1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * NET An implementation of the SOCKET network access protocol.
5 * Version: @(#)socket.c 1.1.93 18/02/95
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
49 * This module is effectively the top level interface to the BSD socket
52 * Based upon Swansea University Computer Society NET3.039
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/splice.h>
61 #include <linux/net.h>
62 #include <linux/interrupt.h>
63 #include <linux/thread_info.h>
64 #include <linux/rcupdate.h>
65 #include <linux/netdevice.h>
66 #include <linux/proc_fs.h>
67 #include <linux/seq_file.h>
68 #include <linux/mutex.h>
69 #include <linux/if_bridge.h>
70 #include <linux/if_vlan.h>
71 #include <linux/ptp_classify.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/cache.h>
75 #include <linux/module.h>
76 #include <linux/highmem.h>
77 #include <linux/mount.h>
78 #include <linux/pseudo_fs.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/compat.h>
82 #include <linux/kmod.h>
83 #include <linux/audit.h>
84 #include <linux/wireless.h>
85 #include <linux/nsproxy.h>
86 #include <linux/magic.h>
87 #include <linux/slab.h>
88 #include <linux/xattr.h>
89 #include <linux/nospec.h>
90 #include <linux/indirect_call_wrapper.h>
91 #include <linux/io_uring/net.h>
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
96 #include <net/compat.h>
98 #include <net/cls_cgroup.h>
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/termios.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 #include <linux/ptp_clock_kernel.h>
111 #include <trace/events/sock.h>
113 #ifdef CONFIG_NET_RX_BUSY_POLL
114 unsigned int sysctl_net_busy_read __read_mostly
;
115 unsigned int sysctl_net_busy_poll __read_mostly
;
118 static ssize_t
sock_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
);
119 static ssize_t
sock_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
);
120 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
);
122 static int sock_close(struct inode
*inode
, struct file
*file
);
123 static __poll_t
sock_poll(struct file
*file
,
124 struct poll_table_struct
*wait
);
125 static long sock_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
127 static long compat_sock_ioctl(struct file
*file
,
128 unsigned int cmd
, unsigned long arg
);
130 static int sock_fasync(int fd
, struct file
*filp
, int on
);
131 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
132 struct pipe_inode_info
*pipe
, size_t len
,
134 static void sock_splice_eof(struct file
*file
);
136 #ifdef CONFIG_PROC_FS
137 static void sock_show_fdinfo(struct seq_file
*m
, struct file
*f
)
139 struct socket
*sock
= f
->private_data
;
140 const struct proto_ops
*ops
= READ_ONCE(sock
->ops
);
142 if (ops
->show_fdinfo
)
143 ops
->show_fdinfo(m
, sock
);
146 #define sock_show_fdinfo NULL
150 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
151 * in the operation structures but are done directly via the socketcall() multiplexor.
154 static const struct file_operations socket_file_ops
= {
155 .owner
= THIS_MODULE
,
156 .read_iter
= sock_read_iter
,
157 .write_iter
= sock_write_iter
,
159 .unlocked_ioctl
= sock_ioctl
,
161 .compat_ioctl
= compat_sock_ioctl
,
163 .uring_cmd
= io_uring_cmd_sock
,
165 .release
= sock_close
,
166 .fasync
= sock_fasync
,
167 .splice_write
= splice_to_socket
,
168 .splice_read
= sock_splice_read
,
169 .splice_eof
= sock_splice_eof
,
170 .show_fdinfo
= sock_show_fdinfo
,
173 static const char * const pf_family_names
[] = {
174 [PF_UNSPEC
] = "PF_UNSPEC",
175 [PF_UNIX
] = "PF_UNIX/PF_LOCAL",
176 [PF_INET
] = "PF_INET",
177 [PF_AX25
] = "PF_AX25",
179 [PF_APPLETALK
] = "PF_APPLETALK",
180 [PF_NETROM
] = "PF_NETROM",
181 [PF_BRIDGE
] = "PF_BRIDGE",
182 [PF_ATMPVC
] = "PF_ATMPVC",
184 [PF_INET6
] = "PF_INET6",
185 [PF_ROSE
] = "PF_ROSE",
186 [PF_DECnet
] = "PF_DECnet",
187 [PF_NETBEUI
] = "PF_NETBEUI",
188 [PF_SECURITY
] = "PF_SECURITY",
190 [PF_NETLINK
] = "PF_NETLINK/PF_ROUTE",
191 [PF_PACKET
] = "PF_PACKET",
193 [PF_ECONET
] = "PF_ECONET",
194 [PF_ATMSVC
] = "PF_ATMSVC",
197 [PF_IRDA
] = "PF_IRDA",
198 [PF_PPPOX
] = "PF_PPPOX",
199 [PF_WANPIPE
] = "PF_WANPIPE",
202 [PF_MPLS
] = "PF_MPLS",
204 [PF_TIPC
] = "PF_TIPC",
205 [PF_BLUETOOTH
] = "PF_BLUETOOTH",
206 [PF_IUCV
] = "PF_IUCV",
207 [PF_RXRPC
] = "PF_RXRPC",
208 [PF_ISDN
] = "PF_ISDN",
209 [PF_PHONET
] = "PF_PHONET",
210 [PF_IEEE802154
] = "PF_IEEE802154",
211 [PF_CAIF
] = "PF_CAIF",
214 [PF_VSOCK
] = "PF_VSOCK",
216 [PF_QIPCRTR
] = "PF_QIPCRTR",
219 [PF_MCTP
] = "PF_MCTP",
223 * The protocol list. Each protocol is registered in here.
226 static DEFINE_SPINLOCK(net_family_lock
);
227 static const struct net_proto_family __rcu
*net_families
[NPROTO
] __read_mostly
;
231 * Move socket addresses back and forth across the kernel/user
232 * divide and look after the messy bits.
236 * move_addr_to_kernel - copy a socket address into kernel space
237 * @uaddr: Address in user space
238 * @kaddr: Address in kernel space
239 * @ulen: Length in user space
241 * The address is copied into kernel space. If the provided address is
242 * too long an error code of -EINVAL is returned. If the copy gives
243 * invalid addresses -EFAULT is returned. On a success 0 is returned.
246 int move_addr_to_kernel(void __user
*uaddr
, int ulen
, struct sockaddr_storage
*kaddr
)
248 if (ulen
< 0 || ulen
> sizeof(struct sockaddr_storage
))
252 if (copy_from_user(kaddr
, uaddr
, ulen
))
254 return audit_sockaddr(ulen
, kaddr
);
258 * move_addr_to_user - copy an address to user space
259 * @kaddr: kernel space address
260 * @klen: length of address in kernel
261 * @uaddr: user space address
262 * @ulen: pointer to user length field
264 * The value pointed to by ulen on entry is the buffer length available.
265 * This is overwritten with the buffer space used. -EINVAL is returned
266 * if an overlong buffer is specified or a negative buffer size. -EFAULT
267 * is returned if either the buffer or the length field are not
269 * After copying the data up to the limit the user specifies, the true
270 * length of the data is written over the length limit the user
271 * specified. Zero is returned for a success.
274 static int move_addr_to_user(struct sockaddr_storage
*kaddr
, int klen
,
275 void __user
*uaddr
, int __user
*ulen
)
280 BUG_ON(klen
> sizeof(struct sockaddr_storage
));
281 err
= get_user(len
, ulen
);
289 if (audit_sockaddr(klen
, kaddr
))
291 if (copy_to_user(uaddr
, kaddr
, len
))
295 * "fromlen shall refer to the value before truncation.."
298 return __put_user(klen
, ulen
);
301 static struct kmem_cache
*sock_inode_cachep __ro_after_init
;
303 static struct inode
*sock_alloc_inode(struct super_block
*sb
)
305 struct socket_alloc
*ei
;
307 ei
= alloc_inode_sb(sb
, sock_inode_cachep
, GFP_KERNEL
);
310 init_waitqueue_head(&ei
->socket
.wq
.wait
);
311 ei
->socket
.wq
.fasync_list
= NULL
;
312 ei
->socket
.wq
.flags
= 0;
314 ei
->socket
.state
= SS_UNCONNECTED
;
315 ei
->socket
.flags
= 0;
316 ei
->socket
.ops
= NULL
;
317 ei
->socket
.sk
= NULL
;
318 ei
->socket
.file
= NULL
;
320 return &ei
->vfs_inode
;
323 static void sock_free_inode(struct inode
*inode
)
325 struct socket_alloc
*ei
;
327 ei
= container_of(inode
, struct socket_alloc
, vfs_inode
);
328 kmem_cache_free(sock_inode_cachep
, ei
);
331 static void init_once(void *foo
)
333 struct socket_alloc
*ei
= (struct socket_alloc
*)foo
;
335 inode_init_once(&ei
->vfs_inode
);
338 static void init_inodecache(void)
340 sock_inode_cachep
= kmem_cache_create("sock_inode_cache",
341 sizeof(struct socket_alloc
),
343 (SLAB_HWCACHE_ALIGN
|
344 SLAB_RECLAIM_ACCOUNT
|
347 BUG_ON(sock_inode_cachep
== NULL
);
350 static const struct super_operations sockfs_ops
= {
351 .alloc_inode
= sock_alloc_inode
,
352 .free_inode
= sock_free_inode
,
353 .statfs
= simple_statfs
,
357 * sockfs_dname() is called from d_path().
359 static char *sockfs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
361 return dynamic_dname(buffer
, buflen
, "socket:[%lu]",
362 d_inode(dentry
)->i_ino
);
365 static const struct dentry_operations sockfs_dentry_operations
= {
366 .d_dname
= sockfs_dname
,
369 static int sockfs_xattr_get(const struct xattr_handler
*handler
,
370 struct dentry
*dentry
, struct inode
*inode
,
371 const char *suffix
, void *value
, size_t size
)
374 if (dentry
->d_name
.len
+ 1 > size
)
376 memcpy(value
, dentry
->d_name
.name
, dentry
->d_name
.len
+ 1);
378 return dentry
->d_name
.len
+ 1;
381 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
382 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
383 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
385 static const struct xattr_handler sockfs_xattr_handler
= {
386 .name
= XATTR_NAME_SOCKPROTONAME
,
387 .get
= sockfs_xattr_get
,
390 static int sockfs_security_xattr_set(const struct xattr_handler
*handler
,
391 struct mnt_idmap
*idmap
,
392 struct dentry
*dentry
, struct inode
*inode
,
393 const char *suffix
, const void *value
,
394 size_t size
, int flags
)
396 /* Handled by LSM. */
400 static const struct xattr_handler sockfs_security_xattr_handler
= {
401 .prefix
= XATTR_SECURITY_PREFIX
,
402 .set
= sockfs_security_xattr_set
,
405 static const struct xattr_handler
* const sockfs_xattr_handlers
[] = {
406 &sockfs_xattr_handler
,
407 &sockfs_security_xattr_handler
,
411 static int sockfs_init_fs_context(struct fs_context
*fc
)
413 struct pseudo_fs_context
*ctx
= init_pseudo(fc
, SOCKFS_MAGIC
);
416 ctx
->ops
= &sockfs_ops
;
417 ctx
->dops
= &sockfs_dentry_operations
;
418 ctx
->xattr
= sockfs_xattr_handlers
;
422 static struct vfsmount
*sock_mnt __read_mostly
;
424 static struct file_system_type sock_fs_type
= {
426 .init_fs_context
= sockfs_init_fs_context
,
427 .kill_sb
= kill_anon_super
,
431 * Obtains the first available file descriptor and sets it up for use.
433 * These functions create file structures and maps them to fd space
434 * of the current process. On success it returns file descriptor
435 * and file struct implicitly stored in sock->file.
436 * Note that another thread may close file descriptor before we return
437 * from this function. We use the fact that now we do not refer
438 * to socket after mapping. If one day we will need it, this
439 * function will increment ref. count on file by 1.
441 * In any case returned fd MAY BE not valid!
442 * This race condition is unavoidable
443 * with shared fd spaces, we cannot solve it inside kernel,
444 * but we take care of internal coherence yet.
448 * sock_alloc_file - Bind a &socket to a &file
450 * @flags: file status flags
451 * @dname: protocol name
453 * Returns the &file bound with @sock, implicitly storing it
454 * in sock->file. If dname is %NULL, sets to "".
