drm/tests: hdmi: Fix memory leaks in drm_display_mode_from_cea_vic()
[drm/drm-misc.git] / drivers / i2c / busses / i2c-qup.c
blobd480162a4d3941042cb59eb69aec0e816276761a
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2009-2013, 2016-2018, The Linux Foundation. All rights reserved.
4 * Copyright (c) 2014, Sony Mobile Communications AB.
6 */
8 #include <linux/acpi.h>
9 #include <linux/atomic.h>
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dmapool.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/i2c.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/scatterlist.h>
25 /* QUP Registers */
26 #define QUP_CONFIG 0x000
27 #define QUP_STATE 0x004
28 #define QUP_IO_MODE 0x008
29 #define QUP_SW_RESET 0x00c
30 #define QUP_OPERATIONAL 0x018
31 #define QUP_ERROR_FLAGS 0x01c
32 #define QUP_ERROR_FLAGS_EN 0x020
33 #define QUP_OPERATIONAL_MASK 0x028
34 #define QUP_HW_VERSION 0x030
35 #define QUP_MX_OUTPUT_CNT 0x100
36 #define QUP_OUT_FIFO_BASE 0x110
37 #define QUP_MX_WRITE_CNT 0x150
38 #define QUP_MX_INPUT_CNT 0x200
39 #define QUP_MX_READ_CNT 0x208
40 #define QUP_IN_FIFO_BASE 0x218
41 #define QUP_I2C_CLK_CTL 0x400
42 #define QUP_I2C_STATUS 0x404
43 #define QUP_I2C_MASTER_GEN 0x408
45 /* QUP States and reset values */
46 #define QUP_RESET_STATE 0
47 #define QUP_RUN_STATE 1
48 #define QUP_PAUSE_STATE 3
49 #define QUP_STATE_MASK 3
51 #define QUP_STATE_VALID BIT(2)
52 #define QUP_I2C_MAST_GEN BIT(4)
53 #define QUP_I2C_FLUSH BIT(6)
55 #define QUP_OPERATIONAL_RESET 0x000ff0
56 #define QUP_I2C_STATUS_RESET 0xfffffc
58 /* QUP OPERATIONAL FLAGS */
59 #define QUP_I2C_NACK_FLAG BIT(3)
60 #define QUP_OUT_NOT_EMPTY BIT(4)
61 #define QUP_IN_NOT_EMPTY BIT(5)
62 #define QUP_OUT_FULL BIT(6)
63 #define QUP_OUT_SVC_FLAG BIT(8)
64 #define QUP_IN_SVC_FLAG BIT(9)
65 #define QUP_MX_OUTPUT_DONE BIT(10)
66 #define QUP_MX_INPUT_DONE BIT(11)
67 #define OUT_BLOCK_WRITE_REQ BIT(12)
68 #define IN_BLOCK_READ_REQ BIT(13)
70 /* I2C mini core related values */
71 #define QUP_NO_INPUT BIT(7)
72 #define QUP_CLOCK_AUTO_GATE BIT(13)
73 #define I2C_MINI_CORE (2 << 8)
74 #define I2C_N_VAL 15
75 #define I2C_N_VAL_V2 7
77 /* Most significant word offset in FIFO port */
78 #define QUP_MSW_SHIFT (I2C_N_VAL + 1)
80 /* Packing/Unpacking words in FIFOs, and IO modes */
81 #define QUP_OUTPUT_BLK_MODE (1 << 10)
82 #define QUP_OUTPUT_BAM_MODE (3 << 10)
83 #define QUP_INPUT_BLK_MODE (1 << 12)
84 #define QUP_INPUT_BAM_MODE (3 << 12)
85 #define QUP_BAM_MODE (QUP_OUTPUT_BAM_MODE | QUP_INPUT_BAM_MODE)
86 #define QUP_UNPACK_EN BIT(14)
87 #define QUP_PACK_EN BIT(15)
89 #define QUP_REPACK_EN (QUP_UNPACK_EN | QUP_PACK_EN)
90 #define QUP_V2_TAGS_EN 1
92 #define QUP_OUTPUT_BLOCK_SIZE(x)(((x) >> 0) & 0x03)
93 #define QUP_OUTPUT_FIFO_SIZE(x) (((x) >> 2) & 0x07)
94 #define QUP_INPUT_BLOCK_SIZE(x) (((x) >> 5) & 0x03)
95 #define QUP_INPUT_FIFO_SIZE(x) (((x) >> 7) & 0x07)
97 /* QUP tags */
98 #define QUP_TAG_START (1 << 8)
99 #define QUP_TAG_DATA (2 << 8)
100 #define QUP_TAG_STOP (3 << 8)
101 #define QUP_TAG_REC (4 << 8)
102 #define QUP_BAM_INPUT_EOT 0x93
103 #define QUP_BAM_FLUSH_STOP 0x96
105 /* QUP v2 tags */
106 #define QUP_TAG_V2_START 0x81
107 #define QUP_TAG_V2_DATAWR 0x82
108 #define QUP_TAG_V2_DATAWR_STOP 0x83
109 #define QUP_TAG_V2_DATARD 0x85
110 #define QUP_TAG_V2_DATARD_NACK 0x86
111 #define QUP_TAG_V2_DATARD_STOP 0x87
113 /* Status, Error flags */
114 #define I2C_STATUS_WR_BUFFER_FULL BIT(0)
115 #define I2C_STATUS_BUS_ACTIVE BIT(8)
116 #define I2C_STATUS_ERROR_MASK 0x38000fc
117 #define QUP_STATUS_ERROR_FLAGS 0x7c
119 #define QUP_READ_LIMIT 256
120 #define SET_BIT 0x1
121 #define RESET_BIT 0x0
122 #define ONE_BYTE 0x1
123 #define QUP_I2C_MX_CONFIG_DURING_RUN BIT(31)
125 /* Maximum transfer length for single DMA descriptor */
126 #define MX_TX_RX_LEN SZ_64K
127 #define MX_BLOCKS (MX_TX_RX_LEN / QUP_READ_LIMIT)
128 /* Maximum transfer length for all DMA descriptors */
129 #define MX_DMA_TX_RX_LEN (2 * MX_TX_RX_LEN)
130 #define MX_DMA_BLOCKS (MX_DMA_TX_RX_LEN / QUP_READ_LIMIT)
133 * Minimum transfer timeout for i2c transfers in seconds. It will be added on
134 * the top of maximum transfer time calculated from i2c bus speed to compensate
135 * the overheads.
137 #define TOUT_MIN 2
139 /* Default values. Use these if FW query fails */
140 #define DEFAULT_CLK_FREQ I2C_MAX_STANDARD_MODE_FREQ
141 #define DEFAULT_SRC_CLK 20000000
144 * Max tags length (start, stop and maximum 2 bytes address) for each QUP
145 * data transfer
147 #define QUP_MAX_TAGS_LEN 4
148 /* Max data length for each DATARD tags */
149 #define RECV_MAX_DATA_LEN 254
150 /* TAG length for DATA READ in RX FIFO */
151 #define READ_RX_TAGS_LEN 2
153 static unsigned int scl_freq;
154 module_param_named(scl_freq, scl_freq, uint, 0444);
155 MODULE_PARM_DESC(scl_freq, "SCL frequency override");
158 * count: no of blocks
159 * pos: current block number
160 * tx_tag_len: tx tag length for current block
161 * rx_tag_len: rx tag length for current block
162 * data_len: remaining data length for current message
163 * cur_blk_len: data length for current block
164 * total_tx_len: total tx length including tag bytes for current QUP transfer
165 * total_rx_len: total rx length including tag bytes for current QUP transfer
166 * tx_fifo_data_pos: current byte number in TX FIFO word
167 * tx_fifo_free: number of free bytes in current QUP block write.
168 * rx_fifo_data_pos: current byte number in RX FIFO word
169 * fifo_available: number of available bytes in RX FIFO for current
170 * QUP block read
171 * tx_fifo_data: QUP TX FIFO write works on word basis (4 bytes). New byte write
172 * to TX FIFO will be appended in this data and will be written to
173 * TX FIFO when all the 4 bytes are available.
174 * rx_fifo_data: QUP RX FIFO read works on word basis (4 bytes). This will
175 * contains the 4 bytes of RX data.
176 * cur_data: pointer to tell cur data position for current message
177 * cur_tx_tags: pointer to tell cur position in tags
178 * tx_tags_sent: all tx tag bytes have been written in FIFO word
179 * send_last_word: for tx FIFO, last word send is pending in current block
180 * rx_bytes_read: if all the bytes have been read from rx FIFO.
181 * rx_tags_fetched: all the rx tag bytes have been fetched from rx fifo word
182 * is_tx_blk_mode: whether tx uses block or FIFO mode in case of non BAM xfer.
183 * is_rx_blk_mode: whether rx uses block or FIFO mode in case of non BAM xfer.
