1 // SPDX-License-Identifier: GPL-2.0+
3 * Freescale MXS I2C bus driver
5 * Copyright (C) 2012-2013 Marek Vasut <marex@denx.de>
6 * Copyright (C) 2011-2012 Wolfram Sang, Pengutronix e.K.
8 * based on a (non-working) driver which was:
10 * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved.
13 #include <linux/slab.h>
14 #include <linux/device.h>
15 #include <linux/module.h>
16 #include <linux/i2c.h>
17 #include <linux/err.h>
18 #include <linux/interrupt.h>
19 #include <linux/completion.h>
20 #include <linux/platform_device.h>
21 #include <linux/jiffies.h>
23 #include <linux/stmp_device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/dmaengine.h>
27 #include <linux/dma/mxs-dma.h>
29 #define DRIVER_NAME "mxs-i2c"
31 #define MXS_I2C_CTRL0 (0x00)
32 #define MXS_I2C_CTRL0_SET (0x04)
33 #define MXS_I2C_CTRL0_CLR (0x08)
35 #define MXS_I2C_CTRL0_SFTRST 0x80000000
36 #define MXS_I2C_CTRL0_RUN 0x20000000
37 #define MXS_I2C_CTRL0_SEND_NAK_ON_LAST 0x02000000
38 #define MXS_I2C_CTRL0_PIO_MODE 0x01000000
39 #define MXS_I2C_CTRL0_RETAIN_CLOCK 0x00200000
40 #define MXS_I2C_CTRL0_POST_SEND_STOP 0x00100000
41 #define MXS_I2C_CTRL0_PRE_SEND_START 0x00080000
42 #define MXS_I2C_CTRL0_MASTER_MODE 0x00020000
43 #define MXS_I2C_CTRL0_DIRECTION 0x00010000
44 #define MXS_I2C_CTRL0_XFER_COUNT(v) ((v) & 0x0000FFFF)
46 #define MXS_I2C_TIMING0 (0x10)
47 #define MXS_I2C_TIMING1 (0x20)
48 #define MXS_I2C_TIMING2 (0x30)
50 #define MXS_I2C_CTRL1 (0x40)
51 #define MXS_I2C_CTRL1_SET (0x44)
52 #define MXS_I2C_CTRL1_CLR (0x48)
54 #define MXS_I2C_CTRL1_CLR_GOT_A_NAK 0x10000000
55 #define MXS_I2C_CTRL1_BUS_FREE_IRQ 0x80
56 #define MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ 0x40
57 #define MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ 0x20
58 #define MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ 0x10
59 #define MXS_I2C_CTRL1_EARLY_TERM_IRQ 0x08
60 #define MXS_I2C_CTRL1_MASTER_LOSS_IRQ 0x04
61 #define MXS_I2C_CTRL1_SLAVE_STOP_IRQ 0x02
62 #define MXS_I2C_CTRL1_SLAVE_IRQ 0x01
64 #define MXS_I2C_STAT (0x50)
65 #define MXS_I2C_STAT_GOT_A_NAK 0x10000000
66 #define MXS_I2C_STAT_BUS_BUSY 0x00000800
67 #define MXS_I2C_STAT_CLK_GEN_BUSY 0x00000400
69 #define MXS_I2C_DATA(i2c) ((i2c->dev_type == MXS_I2C_V1) ? 0x60 : 0xa0)
71 #define MXS_I2C_DEBUG0_CLR(i2c) ((i2c->dev_type == MXS_I2C_V1) ? 0x78 : 0xb8)
73 #define MXS_I2C_DEBUG0_DMAREQ 0x80000000
75 #define MXS_I2C_IRQ_MASK (MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ | \
76 MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ | \
77 MXS_I2C_CTRL1_EARLY_TERM_IRQ | \
78 MXS_I2C_CTRL1_MASTER_LOSS_IRQ | \
79 MXS_I2C_CTRL1_SLAVE_STOP_IRQ | \
80 MXS_I2C_CTRL1_SLAVE_IRQ)
83 #define MXS_CMD_I2C_SELECT (MXS_I2C_CTRL0_RETAIN_CLOCK | \
