drm/tests: hdmi: Fix memory leaks in drm_display_mode_from_cea_vic()
[drm/drm-misc.git] / drivers / i2c / busses / i2c-octeon-core.c
blob16cc34a0526e6e49e742cb095cf4d5b969bd00f0
1 /*
2 * (C) Copyright 2009-2010
3 * Nokia Siemens Networks, michael.lawnick.ext@nsn.com
5 * Portions Copyright (C) 2010 - 2016 Cavium, Inc.
7 * This file contains the shared part of the driver for the i2c adapter in
8 * Cavium Networks' OCTEON processors and ThunderX SOCs.
10 * This file is licensed under the terms of the GNU General Public
11 * License version 2. This program is licensed "as is" without any
12 * warranty of any kind, whether express or implied.
15 #include <linux/delay.h>
16 #include <linux/i2c.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/pci.h>
22 #include "i2c-octeon-core.h"
24 #define INITIAL_DELTA_HZ 1000000
25 #define TWSI_MASTER_CLK_REG_DEF_VAL 0x18
26 #define TWSI_MASTER_CLK_REG_OTX2_VAL 0x3
28 /* interrupt service routine */
29 irqreturn_t octeon_i2c_isr(int irq, void *dev_id)
31 struct octeon_i2c *i2c = dev_id;
33 i2c->int_disable(i2c);
34 wake_up(&i2c->queue);
36 return IRQ_HANDLED;
39 static bool octeon_i2c_test_iflg(struct octeon_i2c *i2c)
41 return (octeon_i2c_ctl_read(i2c) & TWSI_CTL_IFLG);
44 /**
45 * octeon_i2c_wait - wait for the IFLG to be set
46 * @i2c: The struct octeon_i2c
48 * Returns 0 on success, otherwise a negative errno.
50 static int octeon_i2c_wait(struct octeon_i2c *i2c)
52 long time_left;
55 * Some chip revisions don't assert the irq in the interrupt
56 * controller. So we must poll for the IFLG change.
58 if (i2c->broken_irq_mode) {
59 u64 end = get_jiffies_64() + i2c->adap.timeout;
61 while (!octeon_i2c_test_iflg(i2c) &&
62 time_before64(get_jiffies_64(), end))
63 usleep_range(I2C_OCTEON_EVENT_WAIT / 2, I2C_OCTEON_EVENT_WAIT);
65 return octeon_i2c_test_iflg(i2c) ? 0 : -ETIMEDOUT;
68 i2c->int_enable(i2c);
69 time_left = wait_event_timeout(i2c->queue, octeon_i2c_test_iflg(i2c),
70 i2c->adap.timeout);
71 i2c->int_disable(i2c);
73 if (i2c->broken_irq_check && !time_left &&
74 octeon_i2c_test_iflg(i2c)) {
75 dev_err(i2c->dev, "broken irq connection detected, switching to polling mode.\n");
76 i2c->broken_irq_mode = true;
77 return 0;
80 if (!time_left)
81 return -ETIMEDOUT;
83 return 0;
86 static bool octeon_i2c_hlc_test_valid(struct octeon_i2c *i2c)
88 return (__raw_readq(i2c->twsi_base + OCTEON_REG_SW_TWSI(i2c)) & SW_TWSI_V) == 0;
91 static void octeon_i2c_hlc_int_clear(struct octeon_i2c *i2c)
93 /* clear ST/TS events, listen for neither */
94 octeon_i2c_write_int(i2c, TWSI_INT_ST_INT | TWSI_INT_TS_INT);
98 * Cleanup low-level state & enable high-level controller.