184 * tags: contains tx tag bytes for current QUP transfer
186 struct qup_i2c_block {
187 int count;
188 int pos;
189 int tx_tag_len;
190 int rx_tag_len;
191 int data_len;
192 int cur_blk_len;
193 int total_tx_len;
194 int total_rx_len;
195 int tx_fifo_data_pos;
196 int tx_fifo_free;
197 int rx_fifo_data_pos;
198 int fifo_available;
199 u32 tx_fifo_data;
200 u32 rx_fifo_data;
201 u8 *cur_data;
202 u8 *cur_tx_tags;
203 bool tx_tags_sent;
204 bool send_last_word;
205 bool rx_tags_fetched;
206 bool rx_bytes_read;
207 bool is_tx_blk_mode;
208 bool is_rx_blk_mode;
209 u8 tags[6];
212 struct qup_i2c_tag {
213 u8 *start;
214 dma_addr_t addr;
217 struct qup_i2c_bam {
218 struct qup_i2c_tag tag;
219 struct dma_chan *dma;
220 struct scatterlist *sg;
221 unsigned int sg_cnt;
224 struct qup_i2c_dev {
225 struct device *dev;
226 void __iomem *base;
227 int irq;
228 struct clk *clk;
229 struct clk *pclk;
230 struct i2c_adapter adap;
232 int clk_ctl;
233 int out_fifo_sz;
234 int in_fifo_sz;
235 int out_blk_sz;
236 int in_blk_sz;
238 int blk_xfer_limit;
239 unsigned long one_byte_t;
240 unsigned long xfer_timeout;
241 struct qup_i2c_block blk;
243 struct i2c_msg *msg;
244 /* Current posion in user message buffer */
245 int pos;
246 /* I2C protocol errors */
247 u32 bus_err;
248 /* QUP core errors */
249 u32 qup_err;
251 /* To check if this is the last msg */
252 bool is_last;
253 bool is_smbus_read;
255 /* To configure when bus is in run state */
256 u32 config_run;
258 /* dma parameters */
259 bool is_dma;
260 /* To check if the current transfer is using DMA */
261 bool use_dma;
262 unsigned int max_xfer_sg_len;
263 unsigned int tag_buf_pos;
264 /* The threshold length above which block mode will be used */
265 unsigned int blk_mode_threshold;
266 struct dma_pool *dpool;
267 struct qup_i2c_tag start_tag;
268 struct qup_i2c_bam brx;
269 struct qup_i2c_bam btx;
271 struct completion xfer;
272 /* function to write data in tx fifo */
273 void (*write_tx_fifo)(struct qup_i2c_dev *qup);
274 /* function to read data from rx fifo */
275 void (*read_rx_fifo)(struct qup_i2c_dev *qup);
276 /* function to write tags in tx fifo for i2c read transfer */
277 void (*write_rx_tags)(struct qup_i2c_dev *qup);
280 static irqreturn_t qup_i2c_interrupt(int irq, void *dev)
282 struct qup_i2c_dev *qup = dev;
283 struct qup_i2c_block *blk = &qup->blk;
284 u32 bus_err;
285 u32 qup_err;
286 u32 opflags;
288 bus_err = readl(qup->base + QUP_I2C_STATUS);
289 qup_err = readl(qup->base + QUP_ERROR_FLAGS);
290 opflags = readl(qup->base + QUP_OPERATIONAL);
292 if (!qup->msg) {
293 /* Clear Error interrupt */
294 writel(QUP_RESET_STATE, qup->base + QUP_STATE);
295 return IRQ_HANDLED;
298 bus_err &= I2C_STATUS_ERROR_MASK;
299 qup_err &= QUP_STATUS_ERROR_FLAGS;
301 /* Clear the error bits in QUP_ERROR_FLAGS */
302 if (qup_err)
303 writel(qup_err, qup->base + QUP_ERROR_FLAGS);
305 /* Clear the error bits in QUP_I2C_STATUS */
306 if (bus_err)
307 writel(bus_err, qup->base + QUP_I2C_STATUS);
310 * Check for BAM mode and returns if already error has come for current
311 * transfer. In Error case, sometimes, QUP generates more than one
312 * interrupt.
314 if (qup->use_dma && (qup->qup_err || qup->bus_err))
315 return IRQ_HANDLED;
317 /* Reset the QUP State in case of error */
318 if (qup_err || bus_err) {
320 * Don’t reset the QUP state in case of BAM mode. The BAM
321 * flush operation needs to be scheduled in transfer function
322 * which will clear the remaining schedule descriptors in BAM
323 * HW FIFO and generates the BAM interrupt.
325 if (!qup->use_dma)
326 writel(QUP_RESET_STATE, qup->base + QUP_STATE);
327 goto done;
330 if (opflags & QUP_OUT_SVC_FLAG) {
331 writel(QUP_OUT_SVC_FLAG, qup->base + QUP_OPERATIONAL);
333 if (opflags & OUT_BLOCK_WRITE_REQ) {
334 blk->tx_fifo_free += qup->out_blk_sz;
335 if (qup->msg->flags & I2C_M_RD)
336 qup->write_rx_tags(qup);
337 else
338 qup->write_tx_fifo(qup);
342 if (opflags & QUP_IN_SVC_FLAG) {
343 writel(QUP_IN_SVC_FLAG, qup->base + QUP_OPERATIONAL);
345 if (!blk->is_rx_blk_mode) {
346 blk->fifo_available += qup->in_fifo_sz;
347 qup->read_rx_fifo(qup);
348 } else if (opflags & IN_BLOCK_READ_REQ) {
349 blk->fifo_available += qup->in_blk_sz;
350 qup->read_rx_fifo(qup);
354 if (qup->msg->flags & I2C_M_RD) {
355 if (!blk->rx_bytes_read)
356 return IRQ_HANDLED;
357 } else {
359 * Ideally, QUP_MAX_OUTPUT_DONE_FLAG should be checked
360 * for FIFO mode also. But, QUP_MAX_OUTPUT_DONE_FLAG lags
361 * behind QUP_OUTPUT_SERVICE_FLAG sometimes. The only reason
362 * of interrupt for write message in FIFO mode is
363 * QUP_MAX_OUTPUT_DONE_FLAG condition.
365 if (blk->is_tx_blk_mode && !(opflags & QUP_MX_OUTPUT_DONE))
366 return IRQ_HANDLED;
369 done:
370 qup->qup_err = qup_err;
371 qup->bus_err = bus_err;
372 complete(&qup->xfer);
373 return IRQ_HANDLED;
376 static int qup_i2c_poll_state_mask(struct qup_i2c_dev *qup,
377 u32 req_state, u32 req_mask)
379 int retries = 1;
380 u32 state;
383 * State transition takes 3 AHB clocks cycles + 3 I2C master clock
384 * cycles. So retry once after a 1uS delay.