84 MXS_I2C_CTRL0_PRE_SEND_START | \
85 MXS_I2C_CTRL0_MASTER_MODE | \
86 MXS_I2C_CTRL0_DIRECTION | \
87 MXS_I2C_CTRL0_XFER_COUNT(1))
89 #define MXS_CMD_I2C_WRITE (MXS_I2C_CTRL0_PRE_SEND_START | \
90 MXS_I2C_CTRL0_MASTER_MODE | \
91 MXS_I2C_CTRL0_DIRECTION)
93 #define MXS_CMD_I2C_READ (MXS_I2C_CTRL0_SEND_NAK_ON_LAST | \
94 MXS_I2C_CTRL0_MASTER_MODE)
96 enum mxs_i2c_devtype
{
103 * struct mxs_i2c_dev - per device, private MXS-I2C data
105 * @dev: driver model device node
106 * @dev_type: distinguish i.MX23/i.MX28 features
107 * @regs: IO registers pointer
108 * @cmd_complete: completion object for transaction wait
109 * @cmd_err: error code for last transaction
110 * @adapter: i2c subsystem adapter node
114 enum mxs_i2c_devtype dev_type
;
116 struct completion cmd_complete
;
118 struct i2c_adapter adapter
;
124 /* DMA support components */
125 struct dma_chan
*dmach
;
126 uint32_t pio_data
[2];
128 struct scatterlist sg_io
[2];
132 static int mxs_i2c_reset(struct mxs_i2c_dev
*i2c
)
134 int ret
= stmp_reset_block(i2c
->regs
);
139 * Configure timing for the I2C block. The I2C TIMING2 register has to
140 * be programmed with this particular magic number. The rest is derived
141 * from the XTAL speed and requested I2C speed.
143 * For details, see i.MX233 [25.4.2 - 25.4.4] and i.MX28 [27.5.2 - 27.5.4].
145 writel(i2c
->timing0
, i2c
->regs
+ MXS_I2C_TIMING0
);
146 writel(i2c
->timing1
, i2c
->regs
+ MXS_I2C_TIMING1
);
147 writel(i2c
->timing2
, i2c
->regs
+ MXS_I2C_TIMING2
);
149 writel(MXS_I2C_IRQ_MASK
<< 8, i2c
->regs
+ MXS_I2C_CTRL1_SET
);
154 static void mxs_i2c_dma_finish(struct mxs_i2c_dev
*i2c
)
157 dma_unmap_sg(i2c
->dev
, &i2c
->sg_io
[0], 1, DMA_TO_DEVICE
);
158 dma_unmap_sg(i2c
->dev
, &i2c
->sg_io
[1], 1, DMA_FROM_DEVICE
);
160 dma_unmap_sg(i2c
->dev
, i2c
->sg_io
, 2, DMA_TO_DEVICE
);
164 static void mxs_i2c_dma_irq_callback(void *param
)
166 struct mxs_i2c_dev
*i2c
= param
;
168 complete(&i2c
->cmd_complete
);
169 mxs_i2c_dma_finish(i2c
);
172 static int mxs_i2c_dma_setup_xfer(struct i2c_adapter
*adap
,
173 struct i2c_msg
*msg
, u8
*buf
, uint32_t flags
)
175 struct dma_async_tx_descriptor
*desc
;
176 struct mxs_i2c_dev
*i2c
= i2c_get_adapdata(adap
);
178 i2c
->addr_data
= i2c_8bit_addr_from_msg(msg
);
180 if (msg
->flags
& I2C_M_RD
) {
181 i2c
->dma_read
= true;
187 /* Queue the PIO register write transfer. */
188 i2c
->pio_data
[0] = MXS_CMD_I2C_SELECT
;
189 desc
= dmaengine_prep_slave_sg(i2c
->dmach
,
190 (struct scatterlist
*)&i2c
->pio_data
[0],
191 1, DMA_TRANS_NONE
, 0);
194 "Failed to get PIO reg. write descriptor.\n");
195 goto select_init_pio_fail
;
198 /* Queue the DMA data transfer. */
199 sg_init_one(&i2c