456 * On failure @sock is released, and an ERR pointer is returned.
458 * This function uses GFP_KERNEL internally.
461 struct file
*sock_alloc_file(struct socket
*sock
, int flags
, const char *dname
)
466 dname
= sock
->sk
? sock
->sk
->sk_prot_creator
->name
: "";
468 file
= alloc_file_pseudo(SOCK_INODE(sock
), sock_mnt
, dname
,
469 O_RDWR
| (flags
& O_NONBLOCK
),
476 file
->f_mode
|= FMODE_NOWAIT
;
478 file
->private_data
= sock
;
479 stream_open(SOCK_INODE(sock
), file
);
482 EXPORT_SYMBOL(sock_alloc_file
);
484 static int sock_map_fd(struct socket
*sock
, int flags
)
486 struct file
*newfile
;
487 int fd
= get_unused_fd_flags(flags
);
488 if (unlikely(fd
< 0)) {
493 newfile
= sock_alloc_file(sock
, flags
, NULL
);
494 if (!IS_ERR(newfile
)) {
495 fd_install(fd
, newfile
);
500 return PTR_ERR(newfile
);
504 * sock_from_file - Return the &socket bounded to @file.
507 * On failure returns %NULL.
510 struct socket
*sock_from_file(struct file
*file
)
512 if (file
->f_op
== &socket_file_ops
)
513 return file
->private_data
; /* set in sock_alloc_file */
517 EXPORT_SYMBOL(sock_from_file
);
520 * sockfd_lookup - Go from a file number to its socket slot
522 * @err: pointer to an error code return
524 * The file handle passed in is locked and the socket it is bound
525 * to is returned. If an error occurs the err pointer is overwritten
526 * with a negative errno code and NULL is returned. The function checks
527 * for both invalid handles and passing a handle which is not a socket.
529 * On a success the socket object pointer is returned.
532 struct socket
*sockfd_lookup(int fd
, int *err
)
543 sock
= sock_from_file(file
);
550 EXPORT_SYMBOL(sockfd_lookup
);
552 static struct socket
*sockfd_lookup_light(int fd
, int *err
, int *fput_needed
)
554 struct fd f
= fdget(fd
);
559 sock
= sock_from_file(fd_file(f
));
561 *fput_needed
= f
.word
& FDPUT_FPUT
;
570 static ssize_t
sockfs_listxattr(struct dentry
*dentry
, char *buffer
,
576 len
= security_inode_listsecurity(d_inode(dentry
), buffer
, size
);
586 len
= (XATTR_NAME_SOCKPROTONAME_LEN
+ 1);
591 memcpy(buffer
, XATTR_NAME_SOCKPROTONAME
, len
);
598 static int sockfs_setattr(struct mnt_idmap
*idmap
,
599 struct dentry
*dentry
, struct iattr
*iattr
)
601 int err
= simple_setattr(&nop_mnt_idmap
, dentry
, iattr
);
603 if (!err
&& (iattr
->ia_valid
& ATTR_UID
)) {
604 struct socket
*sock
= SOCKET_I(d_inode(dentry
));
607 sock
->sk
->sk_uid
= iattr
->ia_uid
;
615 static const struct inode_operations sockfs_inode_ops
= {
616 .listxattr
= sockfs_listxattr
,
617 .setattr
= sockfs_setattr
,
621 * sock_alloc - allocate a socket
623 * Allocate a new inode and socket object. The two are bound together
624 * and initialised. The socket is then returned. If we are out of inodes
625 * NULL is returned. This functions uses GFP_KERNEL internally.
628 struct socket
*sock_alloc(void)
633 inode
= new_inode_pseudo(sock_mnt
->mnt_sb
);
637 sock
= SOCKET_I(inode
);
639 inode
->i_ino
= get_next_ino();
640 inode
->i_mode
= S_IFSOCK
| S_IRWXUGO
;
641 inode
->i_uid
= current_fsuid();
642 inode
->i_gid
= current_fsgid();
643 inode
->i_op
= &sockfs_inode_ops
;
647 EXPORT_SYMBOL(sock_alloc
);
649 static void __sock_release(struct socket
*sock
, struct inode
*inode
)
651 const struct proto_ops
*ops
= READ_ONCE(sock
->ops
);
654 struct module
*owner
= ops
->owner
;
666 if (sock
->wq
.fasync_list
)
667 pr_err("%s: fasync list not empty!\n", __func__
);
670 iput(SOCK_INODE(sock
));
677 * sock_release - close a socket
678 * @sock: socket to close
680 * The socket is released from the protocol stack if it has a release
681 * callback, and the inode is then released if the socket is bound to
682 * an inode not a file.
684 void sock_release(struct socket
*sock
)
686 __sock_release(sock
, NULL
);
688 EXPORT_SYMBOL(sock_release
);
690 void __sock_tx_timestamp(__u16 tsflags
, __u8
*tx_flags
)
692 u8 flags
= *tx_flags
;
694 if (tsflags
& SOF_TIMESTAMPING_TX_HARDWARE
) {
695 flags
|= SKBTX_HW_TSTAMP
;
697 /* PTP hardware clocks can provide a free running cycle counter
698 * as a time base for virtual clocks. Tell driver to use the
699 * free running cycle counter for timestamp if socket is bound
702 if (tsflags
& SOF_TIMESTAMPING_BIND_PHC
)
703 flags
|= SKBTX_HW_TSTAMP_USE_CYCLES
;
706 if (tsflags
& SOF_TIMESTAMPING_TX_SOFTWARE
)
707 flags
|= SKBTX_SW_TSTAMP
;
709 if (tsflags
& SOF_TIMESTAMPING_TX_SCHED
)
710 flags
|= SKBTX_SCHED_TSTAMP
;
714 EXPORT_SYMBOL(__sock_tx_timestamp
);
716 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket
*, struct msghdr
*,
718 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket
*, struct msghdr
*,
721 static noinline
void call_trace_sock_send_length(struct sock
*sk
, int ret
,
724 trace_sock_send_length(sk
, ret
, 0);
727 static inline int sock_sendmsg_nosec(struct socket
*sock
, struct msghdr
*msg
)
729 int ret
= INDIRECT_CALL_INET(READ_ONCE(sock
->ops
)->sendmsg
, inet6_sendmsg
,
730 inet_sendmsg
, sock
, msg
,
732 BUG_ON(ret
== -EIOCBQUEUED
);
734 if (trace_sock_send_length_enabled())
735 call_trace_sock_send_length(sock
->sk
, ret
, 0);
739 static int __sock_sendmsg(struct socket
*sock
, struct msghdr
*msg
)
741 int err
= security_socket_sendmsg(sock
, msg
,
744 return err
?: sock_sendmsg_nosec(sock
, msg
);
748 * sock_sendmsg - send a message through @sock
750 * @msg: message to send
752 * Sends @msg through @sock, passing through LSM.
753 * Returns the number of bytes sent, or an error code.
755 int sock_sendmsg(struct socket
*sock
, struct msghdr
*msg
)
757 struct sockaddr_storage
*save_addr
= (struct sockaddr_storage
*)msg
->msg_name
;
758 struct sockaddr_storage address
;
759 int save_len
= msg
->msg_namelen
;
763 memcpy(&address
, msg
->msg_name
, msg
->msg_namelen
);
764 msg
->msg_name
= &address
;
767 ret
= __sock_sendmsg(sock
, msg
);
768 msg
->msg_name
= save_addr
;
769 msg
->msg_namelen
= save_len
;
773 EXPORT_SYMBOL(sock_sendmsg
);
776 * kernel_sendmsg - send a message through @sock (kernel-space)
778 * @msg: message header
780 * @num: vec array length
781 * @size: total message data size
783 * Builds the message data with @vec and sends it through @sock.
784 * Returns the number of bytes sent, or an error code.
787 int kernel_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
788 struct kvec
*vec
, size_t num
, size_t size
)
790 iov_iter_kvec(&msg
->msg_iter
, ITER_SOURCE
, vec
, num
, size
);
791 return sock_sendmsg(sock
, msg
);
793 EXPORT_SYMBOL(kernel_sendmsg
);
796 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
798 * @msg: message header
799 * @vec: output s/g array
800 * @num: output s/g array length
801 * @size: total message data size
803 * Builds the message data with @vec and sends it through @sock.
804 * Returns the number of bytes sent, or an error code.
805 * Caller must hold @sk.
808 int kernel_sendmsg_locked(struct sock
*sk
, struct msghdr
*msg
,
809 struct kvec
*vec
, size_t num
, size_t size
)
811 struct socket
*sock
= sk
->sk_socket
;
812 const struct proto_ops
*ops
= READ_ONCE(sock
->ops
);
814 if (!ops
->sendmsg_locked
)
815 return sock_no_sendmsg_locked(sk
, msg
, size
);
817 iov_iter_kvec(&msg
->msg_iter
, ITER_SOURCE
, vec
, num
, size
);
819 return ops
->sendmsg_locked(sk
, msg
, msg_data_left(msg
));
821 EXPORT_SYMBOL(kernel_sendmsg_locked
);
823 static bool skb_is_err_queue(const struct sk_buff
*skb
)
825 /* pkt_type of skbs enqueued on the error queue are set to
826 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
827 * in recvmsg, since skbs received on a local socket will never
828 * have a pkt_type of PACKET_OUTGOING.
830 return skb
->pkt_type
== PACKET_OUTGOING
;
833 /* On transmit, software and hardware timestamps are returned independently.
834 * As the two skb clones share the hardware timestamp, which may be updated
835 * before the software timestamp is received, a hardware TX timestamp may be
836 * returned only if there is no software TX timestamp. Ignore false software
837 * timestamps, which may be made in the __sock_recv_timestamp() call when the
838 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
839 * hardware timestamp.