386 do {
387 state = readl(qup->base + QUP_STATE);
389 if (state & QUP_STATE_VALID &&
390 (state & req_mask) == req_state)
391 return 0;
393 udelay(1);
394 } while (retries--);
396 return -ETIMEDOUT;
399 static int qup_i2c_poll_state(struct qup_i2c_dev *qup, u32 req_state)
401 return qup_i2c_poll_state_mask(qup, req_state, QUP_STATE_MASK);
404 static void qup_i2c_flush(struct qup_i2c_dev *qup)
406 u32 val = readl(qup->base + QUP_STATE);
408 val |= QUP_I2C_FLUSH;
409 writel(val, qup->base + QUP_STATE);
412 static int qup_i2c_poll_state_valid(struct qup_i2c_dev *qup)
414 return qup_i2c_poll_state_mask(qup, 0, 0);
417 static int qup_i2c_poll_state_i2c_master(struct qup_i2c_dev *qup)
419 return qup_i2c_poll_state_mask(qup, QUP_I2C_MAST_GEN, QUP_I2C_MAST_GEN);
422 static int qup_i2c_change_state(struct qup_i2c_dev *qup, u32 state)
424 if (qup_i2c_poll_state_valid(qup) != 0)
425 return -EIO;
427 writel(state, qup->base + QUP_STATE);
429 if (qup_i2c_poll_state(qup, state) != 0)
430 return -EIO;
431 return 0;
434 /* Check if I2C bus returns to IDLE state */
435 static int qup_i2c_bus_active(struct qup_i2c_dev *qup, int len)
437 unsigned long timeout;
438 u32 status;
439 int ret = 0;
441 timeout = jiffies + len * 4;
442 for (;;) {
443 status = readl(qup->base + QUP_I2C_STATUS);
444 if (!(status & I2C_STATUS_BUS_ACTIVE))
445 break;
447 if (time_after(jiffies, timeout))
448 ret = -ETIMEDOUT;
450 usleep_range(len, len * 2);
453 return ret;
456 static void qup_i2c_write_tx_fifo_v1(struct qup_i2c_dev *qup)
458 struct qup_i2c_block *blk = &qup->blk;
459 struct i2c_msg *msg = qup->msg;
460 u32 addr = i2c_8bit_addr_from_msg(msg);
461 u32 qup_tag;
462 int idx;
463 u32 val;
465 if (qup->pos == 0) {
466 val = QUP_TAG_START | addr;
467 idx = 1;
468 blk->tx_fifo_free--;
469 } else {
470 val = 0;
471 idx = 0;
474 while (blk->tx_fifo_free && qup->pos < msg->len) {
475 if (qup->pos == msg->len - 1)
476 qup_tag = QUP_TAG_STOP;
477 else
478 qup_tag = QUP_TAG_DATA;
480 if (idx & 1)
481 val |= (qup_tag | msg->buf[qup->pos]) << QUP_MSW_SHIFT;
482 else
483 val = qup_tag | msg->buf[qup->pos];
485 /* Write out the pair and the last odd value */
486 if (idx & 1 || qup->pos == msg->len - 1)
487 writel(val, qup->base + QUP_OUT_FIFO_BASE);
489 qup->pos++;
490 idx++;
491 blk->tx_fifo_free--;
495 static void qup_i2c_set_blk_data(struct qup_i2c_dev *qup,
496 struct i2c_msg *msg)
498 qup->blk.pos = 0;
499 qup->blk.data_len = msg->len;
500 qup->blk.count = DIV_ROUND_UP(msg->len, qup->blk_xfer_limit);
503 static int qup_i2c_get_data_len(struct qup_i2c_dev *qup)
505 int data_len;
507 if (qup->blk.data_len > qup->blk_xfer_limit)
508 data_len = qup->blk_xfer_limit;
509 else
510 data_len = qup->blk.data_len;
512 return data_len;
515 static bool qup_i2c_check_msg_len(struct i2c_msg *msg)
517 return ((msg->flags & I2C_M_RD) && (msg->flags & I2C_M_RECV_LEN));
520 static int qup_i2c_set_tags_smb(u16 addr, u8 *tags, struct qup_i2c_dev *qup,
521 struct i2c_msg *msg)
523 int len = 0;
525 if (qup->is_smbus_read) {
526 tags[len++] = QUP_TAG_V2_DATARD_STOP;
527 tags[len++] = qup_i2c_get_data_len(qup);
528 } else {
529 tags[len++] = QUP_TAG_V2_START;
530 tags[len++] = addr & 0xff;
532 if (msg->flags & I2C_M_TEN)
533 tags[len++] = addr >> 8;
535 tags[len++] = QUP_TAG_V2_DATARD;
536 /* Read 1 byte indicating the length of the SMBus message */
537 tags[len++] = 1;
539 return len;
542 static int qup_i2c_set_tags(u8 *tags, struct qup_i2c_dev *qup,
543 struct i2c_msg *msg)
545 u16 addr = i2c_8bit_addr_from_msg(msg);
546 int len = 0;
547 int data_len;
549 int last = (qup->blk.pos == (qup->blk.count - 1)) && (qup->is_last);
551 /* Handle tags for SMBus block read */
552 if (qup_i2c_check_msg_len(msg))
553 return qup_i2c_set_tags_smb(addr, tags, qup, msg);
555 if (qup->blk.pos == 0) {
556 tags[len++] = QUP_TAG_V2_START;
557 tags[len++] = addr & 0xff;
559 if (msg->flags & I2C_M_TEN)
560 tags[len++] = addr >> 8;
563 /* Send _STOP commands for the last block */
564 if (last) {
565 if (msg->flags & I2C_M_RD)
566 tags[len++] = QUP_TAG_V2_DATARD_STOP;
567 else
568 tags[len++] = QUP_TAG_V2_DATAWR_STOP;
569 } else {
570 if (msg->flags & I2C_M_RD)
571 tags[len++] = qup->blk.pos == (qup->blk.count - 1) ?
572 QUP_TAG_V2_DATARD_NACK :
573 QUP_TAG_V2_DATARD;
574 else
575 tags[len++] = QUP_TAG_V2_DATAWR;
578 data_len = qup_i2c_get_data_len(qup);
580 /* 0 implies 256 bytes */
581 if (data_len == QUP_READ_LIMIT)
582 tags[len++] = 0;
583 else
584 tags[len++] = data_len;
586 return len;
590 static void qup_i2c_bam_cb(void *data)
592 struct qup_i2c_dev *qup = data;
594 complete(&qup->xfer);
597 static int qup_sg_set_buf(struct scatterlist *sg, void *buf,
598 unsigned int buflen, struct qup_i2c_dev *qup,
599 int dir)
601 int ret;
603 sg_set_buf(sg, buf, buflen);
604 ret = dma_map_sg(qup->dev, sg, 1, dir);
605 if (!ret)
606 return -EINVAL;
608 return 0;
611 static void qup_i2c_rel_dma(struct qup_i2c_dev *qup)
613 if (qup->btx.dma)
614 dma_release_channel(qup->btx.dma);
615 if (qup->brx.dma)
616 dma_release_channel(qup->brx.dma);
617 qup->btx.dma = NULL;
618 qup->brx.dma = NULL;
621 static int qup_i2c_req_dma(struct qup_i2c_dev *qup)
623 int err;
625 if (!qup->btx.dma) {
626 qup->btx.dma = dma_request_chan(qup->dev, "tx");
627 if (IS_ERR(qup->btx.dma)) {
628 err = PTR_ERR(qup->btx.dma);
629 qup->btx.dma = NULL;
630 dev_err(qup->dev, "\n tx channel not available");
631 return err;
635 if (!qup->brx.dma) {
636 qup->brx.dma = dma_request_chan(qup->dev, "rx");
637 if (IS_ERR(qup->brx.dma)) {
638 dev_err(qup->dev, "\n rx channel not available");
639 err = PTR_ERR(qup->brx.dma);
640 qup->brx.dma = NULL;
641 qup_i2c_rel_dma(qup);
642 return err;
645 return 0;
648 static int qup_i2c_bam_make_desc(struct qup_i2c_dev *qup, struct i2c_msg *msg)
650 int ret = 0, limit = QUP_READ_LIMIT;
651 u32 len = 0, blocks, rem;
652 u32 i = 0, tlen, tx_len = 0;
653 u8 *tags;
655 qup->blk_xfer_limit = QUP_READ_LIMIT;
656 qup_i2c_set_blk_data(qup, msg);
658 blocks = qup->blk.count;
659 rem = msg->len - (blocks - 1) * limit;
661 if (msg->flags & I2C_M_RD) {
662 while (qup->blk.pos < blocks) {
663 tlen = (i == (blocks - 1)) ? rem : limit;
664 tags = &qup->start_tag.start[qup->tag_buf_pos + len];
665 len += qup_i2c_set_tags(tags, qup, msg);
666 qup->blk.data_len -= tlen;
668 /* scratch buf to read the start and len tags */
669 ret = qup_sg_set_buf(&qup->brx.sg[qup->brx.sg_cnt++],
670 &qup->brx.tag.start[0],
671 2, qup, DMA_FROM_DEVICE);
673 if (ret)
674 return ret;
676 ret = qup_sg_set_buf(&qup->brx.sg[qup->brx.sg_cnt++],
677 &msg->buf[limit * i],
678 tlen, qup,
679 DMA_FROM_DEVICE);
680 if (ret)
681 return ret;
683 i++;
684 qup->blk.pos = i;
686 ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
687 &qup->start_tag.start[qup->tag_buf_pos],
688 len, qup, DMA_TO_DEVICE);
689 if (ret)
690 return ret;
692 qup->tag_buf_pos += len;
693 } else {
694 while (qup->blk.pos < blocks) {
695 tlen = (i == (blocks - 1)) ? rem : limit;
696 tags = &qup->start_tag.start[qup->tag_buf_pos + tx_len];
697 len = qup_i2c_set_tags(tags, qup, msg);
698 qup->blk.data_len -= tlen;
700 ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
701 tags, len,
702 qup, DMA_TO_DEVICE);
703 if (ret)
704 return ret;
706 tx_len += len;