->sg_io
[0], &i2c
->addr_data
, 1);
200 dma_map_sg(i2c
->dev
, &i2c
->sg_io
[0], 1, DMA_TO_DEVICE
);
201 desc
= dmaengine_prep_slave_sg(i2c
->dmach
, &i2c
->sg_io
[0], 1,
204 MXS_DMA_CTRL_WAIT4END
);
207 "Failed to get DMA data write descriptor.\n");
208 goto select_init_dma_fail
;
215 /* Queue the PIO register write transfer. */
216 i2c
->pio_data
[1] = flags
| MXS_CMD_I2C_READ
|
217 MXS_I2C_CTRL0_XFER_COUNT(msg
->len
);
218 desc
= dmaengine_prep_slave_sg(i2c
->dmach
,
219 (struct scatterlist
*)&i2c
->pio_data
[1],
220 1, DMA_TRANS_NONE
, DMA_PREP_INTERRUPT
);
223 "Failed to get PIO reg. write descriptor.\n");
224 goto select_init_dma_fail
;
227 /* Queue the DMA data transfer. */
228 sg_init_one(&i2c
->sg_io
[1], buf
, msg
->len
);
229 dma_map_sg(i2c
->dev
, &i2c
->sg_io
[1], 1, DMA_FROM_DEVICE
);
230 desc
= dmaengine_prep_slave_sg(i2c
->dmach
, &i2c
->sg_io
[1], 1,
233 MXS_DMA_CTRL_WAIT4END
);
236 "Failed to get DMA data write descriptor.\n");
237 goto read_init_dma_fail
;
240 i2c
->dma_read
= false;
246 /* Queue the PIO register write transfer. */
247 i2c
->pio_data
[0] = flags
| MXS_CMD_I2C_WRITE
|
248 MXS_I2C_CTRL0_XFER_COUNT(msg
->len
+ 1);
249 desc
= dmaengine_prep_slave_sg(i2c
->dmach
,
250 (struct scatterlist
*)&i2c
->pio_data
[0],
251 1, DMA_TRANS_NONE
, 0);
254 "Failed to get PIO reg. write descriptor.\n");
255 goto write_init_pio_fail
;
258 /* Queue the DMA data transfer. */
259 sg_init_table(i2c
->sg_io
, 2);
260 sg_set_buf(&i2c
->sg_io
[0], &i2c
->addr_data
, 1);
261 sg_set_buf(&i2c
->sg_io
[1], buf
, msg
->len
);
262 dma_map_sg(i2c
->dev
, i2c
->sg_io
, 2, DMA_TO_DEVICE
);
263 desc
= dmaengine_prep_slave_sg(i2c
->dmach
, i2c
->sg_io
, 2,
266 MXS_DMA_CTRL_WAIT4END
);
269 "Failed to get DMA data write descriptor.\n");
270 goto write_init_dma_fail
;
275 * The last descriptor must have this callback,
276 * to finish the DMA transaction.
278 desc
->callback
= mxs_i2c_dma_irq_callback
;
279 desc
->callback_param
= i2c
;
281 /* Start the transfer. */
282 dmaengine_submit(desc
);
283 dma_async_issue_pending(i2c
->dmach
);
288 dma_unmap_sg(i2c
->dev
, &i2c
->sg_io
[1], 1, DMA_FROM_DEVICE
);
289 select_init_dma_fail
:
290 dma_unmap_sg(i2c
->dev
, &i2c
->sg_io
[0], 1, DMA_TO_DEVICE
);
291 select_init_pio_fail
:
292 dmaengine_terminate_sync(i2c
->dmach
);
295 /* Write failpath. */
297 dma_unmap_sg(i2c
->dev
, i2c
->sg_io
, 2, DMA_TO_DEVICE
);
299 dmaengine_terminate_sync(i2c
->dmach
);
303 static int mxs_i2c_pio_wait_xfer_end(struct mxs_i2c_dev
*i2c
)
305 unsigned long timeout
= jiffies
+ msecs_to_jiffies(1000);
307 while (readl(i2c
->regs
+ MXS_I2C_CTRL0
) & MXS_I2C_CTRL0_RUN
) {
308 if (readl(i2c
->regs
+ MXS_I2C_CTRL1
) &
