c_reg_slave(struct i2c_client *client)
775 struct aspeed_i2c_bus *bus = i2c_get_adapdata(client->adapter);
776 unsigned long flags;
778 spin_lock_irqsave(&bus->lock, flags);
779 if (bus->slave) {
780 spin_unlock_irqrestore(&bus->lock, flags);
781 return -EINVAL;
784 __aspeed_i2c_reg_slave(bus, client->addr);
786 bus->slave = client;
787 spin_unlock_irqrestore(&bus->lock, flags);
789 return 0;
792 static int aspeed_i2c_unreg_slave(struct i2c_client *client)
794 struct aspeed_i2c_bus *bus = i2c_get_adapdata(client->adapter);
795 u32 func_ctrl_reg_val;
796 unsigned long flags;
798 spin_lock_irqsave(&bus->lock, flags);
799 if (!bus->slave) {
800 spin_unlock_irqrestore(&bus->lock, flags);
801 return -EINVAL;
804 /* Turn off slave mode. */
805 func_ctrl_reg_val = readl(bus->base + ASPEED_I2C_FUN_CTRL_REG);
806 func_ctrl_reg_val &= ~ASPEED_I2CD_SLAVE_EN;
807 writel(func_ctrl_reg_val, bus->base + ASPEED_I2C_FUN_CTRL_REG);
809 bus->slave = NULL;
810 spin_unlock_irqrestore(&bus->lock, flags);
812 return 0;
814 #endif /* CONFIG_I2C_SLAVE */
816 static const struct i2c_algorithm aspeed_i2c_algo = {
817 .master_xfer = aspeed_i2c_master_xfer,
818 .functionality = aspeed_i2c_functionality,
819 #if IS_ENABLED(CONFIG_I2C_SLAVE)
820 .reg_slave = aspeed_i2c_reg_slave,
821 .unreg_slave = aspeed_i2c_unreg_slave,
822 #endif /* CONFIG_I2C_SLAVE */
825 static u32 aspeed_i2c_get_clk_reg_val(struct device *dev,
826 u32 clk_high_low_mask,
827 u32 divisor)
829 u32 base_clk_divisor, clk_high_low_max, clk_high, clk_low, tmp;
832 * SCL_high and SCL_low represent a value 1 greater than what is stored
833 * since a zero divider is meaningless. Thus, the max value each can
834 * store is every bit set + 1. Since SCL_high and SCL_low are added
835 * together (see below), the max value of both is the max value of one
836 * them times two.
838 clk_high_low_max = (clk_high_low_mask + 1) * 2;
841 * The actual clock frequency of SCL is:
842 * SCL_freq = APB_freq / (base_freq * (SCL_high + SCL_low))
843 * = APB_freq / divisor
844 * where base_freq is a programmable clock divider; its value is
845 * base_freq = 1 << base_clk_divisor
846 * SCL_high is the number of base_freq clock cycles that SCL stays high
847 * and SCL_low is the number of base_freq clock cycles that SCL stays
848 * low for a period of SCL.
849 * The actual register has a minimum SCL_high and SCL_low minimum of 1;
850 * thus, they start counting at zero. So
851 * SCL_high = clk_high + 1
852 * SCL_low = clk_low + 1
853 * Thus,
854 * SCL_freq = APB_freq /
855 * ((1 << base_clk_divisor) * (clk_high + 1 + clk_low + 1))
856 * The documentation recommends clk_high >= clk_high_max / 2 and
857 * clk_low >= clk_low_max / 2 - 1 when possible; this last constraint
858 * gives us the following solution:
860 base_clk_divisor = divisor > clk_high_low_max ?
861 ilog2((divisor - 1) / clk_high_low_max) + 1 : 0;
863 if (base_clk_divisor > ASPEED_I2CD_TIME_BASE_DIVISOR_MASK) {
864 base_clk_divisor = ASPEED_I2CD_TIME_BASE_DIVISOR_MASK;
865 clk_low = clk_high_low_mask;
866 clk_high = clk_high_low_mask;
867 dev_err(dev,
868 "clamping clock divider: divider requested, %u, is greater than largest possible divider, %u.\n",
869 divisor, (1 << base_clk_divisor) * clk_high_low_max);
870 } else {
871 tmp = (divisor + (1 << base_clk_divisor) - 1)
872 >> base_clk_divisor;
873 clk_low = tmp / 2;
874 clk_high = tmp - clk_low;
876 if (clk_high)
877 clk_high--;
879 if (clk_low)
880 clk_low--;
884 return ((clk_high << ASPEED_I2CD_TIME_SCL_HIGH_SHIFT)
885 & ASPEED_I2CD_TIME_SCL_HIGH_MASK)
886 | ((clk_low << ASPEED_I2CD_TIME_SCL_LOW_SHIFT)
887 & ASPEED_I2CD_TIME_SCL_LOW_MASK)
888 | (base_clk_divisor
889 & ASPEED_I2CD_TIME_BASE_DIVISOR_MASK);
892 static u32 aspeed_i2c_24xx_get_clk_reg_val(struct device *dev, u32 divisor)
895 * clk_high and clk_low are each 3 bits wide, so each can hold a max
896 * value of 8 giving a clk_high_low_max of 16.