707 ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
708 &msg->buf[limit * i],
709 tlen, qup, DMA_TO_DEVICE);
710 if (ret)
711 return ret;
712 i++;
713 qup->blk.pos = i;
716 qup->tag_buf_pos += tx_len;
719 return 0;
722 static int qup_i2c_bam_schedule_desc(struct qup_i2c_dev *qup)
724 struct dma_async_tx_descriptor *txd, *rxd = NULL;
725 int ret = 0;
726 dma_cookie_t cookie_rx, cookie_tx;
727 u32 len = 0;
728 u32 tx_cnt = qup->btx.sg_cnt, rx_cnt = qup->brx.sg_cnt;
730 /* schedule the EOT and FLUSH I2C tags */
731 len = 1;
732 if (rx_cnt) {
733 qup->btx.tag.start[0] = QUP_BAM_INPUT_EOT;
734 len++;
736 /* scratch buf to read the BAM EOT FLUSH tags */
737 ret = qup_sg_set_buf(&qup->brx.sg[rx_cnt++],
738 &qup->brx.tag.start[0],
739 1, qup, DMA_FROM_DEVICE);
740 if (ret)
741 return ret;
744 qup->btx.tag.start[len - 1] = QUP_BAM_FLUSH_STOP;
745 ret = qup_sg_set_buf(&qup->btx.sg[tx_cnt++], &qup->btx.tag.start[0],
746 len, qup, DMA_TO_DEVICE);
747 if (ret)
748 return ret;
750 txd = dmaengine_prep_slave_sg(qup->btx.dma, qup->btx.sg, tx_cnt,
751 DMA_MEM_TO_DEV,
752 DMA_PREP_INTERRUPT | DMA_PREP_FENCE);
753 if (!txd) {
754 dev_err(qup->dev, "failed to get tx desc\n");
755 ret = -EINVAL;
756 goto desc_err;
759 if (!rx_cnt) {
760 txd->callback = qup_i2c_bam_cb;
761 txd->callback_param = qup;
764 cookie_tx = dmaengine_submit(txd);
765 if (dma_submit_error(cookie_tx)) {
766 ret = -EINVAL;
767 goto desc_err;
770 dma_async_issue_pending(qup->btx.dma);
772 if (rx_cnt) {
773 rxd = dmaengine_prep_slave_sg(qup->brx.dma, qup->brx.sg,
774 rx_cnt, DMA_DEV_TO_MEM,
775 DMA_PREP_INTERRUPT);
776 if (!rxd) {
777 dev_err(qup->dev, "failed to get rx desc\n");
778 ret = -EINVAL;
780 /* abort TX descriptors */
781 dmaengine_terminate_sync(qup->btx.dma);
782 goto desc_err;
785 rxd->callback = qup_i2c_bam_cb;
786 rxd->callback_param = qup;
787 cookie_rx = dmaengine_submit(rxd);
788 if (dma_submit_error(cookie_rx)) {
789 ret = -EINVAL;
790 goto desc_err;
793 dma_async_issue_pending(qup->brx.dma);
796 if (!wait_for_completion_timeout(&qup->xfer, qup->xfer_timeout))
797 ret = -ETIMEDOUT;
799 if (ret || qup->bus_err || qup->qup_err) {
800 reinit_completion(&qup->xfer);
802 ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
803 if (ret) {
804 dev_err(qup->dev, "change to run state timed out");
805 goto desc_err;
808 qup_i2c_flush(qup);
810 /* wait for remaining interrupts to occur */
811 if (!wait_for_completion_timeout(&qup->xfer, HZ))
812 dev_err(qup->dev, "flush timed out\n");
814 ret = (qup->bus_err & QUP_I2C_NACK_FLAG) ? -ENXIO : -EIO;
817 desc_err:
818 dma_unmap_sg(qup->dev, qup->btx.sg, tx_cnt, DMA_TO_DEVICE);
820 if (rx_cnt)
821 dma_unmap_sg(qup->dev, qup->brx.sg, rx_cnt,
822 DMA_FROM_DEVICE);
824 return ret;
827 static void qup_i2c_bam_clear_tag_buffers(struct qup_i2c_dev *qup)
829 qup->btx.sg_cnt = 0;
830 qup->brx.sg_cnt = 0;
831 qup->tag_buf_pos = 0;
834 static int qup_i2c_bam_xfer(struct i2c_adapter *adap, struct i2c_msg *msg,
835 int num)
837 struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
838 int ret = 0;
839 int idx = 0;
841 enable_irq(qup->irq);
842 ret = qup_i2c_req_dma(qup);
844 if (ret)
845 goto out;
847 writel(0, qup->base + QUP_MX_INPUT_CNT);
848 writel(0, qup->base + QUP_MX_OUTPUT_CNT);
850 /* set BAM mode */
851 writel(QUP_REPACK_EN | QUP_BAM_MODE, qup->base + QUP_IO_MODE);
853 /* mask fifo irqs */
854 writel((0x3 << 8), qup->base + QUP_OPERATIONAL_MASK);
856 /* set RUN STATE */
857 ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
858 if (ret)
859 goto out;
861 writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
862 qup_i2c_bam_clear_tag_buffers(qup);
864 for (idx = 0; idx < num; idx++) {
865 qup->msg = msg + idx;
866 qup->is_last = idx == (num - 1);
868 ret = qup_i2c_bam_make_desc(qup, qup->msg);
869 if (ret)
870 break;
873 * Make DMA descriptor and schedule the BAM transfer if its
874 * already crossed the maximum length. Since the memory for all
875 * tags buffers have been taken for 2 maximum possible
876 * transfers length so it will never cross the buffer actual
877 * length.
879 if (qup->btx.sg_cnt > qup->max_xfer_sg_len ||
880 qup->brx.sg_cnt > qup->max_xfer_sg_len ||
881 qup->is_last) {
882 ret = qup_i2c_bam_schedule_desc(qup);
883 if (ret)
884 break;
886 qup_i2c_bam_clear_tag_buffers(qup);
890 out:
891 disable_irq(qup->irq);
893 qup->msg = NULL;
894 return ret;
897 static int qup_i2c_wait_for_complete(struct qup_i2c_dev *qup,
898 struct i2c_msg *msg)
900 unsigned long left;
901 int ret = 0;
903 left = wait_for_completion_timeout(&qup->xfer, qup->xfer_timeout);
904 if (!left) {
905 writel(1, qup->base + QUP_SW_RESET);
906 ret = -ETIMEDOUT;
909 if (qup->bus_err || qup->qup_err)
910 ret = (qup->bus_err & QUP_I2C_NACK_FLAG) ? -ENXIO : -EIO;
912 return ret;
915 static void qup_i2c_read_rx_fifo_v1(struct qup_i2c_dev *qup)
917 struct qup_i2c_block *blk = &qup->blk;
918 struct i2c_msg *msg = qup->msg;
919 u32 val = 0;
920 int idx = 0;
922 while (blk->fifo_available && qup->pos < msg->len) {
923 if ((idx & 1) == 0) {
924 /* Reading 2 words at time */
925 val = readl(qup->base + QUP_IN_FIFO_BASE);
926 msg->buf[qup->pos++] = val & 0xFF;
927 } else {
928 msg->buf[qup->pos++] = val >> QUP_MSW_SHIFT;
930 idx++;
931 blk->fifo_available--;
934 if (qup->pos == msg->len)
935 blk->rx_bytes_read = true;
938 static void qup_i2c_write_rx_tags_v1(struct qup_i2c_dev *qup)
940 struct i2c_msg *msg = qup->msg;
941 u32 addr, len, val;
943 addr = i2c_8bit_addr_from_msg(msg);
945 /* 0 is used to specify a length 256 (QUP_READ_LIMIT) */
946 len = (msg->len == QUP_READ_LIMIT) ? 0 : msg->len;
948 val = ((QUP_TAG_REC | len) << QUP_MSW_SHIFT) | QUP_TAG_START | addr;
949 writel(val, qup->base + QUP_OUT_FIFO_BASE);
952 static void qup_i2c_conf_v1(struct qup_i2c_dev *qup)
954 struct qup_i2c_block *blk = &qup->blk;
955 u32 qup_config = I2C_MINI_CORE | I2C_N_VAL;
956 u32 io_mode = QUP_REPACK_EN;
958 blk->is_tx_blk_mode = blk->total_tx_len > qup->out_fifo_sz;
959 blk->is_rx_blk_mode = blk->total_rx_len > qup->in_fifo_sz;
961 if (blk->is_tx_blk_mode) {
962 io_mode |= QUP_OUTPUT_BLK_MODE;
963 writel(0, qup->base + QUP_MX_WRITE_CNT);
964 writel(blk->total_tx_len, qup->base + QUP_MX_OUTPUT_CNT);
965 } else {
966 writel(0, qup->base + QUP_MX_OUTPUT_CNT);
967 writel(blk->total_tx_len, qup->base + QUP_MX_WRITE_CNT);
970 if (blk->total_rx_len) {
971 if (blk->is_rx_blk_mode) {
972 io_mode |= QUP_INPUT_BLK_MODE;
973 writel(0, qup->base + QUP_MX_READ_CNT);
974 writel(blk->total_rx_len, qup->base + QUP_MX_INPUT_CNT);
975 } else {
976 writel(0, qup->base + QUP_MX_INPUT_CNT);
977 writel(blk->total_rx_len, qup->base + QUP_MX_READ_CNT);
979 } else {
980 qup_config |= QUP_NO_INPUT;
983 writel(qup_config, qup->base + QUP_CONFIG);
984 writel(io_mode, qup->base + QUP_IO_MODE);
987 static void qup_i2c_clear_blk_v1(struct qup_i2c_block *blk)
989 blk->tx_fifo_free = 0;
990 blk->fifo_available = 0;
991 blk->rx_bytes_read = false;
994 static int qup_i2c_conf_xfer_v1(struct qup_i2c_dev *qup, bool is_rx)
996 struct qup_i2c_block *blk = &qup->blk;
997 int ret;
999 qup_i2c_clear_blk_v1(blk);
1000 qup_i2c_conf_v1(qup);
1001 ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1002 if (ret)
1003 return ret;