309 MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ
)
311 if (time_after(jiffies
, timeout
))
319 static int mxs_i2c_pio_check_error_state(struct mxs_i2c_dev
*i2c
)
323 state
= readl(i2c
->regs
+ MXS_I2C_CTRL1_CLR
) & MXS_I2C_IRQ_MASK
;
325 if (state
& MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ
)
326 i2c
->cmd_err
= -ENXIO
;
327 else if (state
& (MXS_I2C_CTRL1_EARLY_TERM_IRQ
|
328 MXS_I2C_CTRL1_MASTER_LOSS_IRQ
|
329 MXS_I2C_CTRL1_SLAVE_STOP_IRQ
|
330 MXS_I2C_CTRL1_SLAVE_IRQ
))
336 static void mxs_i2c_pio_trigger_cmd(struct mxs_i2c_dev
*i2c
, u32 cmd
)
340 writel(cmd
, i2c
->regs
+ MXS_I2C_CTRL0
);
342 /* readback makes sure the write is latched into hardware */
343 reg
= readl(i2c
->regs
+ MXS_I2C_CTRL0
);
344 reg
|= MXS_I2C_CTRL0_RUN
;
345 writel(reg
, i2c
->regs
+ MXS_I2C_CTRL0
);
349 * Start WRITE transaction on the I2C bus. By studying i.MX23 datasheet,
350 * CTRL0::PIO_MODE bit description clarifies the order in which the registers
351 * must be written during PIO mode operation. First, the CTRL0 register has
352 * to be programmed with all the necessary bits but the RUN bit. Then the
353 * payload has to be written into the DATA register. Finally, the transmission
354 * is executed by setting the RUN bit in CTRL0.
356 static void mxs_i2c_pio_trigger_write_cmd(struct mxs_i2c_dev
*i2c
, u32 cmd
,
359 writel(cmd
, i2c
->regs
+ MXS_I2C_CTRL0
);
361 if (i2c
->dev_type
== MXS_I2C_V1
)
362 writel(MXS_I2C_CTRL0_PIO_MODE
, i2c
->regs
+ MXS_I2C_CTRL0_SET
);
364 writel(data
, i2c
->regs
+ MXS_I2C_DATA(i2c
));
365 writel(MXS_I2C_CTRL0_RUN
, i2c
->regs
+ MXS_I2C_CTRL0_SET
);
368 static int mxs_i2c_pio_setup_xfer(struct i2c_adapter
*adap
,
369 struct i2c_msg
*msg
, uint32_t flags
)
371 struct mxs_i2c_dev
*i2c
= i2c_get_adapdata(adap
);
372 uint32_t addr_data
= i2c_8bit_addr_from_msg(msg
);
374 int i
, ret
, xlen
= 0, xmit
= 0;
377 /* Mute IRQs coming from this block. */
378 writel(MXS_I2C_IRQ_MASK
<< 8, i2c
->regs
+ MXS_I2C_CTRL1_CLR
);
382 * - Enable CTRL0::PIO_MODE (1 << 24)
383 * - Enable CTRL1::ACK_MODE (1 << 27)
385 * WARNING! The MX23 is broken in some way, even if it claims
386 * to support PIO, when we try to transfer any amount of data
387 * that is not aligned to 4 bytes, the DMA engine will have
388 * bits in DEBUG1::DMA_BYTES_ENABLES still set even after the
389 * transfer. This in turn will mess up the next transfer as
390 * the block it emit one byte write onto the bus terminated
391 * with a NAK+STOP. A possible workaround is to reset the IP
392 * block after every PIO transmission, which might just work.
394 * NOTE: The CTRL0::PIO_MODE description is important, since
395 * it outlines how the PIO mode is really supposed to work.
