2 * This file is part of the Chelsio FCoE driver for Linux.
4 * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 #include <linux/kernel.h>
36 #include <linux/string.h>
37 #include <linux/compiler.h>
38 #include <linux/slab.h>
40 #include <linux/cache.h>
42 #include "t4_values.h"
46 #include "csio_defs.h"
48 int csio_intr_coalesce_cnt
; /* value:SGE_INGRESS_RX_THRESHOLD[0] */
49 static int csio_sge_thresh_reg
; /* SGE_INGRESS_RX_THRESHOLD[0] */
51 int csio_intr_coalesce_time
= 10; /* value:SGE_TIMER_VALUE_1 */
52 static int csio_sge_timer_reg
= 1;
54 #define CSIO_SET_FLBUF_SIZE(_hw, _reg, _val) \
55 csio_wr_reg32((_hw), (_val), SGE_FL_BUFFER_SIZE##_reg##_A)
58 csio_get_flbuf_size(struct csio_hw
*hw
, struct csio_sge
*sge
, uint32_t reg
)
60 sge
->sge_fl_buf_size
[reg
] = csio_rd_reg32(hw
, SGE_FL_BUFFER_SIZE0_A
+
61 reg
* sizeof(uint32_t));
64 /* Free list buffer size */
65 static inline uint32_t
66 csio_wr_fl_bufsz(struct csio_sge
*sge
, struct csio_dma_buf
*buf
)
68 return sge
->sge_fl_buf_size
[buf
->paddr
& 0xF];
71 /* Size of the egress queue status page */
72 static inline uint32_t
73 csio_wr_qstat_pgsz(struct csio_hw
*hw
)
75 return (hw
->wrm
.sge
.sge_control
& EGRSTATUSPAGESIZE_F
) ? 128 : 64;
78 /* Ring freelist doorbell */
80 csio_wr_ring_fldb(struct csio_hw
*hw
, struct csio_q
*flq
)
83 * Ring the doorbell only when we have atleast CSIO_QCREDIT_SZ
84 * number of bytes in the freelist queue. This translates to atleast
85 * 8 freelist buffer pointers (since each pointer is 8 bytes).
87 if (flq
->inc_idx
>= 8) {
88 csio_wr_reg32(hw
, DBPRIO_F
| QID_V(flq
->un
.fl
.flid
) |
89 PIDX_T5_V(flq
->inc_idx
/ 8) | DBTYPE_F
,
90 MYPF_REG(SGE_PF_KDOORBELL_A
));
95 /* Write a 0 cidx increment value to enable SGE interrupts for this queue */
97 csio_wr_sge_intr_enable(struct csio_hw
*hw
, uint16_t iqid
)
99 csio_wr_reg32(hw
, CIDXINC_V(0) |
101 TIMERREG_V(X_TIMERREG_RESTART_COUNTER
),
102 MYPF_REG(SGE_PF_GTS_A
));
106 * csio_wr_fill_fl - Populate the FL buffers of a FL queue.
108 * @flq: Freelist queue.
110 * Fill up freelist buffer entries with buffers of size specified
111 * in the size register.
115 csio_wr_fill_fl(struct csio_hw
*hw
, struct csio_q
*flq
)
117 struct csio_wrm
*wrm
= csio_hw_to_wrm(hw
);
118 struct csio_sge
*sge
= &wrm
->sge
;
119 __be64
*d
= (__be64
*)(flq
->vstart
);
120 struct csio_dma_buf
*buf
= &flq
->un
.fl
.bufs
[0];
122 int sreg
= flq
->un
.fl
.sreg
;
123 int n
= flq
->credits
;
126 buf
->len
= sge
->sge_fl_buf_size
[sreg
];
127 buf
->vaddr
= dma_alloc_coherent(&hw
->pdev
->dev
, buf
->len
,
128 &buf
->paddr
, GFP_KERNEL
);
130 csio_err(hw
, "Could only fill %d buffers!\n", n
+ 1);
134 paddr
= buf
->paddr
| (sreg
& 0xF);
136 *d
++ = cpu_to_be64(paddr
);
144 * csio_wr_update_fl -
146 * @flq: Freelist queue.
151 csio_wr_update_fl(struct csio_hw
*hw
, struct csio_q
*flq
, uint16_t n
)
156 if (unlikely(flq
->pidx
>= flq
->credits
))
157 flq
->pidx
-= (uint16_t)flq
->credits
;
159 CSIO_INC_STATS(flq
, n_flq_refill
);
163 * csio_wr_alloc_q - Allocate a WR queue and initialize it.
165 * @qsize: Size of the queue in bytes
166 * @wrsize: Since of WR in this queue, if fixed.
167 * @type: Type of queue (Ingress/Egress/Freelist)
168 * @owner: Module that owns this queue.
169 * @nflb: Number of freelist buffers for FL.
170 * @sreg: What is the FL buffer size register?
171 * @iq_int_handler: Ingress queue handler in INTx mode.
173 * This function allocates and sets up a queue for the caller
174 * of size qsize, aligned at the required boundary. This is subject to
175 * be free entries being available in the queue array. If one is found,
176 * it is initialized with the allocated queue, marked as being used (owner),
177 * and a handle returned to the caller in form of the queue's index
178 * into the q_arr array.
179 * If user has indicated a freelist (by specifying nflb > 0), create
180 * another queue (with its own index into q_arr) for the freelist. Allocate
181 * memory for DMA buffer metadata (vaddr, len etc). Save off the freelist
182 * idx in the ingress queue's flq.idx. This is how a Freelist is associated
183 * with its owning ingress queue.
186 csio_wr_alloc_q(struct csio_hw
*hw
, uint32_t qsize
, uint32_t wrsize
,
187 uint16_t type
, void *owner
, uint32_t nflb
, int sreg
,
188 iq_handler_t iq_intx_handler
)
190 struct csio_wrm
*wrm
= csio_hw_to_wrm(hw
);
191 struct csio_q
*q
, *flq
;
192 int free_idx
= wrm
->free_qidx
;
193 int ret_idx
= free_idx
;
197 if (free_idx
>= wrm
->num_q
) {
198 csio_err(hw
, "No more free queues.\n");
204 qsz
= ALIGN(qsize
, CSIO_QCREDIT_SZ
) + csio_wr_qstat_pgsz(hw
);
214 csio_err(hw
, "Invalid Ingress queue WR size:%d\n",
220 * Number of elements must be a multiple of 16
221 * So this includes status page size
223 qsz
= ALIGN(qsize
/wrsize
, 16) * wrsize
;
227 qsz
= ALIGN(qsize
/wrsize
, 8) * wrsize
+ csio_wr_qstat_pgsz(hw
);
230 csio_err(hw
, "Invalid queue type: 0x%x\n", type
);
234 q
= wrm
->q_arr
[free_idx
];
236 q
->vstart
= dma_alloc_coherent(&hw
->pdev
->dev
, qsz
, &q
->pstart
,
240 "Failed to allocate DMA memory for "
241 "queue at id: %d size: %d\n", free_idx
, qsize
);
247 q
->pidx
= q
->cidx
= q
->inc_idx
= 0;
249 q
->wr_sz
= wrsize
; /* If using fixed size WRs */
253 if (type
== CSIO_INGRESS
) {
254 /* Since queue area is set to zero */
258 * Ingress queue status page size is always the size of
259 * the ingress queue entry.
