drm/tests: hdmi: Fix memory leaks in drm_display_mode_from_cea_vic()
[drm/drm-misc.git] / drivers / iio / health / afe4404.c
blobd49e1572a439f8b861e937e2903e9726924a17be
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * AFE4404 Heart Rate Monitors and Low-Cost Pulse Oximeters
5 * Copyright (C) 2015-2016 Texas Instruments Incorporated - https://www.ti.com/
6 * Andrew F. Davis <afd@ti.com>
7 */
9 #include <linux/device.h>
10 #include <linux/err.h>
11 #include <linux/interrupt.h>
12 #include <linux/i2c.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/regmap.h>
16 #include <linux/sysfs.h>
17 #include <linux/regulator/consumer.h>
19 #include <linux/iio/iio.h>
20 #include <linux/iio/sysfs.h>
21 #include <linux/iio/buffer.h>
22 #include <linux/iio/trigger.h>
23 #include <linux/iio/triggered_buffer.h>
24 #include <linux/iio/trigger_consumer.h>
26 #include "afe440x.h"
28 #define AFE4404_DRIVER_NAME "afe4404"
30 /* AFE4404 registers */
31 #define AFE4404_TIA_GAIN_SEP 0x20
32 #define AFE4404_TIA_GAIN 0x21
33 #define AFE4404_PROG_TG_STC 0x34
34 #define AFE4404_PROG_TG_ENDC 0x35
35 #define AFE4404_LED3LEDSTC 0x36
36 #define AFE4404_LED3LEDENDC 0x37
37 #define AFE4404_CLKDIV_PRF 0x39
38 #define AFE4404_OFFDAC 0x3a
39 #define AFE4404_DEC 0x3d
40 #define AFE4404_AVG_LED2_ALED2VAL 0x3f
41 #define AFE4404_AVG_LED1_ALED1VAL 0x40
43 /* AFE4404 CONTROL2 register fields */
44 #define AFE440X_CONTROL2_OSC_ENABLE BIT(9)
46 enum afe4404_fields {
47 /* Gains */
48 F_TIA_GAIN_SEP, F_TIA_CF_SEP,
49 F_TIA_GAIN, TIA_CF,
51 /* LED Current */
52 F_ILED1, F_ILED2, F_ILED3,
54 /* Offset DAC */
55 F_OFFDAC_AMB2, F_OFFDAC_LED1, F_OFFDAC_AMB1, F_OFFDAC_LED2,
57 /* sentinel */
58 F_MAX_FIELDS
61 static const struct reg_field afe4404_reg_fields[] = {
62 /* Gains */
63 [F_TIA_GAIN_SEP] = REG_FIELD(AFE4404_TIA_GAIN_SEP, 0, 2),
64 [F_TIA_CF_SEP] = REG_FIELD(AFE4404_TIA_GAIN_SEP, 3, 5),
65 [F_TIA_GAIN] = REG_FIELD(AFE4404_TIA_GAIN, 0, 2),
66 [TIA_CF] = REG_FIELD(AFE4404_TIA_GAIN, 3, 5),
67 /* LED Current */
68 [F_ILED1] = REG_FIELD(AFE440X_LEDCNTRL, 0, 5),
69 [F_ILED2] = REG_FIELD(AFE440X_LEDCNTRL, 6, 11),
70 [F_ILED3] = REG_FIELD(AFE440X_LEDCNTRL, 12, 17),
71 /* Offset DAC */
72 [F_OFFDAC_AMB2] = REG_FIELD(AFE4404_OFFDAC, 0, 4),
73 [F_OFFDAC_LED1] = REG_FIELD(AFE4404_OFFDAC, 5, 9),
74 [F_OFFDAC_AMB1] = REG_FIELD(AFE4404_OFFDAC, 10, 14),
75 [F_OFFDAC_LED2] = REG_FIELD(AFE4404_OFFDAC, 15, 19),
78 /**
79 * struct afe4404_data - AFE4404 device instance data
80 * @dev: Device structure
81 * @regmap: Register map of the device
82 * @fields: Register fields of the device
83 * @regulator: Pointer to the regulator for the IC
84 * @trig: IIO trigger for this device
85 * @irq: ADC_RDY line interrupt number
86 * @buffer: Used to construct a scan to push to the iio buffer.