100 static void octeon_i2c_hlc_enable(struct octeon_i2c *i2c)
102 int try = 0;
103 u64 val;
105 if (i2c->hlc_enabled)
106 return;
107 i2c->hlc_enabled = true;
109 while (1) {
110 val = octeon_i2c_ctl_read(i2c);
111 if (!(val & (TWSI_CTL_STA | TWSI_CTL_STP)))
112 break;
114 /* clear IFLG event */
115 if (val & TWSI_CTL_IFLG)
116 octeon_i2c_ctl_write(i2c, TWSI_CTL_ENAB);
118 if (try++ > 100) {
119 pr_err("%s: giving up\n", __func__);
120 break;
123 /* spin until any start/stop has finished */
124 udelay(10);
126 octeon_i2c_ctl_write(i2c, TWSI_CTL_CE | TWSI_CTL_AAK | TWSI_CTL_ENAB);
129 static void octeon_i2c_hlc_disable(struct octeon_i2c *i2c)
131 if (!i2c->hlc_enabled)
132 return;
134 i2c->hlc_enabled = false;
135 octeon_i2c_ctl_write(i2c, TWSI_CTL_ENAB);
139 * octeon_i2c_hlc_wait - wait for an HLC operation to complete
140 * @i2c: The struct octeon_i2c
142 * Returns 0 on success, otherwise -ETIMEDOUT.
144 static int octeon_i2c_hlc_wait(struct octeon_i2c *i2c)
146 int time_left;
149 * Some cn38xx boards don't assert the irq in the interrupt
150 * controller. So we must poll for the valid bit change.
152 if (i2c->broken_irq_mode) {
153 u64 end = get_jiffies_64() + i2c->adap.timeout;
155 while (!octeon_i2c_hlc_test_valid(i2c) &&
156 time_before64(get_jiffies_64(), end))
157 usleep_range(I2C_OCTEON_EVENT_WAIT / 2, I2C_OCTEON_EVENT_WAIT);
159 return octeon_i2c_hlc_test_valid(i2c) ? 0 : -ETIMEDOUT;
162 i2c->hlc_int_enable(i2c);
163 time_left = wait_event_timeout(i2c->queue,
164 octeon_i2c_hlc_test_valid(i2c),
165 i2c->adap.timeout);
166 i2c->hlc_int_disable(i2c);
167 if (!time_left)
168 octeon_i2c_hlc_int_clear(i2c);
170 if (i2c->broken_irq_check && !time_left &&
171 octeon_i2c_hlc_test_valid(i2c)) {
172 dev_err(i2c->dev, "broken irq connection detected, switching to polling mode.\n");
173 i2c->broken_irq_mode = true;
174 return 0;
177 if (!time_left)
178 return -ETIMEDOUT;
179 return 0;
182 static int octeon_i2c_check_status(struct octeon_i2c *i2c, int final_read)
184 u8 stat;
185 u64 mode;
188 * This is ugly... in HLC mode the status is not in the status register
189 * but in the lower 8 bits of OCTEON_REG_SW_TWSI.
191 if (i2c->hlc_enabled)
192 stat = __raw_readq(i2c->twsi_base + OCTEON_REG_SW_TWSI(i2c));
193 else
194 stat = octeon_i2c_stat_read(i2c);
196 switch (stat) {
197 /* Everything is fine */
198 case STAT_IDLE:
199 case STAT_AD2W_ACK:
200 case STAT_RXADDR_ACK:
201 case STAT_TXADDR_ACK:
202 case STAT_TXDATA_ACK:
203 return 0;
205 /* ACK allowed on pre-terminal bytes only */
206 case STAT_RXDATA_ACK:
207 if (!final_read)
208 return 0;
209 return -EIO;
211 /* NAK allowed on terminal byte only */
212 case STAT_RXDATA_NAK:
213 if (final_read)
214 return 0;
215 return -EIO;
217 /* Arbitration lost */
218 case STAT_LOST_ARB_38:
219 case STAT_LOST_ARB_68:
220 case STAT_LOST_ARB_78:
221 case STAT_LOST_ARB_B0:
222 return -EAGAIN;
224 /* Being addressed as local target, should back off & listen */
225 case STAT_SLAVE_60:
226 case STAT_SLAVE_70:
227 case STAT_GENDATA_ACK:
228 case STAT_GENDATA_NAK:
229 return -EOPNOTSUPP;
231 /* Core busy as local target */
232 case STAT_SLAVE_80:
233 case STAT_SLAVE_88:
234 case STAT_SLAVE_A0:
235 case STAT_SLAVE_A8:
236 case STAT_SLAVE_LOST:
237 case STAT_SLAVE_NAK:
238 case STAT_SLAVE_ACK:
239 return -EOPNOTSUPP;
241 case STAT_TXDATA_NAK:
242 case STAT_BUS_ERROR:
243 return -EIO;
244 case STAT_TXADDR_NAK:
245 case STAT_RXADDR_NAK:
246 case STAT_AD2W_NAK:
247 return -ENXIO;
249 case STAT_WDOG_TOUT:
250 mode = __raw_readq(i2c->twsi_base + OCTEON_REG_MODE(i2c));
251 /* Set BUS_MON_RST to reset bus monitor */
252 mode |= BUS_MON_RST_MASK;
253 octeon_i2c_writeq_flush(mode, i2c->twsi_base + OCTEON_REG_MODE(i2c));
254 return -EIO;
255 default:
256 dev_err(i2c->dev, "unhandled state: %d\n", stat);
257 return -EIO;
261 static int octeon_i2c_recovery(struct octeon_i2c *i2c)
263 int ret;
265 ret = i2c_recover_bus(&i2c->adap);
266 if (ret)
267 /* recover failed, try hardware re-init */
268 ret = octeon_i2c_init_lowlevel(i2c);
269 return ret;
273 * octeon_i2c_start - send START to the bus
274 * @i2c: The struct octeon_i2c
276 * Returns 0 on success, otherwise a negative errno.
278 static int octeon_i2c_start(struct octeon_i2c *i2c)
280 int ret;
281 u8 stat;
283 octeon_i2c_hlc_disable(i2c);
285 octeon_i2c_ctl_write(i2c, TWSI_CTL_ENAB | TWSI_CTL_STA);
286 ret = octeon_i2c_wait(i2c);
287 if (ret)
288 goto error;
290 stat = octeon_i2c_stat_read(i2c);
291 if (stat == STAT_START || stat == STAT_REP_START)
292 /* START successful, bail out */
293 return 0;
295 error:
296 /* START failed, try to recover */
297 ret = octeon_i2c_recovery(i2c);
298 return (ret) ? ret : -EAGAIN;
301 /* send STOP to the bus */
302 static void octeon_i2c_stop(struct octeon_i2c *i2c)
304 octeon_i2c_ctl_write(i2c, TWSI_CTL_ENAB | TWSI_CTL_STP);
308 * octeon_i2c_read - receive data from the bus via low-level controller
309 * @i2c: The struct octeon_i2c
310 * @target: Target address
311 * @data: Pointer to the location to store the data
312 * @rlength: Length of the data
313 * @recv_len: flag for length byte
315 * The address is sent over the bus, then the data is read.
317 * Returns 0 on success, otherwise a negative errno.
319 static int octeon_i2c_read(struct octeon_i2c *i2c, int target,
320 u8 *data, u16 *rlength, bool recv_len)
322 int i, result, length = *rlength;
323 bool final_read = false;
325 octeon_i2c_data_write(i2c, (target << 1) | 1);
326 octeon_i2c_ctl_write(i2c, TWSI_CTL_ENAB);
328 result = octeon_i2c_wait(i2c);
329 if (result)
330 return result;
332 /* address OK ? */
333 result = octeon_i2c_check_status(i2c, false);
334 if (result)
335 return result;
337 for (i = 0; i < length; i++) {
339 * For the last byte to receive TWSI_CTL_AAK must not be set.
341 * A special case is I2C_M_RECV_LEN where we don't know the
342 * additional length yet. If recv_len is set we assume we're
343 * not reading the final byte and therefore need to set
344 * TWSI_CTL_AAK.