261 q
->credits
= (qsz
- q
->wr_sz
) / q
->wr_sz
;
262 q
->vwrap
= (void *)((uintptr_t)(q
->vstart
) + qsz
265 /* Allocate memory for FL if requested */
267 flq_idx
= csio_wr_alloc_q(hw
, nflb
* sizeof(__be64
),
268 sizeof(__be64
), CSIO_FREELIST
,
269 owner
, 0, sreg
, NULL
);
272 "Failed to allocate FL queue"
273 " for IQ idx:%d\n", free_idx
);
277 /* Associate the new FL with the Ingress quue */
278 q
->un
.iq
.flq_idx
= flq_idx
;
280 flq
= wrm
->q_arr
[q
->un
.iq
.flq_idx
];
281 flq
->un
.fl
.bufs
= kcalloc(flq
->credits
,
282 sizeof(struct csio_dma_buf
),
284 if (!flq
->un
.fl
.bufs
) {
286 "Failed to allocate FL queue bufs"
287 " for IQ idx:%d\n", free_idx
);
291 flq
->un
.fl
.packen
= 0;
292 flq
->un
.fl
.offset
= 0;
293 flq
->un
.fl
.sreg
= sreg
;
295 /* Fill up the free list buffers */
296 if (csio_wr_fill_fl(hw
, flq
))
300 * Make sure in a FLQ, atleast 1 credit (8 FL buffers)
301 * remains unpopulated,otherwise HW thinks
304 flq
->pidx
= flq
->inc_idx
= flq
->credits
- 8;
306 q
->un
.iq
.flq_idx
= -1;
309 /* Associate the IQ INTx handler. */
310 q
->un
.iq
.iq_intx_handler
= iq_intx_handler
;
312 csio_q_iqid(hw
, ret_idx
) = CSIO_MAX_QID
;
314 } else if (type
== CSIO_EGRESS
) {
315 q
->credits
= (qsz
- csio_wr_qstat_pgsz(hw
)) / CSIO_QCREDIT_SZ
;
316 q
->vwrap
= (void *)((uintptr_t)(q
->vstart
) + qsz
317 - csio_wr_qstat_pgsz(hw
));
318 csio_q_eqid(hw
, ret_idx
) = CSIO_MAX_QID
;
319 } else { /* Freelist */
320 q
->credits
= (qsz
- csio_wr_qstat_pgsz(hw
)) / sizeof(__be64
);
321 q
->vwrap
= (void *)((uintptr_t)(q
->vstart
) + qsz
322 - csio_wr_qstat_pgsz(hw
));
323 csio_q_flid(hw
, ret_idx
) = CSIO_MAX_QID
;
330 * csio_wr_iq_create_rsp - Response handler for IQ creation.
331 * @hw: The HW module.
333 * @iq_idx: Ingress queue that got created.
335 * Handle FW_IQ_CMD mailbox completion. Save off the assigned IQ/FL ids.
338 csio_wr_iq_create_rsp(struct csio_hw
*hw
, struct csio_mb
*mbp
, int iq_idx
)
340 struct csio_iq_params iqp
;
341 enum fw_retval retval
;
345 memset(&iqp
, 0, sizeof(struct csio_iq_params
));
347 csio_mb_iq_alloc_write_rsp(hw
, mbp
, &retval
, &iqp
);
349 if (retval
!= FW_SUCCESS
) {
350 csio_err(hw
, "IQ cmd returned 0x%x!\n", retval
);
351 mempool_free(mbp
, hw
->mb_mempool
);
355 csio_q_iqid(hw
, iq_idx
) = iqp
.iqid
;
356 csio_q_physiqid(hw
, iq_idx
) = iqp
.physiqid
;
357 csio_q_pidx(hw
, iq_idx
) = csio_q_cidx(hw
, iq_idx
) = 0;
358 csio_q_inc_idx(hw
, iq_idx
) = 0;
361 iq_id
= iqp
.iqid
- hw
->wrm
.fw_iq_start
;
363 /* Set the iq-id to iq map table. */
364 if (iq_id
>= CSIO_MAX_IQ
) {
366 "Exceeding MAX_IQ(%d) supported!"
367 " iqid:%d rel_iqid:%d FW iq_start:%d\n",
368 CSIO_MAX_IQ
, iq_id
, iqp
.iqid
, hw
->wrm
.fw_iq_start
);
369 mempool_free(mbp
, hw
->mb_mempool
);
372 csio_q_set_intr_map(hw
, iq_idx
, iq_id
);
375 * During FW_IQ_CMD, FW sets interrupt_sent bit to 1 in the SGE
376 * ingress context of this queue. This will block interrupts to
377 * this queue until the next GTS write. Therefore, we do a
378 * 0-cidx increment GTS write for this queue just to clear the
379 * interrupt_sent bit. This will re-enable interrupts to this
382 csio_wr_sge_intr_enable(hw
, iqp
.physiqid
);
384 flq_idx
= csio_q_iq_flq_idx(hw
, iq_idx
);
386 struct csio_q
*flq
= hw
->wrm
.q_arr
[flq_idx
];
388 csio_q_flid(hw
, flq_idx
) = iqp
.fl0id
;
389 csio_q_cidx(hw
, flq_idx
) = 0;
390 csio_q_pidx(hw
, flq_idx
) = csio_q_credits(hw
, flq_idx
) - 8;
391 csio_q_inc_idx(hw
, flq_idx
) = csio_q_credits(hw
, flq_idx
) - 8;
393 /* Now update SGE about the buffers allocated during init */
394 csio_wr_ring_fldb(hw
, flq
);
397 mempool_free(mbp
, hw
->mb_mempool
);
403 * csio_wr_iq_create - Configure an Ingress queue with FW.
404 * @hw: The HW module.
405 * @priv: Private data object.
406 * @iq_idx: Ingress queue index in the WR module.
408 * @portid: PCIE Channel to be associated with this queue.
409 * @async: Is this a FW asynchronous message handling queue?
410 * @cbfn: Completion callback.
412 * This API configures an ingress queue with FW by issuing a FW_IQ_CMD mailbox
413 * with alloc/write bits set.
416 csio_wr_iq_create(struct csio_hw
*hw
, void *priv
, int iq_idx
,
417 uint32_t vec
, uint8_t portid
, bool async
,
418 void (*cbfn
) (struct csio_hw
*, struct csio_mb
*))
421 struct csio_iq_params iqp
;
424 memset(&iqp
, 0, sizeof(struct csio_iq_params
));
425 csio_q_portid(hw
, iq_idx
) = portid
;
427 mbp
= mempool_alloc(hw
->mb_mempool
, GFP_ATOMIC
);
429 csio_err(hw
, "IQ command out of memory!\n");
433 switch (hw
->intr_mode
) {
436 /* For interrupt forwarding queue only */
437 if (hw
->intr_iq_idx
== iq_idx
)
438 iqp
.iqandst
= X_INTERRUPTDESTINATION_PCIE
;
440 iqp
.iqandst
= X_INTERRUPTDESTINATION_IQ
;
442 csio_q_physiqid(hw
, hw
->intr_iq_idx
);
445 iqp
.iqandst
= X_INTERRUPTDESTINATION_PCIE
;
446 iqp
.iqandstindex
= (uint16_t)vec
;
449 mempool_free(mbp
, hw
->mb_mempool
);
453 /* Pass in the ingress queue cmd parameters */
458 iqp
.type
= FW_IQ_TYPE_FL_INT_CAP
;
459 iqp
.iqasynch
= async
;
460 if (csio_intr_coalesce_cnt
)
461 iqp
.iqanus
= X_UPDATESCHEDULING_COUNTER_OPTTIMER
;
463 iqp
.iqanus
= X_UPDATESCHEDULING_TIMER
;
464 iqp
.iqanud
= X_UPDATEDELIVERY_INTERRUPT
;
465 iqp
.iqpciech
= portid
;
466 iqp
.iqintcntthresh
= (uint8_t)csio_sge_thresh_reg
;
468 switch (csio_q_wr_sz(hw
, iq_idx
)) {
470 iqp
.iqesize
= 0; break;
472 iqp
.iqesize
= 1; break;
474 iqp
.iqesize
= 2; break;
476 iqp
.iqesize
= 3; break;
479 iqp
.iqsize
= csio_q_size(hw
, iq_idx
) /
480 csio_q_wr_sz(hw
, iq_idx
);
481 iqp
.iqaddr
= csio_q_pstart(hw
, iq_idx
);
483 flq_idx
= csio_q_iq_flq_idx(hw
, iq_idx
);
485 enum chip_type chip
= CHELSIO_CHIP_VERSION(hw
->chip_id
);
486 struct csio_q
*flq
= hw
->wrm
.q_arr
[flq_idx
];
489 iqp
.fl0packen
= flq
->un
.fl
.packen
? 1 : 0;
490 iqp
.fl0fbmin
= X_FETCHBURSTMIN_64B
;
491 iqp
.fl0fbmax
= ((chip
== CHELSIO_T5
) ?