841 static bool skb_is_swtx_tstamp(const struct sk_buff
*skb
, int false_tstamp
)
843 return skb
->tstamp
&& !false_tstamp
&& skb_is_err_queue(skb
);
846 static ktime_t
get_timestamp(struct sock
*sk
, struct sk_buff
*skb
, int *if_index
)
848 bool cycles
= READ_ONCE(sk
->sk_tsflags
) & SOF_TIMESTAMPING_BIND_PHC
;
849 struct skb_shared_hwtstamps
*shhwtstamps
= skb_hwtstamps(skb
);
850 struct net_device
*orig_dev
;
854 orig_dev
= dev_get_by_napi_id(skb_napi_id(skb
));
856 *if_index
= orig_dev
->ifindex
;
857 hwtstamp
= netdev_get_tstamp(orig_dev
, shhwtstamps
, cycles
);
859 hwtstamp
= shhwtstamps
->hwtstamp
;
866 static void put_ts_pktinfo(struct msghdr
*msg
, struct sk_buff
*skb
,
869 struct scm_ts_pktinfo ts_pktinfo
;
870 struct net_device
*orig_dev
;
872 if (!skb_mac_header_was_set(skb
))
875 memset(&ts_pktinfo
, 0, sizeof(ts_pktinfo
));
879 orig_dev
= dev_get_by_napi_id(skb_napi_id(skb
));
881 if_index
= orig_dev
->ifindex
;
884 ts_pktinfo
.if_index
= if_index
;
886 ts_pktinfo
.pkt_length
= skb
->len
- skb_mac_offset(skb
);
887 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPING_PKTINFO
,
888 sizeof(ts_pktinfo
), &ts_pktinfo
);
892 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
894 void __sock_recv_timestamp(struct msghdr
*msg
, struct sock
*sk
,
897 int need_software_tstamp
= sock_flag(sk
, SOCK_RCVTSTAMP
);
898 int new_tstamp
= sock_flag(sk
, SOCK_TSTAMP_NEW
);
899 struct scm_timestamping_internal tss
;
900 int empty
= 1, false_tstamp
= 0;
901 struct skb_shared_hwtstamps
*shhwtstamps
=
907 /* Race occurred between timestamp enabling and packet
908 receiving. Fill in the current time for now. */
909 if (need_software_tstamp
&& skb
->tstamp
== 0) {
910 __net_timestamp(skb
);
914 if (need_software_tstamp
) {
915 if (!sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
917 struct __kernel_sock_timeval tv
;
919 skb_get_new_timestamp(skb
, &tv
);
920 put_cmsg(msg
, SOL_SOCKET
, SO_TIMESTAMP_NEW
,
923 struct __kernel_old_timeval tv
;
925 skb_get_timestamp(skb
, &tv
);
926 put_cmsg(msg
, SOL_SOCKET
, SO_TIMESTAMP_OLD
,
931 struct __kernel_timespec ts
;
933 skb_get_new_timestampns(skb
, &ts
);
934 put_cmsg(msg
, SOL_SOCKET
, SO_TIMESTAMPNS_NEW
,
937 struct __kernel_old_timespec ts
;
939 skb_get_timestampns(skb
, &ts
);
940 put_cmsg(msg
, SOL_SOCKET
, SO_TIMESTAMPNS_OLD
,
946 memset(&tss
, 0, sizeof(tss
));
947 tsflags
= READ_ONCE(sk
->sk_tsflags
);
948 if ((tsflags
& SOF_TIMESTAMPING_SOFTWARE
&&
949 (tsflags
& SOF_TIMESTAMPING_RX_SOFTWARE
||
950 skb_is_err_queue(skb
) ||
951 !(tsflags
& SOF_TIMESTAMPING_OPT_RX_FILTER
))) &&
952 ktime_to_timespec64_cond(skb
->tstamp
, tss
.ts
+ 0))
955 (tsflags
& SOF_TIMESTAMPING_RAW_HARDWARE
&&
956 (tsflags
& SOF_TIMESTAMPING_RX_HARDWARE
||
957 skb_is_err_queue(skb
) ||
958 !(tsflags
& SOF_TIMESTAMPING_OPT_RX_FILTER
))) &&
959 !skb_is_swtx_tstamp(skb
, false_tstamp
)) {
961 if (skb_shinfo(skb
)->tx_flags
& SKBTX_HW_TSTAMP_NETDEV
)
962 hwtstamp
= get_timestamp(sk
, skb
, &if_index
);
964 hwtstamp
= shhwtstamps
->hwtstamp
;
966 if (tsflags
& SOF_TIMESTAMPING_BIND_PHC
)
967 hwtstamp
= ptp_convert_timestamp(&hwtstamp
,
968 READ_ONCE(sk
->sk_bind_phc
));
970 if (ktime_to_timespec64_cond(hwtstamp
, tss
.ts
+ 2)) {
973 if ((tsflags
& SOF_TIMESTAMPING_OPT_PKTINFO
) &&
974 !skb_is_err_queue(skb
))
975 put_ts_pktinfo(msg
, skb
, if_index
);
979 if (sock_flag(sk
, SOCK_TSTAMP_NEW
))
980 put_cmsg_scm_timestamping64(msg
, &tss
);
982 put_cmsg_scm_timestamping(msg
, &tss
);
984 if (skb_is_err_queue(skb
) && skb
->len
&&
985 SKB_EXT_ERR(skb
)->opt_stats
)
986 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPING_OPT_STATS
,
987 skb
->len
, skb
->data
);
990 EXPORT_SYMBOL_GPL(__sock_recv_timestamp
);
992 #ifdef CONFIG_WIRELESS
993 void __sock_recv_wifi_status(struct msghdr
*msg
, struct sock
*sk
,
998 if (!sock_flag(sk
, SOCK_WIFI_STATUS
))
1000 if (!skb
->wifi_acked_valid
)
1003 ack
= skb
->wifi_acked
;
1005 put_cmsg(msg
, SOL_SOCKET
, SCM_WIFI_STATUS
, sizeof(ack
), &ack
);
1007 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status
);
1010 static inline void sock_recv_drops(struct msghdr
*msg
, struct sock
*sk
,
1011 struct sk_buff
*skb
)
1013 if (sock_flag(sk
, SOCK_RXQ_OVFL
) && skb
&& SOCK_SKB_CB(skb
)->dropcount
)
1014 put_cmsg(msg
, SOL_SOCKET
, SO_RXQ_OVFL
,
1015 sizeof(__u32
), &SOCK_SKB_CB(skb
)->dropcount
);
1018 static void sock_recv_mark(struct msghdr
*msg
, struct sock
*sk
,
1019 struct sk_buff
*skb
)
1021 if (sock_flag(sk
, SOCK_RCVMARK
) && skb
) {
1022 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
1023 __u32 mark
= skb
->mark
;
1025 put_cmsg(msg
, SOL_SOCKET
, SO_MARK
, sizeof(__u32
), &mark
);
1029 void __sock_recv_cmsgs(struct msghdr
*msg
, struct sock
*sk
,
1030 struct sk_buff
*skb
)
1032 sock_recv_timestamp(msg
, sk
, skb
);
1033 sock_recv_drops(msg
, sk
, skb
);
1034 sock_recv_mark(msg
, sk
, skb
);
1036 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs
);
1038 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket
*, struct msghdr
*,
1040 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket
*, struct msghdr
*,
1043 static noinline
void call_trace_sock_recv_length(struct sock
*sk
, int ret
, int flags
)
1045 trace_sock_recv_length(sk
, ret
, flags
);
1048 static inline int sock_recvmsg_nosec(struct socket
*sock
, struct msghdr
*msg
,
1051 int ret
= INDIRECT_CALL_INET(READ_ONCE(sock
->ops
)->recvmsg
,
1053 inet_recvmsg
, sock
, msg
,
1054 msg_data_left(msg
), flags
);
1055 if (trace_sock_recv_length_enabled())
1056 call_trace_sock_recv_length(sock
->sk
, ret
, flags
);
1061 * sock_recvmsg - receive a message from @sock
1063 * @msg: message to receive
1064 * @flags: message flags
1066 * Receives @msg from @sock, passing through LSM. Returns the total number
1067 * of bytes received, or an error.
1069 int sock_recvmsg(struct socket
*sock
, struct msghdr
*msg
, int flags
)
1071 int err
= security_socket_recvmsg(sock
, msg
, msg_data_left(msg
), flags
);
1073 return err
?: sock_recvmsg_nosec(sock
, msg
, flags
);
1075 EXPORT_SYMBOL(sock_recvmsg
);
1078 * kernel_recvmsg - Receive a message from a socket (kernel space)
1079 * @sock: The socket to receive the message from
1080 * @msg: Received message
1081 * @vec: Input s/g array for message data
1082 * @num: Size of input s/g array
1083 * @size: Number of bytes to read
1084 * @flags: Message flags (MSG_DONTWAIT, etc...)
1086 * On return the msg structure contains the scatter/gather array passed in the
1087 * vec argument. The array is modified so that it consists of the unfilled
1088 * portion of the original array.
1090 * The returned value is the total number of bytes received, or an error.
1093 int kernel_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
1094 struct kvec
*vec
, size_t num
, size_t size
, int flags
)
1096 msg
->msg_control_is_user
= false;
1097 iov_iter_kvec(&msg
->msg_iter
, ITER_DEST
, vec
, num
, size
);
1098 return sock_recvmsg(sock
, msg
, flags
);
1100 EXPORT_SYMBOL(kernel_recvmsg
);
1102 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
1103 struct pipe_inode_info
*pipe
, size_t len
,
1106 struct socket
*sock
= file
->private_data
;
1107 const struct proto_ops
*ops
;
1109 ops
= READ_ONCE(sock
->ops
);
1110 if (unlikely(!ops
->splice_read
))
1111 return copy_splice_read(file
, ppos
, pipe
, len
, flags
);
1113 return ops
->splice_read(sock
, ppos
, pipe
, len
, flags
);
1116 static void sock_splice_eof(struct file
*file
)
1118 struct socket
*sock
= file
->private_data
;
1119 const struct proto_ops
*ops
;
1121 ops
= READ_ONCE(sock
->ops
);
1122 if (ops
->splice_eof
)
1123 ops
->splice_eof(sock
);
1126 static ssize_t
sock_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
1128 struct file
*file
= iocb
->ki_filp
;
1129 struct socket
*sock
= file
->private_data
;
1130 struct msghdr msg
= {.msg_iter
= *to
,
1134 if (file
->f_flags
& O_NONBLOCK
|| (iocb
->ki_flags
& IOCB_NOWAIT
))
1135 msg
.msg_flags
= MSG_DONTWAIT
;
1137 if (iocb
->ki_pos
!= 0)
1140 if (!iov_iter_count(to
)) /* Match SYS5 behaviour */
1143 res
= sock_recvmsg(sock
, &msg
, msg
.msg_flags
);
1148 static ssize_t
sock_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
1150 struct file
*file
= iocb
->ki_filp
;
1151 struct socket
*sock
= file
->private_data
;
1152 struct msghdr msg
= {.msg_iter
= *from
,
1156 if (iocb
->ki_pos
!= 0)
1159 if (file
->f_flags
& O_NONBLOCK
|| (iocb
->ki_flags
& IOCB_NOWAIT
))
1160 msg
.msg_flags
= MSG_DONTWAIT
;
1162 if (sock
->type
== SOCK_SEQPACKET
)
1163 msg
.msg_flags
|= MSG_EOR
;
1165 res
= __sock_sendmsg(sock
, &msg
);
1166 *from
= msg
.msg_iter
;
1171 * Atomic setting of ioctl hooks to avoid race
1172 * with module unload.
1175 static DEFINE_MUTEX(br_ioctl_mutex
);
1176 static int (*br_ioctl_hook
)(struct net
*net
, struct net_bridge
*br
,
1177 unsigned int cmd
, struct ifreq
*ifr
,
1180 void brioctl_set(int (*hook
)(struct net
*net
, struct net_bridge
*br
,
1181 unsigned int cmd
, struct ifreq
*ifr
,
1184 mutex_lock(&br_ioctl_mutex
);
1185 br_ioctl_hook
= hook
;
1186 mutex_unlock(&br_ioctl_mutex
);
1188 EXPORT_SYMBOL(brioctl_set
);
1190 int br_ioctl_call(struct net
*net
, struct net_bridge
*br
, unsigned int cmd
,
1191 struct ifreq
*ifr
, void __user
*uarg
)
1196 request_module("bridge");
1198 mutex_lock(&br_ioctl_mutex
);
1200 err
= br_ioctl_hook(net
, br
, cmd
, ifr
, uarg
);
1201 mutex_unlock(&br_ioctl_mutex
);
1206 static DEFINE_MUTEX(vlan_ioctl_mutex
);
1207 static int (*vlan_ioctl_hook
) (struct net
*, void __user
*arg
);
1209 void vlan_ioctl_set(int (*hook
) (struct net
*, void __user
*))
1211 mutex_lock(&vlan_ioctl_mutex
);
1212 vlan_ioctl_hook
= hook
;
1213 mutex_unlock(&vlan_ioctl_mutex
);
1215 EXPORT_SYMBOL(vlan_ioctl_set
);
1217 static long sock_do_ioctl(struct net
*net
, struct socket
*sock
,
1218 unsigned int cmd
, unsigned long arg
)
1220 const struct proto_ops
*ops
= READ_ONCE(sock
->ops
);
1224 void __user
*argp
= (void __user
*)arg
;
1227 err
= ops
->ioctl(sock
, cmd
, arg
);
1230 * If this ioctl is unknown try to hand it down
1231 * to the NIC driver.
1233 if (err
!= -ENOIOCTLCMD
)
1236 if (!is_socket_ioctl_cmd(cmd
))
1239 if (get_user_ifreq(&ifr
, &data
, argp
))
1241 err
= dev_ioctl(net
, cmd
, &ifr
, data
, &need_copyout
);
1242 if (!err
&& need_copyout
)
1243 if (put_user_ifreq(&ifr
, argp
))
1250 * With an ioctl, arg may well be a user mode pointer, but we don't know
1251 * what to do with it - that's up to the protocol still.