346 if ((i + 1 == length) && !(recv_len && i == 0))
347 final_read = true;
349 /* clear iflg to allow next event */
350 if (final_read)
351 octeon_i2c_ctl_write(i2c, TWSI_CTL_ENAB);
352 else
353 octeon_i2c_ctl_write(i2c, TWSI_CTL_ENAB | TWSI_CTL_AAK);
355 result = octeon_i2c_wait(i2c);
356 if (result)
357 return result;
359 data[i] = octeon_i2c_data_read(i2c, &result);
360 if (result)
361 return result;
362 if (recv_len && i == 0) {
363 if (data[i] > I2C_SMBUS_BLOCK_MAX)
364 return -EPROTO;
365 length += data[i];
368 result = octeon_i2c_check_status(i2c, final_read);
369 if (result)
370 return result;
372 *rlength = length;
373 return 0;
377 * octeon_i2c_write - send data to the bus via low-level controller
378 * @i2c: The struct octeon_i2c
379 * @target: Target address
380 * @data: Pointer to the data to be sent
381 * @length: Length of the data
383 * The address is sent over the bus, then the data.
385 * Returns 0 on success, otherwise a negative errno.
387 static int octeon_i2c_write(struct octeon_i2c *i2c, int target,
388 const u8 *data, int length)
390 int i, result;
392 octeon_i2c_data_write(i2c, target << 1);
393 octeon_i2c_ctl_write(i2c, TWSI_CTL_ENAB);
395 result = octeon_i2c_wait(i2c);
396 if (result)
397 return result;
399 for (i = 0; i < length; i++) {
400 result = octeon_i2c_check_status(i2c, false);
401 if (result)
402 return result;
404 octeon_i2c_data_write(i2c, data[i]);
405 octeon_i2c_ctl_write(i2c, TWSI_CTL_ENAB);
407 result = octeon_i2c_wait(i2c);
408 if (result)
409 return result;
412 return 0;
415 /* high-level-controller pure read of up to 8 bytes */
416 static int octeon_i2c_hlc_read(struct octeon_i2c *i2c, struct i2c_msg *msgs)
418 int i, j, ret = 0;
419 u64 cmd;
421 octeon_i2c_hlc_enable(i2c);
422 octeon_i2c_hlc_int_clear(i2c);
424 cmd = SW_TWSI_V | SW_TWSI_R | SW_TWSI_SOVR;
425 /* SIZE */
426 cmd |= (u64)(msgs[0].len - 1) << SW_TWSI_SIZE_SHIFT;
427 /* A */
428 cmd |= (u64)(msgs[0].addr & 0x7full) << SW_TWSI_ADDR_SHIFT;
430 if (msgs[0].flags & I2C_M_TEN)
431 cmd |= SW_TWSI_OP_10;
432 else
433 cmd |= SW_TWSI_OP_7;
435 octeon_i2c_writeq_flush(cmd, i2c->twsi_base + OCTEON_REG_SW_TWSI(i2c));
436 ret = octeon_i2c_hlc_wait(i2c);
437 if (ret)
438 goto err;
440 cmd = __raw_readq(i2c->twsi_base + OCTEON_REG_SW_TWSI(i2c));
441 if ((cmd & SW_TWSI_R) == 0)
442 return octeon_i2c_check_status(i2c, false);