492 X_FETCHBURSTMAX_512B
: X_FETCHBURSTMAX_256B
);
493 iqp
.fl0size
= csio_q_size(hw
, flq_idx
) / CSIO_QCREDIT_SZ
;
494 iqp
.fl0addr
= csio_q_pstart(hw
, flq_idx
);
497 csio_mb_iq_alloc_write(hw
, mbp
, priv
, CSIO_MB_DEFAULT_TMO
, &iqp
, cbfn
);
499 if (csio_mb_issue(hw
, mbp
)) {
500 csio_err(hw
, "Issue of IQ cmd failed!\n");
501 mempool_free(mbp
, hw
->mb_mempool
);
508 return csio_wr_iq_create_rsp(hw
, mbp
, iq_idx
);
512 * csio_wr_eq_create_rsp - Response handler for EQ creation.
513 * @hw: The HW module.
515 * @eq_idx: Egress queue that got created.
517 * Handle FW_EQ_OFLD_CMD mailbox completion. Save off the assigned EQ ids.
520 csio_wr_eq_cfg_rsp(struct csio_hw
*hw
, struct csio_mb
*mbp
, int eq_idx
)
522 struct csio_eq_params eqp
;
523 enum fw_retval retval
;
525 memset(&eqp
, 0, sizeof(struct csio_eq_params
));
527 csio_mb_eq_ofld_alloc_write_rsp(hw
, mbp
, &retval
, &eqp
);
529 if (retval
!= FW_SUCCESS
) {
530 csio_err(hw
, "EQ OFLD cmd returned 0x%x!\n", retval
);
531 mempool_free(mbp
, hw
->mb_mempool
);
535 csio_q_eqid(hw
, eq_idx
) = (uint16_t)eqp
.eqid
;
536 csio_q_physeqid(hw
, eq_idx
) = (uint16_t)eqp
.physeqid
;
537 csio_q_pidx(hw
, eq_idx
) = csio_q_cidx(hw
, eq_idx
) = 0;
538 csio_q_inc_idx(hw
, eq_idx
) = 0;
540 mempool_free(mbp
, hw
->mb_mempool
);
546 * csio_wr_eq_create - Configure an Egress queue with FW.
548 * @priv: Private data.
549 * @eq_idx: Egress queue index in the WR module.
550 * @iq_idx: Associated ingress queue index.
551 * @cbfn: Completion callback.
553 * This API configures a offload egress queue with FW by issuing a
554 * FW_EQ_OFLD_CMD (with alloc + write ) mailbox.
557 csio_wr_eq_create(struct csio_hw
*hw
, void *priv
, int eq_idx
,
558 int iq_idx
, uint8_t portid
,
559 void (*cbfn
) (struct csio_hw
*, struct csio_mb
*))
562 struct csio_eq_params eqp
;
564 memset(&eqp
, 0, sizeof(struct csio_eq_params
));
566 mbp
= mempool_alloc(hw
->mb_mempool
, GFP_ATOMIC
);
568 csio_err(hw
, "EQ command out of memory!\n");
575 eqp
.hostfcmode
= X_HOSTFCMODE_STATUS_PAGE
;
576 eqp
.iqid
= csio_q_iqid(hw
, iq_idx
);
577 eqp
.fbmin
= X_FETCHBURSTMIN_64B
;
578 eqp
.fbmax
= X_FETCHBURSTMAX_512B
;
580 eqp
.pciechn
= portid
;
581 eqp
.eqsize
= csio_q_size(hw
, eq_idx
) / CSIO_QCREDIT_SZ
;
582 eqp
.eqaddr
= csio_q_pstart(hw
, eq_idx
);
584 csio_mb_eq_ofld_alloc_write(hw
, mbp
, priv
, CSIO_MB_DEFAULT_TMO
,
587 if (csio_mb_issue(hw
, mbp
)) {
588 csio_err(hw
, "Issue of EQ OFLD cmd failed!\n");
589 mempool_free(mbp
, hw
->mb_mempool
);
596 return csio_wr_eq_cfg_rsp(hw
, mbp
, eq_idx
);
600 * csio_wr_iq_destroy_rsp - Response handler for IQ removal.
601 * @hw: The HW module.
603 * @iq_idx: Ingress queue that was freed.
605 * Handle FW_IQ_CMD (free) mailbox completion.
608 csio_wr_iq_destroy_rsp(struct csio_hw
*hw
, struct csio_mb
*mbp
, int iq_idx
)
610 enum fw_retval retval
= csio_mb_fw_retval(mbp
);
613 if (retval
!= FW_SUCCESS
)
616 mempool_free(mbp
, hw
->mb_mempool
);
622 * csio_wr_iq_destroy - Free an ingress queue.
623 * @hw: The HW module.
624 * @priv: Private data object.
625 * @iq_idx: Ingress queue index to destroy
626 * @cbfn: Completion callback.
628 * This API frees an ingress queue by issuing the FW_IQ_CMD
629 * with the free bit set.
632 csio_wr_iq_destroy(struct csio_hw
*hw
, void *priv
, int iq_idx
,
633 void (*cbfn
)(struct csio_hw
*, struct csio_mb
*))
637 struct csio_iq_params iqp
;
640 memset(&iqp
, 0, sizeof(struct csio_iq_params
));
642 mbp
= mempool_alloc(hw
->mb_mempool
, GFP_ATOMIC
);
648 iqp
.iqid
= csio_q_iqid(hw
, iq_idx
);
649 iqp
.type
= FW_IQ_TYPE_FL_INT_CAP
;
651 flq_idx
= csio_q_iq_flq_idx(hw
, iq_idx
);
653 iqp
.fl0id
= csio_q_flid(hw
, flq_idx
);
659 csio_mb_iq_free(hw
, mbp
, priv
, CSIO_MB_DEFAULT_TMO
, &iqp
, cbfn
);
661 rv
= csio_mb_issue(hw
, mbp
);
663 mempool_free(mbp
, hw
->mb_mempool
);
670 return csio_wr_iq_destroy_rsp(hw
, mbp
, iq_idx
);
674 * csio_wr_eq_destroy_rsp - Response handler for OFLD EQ creation.
675 * @hw: The HW module.
677 * @eq_idx: Egress queue that was freed.
679 * Handle FW_OFLD_EQ_CMD (free) mailbox completion.
682 csio_wr_eq_destroy_rsp(struct csio_hw
*hw
, struct csio_mb
*mbp
, int eq_idx
)
684 enum fw_retval retval
= csio_mb_fw_retval(mbp
);
687 if (retval
!= FW_SUCCESS
)
690 mempool_free(mbp
, hw
->mb_mempool
);
696 * csio_wr_eq_destroy - Free an Egress queue.
697 * @hw: The HW module.
698 * @priv: Private data object.
699 * @eq_idx: Egress queue index to destroy
700 * @cbfn: Completion callback.
702 * This API frees an Egress queue by issuing the FW_EQ_OFLD_CMD
703 * with the free bit set.