88 struct afe4404_data {
89 struct device *dev;
90 struct regmap *regmap;
91 struct regmap_field *fields[F_MAX_FIELDS];
92 struct regulator *regulator;
93 struct iio_trigger *trig;
94 int irq;
95 s32 buffer[10] __aligned(8);
98 enum afe4404_chan_id {
99 LED2 = 1,
100 ALED2,
101 LED1,
102 ALED1,
103 LED2_ALED2,
104 LED1_ALED1,
107 static const unsigned int afe4404_channel_values[] = {
108 [LED2] = AFE440X_LED2VAL,
109 [ALED2] = AFE440X_ALED2VAL,
110 [LED1] = AFE440X_LED1VAL,
111 [ALED1] = AFE440X_ALED1VAL,
112 [LED2_ALED2] = AFE440X_LED2_ALED2VAL,
113 [LED1_ALED1] = AFE440X_LED1_ALED1VAL,
116 static const unsigned int afe4404_channel_leds[] = {
117 [LED2] = F_ILED2,
118 [ALED2] = F_ILED3,
119 [LED1] = F_ILED1,
122 static const unsigned int afe4404_channel_offdacs[] = {
123 [LED2] = F_OFFDAC_LED2,
124 [ALED2] = F_OFFDAC_AMB2,
125 [LED1] = F_OFFDAC_LED1,
126 [ALED1] = F_OFFDAC_AMB1,
129 static const struct iio_chan_spec afe4404_channels[] = {
130 /* ADC values */
131 AFE440X_INTENSITY_CHAN(LED2, BIT(IIO_CHAN_INFO_OFFSET)),
132 AFE440X_INTENSITY_CHAN(ALED2, BIT(IIO_CHAN_INFO_OFFSET)),
133 AFE440X_INTENSITY_CHAN(LED1, BIT(IIO_CHAN_INFO_OFFSET)),
134 AFE440X_INTENSITY_CHAN(ALED1, BIT(IIO_CHAN_INFO_OFFSET)),
135 AFE440X_INTENSITY_CHAN(LED2_ALED2, 0),
136 AFE440X_INTENSITY_CHAN(LED1_ALED1, 0),
137 /* LED current */
138 AFE440X_CURRENT_CHAN(LED2),
139 AFE440X_CURRENT_CHAN(ALED2),
140 AFE440X_CURRENT_CHAN(LED1),
143 static const struct afe440x_val_table afe4404_res_table[] = {
144 { .integer = 500000, .fract = 0 },
145 { .integer = 250000, .fract = 0 },
146 { .integer = 100000, .fract = 0 },
147 { .integer = 50000, .fract = 0 },
148 { .integer = 25000, .fract = 0 },
149 { .integer = 10000, .fract = 0 },
150 { .integer = 1000000, .fract = 0 },
151 { .integer = 2000000, .fract = 0 },
153 AFE440X_TABLE_ATTR(in_intensity_resistance_available, afe4404_res_table);
155 static const struct afe440x_val_table afe4404_cap_table[] = {
156 { .integer = 0, .fract = 5000 },
157 { .integer = 0, .fract = 2500 },
158 { .integer = 0, .fract = 10000 },
159 { .integer = 0, .fract = 7500 },
160 { .integer = 0, .fract = 20000 },
161 { .integer = 0, .fract = 17500 },
162 { .integer = 0, .fract = 25000 },
163 { .integer = 0, .fract = 22500 },
165 AFE440X_TABLE_ATTR(in_intensity_capacitance_available, afe4404_cap_table);
167 static ssize_t afe440x_show_register(struct device *dev,
168 struct device_attribute *attr,
169 char *buf)
171 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
172 struct afe4404_data *afe = iio_priv(indio_dev);
173 struct afe440x_attr *afe440x_attr = to_afe440x_attr(attr);
174 unsigned int reg_val;
175 int vals[2];
176 int ret;
178 ret = regmap_field_read(afe->fields[afe440x_attr->field], &reg_val);
179 if (ret)
180 return ret;
182 if (reg_val >= afe440x_attr->table_size)
183 return -EINVAL;
185 vals[0] = afe440x_attr->val_table[reg_val].integer;
186 vals[1] = afe440x_attr->val_table[reg_val].fract;