444 for (i = 0, j = msgs[0].len - 1; i < msgs[0].len && i < 4; i++, j--)
445 msgs[0].buf[j] = (cmd >> (8 * i)) & 0xff;
447 if (msgs[0].len > 4) {
448 cmd = __raw_readq(i2c->twsi_base + OCTEON_REG_SW_TWSI_EXT(i2c));
449 for (i = 0; i < msgs[0].len - 4 && i < 4; i++, j--)
450 msgs[0].buf[j] = (cmd >> (8 * i)) & 0xff;
453 err:
454 return ret;
457 /* high-level-controller pure write of up to 8 bytes */
458 static int octeon_i2c_hlc_write(struct octeon_i2c *i2c, struct i2c_msg *msgs)
460 int i, j, ret = 0;
461 u64 cmd;
463 octeon_i2c_hlc_enable(i2c);
464 octeon_i2c_hlc_int_clear(i2c);
466 cmd = SW_TWSI_V | SW_TWSI_SOVR;
467 /* SIZE */
468 cmd |= (u64)(msgs[0].len - 1) << SW_TWSI_SIZE_SHIFT;
469 /* A */
470 cmd |= (u64)(msgs[0].addr & 0x7full) << SW_TWSI_ADDR_SHIFT;
472 if (msgs[0].flags & I2C_M_TEN)
473 cmd |= SW_TWSI_OP_10;
474 else
475 cmd |= SW_TWSI_OP_7;
477 for (i = 0, j = msgs[0].len - 1; i < msgs[0].len && i < 4; i++, j--)
478 cmd |= (u64)msgs[0].buf[j] << (8 * i);
480 if (msgs[0].len > 4) {
481 u64 ext = 0;
483 for (i = 0; i < msgs[0].len - 4 && i < 4; i++, j--)
484 ext |= (u64)msgs[0].buf[j] << (8 * i);
485 octeon_i2c_writeq_flush(ext, i2c->twsi_base + OCTEON_REG_SW_TWSI_EXT(i2c));
488 octeon_i2c_writeq_flush(cmd, i2c->twsi_base + OCTEON_REG_SW_TWSI(i2c));
489 ret = octeon_i2c_hlc_wait(i2c);
490 if (ret)
491 goto err;
493 cmd = __raw_readq(i2c->twsi_base + OCTEON_REG_SW_TWSI(i2c));
494 if ((cmd & SW_TWSI_R) == 0)
495 return octeon_i2c_check_status(i2c, false);
497 err:
498 return ret;
501 /* high-level-controller composite write+read, msg0=addr, msg1=data */
502 static int octeon_i2c_hlc_comp_read(struct octeon_i2c *i2c, struct i2c_msg *msgs)
504 int i, j, ret = 0;
505 u64 cmd;
507 octeon_i2c_hlc_enable(i2c);
509 cmd = SW_TWSI_V | SW_TWSI_R | SW_TWSI_SOVR;
510 /* SIZE */
511 cmd |= (u64)(msgs[1].len - 1) << SW_TWSI_SIZE_SHIFT;
512 /* A */
513 cmd |= (u64)(msgs[0].addr & 0x7full) << SW_TWSI_ADDR_SHIFT;
515 if (msgs[0].flags & I2C_M_TEN)
516 cmd |= SW_TWSI_OP_10_IA;
517 else
518 cmd |= SW_TWSI_OP_7_IA;
520 if (msgs[0].len == 2) {
521 u64 ext = 0;
523 cmd |= SW_TWSI_EIA;
524 ext = (u64)msgs[0].buf[0] << SW_TWSI_IA_SHIFT;
525 cmd |= (u64)msgs[0].buf[1] << SW_TWSI_IA_SHIFT;
526 octeon_i2c_writeq_flush(ext, i2c->twsi_base + OCTEON_REG_SW_TWSI_EXT(i2c));
527 } else {
528 cmd |= (u64)msgs[0].buf[0] << SW_TWSI_IA_SHIFT;
531 octeon_i2c_hlc_int_clear(i2c);