706 csio_wr_eq_destroy(struct csio_hw
*hw
, void *priv
, int eq_idx
,
707 void (*cbfn
) (struct csio_hw
*, struct csio_mb
*))
711 struct csio_eq_params eqp
;
713 memset(&eqp
, 0, sizeof(struct csio_eq_params
));
715 mbp
= mempool_alloc(hw
->mb_mempool
, GFP_ATOMIC
);
721 eqp
.eqid
= csio_q_eqid(hw
, eq_idx
);
723 csio_mb_eq_ofld_free(hw
, mbp
, priv
, CSIO_MB_DEFAULT_TMO
, &eqp
, cbfn
);
725 rv
= csio_mb_issue(hw
, mbp
);
727 mempool_free(mbp
, hw
->mb_mempool
);
734 return csio_wr_eq_destroy_rsp(hw
, mbp
, eq_idx
);
738 * csio_wr_cleanup_eq_stpg - Cleanup Egress queue status page
740 * @qidx: Egress queue index
742 * Cleanup the Egress queue status page.
745 csio_wr_cleanup_eq_stpg(struct csio_hw
*hw
, int qidx
)
747 struct csio_q
*q
= csio_hw_to_wrm(hw
)->q_arr
[qidx
];
748 struct csio_qstatus_page
*stp
= (struct csio_qstatus_page
*)q
->vwrap
;
750 memset(stp
, 0, sizeof(*stp
));
754 * csio_wr_cleanup_iq_ftr - Cleanup Footer entries in IQ
756 * @qidx: Ingress queue index
758 * Cleanup the footer entries in the given ingress queue,
759 * set to 1 the internal copy of genbit.
762 csio_wr_cleanup_iq_ftr(struct csio_hw
*hw
, int qidx
)
764 struct csio_wrm
*wrm
= csio_hw_to_wrm(hw
);
765 struct csio_q
*q
= wrm
->q_arr
[qidx
];
767 struct csio_iqwr_footer
*ftr
;
770 /* set to 1 since we are just about zero out genbit */
773 for (i
= 0; i
< q
->credits
; i
++) {
775 wr
= (void *)((uintptr_t)q
->vstart
+
778 ftr
= (struct csio_iqwr_footer
*)((uintptr_t)wr
+
779 (q
->wr_sz
- sizeof(*ftr
)));
780 /* Zero out footer */
781 memset(ftr
, 0, sizeof(*ftr
));
786 csio_wr_destroy_queues(struct csio_hw
*hw
, bool cmd
)
790 struct csio_wrm
*wrm
= csio_hw_to_wrm(hw
);
793 for (i
= 0; i
< wrm
->free_qidx
; i
++) {
798 if (csio_q_eqid(hw
, i
) != CSIO_MAX_QID
) {
799 csio_wr_cleanup_eq_stpg(hw
, i
);
801 csio_q_eqid(hw
, i
) = CSIO_MAX_QID
;
805 rv
= csio_wr_eq_destroy(hw
, NULL
, i
, NULL
);
806 if ((rv
== -EBUSY
) || (rv
== -ETIMEDOUT
))
809 csio_q_eqid(hw
, i
) = CSIO_MAX_QID
;
813 if (csio_q_iqid(hw
, i
) != CSIO_MAX_QID
) {
814 csio_wr_cleanup_iq_ftr(hw
, i
);
816 csio_q_iqid(hw
, i
) = CSIO_MAX_QID
;
817 flq_idx
= csio_q_iq_flq_idx(hw
, i
);
819 csio_q_flid(hw
, flq_idx
) =
824 rv
= csio_wr_iq_destroy(hw
, NULL
, i
, NULL
);
825 if ((rv
== -EBUSY
) || (rv
== -ETIMEDOUT
))
828 csio_q_iqid(hw
, i
) = CSIO_MAX_QID
;
829 flq_idx
= csio_q_iq_flq_idx(hw
, i
);
831 csio_q_flid(hw
, flq_idx
) = CSIO_MAX_QID
;
839 hw
->flags
&= ~CSIO_HWF_Q_FW_ALLOCED
;
845 * csio_wr_get - Get requested size of WR entry/entries from queue.
847 * @qidx: Index of queue.
848 * @size: Cumulative size of Work request(s).
849 * @wrp: Work request pair.
851 * If requested credits are available, return the start address of the
852 * work request in the work request pair. Set pidx accordingly and
855 * NOTE about WR pair:
857 * A WR can start towards the end of a queue, and then continue at the
858 * beginning, since the queue is considered to be circular. This will
859 * require a pair of address/size to be passed back to the caller -
860 * hence Work request pair format.
863 csio_wr_get(struct csio_hw
*hw
, int qidx
, uint32_t size
,
864 struct csio_wr_pair
*wrp
)
866 struct csio_wrm
*wrm
= csio_hw_to_wrm(hw
);
867 struct csio_q
*q
= wrm
->q_arr
[qidx
];
868 void *cwr
= (void *)((uintptr_t)(q
->vstart
) +
869 (q
->pidx
* CSIO_QCREDIT_SZ
));
870 struct csio_qstatus_page
*stp
= (struct csio_qstatus_page
*)q
->vwrap
;
871 uint16_t cidx
= q
->cidx
= ntohs(stp
->cidx
);
872 uint16_t pidx
= q
->pidx
;
873 uint32_t req_sz
= ALIGN(size
, CSIO_QCREDIT_SZ
);
874 int req_credits
= req_sz
/ CSIO_QCREDIT_SZ
;
877 CSIO_DB_ASSERT(q
->owner
!= NULL
);
878 CSIO_DB_ASSERT((qidx
>= 0) && (qidx
< wrm
->free_qidx
));
879 CSIO_DB_ASSERT(cidx
<= q
->credits
);
881 /* Calculate credits */
883 credits
= q
->credits
- (pidx
- cidx
) - 1;
884 } else if (cidx
> pidx
) {
885 credits
= cidx
- pidx
- 1;
887 /* cidx == pidx, empty queue */
888 credits
= q
->credits
;
889 CSIO_INC_STATS(q
, n_qempty
);
893 * Check if we have enough credits.
894 * credits = 1 implies queue is full.
896 if (!credits
|| (req_credits
> credits
)) {
897 CSIO_INC_STATS(q
, n_qfull
);
902 * If we are here, we have enough credits to satisfy the
903 * request. Check if we are near the end of q, and if WR spills over.
904 * If it does, use the first addr/size to cover the queue until
905 * the end. Fit the remainder portion of the request at the top
906 * of queue and return it in the second addr/len. Set pidx
909 if (unlikely(((uintptr_t)cwr
+ req_sz
) > (uintptr_t)(q
->vwrap
))) {
911 wrp
->size1
= (uint32_t)((uintptr_t)q
->vwrap
- (uintptr_t)cwr
);
912 wrp
->addr2
= q
->vstart
;
913 wrp
->size2
= req_sz
- wrp
->size1
;
914 q
->pidx
= (uint16_t)(ALIGN(wrp
->size2
, CSIO_QCREDIT_SZ
) /
916 CSIO_INC_STATS(q
, n_qwrap
);
917 CSIO_INC_STATS(q
, n_eq_wr_split
);
923 q
->pidx
+= (uint16_t)req_credits
;
925 /* We are the end of queue, roll back pidx to top of queue */
926 if (unlikely(q
->pidx
== q
->credits
)) {
928 CSIO_INC_STATS(q
, n_qwrap
);
932 q
->inc_idx
= (uint16_t)req_credits
;
934 CSIO_INC_STATS(q
, n_tot_reqs
);
940 * csio_wr_copy_to_wrp - Copies given data into WR.
941 * @data_buf - Data buffer
942 * @wrp - Work request pair.
943 * @wr_off - Work request offset.
944 * @data_len - Data length.