1005 writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
1007 ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
1008 if (ret)
1009 return ret;
1011 reinit_completion(&qup->xfer);
1012 enable_irq(qup->irq);
1013 if (!blk->is_tx_blk_mode) {
1014 blk->tx_fifo_free = qup->out_fifo_sz;
1016 if (is_rx)
1017 qup_i2c_write_rx_tags_v1(qup);
1018 else
1019 qup_i2c_write_tx_fifo_v1(qup);
1022 ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1023 if (ret)
1024 goto err;
1026 ret = qup_i2c_wait_for_complete(qup, qup->msg);
1027 if (ret)
1028 goto err;
1030 ret = qup_i2c_bus_active(qup, ONE_BYTE);
1032 err:
1033 disable_irq(qup->irq);
1034 return ret;
1037 static int qup_i2c_write_one(struct qup_i2c_dev *qup)
1039 struct i2c_msg *msg = qup->msg;
1040 struct qup_i2c_block *blk = &qup->blk;
1042 qup->pos = 0;
1043 blk->total_tx_len = msg->len + 1;
1044 blk->total_rx_len = 0;
1046 return qup_i2c_conf_xfer_v1(qup, false);
1049 static int qup_i2c_read_one(struct qup_i2c_dev *qup)
1051 struct qup_i2c_block *blk = &qup->blk;
1053 qup->pos = 0;
1054 blk->total_tx_len = 2;
1055 blk->total_rx_len = qup->msg->len;
1057 return qup_i2c_conf_xfer_v1(qup, true);
1060 static int qup_i2c_xfer(struct i2c_adapter *adap,
1061 struct i2c_msg msgs[],
1062 int num)
1064 struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
1065 int ret, idx;
1067 ret = pm_runtime_get_sync(qup->dev);
1068 if (ret < 0)
1069 goto out;
1071 qup->bus_err = 0;
1072 qup->qup_err = 0;
1074 writel(1, qup->base + QUP_SW_RESET);
1075 ret = qup_i2c_poll_state(qup, QUP_RESET_STATE);
1076 if (ret)
1077 goto out;
1079 /* Configure QUP as I2C mini core */
1080 writel(I2C_MINI_CORE | I2C_N_VAL, qup->base + QUP_CONFIG);
1082 for (idx = 0; idx < num; idx++) {
1083 if (qup_i2c_poll_state_i2c_master(qup)) {
1084 ret = -EIO;
1085 goto out;
1088 if (qup_i2c_check_msg_len(&msgs[idx])) {
1089 ret = -EINVAL;
1090 goto out;
1093 qup->msg = &msgs[idx];
1094 if (msgs[idx].flags & I2C_M_RD)
1095 ret = qup_i2c_read_one(qup);
1096 else
1097 ret = qup_i2c_write_one(qup);
1099 if (ret)
1100 break;
1102 ret = qup_i2c_change_state(qup, QUP_RESET_STATE);
1103 if (ret)
1104 break;
1107 if (ret == 0)
1108 ret = num;
1109 out:
1111 pm_runtime_mark_last_busy(qup->dev);
1112 pm_runtime_put_autosuspend(qup->dev);
1114 return ret;
1118 * Configure registers related with reconfiguration during run and call it
1119 * before each i2c sub transfer.
1121 static void qup_i2c_conf_count_v2(struct qup_i2c_dev *qup)
1123 struct qup_i2c_block *blk = &qup->blk;
1124 u32 qup_config = I2C_MINI_CORE | I2C_N_VAL_V2;
1126 if (blk->is_tx_blk_mode)
1127 writel(qup->config_run | blk->total_tx_len,
1128 qup->base + QUP_MX_OUTPUT_CNT);
1129 else
1130 writel(qup->config_run | blk->total_tx_len,
1131 qup->base + QUP_MX_WRITE_CNT);
1133 if (blk->total_rx_len) {
1134 if (blk->is_rx_blk_mode)
1135 writel(qup->config_run | blk->total_rx_len,
1136 qup->base + QUP_MX_INPUT_CNT);
1137 else
1138 writel(qup->config_run | blk->total_rx_len,
1139 qup->base + QUP_MX_READ_CNT);
1140 } else {
1141 qup_config |= QUP_NO_INPUT;
1144 writel(qup_config, qup->base + QUP_CONFIG);
1148 * Configure registers related with transfer mode (FIFO/Block)
1149 * before starting of i2c transfer. It will be called only once in
1150 * QUP RESET state.
1152 static void qup_i2c_conf_mode_v2(struct qup_i2c_dev *qup)
1154 struct qup_i2c_block *blk = &qup->blk;
1155 u32 io_mode = QUP_REPACK_EN;
1157 if (blk->is_tx_blk_mode) {
1158 io_mode |= QUP_OUTPUT_BLK_MODE;
1159 writel(0, qup->base + QUP_MX_WRITE_CNT);
1160 } else {
1161 writel(0, qup->base + QUP_MX_OUTPUT_CNT);
1164 if (blk->is_rx_blk_mode) {
1165 io_mode |= QUP_INPUT_BLK_MODE;
1166 writel(0, qup->base + QUP_MX_READ_CNT);
1167 } else {
1168 writel(0, qup->base + QUP_MX_INPUT_CNT);
1171 writel(io_mode, qup->base + QUP_IO_MODE);
1174 /* Clear required variables before starting of any QUP v2 sub transfer. */
1175 static void qup_i2c_clear_blk_v2(struct qup_i2c_block *blk)
1177 blk->send_last_word = false;
1178 blk->tx_tags_sent = false;
1179 blk->tx_fifo_data = 0;
1180 blk->tx_fifo_data_pos = 0;
1181 blk->tx_fifo_free = 0;
1183 blk->rx_tags_fetched = false;
1184 blk->rx_bytes_read = false;
1185 blk->rx_fifo_data = 0;
1186 blk->rx_fifo_data_pos = 0;
1187 blk->fifo_available = 0;
1190 /* Receive data from RX FIFO for read message in QUP v2 i2c transfer. */
1191 static void qup_i2c_recv_data(struct qup_i2c_dev *qup)
1193 struct qup_i2c_block *blk = &qup->blk;
1194 int j;
1196 for (j = blk->rx_fifo_data_pos;
1197 blk->cur_blk_len && blk->fifo_available;
1198 blk->cur_blk_len--, blk->fifo_available--) {
1199 if (j == 0)
1200 blk->rx_fifo_data = readl(qup->base + QUP_IN_FIFO_BASE);
1202 *(blk->cur_data++) = blk->rx_fifo_data;
1203 blk->rx_fifo_data >>= 8;
1205 if (j == 3)
1206 j = 0;
1207 else
1208 j++;
1211 blk->rx_fifo_data_pos = j;
1214 /* Receive tags for read message in QUP v2 i2c transfer. */
1215 static void qup_i2c_recv_tags(struct qup_i2c_dev *qup)
1217 struct qup_i2c_block *blk = &qup->blk;
1219 blk->rx_fifo_data = readl(qup->base + QUP_IN_FIFO_BASE);
1220 blk->rx_fifo_data >>= blk->rx_tag_len * 8;
1221 blk->rx_fifo_data_pos = blk->rx_tag_len;
1222 blk->fifo_available -= blk->rx_tag_len;
1226 * Read the data and tags from RX FIFO. Since in read case, the tags will be
1227 * preceded by received data bytes so
1228 * 1. Check if rx_tags_fetched is false i.e. the start of QUP block so receive
1229 * all tag bytes and discard that.
1230 * 2. Read the data from RX FIFO. When all the data bytes have been read then
1231 * set rx_bytes_read to true.
1233 static void qup_i2c_read_rx_fifo_v2(struct qup_i2c_dev *qup)
1235 struct qup_i2c_block *blk = &qup->blk;
1237 if (!blk->rx_tags_fetched) {
1238 qup_i2c_recv_tags(qup);
1239 blk->rx_tags_fetched = true;
1242 qup_i2c_recv_data(qup);
1243 if (!blk->cur_blk_len)
1244 blk->rx_bytes_read = true;
1248 * Write bytes in TX FIFO for write message in QUP v2 i2c transfer. QUP TX FIFO
1249 * write works on word basis (4 bytes). Append new data byte write for TX FIFO
1250 * in tx_fifo_data and write to TX FIFO when all the 4 bytes are present.
1252 static void
1253 qup_i2c_write_blk_data(struct qup_i2c_dev *qup, u8 **data, unsigned int *len)
1255 struct qup_i2c_block *blk = &qup->blk;
1256 unsigned int j;
1258 for (j = blk->tx_fifo_data_pos; *len && blk->tx_fifo_free;
1259 (*len)--, blk->tx_fifo_free--) {
1260 blk->tx_fifo_data |= *(*data)++ << (j * 8);
1261 if (j == 3) {
1262 writel(blk->tx_fifo_data,
1263 qup->base + QUP_OUT_FIFO_BASE);
1264 blk->tx_fifo_data = 0x0;
1265 j = 0;
1266 } else {
1267 j++;
1271 blk->tx_fifo_data_pos = j;
1274 /* Transfer tags for read message in QUP v2 i2c transfer. */
1275 static void qup_i2c_write_rx_tags_v2(struct qup_i2c_dev *qup)
1277 struct qup_i2c_block *blk = &qup->blk;
1279 qup_i2c_write_blk_data(qup, &blk->cur_tx_tags, &blk->tx_tag_len);
1280 if (blk->tx_fifo_data_pos)
1281 writel(blk->tx_fifo_data, qup->base + QUP_OUT_FIFO_BASE);
1285 * Write the data and tags in TX FIFO. Since in write case, both tags and data
1286 * need to be written and QUP write tags can have maximum 256 data length, so
1288 * 1. Check if tx_tags_sent is false i.e. the start of QUP block so write the
1289 * tags to TX FIFO and set tx_tags_sent to true.