1254 static long sock_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
1256 const struct proto_ops
*ops
;
1257 struct socket
*sock
;
1259 void __user
*argp
= (void __user
*)arg
;
1263 sock
= file
->private_data
;
1264 ops
= READ_ONCE(sock
->ops
);
1267 if (unlikely(cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))) {
1271 if (get_user_ifreq(&ifr
, &data
, argp
))
1273 err
= dev_ioctl(net
, cmd
, &ifr
, data
, &need_copyout
);
1274 if (!err
&& need_copyout
)
1275 if (put_user_ifreq(&ifr
, argp
))
1278 #ifdef CONFIG_WEXT_CORE
1279 if (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
) {
1280 err
= wext_handle_ioctl(net
, cmd
, argp
);
1287 if (get_user(pid
, (int __user
*)argp
))
1289 err
= f_setown(sock
->file
, pid
, 1);
1293 err
= put_user(f_getown(sock
->file
),
1294 (int __user
*)argp
);
1300 err
= br_ioctl_call(net
, NULL
, cmd
, NULL
, argp
);
1305 if (!vlan_ioctl_hook
)
1306 request_module("8021q");
1308 mutex_lock(&vlan_ioctl_mutex
);
1309 if (vlan_ioctl_hook
)
1310 err
= vlan_ioctl_hook(net
, argp
);
1311 mutex_unlock(&vlan_ioctl_mutex
);
1315 if (!ns_capable(net
->user_ns
, CAP_NET_ADMIN
))
1318 err
= open_related_ns(&net
->ns
, get_net_ns
);
1320 case SIOCGSTAMP_OLD
:
1321 case SIOCGSTAMPNS_OLD
:
1322 if (!ops
->gettstamp
) {
1326 err
= ops
->gettstamp(sock
, argp
,
1327 cmd
== SIOCGSTAMP_OLD
,
1328 !IS_ENABLED(CONFIG_64BIT
));
1330 case SIOCGSTAMP_NEW
:
1331 case SIOCGSTAMPNS_NEW
:
1332 if (!ops
->gettstamp
) {
1336 err
= ops
->gettstamp(sock
, argp
,
1337 cmd
== SIOCGSTAMP_NEW
,
1342 err
= dev_ifconf(net
, argp
);
1346 err
= sock_do_ioctl(net
, sock
, cmd
, arg
);
1353 * sock_create_lite - creates a socket
1354 * @family: protocol family (AF_INET, ...)
1355 * @type: communication type (SOCK_STREAM, ...)
1356 * @protocol: protocol (0, ...)
1359 * Creates a new socket and assigns it to @res, passing through LSM.
1360 * The new socket initialization is not complete, see kernel_accept().
1361 * Returns 0 or an error. On failure @res is set to %NULL.
1362 * This function internally uses GFP_KERNEL.
1365 int sock_create_lite(int family
, int type
, int protocol
, struct socket
**res
)
1368 struct socket
*sock
= NULL
;
1370 err
= security_socket_create(family
, type
, protocol
, 1);
1374 sock
= sock_alloc();
1381 err
= security_socket_post_create(sock
, family
, type
, protocol
, 1);
1393 EXPORT_SYMBOL(sock_create_lite
);
1395 /* No kernel lock held - perfect */
1396 static __poll_t
sock_poll(struct file
*file
, poll_table
*wait
)
1398 struct socket
*sock
= file
->private_data
;
1399 const struct proto_ops
*ops
= READ_ONCE(sock
->ops
);
1400 __poll_t events
= poll_requested_events(wait
), flag
= 0;
1405 if (sk_can_busy_loop(sock
->sk
)) {
1406 /* poll once if requested by the syscall */
1407 if (events
& POLL_BUSY_LOOP
)
1408 sk_busy_loop(sock
->sk
, 1);
1410 /* if this socket can poll_ll, tell the system call */
1411 flag
= POLL_BUSY_LOOP
;
1414 return ops
->poll(file
, sock
, wait
) | flag
;
1417 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1419 struct socket
*sock
= file
->private_data
;
1421 return READ_ONCE(sock
->ops
)->mmap(file
, sock
, vma
);
1424 static int sock_close(struct inode
*inode
, struct file
*filp
)
1426 __sock_release(SOCKET_I(inode
), inode
);
1431 * Update the socket async list
1433 * Fasync_list locking strategy.
1435 * 1. fasync_list is modified only under process context socket lock
1436 * i.e. under semaphore.
1437 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1438 * or under socket lock
1441 static int sock_fasync(int fd
, struct file
*filp
, int on
)
1443 struct socket
*sock
= filp
->private_data
;
1444 struct sock
*sk
= sock
->sk
;
1445 struct socket_wq
*wq
= &sock
->wq
;
1451 fasync_helper(fd
, filp
, on
, &wq
->fasync_list
);
1453 if (!wq
->fasync_list
)
1454 sock_reset_flag(sk
, SOCK_FASYNC
);
1456 sock_set_flag(sk
, SOCK_FASYNC
);
1462 /* This function may be called only under rcu_lock */
1464 int sock_wake_async(struct socket_wq
*wq
, int how
, int band
)
1466 if (!wq
|| !wq
->fasync_list
)
1470 case SOCK_WAKE_WAITD
:
1471 if (test_bit(SOCKWQ_ASYNC_WAITDATA
, &wq
->flags
))
1474 case SOCK_WAKE_SPACE
:
1475 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE
, &wq
->flags
))
1480 kill_fasync(&wq
->fasync_list
, SIGIO
, band
);
1483 kill_fasync(&wq
->fasync_list
, SIGURG
, band
);
1488 EXPORT_SYMBOL(sock_wake_async
);
1491 * __sock_create - creates a socket
1492 * @net: net namespace
1493 * @family: protocol family (AF_INET, ...)
1494 * @type: communication type (SOCK_STREAM, ...)
1495 * @protocol: protocol (0, ...)
1497 * @kern: boolean for kernel space sockets
1499 * Creates a new socket and assigns it to @res, passing through LSM.
1500 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1501 * be set to true if the socket resides in kernel space.
1502 * This function internally uses GFP_KERNEL.
1505 int __sock_create(struct net
*net
, int family
, int type
, int protocol
,
1506 struct socket
**res
, int kern
)
1509 struct socket
*sock
;
1510 const struct net_proto_family
*pf
;
1513 * Check protocol is in range
1515 if (family
< 0 || family
>= NPROTO
)
1516 return -EAFNOSUPPORT
;
1517 if (type
< 0 || type
>= SOCK_MAX
)
1522 This uglymoron is moved from INET layer to here to avoid
1523 deadlock in module load.
1525 if (family
== PF_INET
&& type
== SOCK_PACKET
) {
1526 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1531 err
= security_socket_create(family
, type
, protocol
, kern
);
1536 * Allocate the socket and allow the family to set things up. if
1537 * the protocol is 0, the family is instructed to select an appropriate
1540 sock
= sock_alloc();
1542 net_warn_ratelimited("socket: no more sockets\n");
1543 return -ENFILE
; /* Not exactly a match, but its the
1544 closest posix thing */
1549 #ifdef CONFIG_MODULES
1550 /* Attempt to load a protocol module if the find failed.
1552 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1553 * requested real, full-featured networking support upon configuration.
1554 * Otherwise module support will break!
1556 if (rcu_access_pointer(net_families
[family
]) == NULL
)
1557 request_module("net-pf-%d", family
);
1561 pf
= rcu_dereference(net_families
[family
]);
1562 err
= -EAFNOSUPPORT
;
1567 * We will call the ->create function, that possibly is in a loadable
1568 * module, so we have to bump that loadable module refcnt first.
1570 if (!try_module_get(pf
->owner
))
1573 /* Now protected by module ref count */
1576 err
= pf
->create(net
, sock
, protocol
, kern
);
1578 /* ->create should release the allocated sock->sk object on error
1579 * but it may leave the dangling pointer
1582 goto out_module_put
;
1586 * Now to bump the refcnt of the [loadable] module that owns this
1587 * socket at sock_release time we decrement its refcnt.
1589 if (!try_module_get(sock
->ops
->owner
))
1590 goto out_module_busy
;
1593 * Now that we're done with the ->create function, the [loadable]
1594 * module can have its refcnt decremented
1596 module_put(pf
->owner
);
1597 err
= security_socket_post_create(sock
, family
, type
, protocol
, kern
);
1599 goto out_sock_release
;
1605 err
= -EAFNOSUPPORT
;
1608 module_put(pf
->owner
);
1615 goto out_sock_release
;
1617 EXPORT_SYMBOL(__sock_create
);
1620 * sock_create - creates a socket
1621 * @family: protocol family (AF_INET, ...)
1622 * @type: communication type (SOCK_STREAM, ...)
1623 * @protocol: protocol (0, ...)
1626 * A wrapper around __sock_create().
1627 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1630 int sock_create(int family
, int type
, int protocol
, struct socket
**res
)
1632 return __sock_create(current
->nsproxy
->net_ns
, family
, type
, protocol
, res
, 0);
1634 EXPORT_SYMBOL(sock_create
);
1637 * sock_create_kern - creates a socket (kernel space)
1638 * @net: net namespace
1639 * @family: protocol family (AF_INET, ...)
1640 * @type: communication type (SOCK_STREAM, ...)
1641 * @protocol: protocol (0, ...)
1644 * A wrapper around __sock_create().
1645 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1648 int sock_create_kern(struct net
*net
, int family
, int type
, int protocol
, struct socket
**res
)
1650 return __sock_create(net
, family
, type
, protocol
, res
, 1);
1652 EXPORT_SYMBOL(sock_create_kern
);
1654 static struct socket
*__sys_socket_create(int family
, int type
, int protocol
)
1656 struct socket
*sock
;
1659 /* Check the SOCK_* constants for consistency. */
1660 BUILD_BUG_ON(SOCK_CLOEXEC
!= O_CLOEXEC
);
1661 BUILD_BUG_ON((SOCK_MAX
| SOCK_TYPE_MASK
) != SOCK_TYPE_MASK
);
1662 BUILD_BUG_ON(SOCK_CLOEXEC
& SOCK_TYPE_MASK
);
1663 BUILD_BUG_ON(SOCK_NONBLOCK
& SOCK_TYPE_MASK
);
1665 if ((type
& ~SOCK_TYPE_MASK
) & ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1666 return ERR_PTR(-EINVAL
);
1667 type
&= SOCK_TYPE_MASK
;
1669 retval
= sock_create(family
, type
, protocol
, &sock
);
1671 return ERR_PTR(retval
);
1676 struct file
*__sys_socket_file(int family
, int type
, int protocol
)
1678 struct socket
*sock
;
1681 sock
= __sys_socket_create(family
, type
, protocol
);
1683 return ERR_CAST(sock
);
1685 flags
= type
& ~SOCK_TYPE_MASK
;
1686 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1687 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1689 return sock_alloc_file(sock
, flags
, NULL
);
1692 /* A hook for bpf progs to attach to and update socket protocol.
1694 * A static noinline declaration here could cause the compiler to
1695 * optimize away the function. A global noinline declaration will
1696 * keep the definition, but may optimize away the callsite.
1697 * Therefore, __weak is needed to ensure that the call is still
1698 * emitted, by telling the compiler that we don't know what the
1699 * function might eventually be.
1704 __weak noinline
int update_socket_protocol(int family
, int type
, int protocol
)
1711 int __sys_socket(int family
, int type
, int protocol
)
1713 struct socket
*sock
;
1716 sock
= __sys_socket_create(family
, type
,
1717 update_socket_protocol(family
, type
, protocol
));
1719 return PTR_ERR(sock
);
1721 flags
= type
& ~SOCK_TYPE_MASK
;
1722 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1723 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1725 return sock_map_fd(sock
, flags
& (O_CLOEXEC
| O_NONBLOCK
));
1728 SYSCALL_DEFINE3(socket
, int, family
, int, type
, int, protocol
)
1730 return __sys_socket(family
, type
, protocol
);
1734 * Create a pair of connected sockets.
1737 int __sys_socketpair(int family
, int type
, int protocol
, int __user
*usockvec
)
1739 struct socket
*sock1
, *sock2
;
1741 struct file
*newfile1
, *newfile2
;
1744 flags
= type
& ~SOCK_TYPE_MASK
;
1745 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1747 type
&= SOCK_TYPE_MASK
;
1749 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1750 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1753 * reserve descriptors and make sure we won't fail
1754 * to return them to userland.
1756 fd1
= get_unused_fd_flags(flags
);
1757 if (unlikely(fd1
< 0))
1760 fd2
= get_unused_fd_flags(flags
);
1761 if (unlikely(fd2
< 0)) {
1766 err
= put_user(fd1
, &usockvec
[0]);
1770 err
= put_user(fd2
, &usockvec
[1]);
1775 * Obtain the first socket and check if the underlying protocol
1776 * supports the socketpair call.