946 * Copies the given data in Work Request. Work request pair(wrp) specifies
947 * address information of Work request.
951 csio_wr_copy_to_wrp(void *data_buf
, struct csio_wr_pair
*wrp
,
952 uint32_t wr_off
, uint32_t data_len
)
956 /* Number of space available in buffer addr1 of WRP */
957 nbytes
= ((wrp
->size1
- wr_off
) >= data_len
) ?
958 data_len
: (wrp
->size1
- wr_off
);
960 memcpy((uint8_t *) wrp
->addr1
+ wr_off
, data_buf
, nbytes
);
963 /* Write the remaining data from the begining of circular buffer */
965 CSIO_DB_ASSERT(data_len
<= wrp
->size2
);
966 CSIO_DB_ASSERT(wrp
->addr2
!= NULL
);
967 memcpy(wrp
->addr2
, (uint8_t *) data_buf
+ nbytes
, data_len
);
972 * csio_wr_issue - Notify chip of Work request.
974 * @qidx: Index of queue.
975 * @prio: 0: Low priority, 1: High priority
977 * Rings the SGE Doorbell by writing the current producer index of the passed
978 * in queue into the register.
982 csio_wr_issue(struct csio_hw
*hw
, int qidx
, bool prio
)
984 struct csio_wrm
*wrm
= csio_hw_to_wrm(hw
);
985 struct csio_q
*q
= wrm
->q_arr
[qidx
];
987 CSIO_DB_ASSERT((qidx
>= 0) && (qidx
< wrm
->free_qidx
));
990 /* Ring SGE Doorbell writing q->pidx into it */
991 csio_wr_reg32(hw
, DBPRIO_V(prio
) | QID_V(q
->un
.eq
.physeqid
) |
992 PIDX_T5_V(q
->inc_idx
) | DBTYPE_F
,
993 MYPF_REG(SGE_PF_KDOORBELL_A
));
999 static inline uint32_t
1000 csio_wr_avail_qcredits(struct csio_q
*q
)
1002 if (q
->pidx
> q
->cidx
)
1003 return q
->pidx
- q
->cidx
;
1004 else if (q
->cidx
> q
->pidx
)
1005 return q
->credits
- (q
->cidx
- q
->pidx
);
1007 return 0; /* cidx == pidx, empty queue */
1011 * csio_wr_inval_flq_buf - Invalidate a free list buffer entry.
1013 * @flq: The freelist queue.
1015 * Invalidate the driver's version of a freelist buffer entry,
1016 * without freeing the associated the DMA memory. The entry
1017 * to be invalidated is picked up from the current Free list
1022 csio_wr_inval_flq_buf(struct csio_hw
*hw
, struct csio_q
*flq
)
1025 if (flq
->cidx
== flq
->credits
) {
1027 CSIO_INC_STATS(flq
, n_qwrap
);
1032 * csio_wr_process_fl - Process a freelist completion.
1034 * @q: The ingress queue attached to the Freelist.
1035 * @wr: The freelist completion WR in the ingress queue.
1036 * @len_to_qid: The lower 32-bits of the first flit of the RSP footer
1037 * @iq_handler: Caller's handler for this completion.
1038 * @priv: Private pointer of caller
1042 csio_wr_process_fl(struct csio_hw
*hw
, struct csio_q
*q
,
1043 void *wr
, uint32_t len_to_qid
,
1044 void (*iq_handler
)(struct csio_hw
*, void *,
1045 uint32_t, struct csio_fl_dma_buf
*,
1049 struct csio_wrm
*wrm
= csio_hw_to_wrm(hw
);
1050 struct csio_sge
*sge
= &wrm
->sge
;
1051 struct csio_fl_dma_buf flb
;
1052 struct csio_dma_buf
*buf
, *fbuf
;
1053 uint32_t bufsz
, len
, lastlen
= 0;
1054 struct csio_q
*flq
= hw
->wrm
.q_arr
[q
->un
.iq
.flq_idx
];
1056 CSIO_DB_ASSERT(flq
!= NULL
);
1060 if (len
& IQWRF_NEWBUF
) {
1061 if (flq
->un
.fl
.offset
> 0) {
1062 csio_wr_inval_flq_buf(hw
, flq
);
1063 flq
->un
.fl
.offset
= 0;
1065 len
= IQWRF_LEN_GET(len
);
1068 CSIO_DB_ASSERT(len
!= 0);
1072 /* Consume all freelist buffers used for len bytes */
1073 for (fbuf
= flb
.flbufs
; ; fbuf
++) {
1074 buf
= &flq
->un
.fl
.bufs
[flq
->cidx
];
1075 bufsz
= csio_wr_fl_bufsz(sge
, buf
);
1077 fbuf
->paddr
= buf
->paddr
;
1078 fbuf
->vaddr
= buf
->vaddr
;
1080 flb
.offset
= flq
->un
.fl
.offset
;
1081 lastlen
= min(bufsz
, len
);
1082 fbuf
->len
= lastlen
;
1087 csio_wr_inval_flq_buf(hw
, flq
);
1090 flb
.defer_free
= flq
->un
.fl
.packen
? 0 : 1;
1092 iq_handler(hw
, wr
, q
->wr_sz
- sizeof(struct csio_iqwr_footer
),
1095 if (flq
->un
.fl
.packen
)
1096 flq
->un
.fl
.offset
+= ALIGN(lastlen
, sge
->csio_fl_align
);
1098 csio_wr_inval_flq_buf(hw
, flq
);
1103 * csio_is_new_iqwr - Is this a new Ingress queue entry ?
1104 * @q: Ingress quueue.
1105 * @ftr: Ingress queue WR SGE footer.
1107 * The entry is new if our generation bit matches the corresponding
1108 * bit in the footer of the current WR.
1111 csio_is_new_iqwr(struct csio_q
*q
, struct csio_iqwr_footer
*ftr
)
1113 return (q
->un
.iq
.genbit
== (ftr
->u
.type_gen
>> IQWRF_GEN_SHIFT
));
1117 * csio_wr_process_iq - Process elements in Ingress queue.
1119 * @qidx: Index of queue
1120 * @iq_handler: Handler for this queue
1121 * @priv: Caller's private pointer
1123 * This routine walks through every entry of the ingress queue, calling
1124 * the provided iq_handler with the entry, until the generation bit
1128 csio_wr_process_iq(struct csio_hw
*hw
, struct csio_q
*q
,
1129 void (*iq_handler
)(struct csio_hw
*, void *,
1130 uint32_t, struct csio_fl_dma_buf
*,
1134 struct csio_wrm
*wrm
= csio_hw_to_wrm(hw
);
1135 void *wr
= (void *)((uintptr_t)q
->vstart
+ (q
->cidx
* q
->wr_sz
));
1136 struct csio_iqwr_footer
*ftr
;
1137 uint32_t wr_type
, fw_qid
, qid
;
1138 struct csio_q
*q_completed
;
1139 struct csio_q
*flq
= csio_iq_has_fl(q
) ?
1140 wrm
->q_arr
[q
->un
.iq
.flq_idx
] : NULL
;
1143 /* Get the footer */
1144 ftr
= (struct csio_iqwr_footer
*)((uintptr_t)wr
+
1145 (q
->wr_sz
- sizeof(*ftr
)));
1148 * When q wrapped around last time, driver should have inverted
1149 * ic.genbit as well.