898 return aspeed_i2c_get_clk_reg_val(dev, GENMASK(2, 0), divisor);
901 static u32 aspeed_i2c_25xx_get_clk_reg_val(struct device *dev, u32 divisor)
904 * clk_high and clk_low are each 4 bits wide, so each can hold a max
905 * value of 16 giving a clk_high_low_max of 32.
907 return aspeed_i2c_get_clk_reg_val(dev, GENMASK(3, 0), divisor);
910 /* precondition: bus.lock has been acquired. */
911 static int aspeed_i2c_init_clk(struct aspeed_i2c_bus *bus)
913 u32 divisor, clk_reg_val;
915 divisor = DIV_ROUND_UP(bus->parent_clk_frequency, bus->bus_frequency);
916 clk_reg_val = readl(bus->base + ASPEED_I2C_AC_TIMING_REG1);
917 clk_reg_val &= (ASPEED_I2CD_TIME_TBUF_MASK |
918 ASPEED_I2CD_TIME_THDSTA_MASK |
919 ASPEED_I2CD_TIME_TACST_MASK);
920 clk_reg_val |= bus->get_clk_reg_val(bus->dev, divisor);
921 writel(clk_reg_val, bus->base + ASPEED_I2C_AC_TIMING_REG1);
922 writel(ASPEED_NO_TIMEOUT_CTRL, bus->base + ASPEED_I2C_AC_TIMING_REG2);
924 return 0;
927 /* precondition: bus.lock has been acquired. */
928 static int aspeed_i2c_init(struct aspeed_i2c_bus *bus,
929 struct platform_device *pdev)
931 u32 fun_ctrl_reg = ASPEED_I2CD_MASTER_EN;
932 int ret;
934 /* Disable everything. */
935 writel(0, bus->base + ASPEED_I2C_FUN_CTRL_REG);
937 ret = aspeed_i2c_init_clk(bus);
938 if (ret < 0)
939 return ret;
941 if (of_property_read_bool(pdev->dev.of_node, "multi-master"))
942 bus->multi_master = true;
943 else
944 fun_ctrl_reg |= ASPEED_I2CD_MULTI_MASTER_DIS;
946 /* Enable Master Mode */
947 writel(readl(bus->base + ASPEED_I2C_FUN_CTRL_REG) | fun_ctrl_reg,
948 bus->base + ASPEED_I2C_FUN_CTRL_REG);
950 #if IS_ENABLED(CONFIG_I2C_SLAVE)
951 /* If slave has already been registered, re-enable it. */
952 if (bus->slave)
953 __aspeed_i2c_reg_slave(bus, bus->slave->addr);
954 #endif /* CONFIG_I2C_SLAVE */
956 /* Set interrupt generation of I2C controller */
957 writel(ASPEED_I2CD_INTR_ALL, bus->base + ASPEED_I2C_INTR_CTRL_REG);
959 return 0;
962 static int aspeed_i2c_reset(struct aspeed_i2c_bus *bus)
964 struct platform_device *pdev = to_platform_device(bus->dev);
965 unsigned long flags;
966 int ret;
968 spin_lock_irqsave(&bus->lock, flags);
970 /* Disable and ack all interrupts. */
971 writel(0, bus->base + ASPEED_I2C_INTR_CTRL_REG);
972 writel(0xffffffff, bus->base + ASPEED_I2C_INTR_STS_REG);
974 ret = aspeed_i2c_init(bus, pdev);
976 spin_unlock_irqrestore(&bus->lock, flags);
978 return ret;
981 static const struct of_device_id aspeed_i2c_bus_of_table[] = {
983 .compatible = "aspeed,ast2400-i2c-bus",
984 .data = aspeed_i2c_24xx_get_clk_reg_val,
987 .compatible = "aspeed,ast2500-i2c-bus",
988 .data = aspeed_i2c_25xx_get_clk_reg_val,
991 .compatible = "aspeed,ast2600-i2c-bus",
992 .data = aspeed_i2c_25xx_get_clk_reg_val,
996 MODULE_DEVICE_TABLE(of, aspeed_i2c_bus_of_table);
998 static int aspeed_i2c_probe_bus(struct platform_device *pdev)
1000 const struct of_device_id *match;
1001 struct aspeed_i2c_bus *bus;
1002 struct clk *parent_clk;
1003 int irq, ret;
1005 bus = devm_kzalloc(&pdev->dev, sizeof(*bus), GFP_KERNEL);
1006 if (!bus)
1007 return -ENOMEM;
1009 bus->base = devm_platform_get_and_ioremap_resource(pdev, 0, NULL);