188 return iio_format_value(buf, IIO_VAL_INT_PLUS_MICRO, 2, vals);
191 static ssize_t afe440x_store_register(struct device *dev,
192 struct device_attribute *attr,
193 const char *buf, size_t count)
195 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
196 struct afe4404_data *afe = iio_priv(indio_dev);
197 struct afe440x_attr *afe440x_attr = to_afe440x_attr(attr);
198 int val, integer, fract, ret;
200 ret = iio_str_to_fixpoint(buf, 100000, &integer, &fract);
201 if (ret)
202 return ret;
204 for (val = 0; val < afe440x_attr->table_size; val++)
205 if (afe440x_attr->val_table[val].integer == integer &&
206 afe440x_attr->val_table[val].fract == fract)
207 break;
208 if (val == afe440x_attr->table_size)
209 return -EINVAL;
211 ret = regmap_field_write(afe->fields[afe440x_attr->field], val);
212 if (ret)
213 return ret;
215 return count;
218 static AFE440X_ATTR(in_intensity1_resistance, F_TIA_GAIN_SEP, afe4404_res_table);
219 static AFE440X_ATTR(in_intensity1_capacitance, F_TIA_CF_SEP, afe4404_cap_table);
221 static AFE440X_ATTR(in_intensity2_resistance, F_TIA_GAIN_SEP, afe4404_res_table);
222 static AFE440X_ATTR(in_intensity2_capacitance, F_TIA_CF_SEP, afe4404_cap_table);
224 static AFE440X_ATTR(in_intensity3_resistance, F_TIA_GAIN, afe4404_res_table);
225 static AFE440X_ATTR(in_intensity3_capacitance, TIA_CF, afe4404_cap_table);
227 static AFE440X_ATTR(in_intensity4_resistance, F_TIA_GAIN, afe4404_res_table);
228 static AFE440X_ATTR(in_intensity4_capacitance, TIA_CF, afe4404_cap_table);
230 static struct attribute *afe440x_attributes[] = {
231 &dev_attr_in_intensity_resistance_available.attr,
232 &dev_attr_in_intensity_capacitance_available.attr,
233 &afe440x_attr_in_intensity1_resistance.dev_attr.attr,
234 &afe440x_attr_in_intensity1_capacitance.dev_attr.attr,
235 &afe440x_attr_in_intensity2_resistance.dev_attr.attr,
236 &afe440x_attr_in_intensity2_capacitance.dev_attr.attr,
237 &afe440x_attr_in_intensity3_resistance.dev_attr.attr,
238 &afe440x_attr_in_intensity3_capacitance.dev_attr.attr,
239 &afe440x_attr_in_intensity4_resistance.dev_attr.attr,
240 &afe440x_attr_in_intensity4_capacitance.dev_attr.attr,
241 NULL
244 static const struct attribute_group afe440x_attribute_group = {
245 .attrs = afe440x_attributes
248 static int afe4404_read_raw(struct iio_dev *indio_dev,
249 struct iio_chan_spec const *chan,
250 int *val, int *val2, long mask)
252 struct afe4404_data *afe = iio_priv(indio_dev);
253 unsigned int value_reg, led_field, offdac_field;
254 int ret;
256 switch (chan->type) {
257 case IIO_INTENSITY:
258 switch (mask) {
259 case IIO_CHAN_INFO_RAW:
260 value_reg = afe4404_channel_values[chan->address];
261 ret = regmap_read(afe->regmap, value_reg, val);
262 if (ret)
263 return ret;
264 return IIO_VAL_INT;
265 case IIO_CHAN_INFO_OFFSET:
266 offdac_field = afe4404_channel_offdacs[chan->address];
267 ret = regmap_field_read(afe->fields[offdac_field], val);