532 octeon_i2c_writeq_flush(cmd, i2c->twsi_base + OCTEON_REG_SW_TWSI(i2c));
534 ret = octeon_i2c_hlc_wait(i2c);
535 if (ret)
536 goto err;
538 cmd = __raw_readq(i2c->twsi_base + OCTEON_REG_SW_TWSI(i2c));
539 if ((cmd & SW_TWSI_R) == 0)
540 return octeon_i2c_check_status(i2c, false);
542 for (i = 0, j = msgs[1].len - 1; i < msgs[1].len && i < 4; i++, j--)
543 msgs[1].buf[j] = (cmd >> (8 * i)) & 0xff;
545 if (msgs[1].len > 4) {
546 cmd = __raw_readq(i2c->twsi_base + OCTEON_REG_SW_TWSI_EXT(i2c));
547 for (i = 0; i < msgs[1].len - 4 && i < 4; i++, j--)
548 msgs[1].buf[j] = (cmd >> (8 * i)) & 0xff;
551 err:
552 return ret;
555 /* high-level-controller composite write+write, m[0]len<=2, m[1]len<=8 */
556 static int octeon_i2c_hlc_comp_write(struct octeon_i2c *i2c, struct i2c_msg *msgs)
558 bool set_ext = false;
559 int i, j, ret = 0;
560 u64 cmd, ext = 0;
562 octeon_i2c_hlc_enable(i2c);
564 cmd = SW_TWSI_V | SW_TWSI_SOVR;
565 /* SIZE */
566 cmd |= (u64)(msgs[1].len - 1) << SW_TWSI_SIZE_SHIFT;
567 /* A */
568 cmd |= (u64)(msgs[0].addr & 0x7full) << SW_TWSI_ADDR_SHIFT;
570 if (msgs[0].flags & I2C_M_TEN)
571 cmd |= SW_TWSI_OP_10_IA;
572 else
573 cmd |= SW_TWSI_OP_7_IA;
575 if (msgs[0].len == 2) {
576 cmd |= SW_TWSI_EIA;
577 ext |= (u64)msgs[0].buf[0] << SW_TWSI_IA_SHIFT;
578 set_ext = true;
579 cmd |= (u64)msgs[0].buf[1] << SW_TWSI_IA_SHIFT;
580 } else {
581 cmd |= (u64)msgs[0].buf[0] << SW_TWSI_IA_SHIFT;
584 for (i = 0, j = msgs[1].len - 1; i < msgs[1].len && i < 4; i++, j--)
585 cmd |= (u64)msgs[1].buf[j] << (8 * i);
587 if (msgs[1].len > 4) {
588 for (i = 0; i < msgs[1].len - 4 && i < 4; i++, j--)
589 ext |= (u64)msgs[1].buf[j] << (8 * i);
590 set_ext = true;
592 if (set_ext)
593 octeon_i2c_writeq_flush(ext, i2c->twsi_base + OCTEON_REG_SW_TWSI_EXT(i2c));
595 octeon_i2c_hlc_int_clear(i2c);
596 octeon_i2c_writeq_flush(cmd, i2c->twsi_base + OCTEON_REG_SW_TWSI(i2c));
598 ret = octeon_i2c_hlc_wait(i2c);
599 if (ret)
600 goto err;
602 cmd = __raw_readq(i2c->twsi_base + OCTEON_REG_SW_TWSI(i2c));
603 if ((cmd & SW_TWSI_R) == 0)
604 return octeon_i2c_check_status(i2c, false);
606 err:
607 return ret;
611 * octeon_i2c_xfer - The driver's xfer function
612 * @adap: Pointer to the i2c_adapter structure
613 * @msgs: Pointer to the messages to be processed
614 * @num: Length of the MSGS array
616 * Returns the number of messages processed, or a negative errno on failure.