1290 * 2. Check if send_last_word is true. It will be set when last few data bytes
1291 * (less than 4 bytes) are remaining to be written in FIFO because of no FIFO
1292 * space. All this data bytes are available in tx_fifo_data so write this
1293 * in FIFO.
1294 * 3. Write the data to TX FIFO and check for cur_blk_len. If it is non zero
1295 * then more data is pending otherwise following 3 cases can be possible
1296 * a. if tx_fifo_data_pos is zero i.e. all the data bytes in this block
1297 * have been written in TX FIFO so nothing else is required.
1298 * b. tx_fifo_free is non zero i.e tx FIFO is free so copy the remaining data
1299 * from tx_fifo_data to tx FIFO. Since, qup_i2c_write_blk_data do write
1300 * in 4 bytes and FIFO space is in multiple of 4 bytes so tx_fifo_free
1301 * will be always greater than or equal to 4 bytes.
1302 * c. tx_fifo_free is zero. In this case, last few bytes (less than 4
1303 * bytes) are copied to tx_fifo_data but couldn't be sent because of
1304 * FIFO full so make send_last_word true.
1306 static void qup_i2c_write_tx_fifo_v2(struct qup_i2c_dev *qup)
1308 struct qup_i2c_block *blk = &qup->blk;
1310 if (!blk->tx_tags_sent) {
1311 qup_i2c_write_blk_data(qup, &blk->cur_tx_tags,
1312 &blk->tx_tag_len);
1313 blk->tx_tags_sent = true;
1316 if (blk->send_last_word)
1317 goto send_last_word;
1319 qup_i2c_write_blk_data(qup, &blk->cur_data, &blk->cur_blk_len);
1320 if (!blk->cur_blk_len) {
1321 if (!blk->tx_fifo_data_pos)
1322 return;
1324 if (blk->tx_fifo_free)
1325 goto send_last_word;
1327 blk->send_last_word = true;
1330 return;
1332 send_last_word:
1333 writel(blk->tx_fifo_data, qup->base + QUP_OUT_FIFO_BASE);
1337 * Main transfer function which read or write i2c data.
1338 * The QUP v2 supports reconfiguration during run in which multiple i2c sub
1339 * transfers can be scheduled.
1341 static int
1342 qup_i2c_conf_xfer_v2(struct qup_i2c_dev *qup, bool is_rx, bool is_first,
1343 bool change_pause_state)
1345 struct qup_i2c_block *blk = &qup->blk;
1346 struct i2c_msg *msg = qup->msg;
1347 int ret;
1350 * Check if its SMBus Block read for which the top level read will be
1351 * done into 2 QUP reads. One with message length 1 while other one is
1352 * with actual length.
1354 if (qup_i2c_check_msg_len(msg)) {
1355 if (qup->is_smbus_read) {
1357 * If the message length is already read in
1358 * the first byte of the buffer, account for
1359 * that by setting the offset
1361 blk->cur_data += 1;
1362 is_first = false;
1363 } else {
1364 change_pause_state = false;
1368 qup->config_run = is_first ? 0 : QUP_I2C_MX_CONFIG_DURING_RUN;
1370 qup_i2c_clear_blk_v2(blk);
1371 qup_i2c_conf_count_v2(qup);
1373 /* If it is first sub transfer, then configure i2c bus clocks */
1374 if (is_first) {
1375 ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1376 if (ret)
1377 return ret;
1379 writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
1381 ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
1382 if (ret)
1383 return ret;
1386 reinit_completion(&qup->xfer);
1387 enable_irq(qup->irq);
1389 * In FIFO mode, tx FIFO can be written directly while in block mode the
1390 * it will be written after getting OUT_BLOCK_WRITE_REQ interrupt
1392 if (!blk->is_tx_blk_mode) {
1393 blk->tx_fifo_free = qup->out_fifo_sz;
1395 if (is_rx)
1396 qup_i2c_write_rx_tags_v2(qup);
1397 else
1398 qup_i2c_write_tx_fifo_v2(qup);
1401 ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1402 if (ret)
1403 goto err;
1405 ret = qup_i2c_wait_for_complete(qup, msg);
1406 if (ret)
1407 goto err;
1409 /* Move to pause state for all the transfers, except last one */
1410 if (change_pause_state) {
1411 ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
1412 if (ret)
1413 goto err;
1416 err:
1417 disable_irq(qup->irq);
1418 return ret;
1422 * Transfer one read/write message in i2c transfer. It splits the message into
1423 * multiple of blk_xfer_limit data length blocks and schedule each
1424 * QUP block individually.
1426 static int qup_i2c_xfer_v2_msg(struct qup_i2c_dev *qup, int msg_id, bool is_rx)
1428 int ret = 0;
1429 unsigned int data_len, i;
1430 struct i2c_msg *msg = qup->msg;
1431 struct qup_i2c_block *blk = &qup->blk;
1432 u8 *msg_buf = msg->buf;
1434 qup->blk_xfer_limit = is_rx ? RECV_MAX_DATA_LEN : QUP_READ_LIMIT;
1435 qup_i2c_set_blk_data(qup, msg);
1437 for (i = 0; i < blk->count; i++) {
1438 data_len = qup_i2c_get_data_len(qup);
1439 blk->pos = i;
1440 blk->cur_tx_tags = blk->tags;
1441 blk->cur_blk_len = data_len;
1442 blk->tx_tag_len =
1443 qup_i2c_set_tags(blk->cur_tx_tags, qup, qup->msg);
1445 blk->cur_data = msg_buf;
1447 if (is_rx) {
1448 blk->total_tx_len = blk->tx_tag_len;
1449 blk->rx_tag_len = 2;
1450 blk->total_rx_len = blk->rx_tag_len + data_len;
1451 } else {
1452 blk->total_tx_len = blk->tx_tag_len + data_len;
1453 blk->total_rx_len = 0;
1456 ret = qup_i2c_conf_xfer_v2(qup, is_rx, !msg_id && !i,
1457 !qup->is_last || i < blk->count - 1);
1458 if (ret)
1459 return ret;
1461 /* Handle SMBus block read length */
1462 if (qup_i2c_check_msg_len(msg) && msg->len == 1 &&
1463 !qup->is_smbus_read) {
1464 if (msg->buf[0] > I2C_SMBUS_BLOCK_MAX)
1465 return -EPROTO;
1467 msg->len = msg->buf[0];
1468 qup->is_smbus_read = true;
1469 ret = qup_i2c_xfer_v2_msg(qup, msg_id, true);
1470 qup->is_smbus_read = false;
1471 if (ret)
1472 return ret;
1474 msg->len += 1;
1477 msg_buf += data_len;
1478 blk->data_len -= qup->blk_xfer_limit;
1481 return ret;
1485 * QUP v2 supports 3 modes
1486 * Programmed IO using FIFO mode : Less than FIFO size
1487 * Programmed IO using Block mode : Greater than FIFO size
1488 * DMA using BAM : Appropriate for any transaction size but the address should
1489 * be DMA applicable
1491 * This function determines the mode which will be used for this transfer. An
1492 * i2c transfer contains multiple message. Following are the rules to determine
1493 * the mode used.
1494 * 1. Determine complete length, maximum tx and rx length for complete transfer.
1495 * 2. If complete transfer length is greater than fifo size then use the DMA
1496 * mode.
1497 * 3. In FIFO or block mode, tx and rx can operate in different mode so check
1498 * for maximum tx and rx length to determine mode.