268 if (ret)
269 return ret;
270 return IIO_VAL_INT;
272 break;
273 case IIO_CURRENT:
274 switch (mask) {
275 case IIO_CHAN_INFO_RAW:
276 led_field = afe4404_channel_leds[chan->address];
277 ret = regmap_field_read(afe->fields[led_field], val);
278 if (ret)
279 return ret;
280 return IIO_VAL_INT;
281 case IIO_CHAN_INFO_SCALE:
282 *val = 0;
283 *val2 = 800000;
284 return IIO_VAL_INT_PLUS_MICRO;
286 break;
287 default:
288 break;
291 return -EINVAL;
294 static int afe4404_write_raw(struct iio_dev *indio_dev,
295 struct iio_chan_spec const *chan,
296 int val, int val2, long mask)
298 struct afe4404_data *afe = iio_priv(indio_dev);
299 unsigned int led_field, offdac_field;
301 switch (chan->type) {
302 case IIO_INTENSITY:
303 switch (mask) {
304 case IIO_CHAN_INFO_OFFSET:
305 offdac_field = afe4404_channel_offdacs[chan->address];
306 return regmap_field_write(afe->fields[offdac_field], val);
308 break;
309 case IIO_CURRENT:
310 switch (mask) {
311 case IIO_CHAN_INFO_RAW:
312 led_field = afe4404_channel_leds[chan->address];
313 return regmap_field_write(afe->fields[led_field], val);
315 break;
316 default:
317 break;
320 return -EINVAL;
323 static const struct iio_info afe4404_iio_info = {
324 .attrs = &afe440x_attribute_group,
325 .read_raw = afe4404_read_raw,
326 .write_raw = afe4404_write_raw,
329 static irqreturn_t afe4404_trigger_handler(int irq, void *private)
331 struct iio_poll_func *pf = private;
332 struct iio_dev *indio_dev = pf->indio_dev;
333 struct afe4404_data *afe = iio_priv(indio_dev);
334 int ret, bit, i = 0;
336 iio_for_each_active_channel(indio_dev, bit) {
337 ret = regmap_read(afe->regmap, afe4404_channel_values[bit],
338 &afe->buffer[i++]);
339 if (ret)
340 goto err;
343 iio_push_to_buffers_with_timestamp(indio_dev, afe->buffer,
344 pf->timestamp);
345 err:
346 iio_trigger_notify_done(indio_dev->trig);
348 return IRQ_HANDLED;
351 static void afe4404_regulator_disable(void *data)
353 struct regulator *regulator = data;
355 regulator_disable(regulator);
358 /* Default timings from data-sheet */
359 #define AFE4404_TIMING_PAIRS \
360 { AFE440X_PRPCOUNT, 39999 }, \
361 { AFE440X_LED2LEDSTC, 0 }, \
362 { AFE440X_LED2LEDENDC, 398 }, \
363 { AFE440X_LED2STC, 80 }, \
364 { AFE440X_LED2ENDC, 398 }, \
365 { AFE440X_ADCRSTSTCT0, 5600 }, \
366 { AFE440X_ADCRSTENDCT0, 5606 }, \
367 { AFE440X_LED2CONVST, 5607 }, \
368 { AFE440X_LED2CONVEND, 6066 }, \
369 { AFE4404_LED3LEDSTC, 400 }, \
370 { AFE4404_LED3LEDENDC, 798 }, \
371 { AFE440X_ALED2STC, 480 }, \
372 { AFE440X_ALED2ENDC, 798 }, \
373 { AFE440X_ADCRSTSTCT1, 6068 }, \
374 { AFE440X_ADCRSTENDCT1, 6074 }, \
375 { AFE440X_ALED2CONVST, 6075 }, \
376 { AFE440X_ALED2CONVEND, 6534 }, \
377 { AFE440X_LED1LEDSTC, 800 }, \
378 { AFE440X_LED1LEDENDC, 1198 }, \
379 { AFE440X_LED1STC, 880 }, \
380 { AFE440X_LED1ENDC, 1198 }, \
381 { AFE440X_ADCRSTSTCT2, 6536 }, \
382 { AFE440X_ADCRSTENDCT2, 6542 }, \
383 { AFE440X_LED1CONVST, 6543 }, \