397 if (msg
->flags
& I2C_M_RD
) {
401 * This transfer MUST be limited to 4 bytes maximum. It is not
402 * possible to transfer more than four bytes via PIO, since we
403 * can not in any way make sure we can read the data from the
404 * DATA register fast enough. Besides, the RX FIFO is only four
405 * bytes deep, thus we can only really read up to four bytes at
406 * time. Finally, there is no bit indicating us that new data
407 * arrived at the FIFO and can thus be fetched from the DATA
410 BUG_ON(msg
->len
> 4);
412 /* SELECT command. */
413 mxs_i2c_pio_trigger_write_cmd(i2c
, MXS_CMD_I2C_SELECT
,
416 ret
= mxs_i2c_pio_wait_xfer_end(i2c
);
419 "PIO: Failed to send SELECT command!\n");
424 mxs_i2c_pio_trigger_cmd(i2c
,
425 MXS_CMD_I2C_READ
| flags
|
426 MXS_I2C_CTRL0_XFER_COUNT(msg
->len
));
428 ret
= mxs_i2c_pio_wait_xfer_end(i2c
);
431 "PIO: Failed to send READ command!\n");
435 data
= readl(i2c
->regs
+ MXS_I2C_DATA(i2c
));
436 for (i
= 0; i
< msg
->len
; i
++) {
437 msg
->buf
[i
] = data
& 0xff;
442 * PIO WRITE transfer:
444 * The code below implements clock stretching to circumvent
445 * the possibility of kernel not being able to supply data
446 * fast enough. It is possible to transfer arbitrary amount
447 * of data using PIO write.
451 * The LSB of data buffer is the first byte blasted across
452 * the bus. Higher order bytes follow. Thus the following
456 data
= addr_data
<< 24;
458 /* Start the transfer with START condition. */
459 start
= MXS_I2C_CTRL0_PRE_SEND_START
;
461 /* If the transfer is long, use clock stretching. */
463 start
|= MXS_I2C_CTRL0_RETAIN_CLOCK
;
465 for (i
= 0; i
< msg
->len
; i
++) {
467 data
|= (msg
->buf
[i
] << 24);
471 /* This is the last transfer of the message. */
472 if (i
+ 1 == msg
->len
) {
473 /* Add optional STOP flag. */
475 /* Remove RETAIN_CLOCK bit. */
476 start
&= ~MXS_I2C_CTRL0_RETAIN_CLOCK
;
480 /* Four bytes are ready in the "data" variable. */
484 /* Nothing interesting happened, continue stuffing. */
489 * Compute the size of the transfer and shift the
492 * i = (4k + 0) .... xlen = 2
493 * i = (4k + 1) .... xlen = 3
494 * i = (4k + 2) .... xlen = 4
495 * i = (4k + 3) .... xlen = 1
503 data
>>= (4 - xlen
) * 8;
506 "PIO: len=%i pos=%i total=%i [W%s%s%s]\n",
508 start
& MXS_I2C_CTRL0_PRE_SEND_START
? "S" : "",
509 start
& MXS_I2C_CTRL0_POST_SEND_STOP
? "E" : "",
510 start
& MXS_I2C_CTRL0_RETAIN_CLOCK
? "C" : "");
512 writel(MXS_I2C_DEBUG0_DMAREQ
,
513 i2c
->regs
+ MXS_I2C_DEBUG0_CLR(i2c
));
515 mxs_i2c_pio_trigger_write_cmd(i2c
,
516 start
| MXS_I2C_CTRL0_MASTER_MODE
|
517 MXS_I2C_CTRL0_DIRECTION
|
518 MXS_I2C_CTRL0_XFER_COUNT(xlen
), data
);
520 /* The START condition is sent only once. */
521 start
&= ~MXS_I2C_CTRL0_PRE_SEND_START
;
523 /* Wait for the end of the transfer. */
524 ret
= mxs_i2c_pio_wait_xfer_end(i2c
);
527 "PIO: Failed to finish WRITE cmd!\n");
531 /* Check NAK here. */
532 ret
= readl(i2c
->regs
+ MXS_I2C_STAT
) &
533 MXS_I2C_STAT_GOT_A_NAK
;
541 /* make sure we capture any occurred error into cmd_err */
542 ret
= mxs_i2c_pio_check_error_state(i2c
);
545 /* Clear any dangling IRQs and re-enable interrupts. */
546 writel(MXS_I2C_IRQ_MASK
, i2c
->regs
+ MXS_I2C_CTRL1_CLR
);
547 writel(MXS_I2C_IRQ_MASK
<< 8, i2c
->regs
+ MXS_I2C_CTRL1_SET
);
549 /* Clear the PIO_MODE on i.MX23 */
550 if (i2c
->dev_type
== MXS_I2C_V1
)
551 writel(MXS_I2C_CTRL0_PIO_MODE
, i2c
->regs
+ MXS_I2C_CTRL0_CLR
);
557 * Low level master read/write transaction.