618 int octeon_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
620 struct octeon_i2c *i2c = i2c_get_adapdata(adap);
621 int i, ret = 0;
623 if (IS_LS_FREQ(i2c->twsi_freq)) {
624 if (num == 1) {
625 if (msgs[0].len > 0 && msgs[0].len <= 8) {
626 if (msgs[0].flags & I2C_M_RD)
627 ret = octeon_i2c_hlc_read(i2c, msgs);
628 else
629 ret = octeon_i2c_hlc_write(i2c, msgs);
630 goto out;
632 } else if (num == 2) {
633 if ((msgs[0].flags & I2C_M_RD) == 0 &&
634 (msgs[1].flags & I2C_M_RECV_LEN) == 0 &&
635 msgs[0].len > 0 && msgs[0].len <= 2 &&
636 msgs[1].len > 0 && msgs[1].len <= 8 &&
637 msgs[0].addr == msgs[1].addr) {
638 if (msgs[1].flags & I2C_M_RD)
639 ret = octeon_i2c_hlc_comp_read(i2c, msgs);
640 else
641 ret = octeon_i2c_hlc_comp_write(i2c, msgs);
642 goto out;
647 for (i = 0; ret == 0 && i < num; i++) {
648 struct i2c_msg *pmsg = &msgs[i];
650 /* zero-length messages are not supported */
651 if (!pmsg->len) {
652 ret = -EOPNOTSUPP;
653 break;
656 ret = octeon_i2c_start(i2c);
657 if (ret)
658 return ret;
660 if (pmsg->flags & I2C_M_RD)
661 ret = octeon_i2c_read(i2c, pmsg->addr, pmsg->buf,
662 &pmsg->len, pmsg->flags & I2C_M_RECV_LEN);
663 else
664 ret = octeon_i2c_write(i2c, pmsg->addr, pmsg->buf,
665 pmsg->len);
667 octeon_i2c_stop(i2c);
668 out:
669 return (ret != 0) ? ret : num;
672 /* calculate and set clock divisors */
673 void octeon_i2c_set_clock(struct octeon_i2c *i2c)
675 int tclk, thp_base, inc, thp_idx, mdiv_idx, ndiv_idx, foscl, diff;
676 bool is_plat_otx2;
678 * Find divisors to produce target frequency, start with large delta
679 * to cover wider range of divisors, note thp = TCLK half period and
680 * ds is OSCL output frequency divisor.
682 unsigned int thp, mdiv_min, mdiv = 2, ndiv = 0, ds = 10;
683 unsigned int delta_hz = INITIAL_DELTA_HZ;
685 is_plat_otx2 = octeon_i2c_is_otx2(to_pci_dev(i2c->dev));
687 if (is_plat_otx2) {
688 thp = TWSI_MASTER_CLK_REG_OTX2_VAL;
689 mdiv_min = 0;
690 if (!IS_LS_FREQ(i2c->twsi_freq))
691 ds = 15;
692 } else {
693 thp = TWSI_MASTER_CLK_REG_DEF_VAL;
694 mdiv_min = 2;
697 for (ndiv_idx = 0; ndiv_idx < 8 && delta_hz != 0; ndiv_idx++) {
699 * An mdiv value of less than 2 seems to not work well
700 * with ds1337 RTCs, so we constrain it to larger values.
702 for (mdiv_idx = 15; mdiv_idx >= mdiv_min && delta_hz != 0; mdiv_idx--) {
704 * For given ndiv and mdiv values check the
705 * two closest thp values.
707 tclk = i2c->twsi_freq * (mdiv_idx + 1) * ds;
708 tclk *= (1 << ndiv_idx);
709 if (is_plat_otx2)
710 thp_base = (i2c->sys_freq / tclk) - 2;
711 else
712 thp_base = (i2c->sys_freq / (tclk * 2)) - 1;
714 for (inc = 0; inc <= 1; inc++) {
715 thp_idx = thp_base + inc;
716 if (thp_idx < 5 || thp_idx > 0xff)
717 continue;
719 if (is_plat_otx2)
720 foscl = i2c->sys_freq / (thp_idx + 2);
721 else
722 foscl = i2c->sys_freq /
723 (2 * (thp_idx + 1));
724 foscl = foscl / (1 << ndiv_idx);
725 foscl = foscl / (mdiv_idx + 1) / ds;
726 if (foscl > i2c->twsi_freq)
727 continue;
728 diff = abs(foscl - i2c->twsi_freq);
730 * Diff holds difference between calculated frequency
731 * value vs desired frequency.
732 * Delta_hz is updated with last minimum diff.