384 { AFE440X_LED1CONVEND, 7003 }, \
385 { AFE440X_ALED1STC, 1280 }, \
386 { AFE440X_ALED1ENDC, 1598 }, \
387 { AFE440X_ADCRSTSTCT3, 7005 }, \
388 { AFE440X_ADCRSTENDCT3, 7011 }, \
389 { AFE440X_ALED1CONVST, 7012 }, \
390 { AFE440X_ALED1CONVEND, 7471 }, \
391 { AFE440X_PDNCYCLESTC, 7671 }, \
392 { AFE440X_PDNCYCLEENDC, 39199 }
394 static const struct reg_sequence afe4404_reg_sequences[] = {
395 AFE4404_TIMING_PAIRS,
396 { AFE440X_CONTROL1, AFE440X_CONTROL1_TIMEREN },
397 { AFE4404_TIA_GAIN_SEP, AFE440X_TIAGAIN_ENSEPGAIN },
398 { AFE440X_CONTROL2, AFE440X_CONTROL2_OSC_ENABLE },
401 static const struct regmap_range afe4404_yes_ranges[] = {
402 regmap_reg_range(AFE440X_LED2VAL, AFE440X_LED1_ALED1VAL),
403 regmap_reg_range(AFE4404_AVG_LED2_ALED2VAL, AFE4404_AVG_LED1_ALED1VAL),
406 static const struct regmap_access_table afe4404_volatile_table = {
407 .yes_ranges = afe4404_yes_ranges,
408 .n_yes_ranges = ARRAY_SIZE(afe4404_yes_ranges),
411 static const struct regmap_config afe4404_regmap_config = {
412 .reg_bits = 8,
413 .val_bits = 24,
415 .max_register = AFE4404_AVG_LED1_ALED1VAL,
416 .cache_type = REGCACHE_RBTREE,
417 .volatile_table = &afe4404_volatile_table,
420 static const struct of_device_id afe4404_of_match[] = {
421 { .compatible = "ti,afe4404", },
422 { /* sentinel */ }
424 MODULE_DEVICE_TABLE(of, afe4404_of_match);
426 static int afe4404_suspend(struct device *dev)
428 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
429 struct afe4404_data *afe = iio_priv(indio_dev);
430 int ret;
432 ret = regmap_set_bits(afe->regmap, AFE440X_CONTROL2,
433 AFE440X_CONTROL2_PDN_AFE);
434 if (ret)
435 return ret;
437 ret = regulator_disable(afe->regulator);
438 if (ret) {
439 dev_err(dev, "Unable to disable regulator\n");
440 return ret;
443 return 0;
446 static int afe4404_resume(struct device *dev)
448 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
449 struct afe4404_data *afe = iio_priv(indio_dev);
450 int ret;
452 ret = regulator_enable(afe->regulator);
453 if (ret) {
454 dev_err(dev, "Unable to enable regulator\n");
455 return ret;
458 ret = regmap_clear_bits(afe->regmap, AFE440X_CONTROL2,
459 AFE440X_CONTROL2_PDN_AFE);
460 if (ret)
461 return ret;
463 return 0;
466 static DEFINE_SIMPLE_DEV_PM_OPS(afe4404_pm_ops, afe4404_suspend,
467 afe4404_resume);
469 static int afe4404_probe(struct i2c_client *client)
471 struct iio_dev *indio_dev;
472 struct afe4404_data *afe;
473 int i, ret;
475 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*afe));
476 if (!indio_dev)
477 return -ENOMEM;
479 afe = iio_priv(indio_dev);
480 i2c_set_clientdata(client, indio_dev);
482 afe->dev = &client->dev;
483 afe->irq = client->irq;
485 afe->regmap = devm_regmap_init_i2c(client, &afe4404_regmap_config);
486 if (IS_ERR(afe->regmap)) {
487 dev_err(afe->dev, "Unable to allocate register map\n");
488 return PTR_ERR(afe->regmap);
491 for (i = 0; i < F_MAX_FIELDS; i++) {