1151 while (csio_is_new_iqwr(q
, ftr
)) {
1153 CSIO_DB_ASSERT(((uintptr_t)wr
+ q
->wr_sz
) <=
1154 (uintptr_t)q
->vwrap
);
1156 wr_type
= IQWRF_TYPE_GET(ftr
->u
.type_gen
);
1159 case X_RSPD_TYPE_CPL
:
1160 /* Subtract footer from WR len */
1161 iq_handler(hw
, wr
, q
->wr_sz
- sizeof(*ftr
), NULL
, priv
);
1163 case X_RSPD_TYPE_FLBUF
:
1164 csio_wr_process_fl(hw
, q
, wr
,
1165 ntohl(ftr
->pldbuflen_qid
),
1168 case X_RSPD_TYPE_INTR
:
1169 fw_qid
= ntohl(ftr
->pldbuflen_qid
);
1170 qid
= fw_qid
- wrm
->fw_iq_start
;
1171 q_completed
= hw
->wrm
.intr_map
[qid
];
1174 csio_q_physiqid(hw
, hw
->intr_iq_idx
))) {
1176 * We are already in the Forward Interrupt
1177 * Interrupt Queue Service! Do-not service
1182 CSIO_DB_ASSERT(q_completed
);
1184 q_completed
->un
.iq
.iq_intx_handler
);
1186 /* Call the queue handler. */
1187 q_completed
->un
.iq
.iq_intx_handler(hw
, NULL
,
1188 0, NULL
, (void *)q_completed
);
1192 csio_warn(hw
, "Unknown resp type 0x%x received\n",
1194 CSIO_INC_STATS(q
, n_rsp_unknown
);
1199 * Ingress *always* has fixed size WR entries. Therefore,
1200 * there should always be complete WRs towards the end of
1203 if (((uintptr_t)wr
+ q
->wr_sz
) == (uintptr_t)q
->vwrap
) {
1205 /* Roll over to start of queue */
1210 q
->un
.iq
.genbit
^= 0x1;
1212 CSIO_INC_STATS(q
, n_qwrap
);
1215 wr
= (void *)((uintptr_t)(q
->vstart
) +
1216 (q
->cidx
* q
->wr_sz
));
1219 ftr
= (struct csio_iqwr_footer
*)((uintptr_t)wr
+
1220 (q
->wr_sz
- sizeof(*ftr
)));
1223 } /* while (q->un.iq.genbit == hdr->genbit) */
1226 * We need to re-arm SGE interrupts in case we got a stray interrupt,
1227 * especially in msix mode. With INTx, this may be a common occurence.
1229 if (unlikely(!q
->inc_idx
)) {
1230 CSIO_INC_STATS(q
, n_stray_comp
);
1235 /* Replenish free list buffers if pending falls below low water mark */
1237 uint32_t avail
= csio_wr_avail_qcredits(flq
);
1239 /* Make sure in FLQ, atleast 1 credit (8 FL buffers)
1240 * remains unpopulated otherwise HW thinks
1243 csio_wr_update_fl(hw
, flq
, (flq
->credits
- 8) - avail
);
1244 csio_wr_ring_fldb(hw
, flq
);
1249 /* Now inform SGE about our incremental index value */
1250 csio_wr_reg32(hw
, CIDXINC_V(q
->inc_idx
) |
1251 INGRESSQID_V(q
->un
.iq
.physiqid
) |
1252 TIMERREG_V(csio_sge_timer_reg
),
1253 MYPF_REG(SGE_PF_GTS_A
));
1254 q
->stats
.n_tot_rsps
+= q
->inc_idx
;
1262 csio_wr_process_iq_idx(struct csio_hw
*hw
, int qidx
,
1263 void (*iq_handler
)(struct csio_hw
*, void *,
1264 uint32_t, struct csio_fl_dma_buf
*,
1268 struct csio_wrm
*wrm
= csio_hw_to_wrm(hw
);
1269 struct csio_q
*iq
= wrm
->q_arr
[qidx
];
1271 return csio_wr_process_iq(hw
, iq
, iq_handler
, priv
);
1275 csio_closest_timer(struct csio_sge
*s
, int time
)
1277 int i
, delta
, match
= 0, min_delta
= INT_MAX
;
1279 for (i
= 0; i
< ARRAY_SIZE(s
->timer_val
); i
++) {
1280 delta
= time
- s
->timer_val
[i
];
1283 if (delta
< min_delta
) {
1292 csio_closest_thresh(struct csio_sge
*s
, int cnt
)
1294 int i
, delta
, match
= 0, min_delta
= INT_MAX
;
1296 for (i
= 0; i
< ARRAY_SIZE(s
->counter_val
); i
++) {
1297 delta
= cnt
- s
->counter_val
[i
];
1300 if (delta
< min_delta
) {
1309 csio_wr_fixup_host_params(struct csio_hw
*hw
)
1311 struct csio_wrm
*wrm
= csio_hw_to_wrm(hw
);
1312 struct csio_sge
*sge
= &wrm
->sge
;
1313 uint32_t clsz
= L1_CACHE_BYTES
;
1314 uint32_t s_hps
= PAGE_SHIFT
- 10;
1315 uint32_t stat_len
= clsz
> 64 ? 128 : 64;
1316 u32 fl_align
= clsz
< 32 ? 32 : clsz
;
1318 u32 ingpad
, ingpack
;
1320 csio_wr_reg32(hw
, HOSTPAGESIZEPF0_V(s_hps
) | HOSTPAGESIZEPF1_V(s_hps
) |
1321 HOSTPAGESIZEPF2_V(s_hps
) | HOSTPAGESIZEPF3_V(s_hps
) |
1322 HOSTPAGESIZEPF4_V(s_hps
) | HOSTPAGESIZEPF5_V(s_hps
) |
1323 HOSTPAGESIZEPF6_V(s_hps
) | HOSTPAGESIZEPF7_V(s_hps
),
1324 SGE_HOST_PAGE_SIZE_A
);
1326 /* T5 introduced the separation of the Free List Padding and
1327 * Packing Boundaries. Thus, we can select a smaller Padding
1328 * Boundary to avoid uselessly chewing up PCIe Link and Memory
1329 * Bandwidth, and use a Packing Boundary which is large enough
1330 * to avoid false sharing between CPUs, etc.
1332 * For the PCI Link, the smaller the Padding Boundary the
1333 * better. For the Memory Controller, a smaller Padding
1334 * Boundary is better until we cross under the Memory Line
1335 * Size (the minimum unit of transfer to/from Memory). If we
1336 * have a Padding Boundary which is smaller than the Memory
1337 * Line Size, that'll involve a Read-Modify-Write cycle on the
1338 * Memory Controller which is never good.
1341 /* We want the Packing Boundary to be based on the Cache Line
1342 * Size in order to help avoid False Sharing performance
1343 * issues between CPUs, etc. We also want the Packing
1344 * Boundary to incorporate the PCI-E Maximum Payload Size. We
1345 * get best performance when the Packing Boundary is a
1346 * multiple of the Maximum Payload Size.
1348 pack_align
= fl_align
;
1349 if (pci_is_pcie(hw
->pdev
)) {
1353 /* The PCIe Device Control Maximum Payload Size field
1354 * [bits 7:5] encodes sizes as powers of 2 starting at
1357 pcie_capability_read_word(hw
->pdev
, PCI_EXP_DEVCTL
, &devctl
);
1358 mps_log
= ((devctl
& PCI_EXP_DEVCTL_PAYLOAD
) >> 5) + 7;
1360 if (mps
> pack_align
)
1364 /* T5/T6 have a special interpretation of the "0"
1365 * value for the Packing Boundary. This corresponds to 16
1366 * bytes instead of the expected 32 bytes.
1368 if (pack_align
<= 16) {
1369 ingpack
= INGPACKBOUNDARY_16B_X
;
1371 } else if (pack_align
== 32) {
1372 ingpack
= INGPACKBOUNDARY_64B_X
;
1375 u32 pack_align_log
= fls(pack_align
) - 1;
1377 ingpack
= pack_align_log
- INGPACKBOUNDARY_SHIFT_X
;
1378 fl_align
= pack_align
;
1381 /* Use the smallest Ingress Padding which isn't smaller than
1382 * the Memory Controller Read/Write Size. We'll take that as
1383 * being 8 bytes since we don't know of any system with a
1384 * wider Memory Controller Bus Width.