1779 err
= sock_create(family
, type
, protocol
, &sock1
);
1780 if (unlikely(err
< 0))
1783 err
= sock_create(family
, type
, protocol
, &sock2
);
1784 if (unlikely(err
< 0)) {
1785 sock_release(sock1
);
1789 err
= security_socket_socketpair(sock1
, sock2
);
1790 if (unlikely(err
)) {
1791 sock_release(sock2
);
1792 sock_release(sock1
);
1796 err
= READ_ONCE(sock1
->ops
)->socketpair(sock1
, sock2
);
1797 if (unlikely(err
< 0)) {
1798 sock_release(sock2
);
1799 sock_release(sock1
);
1803 newfile1
= sock_alloc_file(sock1
, flags
, NULL
);
1804 if (IS_ERR(newfile1
)) {
1805 err
= PTR_ERR(newfile1
);
1806 sock_release(sock2
);
1810 newfile2
= sock_alloc_file(sock2
, flags
, NULL
);
1811 if (IS_ERR(newfile2
)) {
1812 err
= PTR_ERR(newfile2
);
1817 audit_fd_pair(fd1
, fd2
);
1819 fd_install(fd1
, newfile1
);
1820 fd_install(fd2
, newfile2
);
1829 SYSCALL_DEFINE4(socketpair
, int, family
, int, type
, int, protocol
,
1830 int __user
*, usockvec
)
1832 return __sys_socketpair(family
, type
, protocol
, usockvec
);
1835 int __sys_bind_socket(struct socket
*sock
, struct sockaddr_storage
*address
,
1840 err
= security_socket_bind(sock
, (struct sockaddr
*)address
,
1843 err
= READ_ONCE(sock
->ops
)->bind(sock
,
1844 (struct sockaddr
*)address
,
1850 * Bind a name to a socket. Nothing much to do here since it's
1851 * the protocol's responsibility to handle the local address.
1853 * We move the socket address to kernel space before we call
1854 * the protocol layer (having also checked the address is ok).
1857 int __sys_bind(int fd
, struct sockaddr __user
*umyaddr
, int addrlen
)
1859 struct socket
*sock
;
1860 struct sockaddr_storage address
;
1861 int err
, fput_needed
;
1863 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1865 err
= move_addr_to_kernel(umyaddr
, addrlen
, &address
);
1867 err
= __sys_bind_socket(sock
, &address
, addrlen
);
1868 fput_light(sock
->file
, fput_needed
);
1873 SYSCALL_DEFINE3(bind
, int, fd
, struct sockaddr __user
*, umyaddr
, int, addrlen
)
1875 return __sys_bind(fd
, umyaddr
, addrlen
);
1879 * Perform a listen. Basically, we allow the protocol to do anything
1880 * necessary for a listen, and if that works, we mark the socket as
1881 * ready for listening.
1883 int __sys_listen_socket(struct socket
*sock
, int backlog
)
1887 somaxconn
= READ_ONCE(sock_net(sock
->sk
)->core
.sysctl_somaxconn
);
1888 if ((unsigned int)backlog
> somaxconn
)
1889 backlog
= somaxconn
;
1891 err
= security_socket_listen(sock
, backlog
);
1893 err
= READ_ONCE(sock
->ops
)->listen(sock
, backlog
);
1897 int __sys_listen(int fd
, int backlog
)
1899 struct socket
*sock
;
1900 int err
, fput_needed
;
1902 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1904 err
= __sys_listen_socket(sock
, backlog
);
1905 fput_light(sock
->file
, fput_needed
);
1910 SYSCALL_DEFINE2(listen
, int, fd
, int, backlog
)
1912 return __sys_listen(fd
, backlog
);
1915 struct file
*do_accept(struct file
*file
, struct proto_accept_arg
*arg
,
1916 struct sockaddr __user
*upeer_sockaddr
,
1917 int __user
*upeer_addrlen
, int flags
)
1919 struct socket
*sock
, *newsock
;
1920 struct file
*newfile
;
1922 struct sockaddr_storage address
;
1923 const struct proto_ops
*ops
;
1925 sock
= sock_from_file(file
);
1927 return ERR_PTR(-ENOTSOCK
);
1929 newsock
= sock_alloc();
1931 return ERR_PTR(-ENFILE
);
1932 ops
= READ_ONCE(sock
->ops
);
1934 newsock
->type
= sock
->type
;
1938 * We don't need try_module_get here, as the listening socket (sock)
1939 * has the protocol module (sock->ops->owner) held.
1941 __module_get(ops
->owner
);
1943 newfile
= sock_alloc_file(newsock
, flags
, sock
->sk
->sk_prot_creator
->name
);
1944 if (IS_ERR(newfile
))
1947 err
= security_socket_accept(sock
, newsock
);
1951 arg
->flags
|= sock
->file
->f_flags
;
1952 err
= ops
->accept(sock
, newsock
, arg
);
1956 if (upeer_sockaddr
) {
1957 len
= ops
->getname(newsock
, (struct sockaddr
*)&address
, 2);
1959 err
= -ECONNABORTED
;
1962 err
= move_addr_to_user(&address
,
1963 len
, upeer_sockaddr
, upeer_addrlen
);
1968 /* File flags are not inherited via accept() unlike another OSes. */
1972 return ERR_PTR(err
);
1975 static int __sys_accept4_file(struct file
*file
, struct sockaddr __user
*upeer_sockaddr
,
1976 int __user
*upeer_addrlen
, int flags
)
1978 struct proto_accept_arg arg
= { };
1979 struct file
*newfile
;
1982 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1985 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1986 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1988 newfd
= get_unused_fd_flags(flags
);
1989 if (unlikely(newfd
< 0))
1992 newfile
= do_accept(file
, &arg
, upeer_sockaddr
, upeer_addrlen
,
1994 if (IS_ERR(newfile
)) {
1995 put_unused_fd(newfd
);
1996 return PTR_ERR(newfile
);
1998 fd_install(newfd
, newfile
);
2003 * For accept, we attempt to create a new socket, set up the link
2004 * with the client, wake up the client, then return the new
2005 * connected fd. We collect the address of the connector in kernel
2006 * space and move it to user at the very end. This is unclean because
2007 * we open the socket then return an error.
2009 * 1003.1g adds the ability to recvmsg() to query connection pending
2010 * status to recvmsg. We need to add that support in a way thats
2011 * clean when we restructure accept also.
2014 int __sys_accept4(int fd
, struct sockaddr __user
*upeer_sockaddr
,
2015 int __user
*upeer_addrlen
, int flags
)
2022 ret
= __sys_accept4_file(fd_file(f
), upeer_sockaddr
,
2023 upeer_addrlen
, flags
);
2030 SYSCALL_DEFINE4(accept4
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
2031 int __user
*, upeer_addrlen
, int, flags
)
2033 return __sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, flags
);
2036 SYSCALL_DEFINE3(accept
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
2037 int __user
*, upeer_addrlen
)
2039 return __sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, 0);
2043 * Attempt to connect to a socket with the server address. The address
2044 * is in user space so we verify it is OK and move it to kernel space.
2046 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
2049 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
2050 * other SEQPACKET protocols that take time to connect() as it doesn't
2051 * include the -EINPROGRESS status for such sockets.
2054 int __sys_connect_file(struct file
*file
, struct sockaddr_storage
*address
,
2055 int addrlen
, int file_flags
)
2057 struct socket
*sock
;
2060 sock
= sock_from_file(file
);
2067 security_socket_connect(sock
, (struct sockaddr
*)address
, addrlen
);
2071 err
= READ_ONCE(sock
->ops
)->connect(sock
, (struct sockaddr
*)address
,
2072 addrlen
, sock
->file
->f_flags
| file_flags
);
2077 int __sys_connect(int fd
, struct sockaddr __user
*uservaddr
, int addrlen
)
2084 struct sockaddr_storage address
;
2086 ret
= move_addr_to_kernel(uservaddr
, addrlen
, &address
);
2088 ret
= __sys_connect_file(fd_file(f
), &address
, addrlen
, 0);
2095 SYSCALL_DEFINE3(connect
, int, fd
, struct sockaddr __user
*, uservaddr
,
2098 return __sys_connect(fd
, uservaddr
, addrlen
);
2102 * Get the local address ('name') of a socket object. Move the obtained
2103 * name to user space.
2106 int __sys_getsockname(int fd
, struct sockaddr __user
*usockaddr
,
2107 int __user
*usockaddr_len
)
2109 struct socket
*sock
;
2110 struct sockaddr_storage address
;
2111 int err
, fput_needed
;
2113 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2117 err
= security_socket_getsockname(sock
);
2121 err
= READ_ONCE(sock
->ops
)->getname(sock
, (struct sockaddr
*)&address
, 0);
2124 /* "err" is actually length in this case */
2125 err
= move_addr_to_user(&address
, err
, usockaddr
, usockaddr_len
);
2128 fput_light(sock
->file
, fput_needed
);
2133 SYSCALL_DEFINE3(getsockname
, int, fd
, struct sockaddr __user
*, usockaddr
,
2134 int __user
*, usockaddr_len
)
2136 return __sys_getsockname(fd
, usockaddr
, usockaddr_len
);
2140 * Get the remote address ('name') of a socket object. Move the obtained
2141 * name to user space.
2144 int __sys_getpeername(int fd
, struct sockaddr __user
*usockaddr
,
2145 int __user
*usockaddr_len
)
2147 struct socket
*sock
;
2148 struct sockaddr_storage address
;
2149 int err
, fput_needed
;
2151 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2153 const struct proto_ops
*ops
= READ_ONCE(sock
->ops
);
2155 err
= security_socket_getpeername(sock
);
2157 fput_light(sock
->file
, fput_needed
);
2161 err
= ops
->getname(sock
, (struct sockaddr
*)&address
, 1);
2163 /* "err" is actually length in this case */
2164 err
= move_addr_to_user(&address
, err
, usockaddr
,
2166 fput_light(sock
->file
, fput_needed
);
2171 SYSCALL_DEFINE3(getpeername
, int, fd
, struct sockaddr __user
*, usockaddr
,
2172 int __user
*, usockaddr_len
)
2174 return __sys_getpeername(fd
, usockaddr
, usockaddr_len
);
2178 * Send a datagram to a given address. We move the address into kernel
2179 * space and check the user space data area is readable before invoking
2182 int __sys_sendto(int fd
, void __user
*buff
, size_t len
, unsigned int flags
,
2183 struct sockaddr __user
*addr
, int addr_len
)
2185 struct socket
*sock
;
2186 struct sockaddr_storage address
;
2191 err
= import_ubuf(ITER_SOURCE
, buff
, len
, &msg
.msg_iter
);
2194 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2198 msg
.msg_name
= NULL
;
2199 msg
.msg_control
= NULL
;
2200 msg
.msg_controllen
= 0;
2201 msg
.msg_namelen
= 0;
2202 msg
.msg_ubuf
= NULL
;
2204 err
= move_addr_to_kernel(addr
, addr_len
, &address
);
2207 msg
.msg_name
= (struct sockaddr
*)&address
;
2208 msg
.msg_namelen
= addr_len
;
2210 flags
&= ~MSG_INTERNAL_SENDMSG_FLAGS
;
2211 if (sock
->file
->f_flags
& O_NONBLOCK
)
2212 flags
|= MSG_DONTWAIT
;
2213 msg
.msg_flags
= flags
;
2214 err
= __sock_sendmsg(sock
, &msg
);
2217 fput_light(sock
->file
, fput_needed
);
2222 SYSCALL_DEFINE6(sendto
, int, fd
, void __user
*, buff
, size_t, len
,
2223 unsigned int, flags
, struct sockaddr __user
*, addr
,
2226 return __sys_sendto(fd
, buff
, len
, flags
, addr
, addr_len
);
2230 * Send a datagram down a socket.
2233 SYSCALL_DEFINE4(send
, int, fd
, void __user
*, buff
, size_t, len
,
2234 unsigned int, flags
)
2236 return __sys_sendto(fd
, buff
, len
, flags
, NULL
, 0);
2240 * Receive a frame from the socket and optionally record the address of the
2241 * sender. We verify the buffers are writable and if needed move the
2242 * sender address from kernel to user space.