492 afe->fields[i] = devm_regmap_field_alloc(afe->dev, afe->regmap,
493 afe4404_reg_fields[i]);
494 if (IS_ERR(afe->fields[i])) {
495 dev_err(afe->dev, "Unable to allocate regmap fields\n");
496 return PTR_ERR(afe->fields[i]);
500 afe->regulator = devm_regulator_get(afe->dev, "tx_sup");
501 if (IS_ERR(afe->regulator))
502 return dev_err_probe(afe->dev, PTR_ERR(afe->regulator),
503 "Unable to get regulator\n");
505 ret = regulator_enable(afe->regulator);
506 if (ret) {
507 dev_err(afe->dev, "Unable to enable regulator\n");
508 return ret;
510 ret = devm_add_action_or_reset(afe->dev, afe4404_regulator_disable, afe->regulator);
511 if (ret) {
512 dev_err(afe->dev, "Unable to enable regulator\n");
513 return ret;
516 ret = regmap_write(afe->regmap, AFE440X_CONTROL0,
517 AFE440X_CONTROL0_SW_RESET);
518 if (ret) {
519 dev_err(afe->dev, "Unable to reset device\n");
520 return ret;
523 ret = regmap_multi_reg_write(afe->regmap, afe4404_reg_sequences,
524 ARRAY_SIZE(afe4404_reg_sequences));
525 if (ret) {
526 dev_err(afe->dev, "Unable to set register defaults\n");
527 return ret;
530 indio_dev->modes = INDIO_DIRECT_MODE;
531 indio_dev->channels = afe4404_channels;
532 indio_dev->num_channels = ARRAY_SIZE(afe4404_channels);
533 indio_dev->name = AFE4404_DRIVER_NAME;
534 indio_dev->info = &afe4404_iio_info;
536 if (afe->irq > 0) {
537 afe->trig = devm_iio_trigger_alloc(afe->dev,
538 "%s-dev%d",
539 indio_dev->name,
540 iio_device_id(indio_dev));
541 if (!afe->trig) {
542 dev_err(afe->dev, "Unable to allocate IIO trigger\n");
543 return -ENOMEM;
546 iio_trigger_set_drvdata(afe->trig, indio_dev);
548 ret = devm_iio_trigger_register(afe->dev, afe->trig);
549 if (ret) {
550 dev_err(afe->dev, "Unable to register IIO trigger\n");
551 return ret;
554 ret = devm_request_threaded_irq(afe->dev, afe->irq,
555 iio_trigger_generic_data_rdy_poll,
556 NULL, IRQF_ONESHOT,
557 AFE4404_DRIVER_NAME,
558 afe->trig);
559 if (ret) {
560 dev_err(afe->dev, "Unable to request IRQ\n");
561 return ret;
565 ret = devm_iio_triggered_buffer_setup(afe->dev, indio_dev,
566 &iio_pollfunc_store_time,
567 afe4404_trigger_handler, NULL);
568 if (ret) {
569 dev_err(afe->dev, "Unable to setup buffer\n");
570 return ret;
573 ret = devm_iio_device_register(afe->dev, indio_dev);
574 if (ret) {
575 dev_err(afe->dev, "Unable to register IIO device\n");
576 return ret;
579 return 0;
582 static const struct i2c_device_id afe4404_ids[] = {
583 { "afe4404" },
584 { /* sentinel */ }
586 MODULE_DEVICE_TABLE(i2c, afe4404_ids);
588 static struct i2c_driver afe4404_i2c_driver = {
589 .driver = {
590 .name = AFE4404_DRIVER_NAME,
591 .of_match_table = afe4404_of_match,
592 .pm = pm_sleep_ptr(&afe4404_pm_ops),
594 .probe = afe4404_probe,
595 .id_table = afe4404_ids,
597 module_i2c_driver(afe4404_i2c_driver);
599 MODULE_AUTHOR("Andrew F. Davis <afd@ti.com>");
600 MODULE_DESCRIPTION("TI AFE4404 Heart Rate Monitor and Pulse Oximeter AFE");
601 MODULE_LICENSE("GPL v2");