1386 if (csio_is_t5(hw
->pdev
->device
& CSIO_HW_CHIP_MASK
))
1387 ingpad
= INGPADBOUNDARY_32B_X
;
1389 ingpad
= T6_INGPADBOUNDARY_8B_X
;
1391 csio_set_reg_field(hw
, SGE_CONTROL_A
,
1392 INGPADBOUNDARY_V(INGPADBOUNDARY_M
) |
1393 EGRSTATUSPAGESIZE_F
,
1394 INGPADBOUNDARY_V(ingpad
) |
1395 EGRSTATUSPAGESIZE_V(stat_len
!= 64));
1396 csio_set_reg_field(hw
, SGE_CONTROL2_A
,
1397 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M
),
1398 INGPACKBOUNDARY_V(ingpack
));
1400 /* FL BUFFER SIZE#0 is Page size i,e already aligned to cache line */
1401 csio_wr_reg32(hw
, PAGE_SIZE
, SGE_FL_BUFFER_SIZE0_A
);
1404 * If using hard params, the following will get set correctly
1405 * in csio_wr_set_sge().
1407 if (hw
->flags
& CSIO_HWF_USING_SOFT_PARAMS
) {
1409 (csio_rd_reg32(hw
, SGE_FL_BUFFER_SIZE2_A
) +
1410 fl_align
- 1) & ~(fl_align
- 1),
1411 SGE_FL_BUFFER_SIZE2_A
);
1413 (csio_rd_reg32(hw
, SGE_FL_BUFFER_SIZE3_A
) +
1414 fl_align
- 1) & ~(fl_align
- 1),
1415 SGE_FL_BUFFER_SIZE3_A
);
1418 sge
->csio_fl_align
= fl_align
;
1420 csio_wr_reg32(hw
, HPZ0_V(PAGE_SHIFT
- 12), ULP_RX_TDDP_PSZ_A
);
1422 /* default value of rx_dma_offset of the NIC driver */
1423 csio_set_reg_field(hw
, SGE_CONTROL_A
,
1424 PKTSHIFT_V(PKTSHIFT_M
),
1425 PKTSHIFT_V(CSIO_SGE_RX_DMA_OFFSET
));
1427 csio_hw_tp_wr_bits_indirect(hw
, TP_INGRESS_CONFIG_A
,
1428 CSUM_HAS_PSEUDO_HDR_F
, 0);
1432 csio_init_intr_coalesce_parms(struct csio_hw
*hw
)
1434 struct csio_wrm
*wrm
= csio_hw_to_wrm(hw
);
1435 struct csio_sge
*sge
= &wrm
->sge
;
1437 csio_sge_thresh_reg
= csio_closest_thresh(sge
, csio_intr_coalesce_cnt
);
1438 if (csio_intr_coalesce_cnt
) {
1439 csio_sge_thresh_reg
= 0;
1440 csio_sge_timer_reg
= X_TIMERREG_RESTART_COUNTER
;
1444 csio_sge_timer_reg
= csio_closest_timer(sge
, csio_intr_coalesce_time
);
1448 * csio_wr_get_sge - Get SGE register values.
1451 * Used by non-master functions and by master-functions relying on config file.
1454 csio_wr_get_sge(struct csio_hw
*hw
)
1456 struct csio_wrm
*wrm
= csio_hw_to_wrm(hw
);
1457 struct csio_sge
*sge
= &wrm
->sge
;
1460 u32 timer_value_0_and_1
, timer_value_2_and_3
, timer_value_4_and_5
;
1461 u32 ingress_rx_threshold
;
1463 sge
->sge_control
= csio_rd_reg32(hw
, SGE_CONTROL_A
);
1465 ingpad
= INGPADBOUNDARY_G(sge
->sge_control
);
1468 case X_INGPCIEBOUNDARY_32B
:
1469 sge
->csio_fl_align
= 32; break;
1470 case X_INGPCIEBOUNDARY_64B
:
1471 sge
->csio_fl_align
= 64; break;
1472 case X_INGPCIEBOUNDARY_128B
:
1473 sge
->csio_fl_align
= 128; break;
1474 case X_INGPCIEBOUNDARY_256B
:
1475 sge
->csio_fl_align
= 256; break;
1476 case X_INGPCIEBOUNDARY_512B
:
1477 sge
->csio_fl_align
= 512; break;
1478 case X_INGPCIEBOUNDARY_1024B
:
1479 sge
->csio_fl_align
= 1024; break;
1480 case X_INGPCIEBOUNDARY_2048B
:
1481 sge
->csio_fl_align
= 2048; break;
1482 case X_INGPCIEBOUNDARY_4096B
:
1483 sge
->csio_fl_align
= 4096; break;
1486 for (i
= 0; i
< CSIO_SGE_FL_SIZE_REGS
; i
++)
1487 csio_get_flbuf_size(hw
, sge
, i
);
1489 timer_value_0_and_1
= csio_rd_reg32(hw
, SGE_TIMER_VALUE_0_AND_1_A
);
1490 timer_value_2_and_3
= csio_rd_reg32(hw
, SGE_TIMER_VALUE_2_AND_3_A
);
1491 timer_value_4_and_5
= csio_rd_reg32(hw
, SGE_TIMER_VALUE_4_AND_5_A
);
1493 sge
->timer_val
[0] = (uint16_t)csio_core_ticks_to_us(hw
,
1494 TIMERVALUE0_G(timer_value_0_and_1
));
1495 sge
->timer_val
[1] = (uint16_t)csio_core_ticks_to_us(hw
,
1496 TIMERVALUE1_G(timer_value_0_and_1
));
1497 sge
->timer_val
[2] = (uint16_t)csio_core_ticks_to_us(hw
,
1498 TIMERVALUE2_G(timer_value_2_and_3
));
1499 sge
->timer_val
[3] = (uint16_t)csio_core_ticks_to_us(hw
,
1500 TIMERVALUE3_G(timer_value_2_and_3
));
1501 sge
->timer_val
[4] = (uint16_t)csio_core_ticks_to_us(hw
,
1502 TIMERVALUE4_G(timer_value_4_and_5
));
1503 sge
->timer_val
[5] = (uint16_t)csio_core_ticks_to_us(hw
,
1504 TIMERVALUE5_G(timer_value_4_and_5
));
1506 ingress_rx_threshold
= csio_rd_reg32(hw
, SGE_INGRESS_RX_THRESHOLD_A
);
1507 sge
->counter_val
[0] = THRESHOLD_0_G(ingress_rx_threshold
);
1508 sge
->counter_val
[1] = THRESHOLD_1_G(ingress_rx_threshold
);
1509 sge
->counter_val
[2] = THRESHOLD_2_G(ingress_rx_threshold
);
1510 sge
->counter_val
[3] = THRESHOLD_3_G(ingress_rx_threshold
);
1512 csio_init_intr_coalesce_parms(hw
);
1516 * csio_wr_set_sge - Initialize SGE registers
1519 * Used by Master function to initialize SGE registers in the absence
1523 csio_wr_set_sge(struct csio_hw
*hw
)
1525 struct csio_wrm
*wrm
= csio_hw_to_wrm(hw
);
1526 struct csio_sge
*sge
= &wrm
->sge
;
1530 * Set up our basic SGE mode to deliver CPL messages to our Ingress
1531 * Queue and Packet Date to the Free List.
1533 csio_set_reg_field(hw
, SGE_CONTROL_A
, RXPKTCPLMODE_F
, RXPKTCPLMODE_F
);
1535 sge
->sge_control
= csio_rd_reg32(hw
, SGE_CONTROL_A
);
1537 /* sge->csio_fl_align is set up by csio_wr_fixup_host_params(). */
1540 * Set up to drop DOORBELL writes when the DOORBELL FIFO overflows
1541 * and generate an interrupt when this occurs so we can recover.