2244 int __sys_recvfrom(int fd
, void __user
*ubuf
, size_t size
, unsigned int flags
,
2245 struct sockaddr __user
*addr
, int __user
*addr_len
)
2247 struct sockaddr_storage address
;
2248 struct msghdr msg
= {
2249 /* Save some cycles and don't copy the address if not needed */
2250 .msg_name
= addr
? (struct sockaddr
*)&address
: NULL
,
2252 struct socket
*sock
;
2256 err
= import_ubuf(ITER_DEST
, ubuf
, size
, &msg
.msg_iter
);
2259 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2263 if (sock
->file
->f_flags
& O_NONBLOCK
)
2264 flags
|= MSG_DONTWAIT
;
2265 err
= sock_recvmsg(sock
, &msg
, flags
);
2267 if (err
>= 0 && addr
!= NULL
) {
2268 err2
= move_addr_to_user(&address
,
2269 msg
.msg_namelen
, addr
, addr_len
);
2274 fput_light(sock
->file
, fput_needed
);
2279 SYSCALL_DEFINE6(recvfrom
, int, fd
, void __user
*, ubuf
, size_t, size
,
2280 unsigned int, flags
, struct sockaddr __user
*, addr
,
2281 int __user
*, addr_len
)
2283 return __sys_recvfrom(fd
, ubuf
, size
, flags
, addr
, addr_len
);
2287 * Receive a datagram from a socket.
2290 SYSCALL_DEFINE4(recv
, int, fd
, void __user
*, ubuf
, size_t, size
,
2291 unsigned int, flags
)
2293 return __sys_recvfrom(fd
, ubuf
, size
, flags
, NULL
, NULL
);
2296 static bool sock_use_custom_sol_socket(const struct socket
*sock
)
2298 return test_bit(SOCK_CUSTOM_SOCKOPT
, &sock
->flags
);
2301 int do_sock_setsockopt(struct socket
*sock
, bool compat
, int level
,
2302 int optname
, sockptr_t optval
, int optlen
)
2304 const struct proto_ops
*ops
;
2305 char *kernel_optval
= NULL
;
2311 err
= security_socket_setsockopt(sock
, level
, optname
);
2316 err
= BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock
->sk
, &level
, &optname
,
2327 optval
= KERNEL_SOCKPTR(kernel_optval
);
2328 ops
= READ_ONCE(sock
->ops
);
2329 if (level
== SOL_SOCKET
&& !sock_use_custom_sol_socket(sock
))
2330 err
= sock_setsockopt(sock
, level
, optname
, optval
, optlen
);
2331 else if (unlikely(!ops
->setsockopt
))
2334 err
= ops
->setsockopt(sock
, level
, optname
, optval
,
2336 kfree(kernel_optval
);
2340 EXPORT_SYMBOL(do_sock_setsockopt
);
2342 /* Set a socket option. Because we don't know the option lengths we have
2343 * to pass the user mode parameter for the protocols to sort out.
2345 int __sys_setsockopt(int fd
, int level
, int optname
, char __user
*user_optval
,
2348 sockptr_t optval
= USER_SOCKPTR(user_optval
);
2349 bool compat
= in_compat_syscall();
2350 int err
, fput_needed
;
2351 struct socket
*sock
;
2353 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2357 err
= do_sock_setsockopt(sock
, compat
, level
, optname
, optval
, optlen
);
2359 fput_light(sock
->file
, fput_needed
);
2363 SYSCALL_DEFINE5(setsockopt
, int, fd
, int, level
, int, optname
,
2364 char __user
*, optval
, int, optlen
)
2366 return __sys_setsockopt(fd
, level
, optname
, optval
, optlen
);
2369 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level
,
2372 int do_sock_getsockopt(struct socket
*sock
, bool compat
, int level
,
2373 int optname
, sockptr_t optval
, sockptr_t optlen
)
2375 int max_optlen __maybe_unused
= 0;
2376 const struct proto_ops
*ops
;
2379 err
= security_socket_getsockopt(sock
, level
, optname
);
2384 copy_from_sockptr(&max_optlen
, optlen
, sizeof(int));
2386 ops
= READ_ONCE(sock
->ops
);
2387 if (level
== SOL_SOCKET
) {
2388 err
= sk_getsockopt(sock
->sk
, level
, optname
, optval
, optlen
);
2389 } else if (unlikely(!ops
->getsockopt
)) {
2392 if (WARN_ONCE(optval
.is_kernel
|| optlen
.is_kernel
,
2393 "Invalid argument type"))
2396 err
= ops
->getsockopt(sock
, level
, optname
, optval
.user
,
2401 err
= BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock
->sk
, level
, optname
,
2402 optval
, optlen
, max_optlen
,
2407 EXPORT_SYMBOL(do_sock_getsockopt
);
2410 * Get a socket option. Because we don't know the option lengths we have
2411 * to pass a user mode parameter for the protocols to sort out.
2413 int __sys_getsockopt(int fd
, int level
, int optname
, char __user
*optval
,
2416 int err
, fput_needed
;
2417 struct socket
*sock
;
2420 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2424 compat
= in_compat_syscall();
2425 err
= do_sock_getsockopt(sock
, compat
, level
, optname
,
2426 USER_SOCKPTR(optval
), USER_SOCKPTR(optlen
));
2428 fput_light(sock
->file
, fput_needed
);
2432 SYSCALL_DEFINE5(getsockopt
, int, fd
, int, level
, int, optname
,
2433 char __user
*, optval
, int __user
*, optlen
)
2435 return __sys_getsockopt(fd
, level
, optname
, optval
, optlen
);
2439 * Shutdown a socket.
2442 int __sys_shutdown_sock(struct socket
*sock
, int how
)
2446 err
= security_socket_shutdown(sock
, how
);
2448 err
= READ_ONCE(sock
->ops
)->shutdown(sock
, how
);
2453 int __sys_shutdown(int fd
, int how
)
2455 int err
, fput_needed
;
2456 struct socket
*sock
;
2458 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2460 err
= __sys_shutdown_sock(sock
, how
);
2461 fput_light(sock
->file
, fput_needed
);
2466 SYSCALL_DEFINE2(shutdown
, int, fd
, int, how
)
2468 return __sys_shutdown(fd
, how
);
2471 /* A couple of helpful macros for getting the address of the 32/64 bit
2472 * fields which are the same type (int / unsigned) on our platforms.
2474 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2475 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2476 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2478 struct used_address
{
2479 struct sockaddr_storage name
;
2480 unsigned int name_len
;
2483 int __copy_msghdr(struct msghdr
*kmsg
,
2484 struct user_msghdr
*msg
,
2485 struct sockaddr __user
**save_addr
)
2489 kmsg
->msg_control_is_user
= true;
2490 kmsg
->msg_get_inq
= 0;
2491 kmsg
->msg_control_user
= msg
->msg_control
;
2492 kmsg
->msg_controllen
= msg
->msg_controllen
;
2493 kmsg
->msg_flags
= msg
->msg_flags
;
2495 kmsg
->msg_namelen
= msg
->msg_namelen
;
2497 kmsg
->msg_namelen
= 0;
2499 if (kmsg
->msg_namelen
< 0)
2502 if (kmsg
->msg_namelen
> sizeof(struct sockaddr_storage
))
2503 kmsg
->msg_namelen
= sizeof(struct sockaddr_storage
);
2506 *save_addr
= msg
->msg_name
;
2508 if (msg
->msg_name
&& kmsg
->msg_namelen
) {
2510 err
= move_addr_to_kernel(msg
->msg_name
,
2517 kmsg
->msg_name
= NULL
;
2518 kmsg
->msg_namelen
= 0;
2521 if (msg
->msg_iovlen
> UIO_MAXIOV
)
2524 kmsg
->msg_iocb
= NULL
;
2525 kmsg
->msg_ubuf
= NULL
;
2529 static int copy_msghdr_from_user(struct msghdr
*kmsg
,
2530 struct user_msghdr __user
*umsg
,
2531 struct sockaddr __user
**save_addr
,
2534 struct user_msghdr msg
;
2537 if (copy_from_user(&msg
, umsg
, sizeof(*umsg
)))
2540 err
= __copy_msghdr(kmsg
, &msg
, save_addr
);
2544 err
= import_iovec(save_addr
? ITER_DEST
: ITER_SOURCE
,
2545 msg
.msg_iov
, msg
.msg_iovlen
,
2546 UIO_FASTIOV
, iov
, &kmsg
->msg_iter
);
2547 return err
< 0 ? err
: 0;
2550 static int ____sys_sendmsg(struct socket
*sock
, struct msghdr
*msg_sys
,
2551 unsigned int flags
, struct used_address
*used_address
,
2552 unsigned int allowed_msghdr_flags
)
2554 unsigned char ctl
[sizeof(struct cmsghdr
) + 20]
2555 __aligned(sizeof(__kernel_size_t
));
2556 /* 20 is size of ipv6_pktinfo */
2557 unsigned char *ctl_buf
= ctl
;
2563 if (msg_sys
->msg_controllen
> INT_MAX
)
2565 flags
|= (msg_sys
->msg_flags
& allowed_msghdr_flags
);
2566 ctl_len
= msg_sys
->msg_controllen
;
2567 if ((MSG_CMSG_COMPAT
& flags
) && ctl_len
) {
2569 cmsghdr_from_user_compat_to_kern(msg_sys
, sock
->sk
, ctl
,
2573 ctl_buf
= msg_sys
->msg_control
;
2574 ctl_len
= msg_sys
->msg_controllen
;
2575 } else if (ctl_len
) {
2576 BUILD_BUG_ON(sizeof(struct cmsghdr
) !=
2577 CMSG_ALIGN(sizeof(struct cmsghdr
)));
2578 if (ctl_len
> sizeof(ctl
)) {
2579 ctl_buf
= sock_kmalloc(sock
->sk
, ctl_len
, GFP_KERNEL
);
2580 if (ctl_buf
== NULL
)
2584 if (copy_from_user(ctl_buf
, msg_sys
->msg_control_user
, ctl_len
))
2586 msg_sys
->msg_control
= ctl_buf
;
2587 msg_sys
->msg_control_is_user
= false;
2589 flags
&= ~MSG_INTERNAL_SENDMSG_FLAGS
;
2590 msg_sys
->msg_flags
= flags
;
2592 if (sock
->file
->f_flags
& O_NONBLOCK
)
2593 msg_sys
->msg_flags
|= MSG_DONTWAIT
;
2595 * If this is sendmmsg() and current destination address is same as
2596 * previously succeeded address, omit asking LSM's decision.
2597 * used_address->name_len is initialized to UINT_MAX so that the first
2598 * destination address never matches.
2600 if (used_address
&& msg_sys
->msg_name
&&
2601 used_address
->name_len
== msg_sys
->msg_namelen
&&
2602 !memcmp(&used_address
->name
, msg_sys
->msg_name
,
2603 used_address
->name_len
)) {
2604 err
= sock_sendmsg_nosec(sock
, msg_sys
);
2607 err
= __sock_sendmsg(sock
, msg_sys
);
2609 * If this is sendmmsg() and sending to current destination address was
2610 * successful, remember it.