1500 static int
1501 qup_i2c_determine_mode_v2(struct qup_i2c_dev *qup,
1502 struct i2c_msg msgs[], int num)
1504 int idx;
1505 bool no_dma = false;
1506 unsigned int max_tx_len = 0, max_rx_len = 0, total_len = 0;
1508 /* All i2c_msgs should be transferred using either dma or cpu */
1509 for (idx = 0; idx < num; idx++) {
1510 if (msgs[idx].flags & I2C_M_RD)
1511 max_rx_len = max_t(unsigned int, max_rx_len,
1512 msgs[idx].len);
1513 else
1514 max_tx_len = max_t(unsigned int, max_tx_len,
1515 msgs[idx].len);
1517 if (is_vmalloc_addr(msgs[idx].buf))
1518 no_dma = true;
1520 total_len += msgs[idx].len;
1523 if (!no_dma && qup->is_dma &&
1524 (total_len > qup->out_fifo_sz || total_len > qup->in_fifo_sz)) {
1525 qup->use_dma = true;
1526 } else {
1527 qup->blk.is_tx_blk_mode = max_tx_len > qup->out_fifo_sz -
1528 QUP_MAX_TAGS_LEN;
1529 qup->blk.is_rx_blk_mode = max_rx_len > qup->in_fifo_sz -
1530 READ_RX_TAGS_LEN;
1533 return 0;
1536 static int qup_i2c_xfer_v2(struct i2c_adapter *adap,
1537 struct i2c_msg msgs[],
1538 int num)
1540 struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
1541 int ret, idx = 0;
1543 qup->bus_err = 0;
1544 qup->qup_err = 0;
1546 ret = pm_runtime_get_sync(qup->dev);
1547 if (ret < 0)
1548 goto out;
1550 ret = qup_i2c_determine_mode_v2(qup, msgs, num);
1551 if (ret)
1552 goto out;
1554 writel(1, qup->base + QUP_SW_RESET);
1555 ret = qup_i2c_poll_state(qup, QUP_RESET_STATE);
1556 if (ret)
1557 goto out;
1559 /* Configure QUP as I2C mini core */
1560 writel(I2C_MINI_CORE | I2C_N_VAL_V2, qup->base + QUP_CONFIG);
1561 writel(QUP_V2_TAGS_EN, qup->base + QUP_I2C_MASTER_GEN);
1563 if (qup_i2c_poll_state_i2c_master(qup)) {
1564 ret = -EIO;
1565 goto out;
1568 if (qup->use_dma) {
1569 reinit_completion(&qup->xfer);
1570 ret = qup_i2c_bam_xfer(adap, &msgs[0], num);
1571 qup->use_dma = false;
1572 } else {
1573 qup_i2c_conf_mode_v2(qup);
1575 for (idx = 0; idx < num; idx++) {
1576 qup->msg = &msgs[idx];
1577 qup->is_last = idx == (num - 1);
1579 ret = qup_i2c_xfer_v2_msg(qup, idx,
1580 !!(msgs[idx].flags & I2C_M_RD));
1581 if (ret)
1582 break;
1584 qup->msg = NULL;
1587 if (!ret)
1588 ret = qup_i2c_bus_active(qup, ONE_BYTE);
1590 if (!ret)
1591 qup_i2c_change_state(qup, QUP_RESET_STATE);
1593 if (ret == 0)
1594 ret = num;
1595 out:
1596 pm_runtime_mark_last_busy(qup->dev);
1597 pm_runtime_put_autosuspend(qup->dev);
1599 return ret;
1602 static u32 qup_i2c_func(struct i2c_adapter *adap)
1604 return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL_ALL & ~I2C_FUNC_SMBUS_QUICK);
1607 static const struct i2c_algorithm qup_i2c_algo = {
1608 .master_xfer = qup_i2c_xfer,
1609 .functionality = qup_i2c_func,
1612 static const struct i2c_algorithm qup_i2c_algo_v2 = {
1613 .master_xfer = qup_i2c_xfer_v2,
1614 .functionality = qup_i2c_func,
1618 * The QUP block will issue a NACK and STOP on the bus when reaching
1619 * the end of the read, the length of the read is specified as one byte
1620 * which limits the possible read to 256 (QUP_READ_LIMIT) bytes.
1622 static const struct i2c_adapter_quirks qup_i2c_quirks = {
1623 .flags = I2C_AQ_NO_ZERO_LEN,
1624 .max_read_len = QUP_READ_LIMIT,
1627 static const struct i2c_adapter_quirks qup_i2c_quirks_v2 = {
1628 .flags = I2C_AQ_NO_ZERO_LEN,
1631 static void qup_i2c_enable_clocks(struct qup_i2c_dev *qup)
1633 clk_prepare_enable(qup->clk);
1634 clk_prepare_enable(qup->pclk);
1637 static void qup_i2c_disable_clocks(struct qup_i2c_dev *qup)
1639 u32 config;
1641 qup_i2c_change_state(qup, QUP_RESET_STATE);
1642 clk_disable_unprepare(qup->clk);
1643 config = readl(qup->base + QUP_CONFIG);
1644 config |= QUP_CLOCK_AUTO_GATE;
1645 writel(config, qup->base + QUP_CONFIG);
1646 clk_disable_unprepare(qup->pclk);
1649 static const struct acpi_device_id qup_i2c_acpi_match[] = {
1650 { "QCOM8010"},
1653 MODULE_DEVICE_TABLE(acpi, qup_i2c_acpi_match);
1655 static int qup_i2c_probe(struct platform_device *pdev)
1657 static const int blk_sizes[] = {4, 16, 32};
1658 struct qup_i2c_dev *qup;
1659 unsigned long one_bit_t;
1660 u32 io_mode, hw_ver, size;
1661 int ret, fs_div, hs_div;
1662 u32 src_clk_freq = DEFAULT_SRC_CLK;
1663 u32 clk_freq = DEFAULT_CLK_FREQ;
1664 int blocks;
1665 bool is_qup_v1;
1667 qup = devm_kzalloc(&pdev->dev, sizeof(*qup), GFP_KERNEL);
1668 if (!qup)
1669 return -ENOMEM;
1671 qup->dev = &pdev->dev;
1672 init_completion(&qup->xfer);
1673 platform_set_drvdata(pdev, qup);
1675 if (scl_freq) {
1676 dev_notice(qup->dev, "Using override frequency of %u\n", scl_freq);
1677 clk_freq = scl_freq;
1678 } else {
1679 ret = device_property_read_u32(qup->dev, "clock-frequency", &clk_freq);
1680 if (ret) {
1681 dev_notice(qup->dev, "using default clock-frequency %d",
1682 DEFAULT_CLK_FREQ);
1686 if (of_device_is_compatible(pdev->dev.of_node, "qcom,i2c-qup-v1.1.1")) {
1687 qup->adap.algo = &qup_i2c_algo;
1688 qup->adap.quirks = &qup_i2c_quirks;
1689 is_qup_v1 = true;
1690 } else {
1691 qup->adap.algo = &qup_i2c_algo_v2;
1692 qup->adap.quirks = &qup_i2c_quirks_v2;
1693 is_qup_v1 = false;
1694 if (acpi_match_device(qup_i2c_acpi_match, qup->dev))
1695 goto nodma;
1696 else
1697 ret = qup_i2c_req_dma(qup);
1699 if (ret == -EPROBE_DEFER)
1700 goto fail_dma;
1701 else if (ret != 0)
1702 goto nodma;
1704 qup->max_xfer_sg_len = (MX_BLOCKS << 1);
1705 blocks = (MX_DMA_BLOCKS << 1) + 1;
1706 qup->btx.sg = devm_kcalloc(&pdev->dev,
1707 blocks, sizeof(*qup->btx.sg),
1708 GFP_KERNEL);
1709 if (!qup->btx.sg) {
1710 ret = -ENOMEM;
1711 goto fail_dma;
1713 sg_init_table(qup->btx.sg, blocks);
1715 qup->brx.sg = devm_kcalloc(&pdev->dev,
1716 blocks, sizeof(*qup->brx.sg),
1717 GFP_KERNEL);
1718 if (!qup->brx.sg) {
1719 ret = -ENOMEM;
1720 goto fail_dma;
1722 sg_init_table(qup->brx.sg, blocks);
1724 /* 2 tag bytes for each block + 5 for start, stop tags */
1725 size = blocks * 2 + 5;
1727 qup->start_tag.start = devm_kzalloc(&pdev->dev,
1728 size, GFP_KERNEL);
1729 if (!qup->start_tag.start) {
1730 ret = -ENOMEM;
1731 goto fail_dma;
1734 qup->brx.tag.start = devm_kzalloc(&pdev->dev, 2, GFP_KERNEL);
1735 if (!qup->brx.tag.start) {
1736 ret = -ENOMEM;
1737 goto fail_dma;
1740 qup->btx.tag.start = devm_kzalloc(&pdev->dev, 2, GFP_KERNEL);
1741 if (!qup->btx.tag.start) {
1742 ret = -ENOMEM;
1743 goto fail_dma;
1745 qup->is_dma = true;
1748 nodma:
1749 /* We support frequencies up to FAST Mode Plus (1MHz) */
1750 if (!clk_freq || clk_freq > I2C_MAX_FAST_MODE_PLUS_FREQ) {
1751 dev_err(qup->dev, "clock frequency not supported %d\n",
1752 clk_freq);
1753 ret = -EINVAL;
1754 goto fail_dma;
1757 qup->base = devm_platform_ioremap_resource(pdev, 0);
1758 if (IS_ERR(qup->base)) {
1759 ret = PTR_ERR(qup->base);
1760 goto fail_dma;
1763 qup->irq = platform_get_irq(pdev, 0);
1764 if (qup->irq < 0) {
1765 ret = qup->irq;
1766 goto fail_dma;
1769 if (has_acpi_companion(qup->dev)) {
1770 ret = device_property_read_u32(qup->dev,
1771 "src-clock-hz", &src_clk_freq);
1772 if (ret) {
1773 dev_notice(qup->dev, "using default src-clock-hz %d",
1774 DEFAULT_SRC_CLK);
1776 ACPI_COMPANION_SET(&qup->adap.dev, ACPI_COMPANION(qup->dev));
1777 } else {
1778 qup->clk = devm_clk_get(qup->dev, "core");
1779 if (IS_ERR(qup->clk)) {
1780 dev_err(qup->dev, "Could not get core clock\n");
1781 ret = PTR_ERR(qup->clk);
1782 goto fail_dma;
1785 qup->pclk = devm_clk_get(qup->dev, "iface");
1786 if (IS_ERR(qup->pclk)) {
1787 dev_err(qup->dev, "Could not get iface clock\n");
1788 ret = PTR_ERR(qup->pclk);
1789 goto fail_dma;
1791 qup_i2c_enable_clocks(qup);
1792 src_clk_freq = clk_get_rate(qup->clk);
1796 * Bootloaders might leave a pending interrupt on certain QUP's,
1797 * so we reset the core before registering for interrupts.