1543 csio_set_reg_field(hw
, SGE_DBFIFO_STATUS_A
,
1544 LP_INT_THRESH_T5_V(LP_INT_THRESH_T5_M
),
1545 LP_INT_THRESH_T5_V(CSIO_SGE_DBFIFO_INT_THRESH
));
1546 csio_set_reg_field(hw
, SGE_DBFIFO_STATUS2_A
,
1547 HP_INT_THRESH_T5_V(LP_INT_THRESH_T5_M
),
1548 HP_INT_THRESH_T5_V(CSIO_SGE_DBFIFO_INT_THRESH
));
1550 csio_set_reg_field(hw
, SGE_DOORBELL_CONTROL_A
, ENABLE_DROP_F
,
1553 /* SGE_FL_BUFFER_SIZE0 is set up by csio_wr_fixup_host_params(). */
1555 CSIO_SET_FLBUF_SIZE(hw
, 1, CSIO_SGE_FLBUF_SIZE1
);
1556 csio_wr_reg32(hw
, (CSIO_SGE_FLBUF_SIZE2
+ sge
->csio_fl_align
- 1)
1557 & ~(sge
->csio_fl_align
- 1), SGE_FL_BUFFER_SIZE2_A
);
1558 csio_wr_reg32(hw
, (CSIO_SGE_FLBUF_SIZE3
+ sge
->csio_fl_align
- 1)
1559 & ~(sge
->csio_fl_align
- 1), SGE_FL_BUFFER_SIZE3_A
);
1560 CSIO_SET_FLBUF_SIZE(hw
, 4, CSIO_SGE_FLBUF_SIZE4
);
1561 CSIO_SET_FLBUF_SIZE(hw
, 5, CSIO_SGE_FLBUF_SIZE5
);
1562 CSIO_SET_FLBUF_SIZE(hw
, 6, CSIO_SGE_FLBUF_SIZE6
);
1563 CSIO_SET_FLBUF_SIZE(hw
, 7, CSIO_SGE_FLBUF_SIZE7
);
1564 CSIO_SET_FLBUF_SIZE(hw
, 8, CSIO_SGE_FLBUF_SIZE8
);
1566 for (i
= 0; i
< CSIO_SGE_FL_SIZE_REGS
; i
++)
1567 csio_get_flbuf_size(hw
, sge
, i
);
1569 /* Initialize interrupt coalescing attributes */
1570 sge
->timer_val
[0] = CSIO_SGE_TIMER_VAL_0
;
1571 sge
->timer_val
[1] = CSIO_SGE_TIMER_VAL_1
;
1572 sge
->timer_val
[2] = CSIO_SGE_TIMER_VAL_2
;
1573 sge
->timer_val
[3] = CSIO_SGE_TIMER_VAL_3
;
1574 sge
->timer_val
[4] = CSIO_SGE_TIMER_VAL_4
;
1575 sge
->timer_val
[5] = CSIO_SGE_TIMER_VAL_5
;
1577 sge
->counter_val
[0] = CSIO_SGE_INT_CNT_VAL_0
;
1578 sge
->counter_val
[1] = CSIO_SGE_INT_CNT_VAL_1
;
1579 sge
->counter_val
[2] = CSIO_SGE_INT_CNT_VAL_2
;
1580 sge
->counter_val
[3] = CSIO_SGE_INT_CNT_VAL_3
;
1582 csio_wr_reg32(hw
, THRESHOLD_0_V(sge
->counter_val
[0]) |
1583 THRESHOLD_1_V(sge
->counter_val
[1]) |
1584 THRESHOLD_2_V(sge
->counter_val
[2]) |
1585 THRESHOLD_3_V(sge
->counter_val
[3]),
1586 SGE_INGRESS_RX_THRESHOLD_A
);
1589 TIMERVALUE0_V(csio_us_to_core_ticks(hw
, sge
->timer_val
[0])) |
1590 TIMERVALUE1_V(csio_us_to_core_ticks(hw
, sge
->timer_val
[1])),
1591 SGE_TIMER_VALUE_0_AND_1_A
);
1594 TIMERVALUE2_V(csio_us_to_core_ticks(hw
, sge
->timer_val
[2])) |
1595 TIMERVALUE3_V(csio_us_to_core_ticks(hw
, sge
->timer_val
[3])),
1596 SGE_TIMER_VALUE_2_AND_3_A
);
1599 TIMERVALUE4_V(csio_us_to_core_ticks(hw
, sge
->timer_val
[4])) |
1600 TIMERVALUE5_V(csio_us_to_core_ticks(hw
, sge
->timer_val
[5])),
1601 SGE_TIMER_VALUE_4_AND_5_A
);
1603 csio_init_intr_coalesce_parms(hw
);
1607 csio_wr_sge_init(struct csio_hw
*hw
)
1610 * If we are master and chip is not initialized:
1611 * - If we plan to use the config file, we need to fixup some
1612 * host specific registers, and read the rest of the SGE
1614 * - If we dont plan to use the config file, we need to initialize
1615 * SGE entirely, including fixing the host specific registers.
1616 * If we are master and chip is initialized, just read and work off of
1617 * the already initialized SGE values.
1618 * If we arent the master, we are only allowed to read and work off of
1619 * the already initialized SGE values.
1621 * Therefore, before calling this function, we assume that the master-
1622 * ship of the card, state and whether to use config file or not, have
1623 * already been decided.
1625 if (csio_is_hw_master(hw
)) {
1626 if (hw
->fw_state
!= CSIO_DEV_STATE_INIT
)
1627 csio_wr_fixup_host_params(hw
);
1629 if (hw
->flags
& CSIO_HWF_USING_SOFT_PARAMS
)
1630 csio_wr_get_sge(hw
);
1632 csio_wr_set_sge(hw
);
1634 csio_wr_get_sge(hw
);
1638 * csio_wrm_init - Initialize Work request module.
1642 * Allocates memory for an array of queue pointers starting at q_arr.
1645 csio_wrm_init(struct csio_wrm
*wrm
, struct csio_hw
*hw
)
1650 csio_err(hw
, "Num queues is not set\n");
1654 wrm
->q_arr
= kcalloc(wrm
->num_q
, sizeof(struct csio_q
*), GFP_KERNEL
);
1658 for (i
= 0; i
< wrm
->num_q
; i
++) {
1659 wrm
->q_arr
[i
] = kzalloc(sizeof(struct csio_q
), GFP_KERNEL
);
1660 if (!wrm
->q_arr
[i
]) {
1662 kfree(wrm
->q_arr
[i
]);
1677 * csio_wrm_exit - Initialize Work request module.
1681 * Uninitialize WR module. Free q_arr and pointers in it.
1682 * We have the additional job of freeing the DMA memory associated
1686 csio_wrm_exit(struct csio_wrm
*wrm
, struct csio_hw
*hw
)
1691 struct csio_dma_buf
*buf
;
1693 for (i
= 0; i
< wrm
->num_q
; i
++) {
1696 if (wrm
->free_qidx
&& (i
< wrm
->free_qidx
)) {
1697 if (q
->type
== CSIO_FREELIST
) {
1700 for (j
= 0; j
< q
->credits
; j
++) {
1701 buf
= &q
->un
.fl
.bufs
[j
];
1704 dma_free_coherent(&hw
->pdev
->dev
,
1705 buf
->len
, buf
->vaddr
,
1708 kfree(q
->un
.fl
.bufs
);
1710 dma_free_coherent(&hw
->pdev
->dev
, q
->size
,
1711 q
->vstart
, q
->pstart
);
1716 hw
->flags
&= ~CSIO_HWF_Q_MEM_ALLOCED
;