2612 if (used_address
&& err
>= 0) {
2613 used_address
->name_len
= msg_sys
->msg_namelen
;
2614 if (msg_sys
->msg_name
)
2615 memcpy(&used_address
->name
, msg_sys
->msg_name
,
2616 used_address
->name_len
);
2621 sock_kfree_s(sock
->sk
, ctl_buf
, ctl_len
);
2626 static int sendmsg_copy_msghdr(struct msghdr
*msg
,
2627 struct user_msghdr __user
*umsg
, unsigned flags
,
2632 if (flags
& MSG_CMSG_COMPAT
) {
2633 struct compat_msghdr __user
*msg_compat
;
2635 msg_compat
= (struct compat_msghdr __user
*) umsg
;
2636 err
= get_compat_msghdr(msg
, msg_compat
, NULL
, iov
);
2638 err
= copy_msghdr_from_user(msg
, umsg
, NULL
, iov
);
2646 static int ___sys_sendmsg(struct socket
*sock
, struct user_msghdr __user
*msg
,
2647 struct msghdr
*msg_sys
, unsigned int flags
,
2648 struct used_address
*used_address
,
2649 unsigned int allowed_msghdr_flags
)
2651 struct sockaddr_storage address
;
2652 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
2655 msg_sys
->msg_name
= &address
;
2657 err
= sendmsg_copy_msghdr(msg_sys
, msg
, flags
, &iov
);
2661 err
= ____sys_sendmsg(sock
, msg_sys
, flags
, used_address
,
2662 allowed_msghdr_flags
);
2668 * BSD sendmsg interface
2670 long __sys_sendmsg_sock(struct socket
*sock
, struct msghdr
*msg
,
2673 return ____sys_sendmsg(sock
, msg
, flags
, NULL
, 0);
2676 long __sys_sendmsg(int fd
, struct user_msghdr __user
*msg
, unsigned int flags
,
2677 bool forbid_cmsg_compat
)
2679 int fput_needed
, err
;
2680 struct msghdr msg_sys
;
2681 struct socket
*sock
;
2683 if (forbid_cmsg_compat
&& (flags
& MSG_CMSG_COMPAT
))
2686 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2690 err
= ___sys_sendmsg(sock
, msg
, &msg_sys
, flags
, NULL
, 0);
2692 fput_light(sock
->file
, fput_needed
);
2697 SYSCALL_DEFINE3(sendmsg
, int, fd
, struct user_msghdr __user
*, msg
, unsigned int, flags
)
2699 return __sys_sendmsg(fd
, msg
, flags
, true);
2703 * Linux sendmmsg interface
2706 int __sys_sendmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2707 unsigned int flags
, bool forbid_cmsg_compat
)
2709 int fput_needed
, err
, datagrams
;
2710 struct socket
*sock
;
2711 struct mmsghdr __user
*entry
;
2712 struct compat_mmsghdr __user
*compat_entry
;
2713 struct msghdr msg_sys
;
2714 struct used_address used_address
;
2715 unsigned int oflags
= flags
;
2717 if (forbid_cmsg_compat
&& (flags
& MSG_CMSG_COMPAT
))
2720 if (vlen
> UIO_MAXIOV
)
2725 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2729 used_address
.name_len
= UINT_MAX
;
2731 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2735 while (datagrams
< vlen
) {
2736 if (datagrams
== vlen
- 1)
2739 if (MSG_CMSG_COMPAT
& flags
) {
2740 err
= ___sys_sendmsg(sock
, (struct user_msghdr __user
*)compat_entry
,
2741 &msg_sys
, flags
, &used_address
, MSG_EOR
);
2744 err
= __put_user(err
, &compat_entry
->msg_len
);
2747 err
= ___sys_sendmsg(sock
,
2748 (struct user_msghdr __user
*)entry
,
2749 &msg_sys
, flags
, &used_address
, MSG_EOR
);
2752 err
= put_user(err
, &entry
->msg_len
);
2759 if (msg_data_left(&msg_sys
))
2764 fput_light(sock
->file
, fput_needed
);
2766 /* We only return an error if no datagrams were able to be sent */
2773 SYSCALL_DEFINE4(sendmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2774 unsigned int, vlen
, unsigned int, flags
)
2776 return __sys_sendmmsg(fd
, mmsg
, vlen
, flags
, true);
2779 static int recvmsg_copy_msghdr(struct msghdr
*msg
,
2780 struct user_msghdr __user
*umsg
, unsigned flags
,
2781 struct sockaddr __user
**uaddr
,
2786 if (MSG_CMSG_COMPAT
& flags
) {
2787 struct compat_msghdr __user
*msg_compat
;
2789 msg_compat
= (struct compat_msghdr __user
*) umsg
;
2790 err
= get_compat_msghdr(msg
, msg_compat
, uaddr
, iov
);
2792 err
= copy_msghdr_from_user(msg
, umsg
, uaddr
, iov
);
2800 static int ____sys_recvmsg(struct socket
*sock
, struct msghdr
*msg_sys
,
2801 struct user_msghdr __user
*msg
,
2802 struct sockaddr __user
*uaddr
,
2803 unsigned int flags
, int nosec
)
2805 struct compat_msghdr __user
*msg_compat
=
2806 (struct compat_msghdr __user
*) msg
;
2807 int __user
*uaddr_len
= COMPAT_NAMELEN(msg
);
2808 struct sockaddr_storage addr
;
2809 unsigned long cmsg_ptr
;
2813 msg_sys
->msg_name
= &addr
;
2814 cmsg_ptr
= (unsigned long)msg_sys
->msg_control
;
2815 msg_sys
->msg_flags
= flags
& (MSG_CMSG_CLOEXEC
|MSG_CMSG_COMPAT
);
2817 /* We assume all kernel code knows the size of sockaddr_storage */
2818 msg_sys
->msg_namelen
= 0;
2820 if (sock
->file
->f_flags
& O_NONBLOCK
)
2821 flags
|= MSG_DONTWAIT
;
2823 if (unlikely(nosec
))
2824 err
= sock_recvmsg_nosec(sock
, msg_sys
, flags
);
2826 err
= sock_recvmsg(sock
, msg_sys
, flags
);
2832 if (uaddr
!= NULL
) {
2833 err
= move_addr_to_user(&addr
,
2834 msg_sys
->msg_namelen
, uaddr
,
2839 err
= __put_user((msg_sys
->msg_flags
& ~MSG_CMSG_COMPAT
),
2843 if (MSG_CMSG_COMPAT
& flags
)
2844 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2845 &msg_compat
->msg_controllen
);
2847 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2848 &msg
->msg_controllen
);
2856 static int ___sys_recvmsg(struct socket
*sock
, struct user_msghdr __user
*msg
,
2857 struct msghdr
*msg_sys
, unsigned int flags
, int nosec
)
2859 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
2860 /* user mode address pointers */
2861 struct sockaddr __user
*uaddr
;
2864 err
= recvmsg_copy_msghdr(msg_sys
, msg
, flags
, &uaddr
, &iov
);
2868 err
= ____sys_recvmsg(sock
, msg_sys
, msg
, uaddr
, flags
, nosec
);
2874 * BSD recvmsg interface
2877 long __sys_recvmsg_sock(struct socket
*sock
, struct msghdr
*msg
,
2878 struct user_msghdr __user
*umsg
,
2879 struct sockaddr __user
*uaddr
, unsigned int flags
)
2881 return ____sys_recvmsg(sock
, msg
, umsg
, uaddr
, flags
, 0);
2884 long __sys_recvmsg(int fd
, struct user_msghdr __user
*msg
, unsigned int flags
,
2885 bool forbid_cmsg_compat
)
2887 int fput_needed
, err
;
2888 struct msghdr msg_sys
;
2889 struct socket
*sock
;
2891 if (forbid_cmsg_compat
&& (flags
& MSG_CMSG_COMPAT
))
2894 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2898 err
= ___sys_recvmsg(sock
, msg
, &msg_sys
, flags
, 0);
2900 fput_light(sock
->file
, fput_needed
);
2905 SYSCALL_DEFINE3(recvmsg
, int, fd
, struct user_msghdr __user
*, msg
,
2906 unsigned int, flags
)
2908 return __sys_recvmsg(fd
, msg
, flags
, true);
2912 * Linux recvmmsg interface
2915 static int do_recvmmsg(int fd
, struct mmsghdr __user
*mmsg
,
2916 unsigned int vlen
, unsigned int flags
,
2917 struct timespec64
*timeout
)
2919 int fput_needed
, err
, datagrams
;
2920 struct socket
*sock
;
2921 struct mmsghdr __user
*entry
;
2922 struct compat_mmsghdr __user
*compat_entry
;
2923 struct msghdr msg_sys
;
2924 struct timespec64 end_time
;
2925 struct timespec64 timeout64
;
2928 poll_select_set_timeout(&end_time
, timeout
->tv_sec
,
2934 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2938 if (likely(!(flags
& MSG_ERRQUEUE
))) {
2939 err
= sock_error(sock
->sk
);
2947 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2949 while (datagrams
< vlen
) {
2951 * No need to ask LSM for more than the first datagram.
2953 if (MSG_CMSG_COMPAT
& flags
) {
2954 err
= ___sys_recvmsg(sock
, (struct user_msghdr __user
*)compat_entry
,
2955 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2959 err
= __put_user(err
, &compat_entry
->msg_len
);
2962 err
= ___sys_recvmsg(sock
,
2963 (struct user_msghdr __user
*)entry
,
2964 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2968 err
= put_user(err
, &entry
->msg_len
);
2976 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2977 if (flags
& MSG_WAITFORONE
)
2978 flags
|= MSG_DONTWAIT
;
2981 ktime_get_ts64(&timeout64
);
2982 *timeout
= timespec64_sub(end_time
, timeout64
);
2983 if (timeout
->tv_sec
< 0) {
2984 timeout
->tv_sec
= timeout
->tv_nsec
= 0;
2988 /* Timeout, return less than vlen datagrams */
2989 if (timeout
->tv_nsec
== 0 && timeout
->tv_sec
== 0)
2993 /* Out of band data, return right away */
2994 if (msg_sys
.msg_flags
& MSG_OOB
)
3002 if (datagrams
== 0) {
3008 * We may return less entries than requested (vlen) if the
3009 * sock is non block and there aren't enough datagrams...
3011 if (err
!= -EAGAIN
) {
3013 * ... or if recvmsg returns an error after we
3014 * received some datagrams, where we record the
3015 * error to return on the next call or if the
3016 * app asks about it using getsockopt(SO_ERROR).
3018 WRITE_ONCE(sock
->sk
->sk_err
, -err
);
3021 fput_light(sock
->file
, fput_needed
);
3026 int __sys_recvmmsg(int fd
, struct mmsghdr __user
*mmsg
,
3027 unsigned int vlen
, unsigned int flags
,
3028 struct __kernel_timespec __user
*timeout
,
3029 struct old_timespec32 __user
*timeout32
)
3032 struct timespec64 timeout_sys
;
3034 if (timeout
&& get_timespec64(&timeout_sys
, timeout
))
3037 if (timeout32
&& get_old_timespec32(&timeout_sys
, timeout32
))
3040 if (!timeout
&& !timeout32
)
3041 return do_recvmmsg(fd
, mmsg
, vlen
, flags
, NULL
);
3043 datagrams
= do_recvmmsg(fd
, mmsg
, vlen
, flags
, &timeout_sys
);
3048 if (timeout
&& put_timespec64(&timeout_sys
, timeout
))
3049 datagrams
= -EFAULT
;
3051 if (timeout32
&& put_old_timespec32(&timeout_sys
, timeout32
))
3052 datagrams
= -EFAULT
;
3057 SYSCALL_DEFINE5(recvmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
3058 unsigned int, vlen
, unsigned int, flags
,
3059 struct __kernel_timespec __user
*, timeout
)
3061 if (flags
& MSG_CMSG_COMPAT
)
3064 return __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, timeout
, NULL
);
3067 #ifdef CONFIG_COMPAT_32BIT_TIME
3068 SYSCALL_DEFINE5(recvmmsg_time32
, int, fd
, struct mmsghdr __user
*, mmsg
,
3069 unsigned int, vlen
, unsigned int, flags
,
3070 struct old_timespec32 __user
*, timeout
)
3072 if (flags
& MSG_CMSG_COMPAT
)
3075 return __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, NULL
, timeout
);
3079 #ifdef __ARCH_WANT_SYS_SOCKETCALL
3080 /* Argument list sizes for sys_socketcall */
3081 #define AL(x) ((x) * sizeof(unsigned long))
3082 static const unsigned char nargs
[21] = {
3083 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
3084 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
3085 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
3092 * System call vectors.
3094 * Argument checking cleaned up. Saved 20% in size.
3095 * This function doesn't need to set the kernel lock because
3096 * it is set by the callees.