1799 writel(1, qup->base + QUP_SW_RESET);
1800 ret = qup_i2c_poll_state_valid(qup);
1801 if (ret)
1802 goto fail;
1804 ret = devm_request_irq(qup->dev, qup->irq, qup_i2c_interrupt,
1805 IRQF_TRIGGER_HIGH | IRQF_NO_AUTOEN,
1806 "i2c_qup", qup);
1807 if (ret) {
1808 dev_err(qup->dev, "Request %d IRQ failed\n", qup->irq);
1809 goto fail;
1812 hw_ver = readl(qup->base + QUP_HW_VERSION);
1813 dev_dbg(qup->dev, "Revision %x\n", hw_ver);
1815 io_mode = readl(qup->base + QUP_IO_MODE);
1818 * The block/fifo size w.r.t. 'actual data' is 1/2 due to 'tag'
1819 * associated with each byte written/received
1821 size = QUP_OUTPUT_BLOCK_SIZE(io_mode);
1822 if (size >= ARRAY_SIZE(blk_sizes)) {
1823 ret = -EIO;
1824 goto fail;
1826 qup->out_blk_sz = blk_sizes[size];
1828 size = QUP_INPUT_BLOCK_SIZE(io_mode);
1829 if (size >= ARRAY_SIZE(blk_sizes)) {
1830 ret = -EIO;
1831 goto fail;
1833 qup->in_blk_sz = blk_sizes[size];
1835 if (is_qup_v1) {
1837 * in QUP v1, QUP_CONFIG uses N as 15 i.e 16 bits constitutes a
1838 * single transfer but the block size is in bytes so divide the
1839 * in_blk_sz and out_blk_sz by 2
1841 qup->in_blk_sz /= 2;
1842 qup->out_blk_sz /= 2;
1843 qup->write_tx_fifo = qup_i2c_write_tx_fifo_v1;
1844 qup->read_rx_fifo = qup_i2c_read_rx_fifo_v1;
1845 qup->write_rx_tags = qup_i2c_write_rx_tags_v1;
1846 } else {
1847 qup->write_tx_fifo = qup_i2c_write_tx_fifo_v2;
1848 qup->read_rx_fifo = qup_i2c_read_rx_fifo_v2;
1849 qup->write_rx_tags = qup_i2c_write_rx_tags_v2;
1852 size = QUP_OUTPUT_FIFO_SIZE(io_mode);
1853 qup->out_fifo_sz = qup->out_blk_sz * (2 << size);
1855 size = QUP_INPUT_FIFO_SIZE(io_mode);
1856 qup->in_fifo_sz = qup->in_blk_sz * (2 << size);
1858 hs_div = 3;
1859 if (clk_freq <= I2C_MAX_STANDARD_MODE_FREQ) {
1860 fs_div = ((src_clk_freq / clk_freq) / 2) - 3;
1861 qup->clk_ctl = (hs_div << 8) | (fs_div & 0xff);
1862 } else {
1863 /* 33%/66% duty cycle */
1864 fs_div = ((src_clk_freq / clk_freq) - 6) * 2 / 3;
1865 qup->clk_ctl = ((fs_div / 2) << 16) | (hs_div << 8) | (fs_div & 0xff);
1869 * Time it takes for a byte to be clocked out on the bus.
1870 * Each byte takes 9 clock cycles (8 bits + 1 ack).
1872 one_bit_t = (USEC_PER_SEC / clk_freq) + 1;
1873 qup->one_byte_t = one_bit_t * 9;
1874 qup->xfer_timeout = TOUT_MIN * HZ +
1875 usecs_to_jiffies(MX_DMA_TX_RX_LEN * qup->one_byte_t);
1877 dev_dbg(qup->dev, "IN:block:%d, fifo:%d, OUT:block:%d, fifo:%d\n",
1878 qup->in_blk_sz, qup->in_fifo_sz,
1879 qup->out_blk_sz, qup->out_fifo_sz);
1881 i2c_set_adapdata(&qup->adap, qup);
1882 qup->adap.dev.parent = qup->dev;
1883 qup->adap.dev.of_node = pdev->dev.of_node;
1884 qup->is_last = true;
1886 strscpy(qup->adap.name, "QUP I2C adapter", sizeof(qup->adap.name));
1888 pm_runtime_set_autosuspend_delay(qup->dev, MSEC_PER_SEC);
1889 pm_runtime_use_autosuspend(qup->dev);
1890 pm_runtime_set_active(qup->dev);
1891 pm_runtime_enable(qup->dev);
1893 ret = i2c_add_adapter(&qup->adap);
1894 if (ret)
1895 goto fail_runtime;
1897 return 0;
1899 fail_runtime:
1900 pm_runtime_disable(qup->dev);
1901 pm_runtime_set_suspended(qup->dev);
1902 fail:
1903 qup_i2c_disable_clocks(qup);
1904 fail_dma:
1905 if (qup->btx.dma)
1906 dma_release_channel(qup->btx.dma);
1907 if (qup->brx.dma)
1908 dma_release_channel(qup->brx.dma);
1909 return ret;
1912 static void qup_i2c_remove(struct platform_device *pdev)
1914 struct qup_i2c_dev *qup = platform_get_drvdata(pdev);
1916 if (qup->is_dma) {
1917 dma_release_channel(qup->btx.dma);
1918 dma_release_channel(qup->brx.dma);
1921 disable_irq(qup->irq);
1922 qup_i2c_disable_clocks(qup);
1923 i2c_del_adapter(&qup->adap);
1924 pm_runtime_disable(qup->dev);
1925 pm_runtime_set_suspended(qup->dev);
1928 static int qup_i2c_pm_suspend_runtime(struct device *device)
1930 struct qup_i2c_dev *qup = dev_get_drvdata(device);
1932 dev_dbg(device, "pm_runtime: suspending...\n");
1933 qup_i2c_disable_clocks(qup);
1934 return 0;
1937 static int qup_i2c_pm_resume_runtime(struct device *device)
1939 struct qup_i2c_dev *qup = dev_get_drvdata(device);
1941 dev_dbg(device, "pm_runtime: resuming...\n");
1942 qup_i2c_enable_clocks(qup);
1943 return 0;
1946 static int qup_i2c_suspend(struct device *device)
1948 if (!pm_runtime_suspended(device))
1949 return qup_i2c_pm_suspend_runtime(device);
1950 return 0;
1953 static int qup_i2c_resume(struct device *device)
1955 qup_i2c_pm_resume_runtime(device);
1956 pm_runtime_mark_last_busy(device);
1957 pm_request_autosuspend(device);
1958 return 0;
1961 static const struct dev_pm_ops qup_i2c_qup_pm_ops = {
1962 SYSTEM_SLEEP_PM_OPS(qup_i2c_suspend, qup_i2c_resume)
1963 RUNTIME_PM_OPS(qup_i2c_pm_suspend_runtime,
1964 qup_i2c_pm_resume_runtime, NULL)
1967 static const struct of_device_id qup_i2c_dt_match[] = {
1968 { .compatible = "qcom,i2c-qup-v1.1.1" },
1969 { .compatible = "qcom,i2c-qup-v2.1.1" },
1970 { .compatible = "qcom,i2c-qup-v2.2.1" },
1973 MODULE_DEVICE_TABLE(of, qup_i2c_dt_match);
1975 static struct platform_driver qup_i2c_driver = {
1976 .probe = qup_i2c_probe,
1977 .remove_new = qup_i2c_remove,
1978 .driver = {
1979 .name = "i2c_qup",
1980 .pm = pm_ptr(&qup_i2c_qup_pm_ops),
1981 .of_match_table = qup_i2c_dt_match,
1982 .acpi_match_table = ACPI_PTR(qup_i2c_acpi_match),
1986 module_platform_driver(qup_i2c_driver);
1988 MODULE_DESCRIPTION("Qualcomm QUP based I2C controller");
1989 MODULE_LICENSE("GPL v2");
1990 MODULE_ALIAS("platform:i2c_qup");