734 if (diff < delta_hz) {
735 delta_hz = diff;
736 thp = thp_idx;
737 mdiv = mdiv_idx;
738 ndiv = ndiv_idx;
743 octeon_i2c_reg_write(i2c, SW_TWSI_OP_TWSI_CLK, thp);
744 octeon_i2c_reg_write(i2c, SW_TWSI_EOP_TWSI_CLKCTL, (mdiv << 3) | ndiv);
745 if (is_plat_otx2) {
746 u64 mode;
748 mode = __raw_readq(i2c->twsi_base + OCTEON_REG_MODE(i2c));
749 /* Set REFCLK_SRC and HS_MODE in TWSX_MODE register */
750 if (!IS_LS_FREQ(i2c->twsi_freq))
751 mode |= TWSX_MODE_HS_MASK;
752 else
753 mode &= ~TWSX_MODE_HS_MASK;
754 octeon_i2c_writeq_flush(mode, i2c->twsi_base + OCTEON_REG_MODE(i2c));
758 int octeon_i2c_init_lowlevel(struct octeon_i2c *i2c)
760 u8 status = 0;
761 int tries;
763 /* reset controller */
764 octeon_i2c_reg_write(i2c, SW_TWSI_EOP_TWSI_RST, 0);
766 for (tries = 10; tries && status != STAT_IDLE; tries--) {
767 udelay(1);
768 status = octeon_i2c_stat_read(i2c);
769 if (status == STAT_IDLE)
770 break;
773 if (status != STAT_IDLE) {
774 dev_err(i2c->dev, "%s: TWSI_RST failed! (0x%x)\n",
775 __func__, status);
776 return -EIO;
779 /* toggle twice to force both teardowns */
780 octeon_i2c_hlc_enable(i2c);
781 octeon_i2c_hlc_disable(i2c);
782 return 0;
785 static int octeon_i2c_get_scl(struct i2c_adapter *adap)
787 struct octeon_i2c *i2c = i2c_get_adapdata(adap);
788 u64 state;
790 state = octeon_i2c_read_int(i2c);
791 return state & TWSI_INT_SCL;
794 static void octeon_i2c_set_scl(struct i2c_adapter *adap, int val)
796 struct octeon_i2c *i2c = i2c_get_adapdata(adap);
798 octeon_i2c_write_int(i2c, val ? 0 : TWSI_INT_SCL_OVR);
801 static int octeon_i2c_get_sda(struct i2c_adapter *adap)
803 struct octeon_i2c *i2c = i2c_get_adapdata(adap);
804 u64 state;
806 state = octeon_i2c_read_int(i2c);
807 return state & TWSI_INT_SDA;
810 static void octeon_i2c_prepare_recovery(struct i2c_adapter *adap)
812 struct octeon_i2c *i2c = i2c_get_adapdata(adap);
814 octeon_i2c_hlc_disable(i2c);
815 octeon_i2c_reg_write(i2c, SW_TWSI_EOP_TWSI_RST, 0);
816 /* wait for software reset to settle */
817 udelay(5);
820 * Bring control register to a good state regardless
821 * of HLC state.
823 octeon_i2c_ctl_write(i2c, TWSI_CTL_ENAB);
825 octeon_i2c_write_int(i2c, 0);
828 static void octeon_i2c_unprepare_recovery(struct i2c_adapter *adap)
830 struct octeon_i2c *i2c = i2c_get_adapdata(adap);
833 * Generate STOP to finish the unfinished transaction.
834 * Can't generate STOP via the TWSI CTL register
835 * since it could bring the TWSI controller into an inoperable state.
837 octeon_i2c_write_int(i2c, TWSI_INT_SDA_OVR | TWSI_INT_SCL_OVR);
838 udelay(5);
839 octeon_i2c_write_int(i2c, TWSI_INT_SDA_OVR);
840 udelay(5);
841 octeon_i2c_write_int(i2c, 0);
844 struct i2c_bus_recovery_info octeon_i2c_recovery_info = {
845 .recover_bus = i2c_generic_scl_recovery,
846 .get_scl = octeon_i2c_get_scl,
847 .set_scl = octeon_i2c_set_scl,
848 .get_sda = octeon_i2c_get_sda,
849 .prepare_recovery = octeon_i2c_prepare_recovery,
850 .unprepare_recovery = octeon_i2c_unprepare_recovery,