1010 if (IS_ERR(bus->base))
1011 return PTR_ERR(bus->base);
1013 parent_clk = devm_clk_get(&pdev->dev, NULL);
1014 if (IS_ERR(parent_clk))
1015 return PTR_ERR(parent_clk);
1016 bus->parent_clk_frequency = clk_get_rate(parent_clk);
1017 /* We just need the clock rate, we don't actually use the clk object. */
1018 devm_clk_put(&pdev->dev, parent_clk);
1020 bus->rst = devm_reset_control_get_shared(&pdev->dev, NULL);
1021 if (IS_ERR(bus->rst)) {
1022 dev_err(&pdev->dev,
1023 "missing or invalid reset controller device tree entry\n");
1024 return PTR_ERR(bus->rst);
1026 reset_control_deassert(bus->rst);
1028 ret = of_property_read_u32(pdev->dev.of_node,
1029 "bus-frequency", &bus->bus_frequency);
1030 if (ret < 0) {
1031 dev_err(&pdev->dev,
1032 "Could not read bus-frequency property\n");
1033 bus->bus_frequency = I2C_MAX_STANDARD_MODE_FREQ;
1036 match = of_match_node(aspeed_i2c_bus_of_table, pdev->dev.of_node);
1037 if (!match)
1038 bus->get_clk_reg_val = aspeed_i2c_24xx_get_clk_reg_val;
1039 else
1040 bus->get_clk_reg_val = (u32 (*)(struct device *, u32))
1041 match->data;
1043 /* Initialize the I2C adapter */
1044 spin_lock_init(&bus->lock);
1045 init_completion(&bus->cmd_complete);
1046 bus->adap.owner = THIS_MODULE;
1047 bus->adap.retries = 0;
1048 bus->adap.algo = &aspeed_i2c_algo;
1049 bus->adap.dev.parent = &pdev->dev;
1050 bus->adap.dev.of_node = pdev->dev.of_node;
1051 strscpy(bus->adap.name, pdev->name, sizeof(bus->adap.name));
1052 i2c_set_adapdata(&bus->adap, bus);
1054 bus->dev = &pdev->dev;
1056 /* Clean up any left over interrupt state. */
1057 writel(0, bus->base + ASPEED_I2C_INTR_CTRL_REG);
1058 writel(0xffffffff, bus->base + ASPEED_I2C_INTR_STS_REG);
1060 * bus.lock does not need to be held because the interrupt handler has
1061 * not been enabled yet.
1063 ret = aspeed_i2c_init(bus, pdev);
1064 if (ret < 0)
1065 return ret;
1067 irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
1068 ret = devm_request_irq(&pdev->dev, irq, aspeed_i2c_bus_irq,
1069 0, dev_name(&pdev->dev), bus);
1070 if (ret < 0)
1071 return ret;
1073 ret = i2c_add_adapter(&bus->adap);
1074 if (ret < 0)
1075 return ret;
1077 platform_set_drvdata(pdev, bus);
1079 dev_info(bus->dev, "i2c bus %d registered, irq %d\n",
1080 bus->adap.nr, irq);
1082 return 0;
1085 static void aspeed_i2c_remove_bus(struct platform_device *pdev)
1087 struct aspeed_i2c_bus *bus = platform_get_drvdata(pdev);
1088 unsigned long flags;
1090 spin_lock_irqsave(&bus->lock, flags);
1092 /* Disable everything. */
1093 writel(0, bus->base + ASPEED_I2C_FUN_CTRL_REG);
1094 writel(0, bus->base + ASPEED_I2C_INTR_CTRL_REG);
1096 spin_unlock_irqrestore(&bus->lock, flags);
1098 reset_control_assert(bus->rst);
1100 i2c_del_adapter(&bus->adap);
1103 static struct platform_driver aspeed_i2c_bus_driver = {
1104 .probe = aspeed_i2c_probe_bus,
1105 .remove_new = aspeed_i2c_remove_bus,
1106 .driver = {
1107 .name = "aspeed-i2c-bus",
1108 .of_match_table = aspeed_i2c_bus_of_table,
1111 module_platform_driver(aspeed_i2c_bus_driver);
1113 MODULE_AUTHOR("Brendan Higgins <brendanhiggins@google.com>");
1114 MODULE_DESCRIPTION("Aspeed I2C Bus Driver");
1115 MODULE_LICENSE("GPL v2");