559 static int mxs_i2c_xfer_msg(struct i2c_adapter
*adap
, struct i2c_msg
*msg
,
562 struct mxs_i2c_dev
*i2c
= i2c_get_adapdata(adap
);
567 unsigned long time_left
;
569 flags
= stop
? MXS_I2C_CTRL0_POST_SEND_STOP
: 0;
571 dev_dbg(i2c
->dev
, "addr: 0x%04x, len: %d, flags: 0x%x, stop: %d\n",
572 msg
->addr
, msg
->len
, msg
->flags
, stop
);
575 * The MX28 I2C IP block can only do PIO READ for transfer of to up
576 * 4 bytes of length. The write transfer is not limited as it can use
577 * clock stretching to avoid FIFO underruns.
579 if ((msg
->flags
& I2C_M_RD
) && (msg
->len
<= 4))
581 if (!(msg
->flags
& I2C_M_RD
) && (msg
->len
< 7))
586 ret
= mxs_i2c_pio_setup_xfer(adap
, msg
, flags
);
587 /* No need to reset the block if NAK was received. */
588 if (ret
&& (ret
!= -ENXIO
))
591 dma_buf
= i2c_get_dma_safe_msg_buf(msg
, 1);
595 reinit_completion(&i2c
->cmd_complete
);
596 ret
= mxs_i2c_dma_setup_xfer(adap
, msg
, dma_buf
, flags
);
598 i2c_put_dma_safe_msg_buf(dma_buf
, msg
, false);
602 time_left
= wait_for_completion_timeout(&i2c
->cmd_complete
,
603 msecs_to_jiffies(1000));
604 i2c_put_dma_safe_msg_buf(dma_buf
, msg
, true);
613 * If the transfer fails with a NAK from the slave the
614 * controller halts until it gets told to return to idle state.
616 writel(MXS_I2C_CTRL1_CLR_GOT_A_NAK
,
617 i2c
->regs
+ MXS_I2C_CTRL1_SET
);
622 * The i.MX23 is strange. After each and every operation, it's I2C IP
623 * block must be reset, otherwise the IP block will misbehave. This can
624 * be observed on the bus by the block sending out one single byte onto
625 * the bus. In case such an error happens, bit 27 will be set in the
626 * DEBUG0 register. This bit is not documented in the i.MX23 datasheet
627 * and is marked as "TBD" instead. To reset this bit to a correct state,
628 * reset the whole block. Since the block reset does not take long, do
629 * reset the block after every transfer to play safe.
631 if (i2c
->dev_type
== MXS_I2C_V1
)
634 dev_dbg(i2c
->dev
, "Done with err=%d\n", ret
);
639 dev_dbg(i2c
->dev
, "Timeout!\n");
640 mxs_i2c_dma_finish(i2c
);
641 ret
= mxs_i2c_reset(i2c
);
648 static int mxs_i2c_xfer(struct i2c_adapter
*adap
, struct i2c_msg msgs
[],
654 for (i
= 0; i
< num
; i
++) {
655 err
= mxs_i2c_xfer_msg(adap
, &msgs
[i
], i
== (num
- 1));
663 static u32
mxs_i2c_func(struct i2c_adapter
*adap
)
665 return I2C_FUNC_I2C
| I2C_FUNC_SMBUS_EMUL
;
668 static irqreturn_t
mxs_i2c_isr(int this_irq
, void *dev_id
)
670 struct mxs_i2c_dev
*i2c
= dev_id
;
671 u32 stat
= readl(i2c
->regs
+ MXS_I2C_CTRL1
) & MXS_I2C_IRQ_MASK
;
676 if (stat
& MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ
)
677 i2c
->cmd_err
= -ENXIO
;
678 else if (stat
& (MXS_I2C_CTRL1_EARLY_TERM_IRQ
|
679 MXS_I2C_CTRL1_MASTER_LOSS_IRQ
|
680 MXS_I2C_CTRL1_SLAVE_STOP_IRQ
| MXS_I2C_CTRL1_SLAVE_IRQ
))
681 /* MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ is only for slaves */
684 writel(stat
, i2c
->regs
+ MXS_I2C_CTRL1_CLR
);
689 static const struct i2c_algorithm mxs_i2c_algo
= {
690 .master_xfer
= mxs_i2c_xfer
,
691 .functionality
= mxs_i2c_func
,
694 static const struct i2c_adapter_quirks mxs_i2c_quirks
= {
695 .flags
= I2C_AQ_NO_ZERO_LEN
,
698 static void mxs_i2c_derive_timing(struct mxs_i2c_dev
*i2c
, uint32_t speed
)
700 /* The I2C block clock runs at 24MHz */
701 const uint32_t clk
= 24000000;
703 uint16_t high_count
, low_count
, rcv_count
, xmit_count
;
704 uint32_t bus_free
, leadin
;
705 struct device
*dev
= i2c
->dev
;
707 divider
= DIV_ROUND_UP(clk
, speed
);
711 * limit the divider, so that min(low_count, high_count)
716 "Speed too high (%u.%03u kHz), using %u.%03u kHz\n",
717 speed
/ 1000, speed
% 1000,
718 clk
/ divider
/ 1000, clk
/ divider
% 1000);
719 } else if (divider
> 1897) {
721 * limit the divider, so that max(low_count, high_count)
726 "Speed too low (%u.%03u kHz), using %u.%03u kHz\n",
727 speed
/ 1000, speed
% 1000,
728 clk
/ divider
/ 1000, clk
/ divider
% 1000);
732 * The I2C spec specifies the following timing data:
733 * standard mode fast mode Bitfield name
734 * tLOW (SCL LOW period) 4700 ns 1300 ns
735 * tHIGH (SCL HIGH period) 4000 ns 600 ns
736 * tSU;DAT (data setup time) 250 ns 100 ns
737 * tHD;STA (START hold time) 4000 ns 600 ns
738 * tBUF (bus free time) 4700 ns 1300 ns
740 * The hardware (of the i.MX28 at least) seems to add 2 additional
741 * clock cycles to the low_count and 7 cycles to the high_count.
742 * This is compensated for by subtracting the respective constants
743 * from the values written to the timing registers.
745 if (speed
> I2C_MAX_STANDARD_MODE_FREQ
) {
747 low_count
= DIV_ROUND_CLOSEST(divider
* 13, (13 + 6));
748 high_count
= DIV_ROUND_CLOSEST(divider
* 6, (13 + 6));
749 leadin
= DIV_ROUND_UP(600 * (clk
/ 1000000), 1000);
750 bus_free
= DIV_ROUND_UP(1300 * (clk
/ 1000000), 1000);
753 low_count
= DIV_ROUND_CLOSEST(divider
* 47, (47 + 40));
754 high_count
= DIV_ROUND_CLOSEST(divider
* 40, (47 + 40));
755 leadin
= DIV_ROUND_UP(4700 * (clk
/ 1000000), 1000);
756 bus_free
= DIV_ROUND_UP(4700 * (clk
/ 1000000), 1000);
758 rcv_count
= high_count
* 3 / 8;
759 xmit_count
= low_count
* 3 / 8;
762 "speed=%u(actual %u) divider=%u low=%u high=%u xmit=%u rcv=%u leadin=%u bus_free=%u\n",
763 speed
, clk
/ divider
, divider
, low_count
, high_count
,
764 xmit_count
, rcv_count
, leadin
, bus_free
);
768 i2c
->timing0
= (high_count
<< 16) | rcv_count
;
769 i2c
->timing1
= (low_count
<< 16) | xmit_count
;
770 i2c
->timing2
= (bus_free
<< 16 | leadin
);
773 static int mxs_i2c_get_ofdata(struct mxs_i2c_dev
*i2c
)
776 struct device
*dev
= i2c
->dev
;
777 struct device_node
*node
= dev
->of_node
;
780 ret
= of_property_read_u32(node
, "clock-frequency", &speed
);
782 dev_warn(dev
, "No I2C speed selected, using 100kHz\n");
783 speed
= I2C_MAX_STANDARD_MODE_FREQ
;
786 mxs_i2c_derive_timing(i2c
, speed
);
791 static const struct of_device_id mxs_i2c_dt_ids
[] = {
792 { .compatible
= "fsl,imx23-i2c", .data
= (void *)MXS_I2C_V1
, },
793 { .compatible
= "fsl,imx28-i2c", .data
= (void *)MXS_I2C_V2
, },
796 MODULE_DEVICE_TABLE(of
, mxs_i2c_dt_ids
);
798 static int mxs_i2c_probe(struct platform_device
*pdev
)
800 struct device
*dev
= &pdev
->dev
;
801 struct mxs_i2c_dev
*i2c
;
802 struct i2c_adapter
*adap
;
805 i2c
= devm_kzalloc(dev
, sizeof(*i2c
), GFP_KERNEL
);
809 i2c
->dev_type
= (uintptr_t)of_device_get_match_data(&pdev
->dev
);
811 i2c
->regs
= devm_platform_ioremap_resource(pdev
, 0);
812 if (IS_ERR(i2c
->regs
))
813 return PTR_ERR(i2c
->regs
);
815 irq
= platform_get_irq(pdev
, 0);
819 err
= devm_request_irq(dev
, irq
, mxs_i2c_isr
, 0, dev_name(dev
), i2c
);
825 init_completion(&i2c
->cmd_complete
);
828 err
= mxs_i2c_get_ofdata(i2c
);
834 i2c
->dmach
= dma_request_chan(dev
, "rx-tx");
835 if (IS_ERR(i2c
->dmach
)) {
836 return dev_err_probe(dev
, PTR_ERR(i2c
->dmach
),
837 "Failed to request dma\n");
840 platform_set_drvdata(pdev
, i2c
);
842 /* Do reset to enforce correct startup after pinmuxing */
843 err
= mxs_i2c_reset(i2c
);
847 adap
= &i2c
->adapter
;
848 strscpy(adap
->name
, "MXS I2C adapter", sizeof(adap
->name
));
849 adap
->owner
= THIS_MODULE
;
850 adap
->algo
= &mxs_i2c_algo
;
851 adap
->quirks
= &mxs_i2c_quirks
;
852 adap
->dev
.parent
= dev
;
854 adap
->dev
.of_node
= pdev
->dev
.of_node
;
855 i2c_set_adapdata(adap
, i2c
);
856 err
= i2c_add_numbered_adapter(adap
);
858 writel(MXS_I2C_CTRL0_SFTRST
,
859 i2c
->regs
+ MXS_I2C_CTRL0_SET
);
866 static void mxs_i2c_remove(struct platform_device
*pdev
)
868 struct mxs_i2c_dev
*i2c
= platform_get_drvdata(pdev
);
870 i2c_del_adapter(&i2c
->adapter
);
873 dma_release_channel(i2c
->dmach
);
875 writel(MXS_I2C_CTRL0_SFTRST
, i2c
->regs
+ MXS_I2C_CTRL0_SET
);
878 static struct platform_driver mxs_i2c_driver
= {
881 .of_match_table
= mxs_i2c_dt_ids
,
883 .probe
= mxs_i2c_probe
,
884 .remove_new
= mxs_i2c_remove
,
887 static int __init
mxs_i2c_init(void)
889 return platform_driver_register(&mxs_i2c_driver
);
891 subsys_initcall(mxs_i2c_init
);
893 static void __exit
mxs_i2c_exit(void)
895 platform_driver_unregister(&mxs_i2c_driver
);
897 module_exit(mxs_i2c_exit
);
899 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
900 MODULE_AUTHOR("Wolfram Sang <kernel@pengutronix.de>");
901 MODULE_DESCRIPTION("MXS I2C Bus Driver");
902 MODULE_LICENSE("GPL");
903 MODULE_ALIAS("platform:" DRIVER_NAME
);