3099 SYSCALL_DEFINE2(socketcall
, int, call
, unsigned long __user
*, args
)
3101 unsigned long a
[AUDITSC_ARGS
];
3102 unsigned long a0
, a1
;
3106 if (call
< 1 || call
> SYS_SENDMMSG
)
3108 call
= array_index_nospec(call
, SYS_SENDMMSG
+ 1);
3111 if (len
> sizeof(a
))
3114 /* copy_from_user should be SMP safe. */
3115 if (copy_from_user(a
, args
, len
))
3118 err
= audit_socketcall(nargs
[call
] / sizeof(unsigned long), a
);
3127 err
= __sys_socket(a0
, a1
, a
[2]);
3130 err
= __sys_bind(a0
, (struct sockaddr __user
*)a1
, a
[2]);
3133 err
= __sys_connect(a0
, (struct sockaddr __user
*)a1
, a
[2]);
3136 err
= __sys_listen(a0
, a1
);
3139 err
= __sys_accept4(a0
, (struct sockaddr __user
*)a1
,
3140 (int __user
*)a
[2], 0);
3142 case SYS_GETSOCKNAME
:
3144 __sys_getsockname(a0
, (struct sockaddr __user
*)a1
,
3145 (int __user
*)a
[2]);
3147 case SYS_GETPEERNAME
:
3149 __sys_getpeername(a0
, (struct sockaddr __user
*)a1
,
3150 (int __user
*)a
[2]);
3152 case SYS_SOCKETPAIR
:
3153 err
= __sys_socketpair(a0
, a1
, a
[2], (int __user
*)a
[3]);
3156 err
= __sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
3160 err
= __sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
3161 (struct sockaddr __user
*)a
[4], a
[5]);
3164 err
= __sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
3168 err
= __sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
3169 (struct sockaddr __user
*)a
[4],
3170 (int __user
*)a
[5]);
3173 err
= __sys_shutdown(a0
, a1
);
3175 case SYS_SETSOCKOPT
:
3176 err
= __sys_setsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
3179 case SYS_GETSOCKOPT
:
3181 __sys_getsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
3182 (int __user
*)a
[4]);
3185 err
= __sys_sendmsg(a0
, (struct user_msghdr __user
*)a1
,
3189 err
= __sys_sendmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2],
3193 err
= __sys_recvmsg(a0
, (struct user_msghdr __user
*)a1
,
3197 if (IS_ENABLED(CONFIG_64BIT
))
3198 err
= __sys_recvmmsg(a0
, (struct mmsghdr __user
*)a1
,
3200 (struct __kernel_timespec __user
*)a
[4],
3203 err
= __sys_recvmmsg(a0
, (struct mmsghdr __user
*)a1
,
3205 (struct old_timespec32 __user
*)a
[4]);
3208 err
= __sys_accept4(a0
, (struct sockaddr __user
*)a1
,
3209 (int __user
*)a
[2], a
[3]);
3218 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
3221 * sock_register - add a socket protocol handler
3222 * @ops: description of protocol
3224 * This function is called by a protocol handler that wants to
3225 * advertise its address family, and have it linked into the
3226 * socket interface. The value ops->family corresponds to the
3227 * socket system call protocol family.
3229 int sock_register(const struct net_proto_family
*ops
)
3233 if (ops
->family
>= NPROTO
) {
3234 pr_crit("protocol %d >= NPROTO(%d)\n", ops
->family
, NPROTO
);
3238 spin_lock(&net_family_lock
);
3239 if (rcu_dereference_protected(net_families
[ops
->family
],
3240 lockdep_is_held(&net_family_lock
)))
3243 rcu_assign_pointer(net_families
[ops
->family
], ops
);
3246 spin_unlock(&net_family_lock
);
3248 pr_info("NET: Registered %s protocol family\n", pf_family_names
[ops
->family
]);
3251 EXPORT_SYMBOL(sock_register
);
3254 * sock_unregister - remove a protocol handler
3255 * @family: protocol family to remove
3257 * This function is called by a protocol handler that wants to
3258 * remove its address family, and have it unlinked from the
3259 * new socket creation.
3261 * If protocol handler is a module, then it can use module reference
3262 * counts to protect against new references. If protocol handler is not
3263 * a module then it needs to provide its own protection in
3264 * the ops->create routine.
3266 void sock_unregister(int family
)
3268 BUG_ON(family
< 0 || family
>= NPROTO
);
3270 spin_lock(&net_family_lock
);
3271 RCU_INIT_POINTER(net_families
[family
], NULL
);
3272 spin_unlock(&net_family_lock
);
3276 pr_info("NET: Unregistered %s protocol family\n", pf_family_names
[family
]);
3278 EXPORT_SYMBOL(sock_unregister
);
3280 bool sock_is_registered(int family
)
3282 return family
< NPROTO
&& rcu_access_pointer(net_families
[family
]);
3285 static int __init
sock_init(void)
3289 * Initialize the network sysctl infrastructure.
3291 err
= net_sysctl_init();
3296 * Initialize skbuff SLAB cache
3301 * Initialize the protocols module.
3306 err
= register_filesystem(&sock_fs_type
);
3309 sock_mnt
= kern_mount(&sock_fs_type
);
3310 if (IS_ERR(sock_mnt
)) {
3311 err
= PTR_ERR(sock_mnt
);
3315 /* The real protocol initialization is performed in later initcalls.
3318 #ifdef CONFIG_NETFILTER
3319 err
= netfilter_init();
3324 ptp_classifier_init();
3330 unregister_filesystem(&sock_fs_type
);
3334 core_initcall(sock_init
); /* early initcall */
3336 #ifdef CONFIG_PROC_FS
3337 void socket_seq_show(struct seq_file
*seq
)
3339 seq_printf(seq
, "sockets: used %d\n",
3340 sock_inuse_get(seq
->private));
3342 #endif /* CONFIG_PROC_FS */
3344 /* Handle the fact that while struct ifreq has the same *layout* on
3345 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3346 * which are handled elsewhere, it still has different *size* due to
3347 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3348 * resulting in struct ifreq being 32 and 40 bytes respectively).
3349 * As a result, if the struct happens to be at the end of a page and
3350 * the next page isn't readable/writable, we get a fault. To prevent
3351 * that, copy back and forth to the full size.
3353 int get_user_ifreq(struct ifreq
*ifr
, void __user
**ifrdata
, void __user
*arg
)
3355 if (in_compat_syscall()) {
3356 struct compat_ifreq
*ifr32
= (struct compat_ifreq
*)ifr
;
3358 memset(ifr
, 0, sizeof(*ifr
));
3359 if (copy_from_user(ifr32
, arg
, sizeof(*ifr32
)))
3363 *ifrdata
= compat_ptr(ifr32
->ifr_data
);
3368 if (copy_from_user(ifr
, arg
, sizeof(*ifr
)))
3372 *ifrdata
= ifr
->ifr_data
;
3376 EXPORT_SYMBOL(get_user_ifreq
);
3378 int put_user_ifreq(struct ifreq
*ifr
, void __user
*arg
)
3380 size_t size
= sizeof(*ifr
);
3382 if (in_compat_syscall())
3383 size
= sizeof(struct compat_ifreq
);
3385 if (copy_to_user(arg
, ifr
, size
))
3390 EXPORT_SYMBOL(put_user_ifreq
);
3392 #ifdef CONFIG_COMPAT
3393 static int compat_siocwandev(struct net
*net
, struct compat_ifreq __user
*uifr32
)
3395 compat_uptr_t uptr32
;
3400 if (get_user_ifreq(&ifr
, NULL
, uifr32
))
3403 if (get_user(uptr32
, &uifr32
->ifr_settings
.ifs_ifsu
))
3406 saved
= ifr
.ifr_settings
.ifs_ifsu
.raw_hdlc
;
3407 ifr
.ifr_settings
.ifs_ifsu
.raw_hdlc
= compat_ptr(uptr32
);
3409 err
= dev_ioctl(net
, SIOCWANDEV
, &ifr
, NULL
, NULL
);
3411 ifr
.ifr_settings
.ifs_ifsu
.raw_hdlc
= saved
;
3412 if (put_user_ifreq(&ifr
, uifr32
))
3418 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3419 static int compat_ifr_data_ioctl(struct net
*net
, unsigned int cmd
,
3420 struct compat_ifreq __user
*u_ifreq32
)
3425 if (!is_socket_ioctl_cmd(cmd
))
3427 if (get_user_ifreq(&ifreq
, &data
, u_ifreq32
))
3429 ifreq
.ifr_data
= data
;
3431 return dev_ioctl(net
, cmd
, &ifreq
, data
, NULL
);
3434 static int compat_sock_ioctl_trans(struct file
*file
, struct socket
*sock
,
3435 unsigned int cmd
, unsigned long arg
)
3437 void __user
*argp
= compat_ptr(arg
);
3438 struct sock
*sk
= sock
->sk
;
3439 struct net
*net
= sock_net(sk
);
3440 const struct proto_ops
*ops
;
3442 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))
3443 return sock_ioctl(file
, cmd
, (unsigned long)argp
);
3447 return compat_siocwandev(net
, argp
);
3448 case SIOCGSTAMP_OLD
:
3449 case SIOCGSTAMPNS_OLD
:
3450 ops
= READ_ONCE(sock
->ops
);
3451 if (!ops
->gettstamp
)
3452 return -ENOIOCTLCMD
;
3453 return ops
->gettstamp(sock
, argp
, cmd
== SIOCGSTAMP_OLD
,
3454 !COMPAT_USE_64BIT_TIME
);
3457 case SIOCBONDSLAVEINFOQUERY
:
3458 case SIOCBONDINFOQUERY
:
3461 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3472 case SIOCGSTAMP_NEW
:
3473 case SIOCGSTAMPNS_NEW
:
3477 return sock_ioctl(file
, cmd
, arg
);
3496 case SIOCSIFHWBROADCAST
:
3498 case SIOCGIFBRDADDR
:
3499 case SIOCSIFBRDADDR
:
3500 case SIOCGIFDSTADDR
:
3501 case SIOCSIFDSTADDR
:
3502 case SIOCGIFNETMASK
:
3503 case SIOCSIFNETMASK
:
3515 case SIOCBONDENSLAVE
:
3516 case SIOCBONDRELEASE
:
3517 case SIOCBONDSETHWADDR
:
3518 case SIOCBONDCHANGEACTIVE
:
3525 return sock_do_ioctl(net
, sock
, cmd
, arg
);
3528 return -ENOIOCTLCMD
;
3531 static long compat_sock_ioctl(struct file
*file
, unsigned int cmd
,
3534 struct socket
*sock
= file
->private_data
;
3535 const struct proto_ops
*ops
= READ_ONCE(sock
->ops
);
3536 int ret
= -ENOIOCTLCMD
;
3543 if (ops
->compat_ioctl
)
3544 ret
= ops
->compat_ioctl(sock
, cmd
, arg
);
3546 if (ret
== -ENOIOCTLCMD
&&
3547 (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
))
3548 ret
= compat_wext_handle_ioctl(net
, cmd
, arg
);
3550 if (ret
== -ENOIOCTLCMD
)
3551 ret
= compat_sock_ioctl_trans(file
, sock
, cmd
, arg
);
3558 * kernel_bind - bind an address to a socket (kernel space)
3561 * @addrlen: length of address
3563 * Returns 0 or an error.
3566 int kernel_bind(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
)
3568 struct sockaddr_storage address
;
3570 memcpy(&address
, addr
, addrlen
);
3572 return READ_ONCE(sock
->ops
)->bind(sock
, (struct sockaddr
*)&address
,
3575 EXPORT_SYMBOL(kernel_bind
);
3578 * kernel_listen - move socket to listening state (kernel space)
3580 * @backlog: pending connections queue size
3582 * Returns 0 or an error.
3585 int kernel_listen(struct socket
*sock
, int backlog
)
3587 return READ_ONCE(sock
->ops
)->listen(sock
, backlog
);
3589 EXPORT_SYMBOL(kernel_listen
);
3592 * kernel_accept - accept a connection (kernel space)
3593 * @sock: listening socket
3594 * @newsock: new connected socket
3597 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3598 * If it fails, @newsock is guaranteed to be %NULL.
3599 * Returns 0 or an error.
3602 int kernel_accept(struct socket
*sock
, struct socket
**newsock
, int flags
)
3604 struct sock
*sk
= sock
->sk
;
3605 const struct proto_ops
*ops
= READ_ONCE(sock
->ops
);
3606 struct proto_accept_arg arg
= {
3612 err
= sock_create_lite(sk
->sk_family
, sk
->sk_type
, sk
->sk_protocol
,
3617 err
= ops
->accept(sock
, *newsock
, &arg
);
3619 sock_release(*newsock
);
3624 (*newsock
)->ops
= ops
;
3625 __module_get(ops
->owner
);
3630 EXPORT_SYMBOL(kernel_accept
);
3633 * kernel_connect - connect a socket (kernel space)
3636 * @addrlen: address length
3637 * @flags: flags (O_NONBLOCK, ...)
3639 * For datagram sockets, @addr is the address to which datagrams are sent
3640 * by default, and the only address from which datagrams are received.
3641 * For stream sockets, attempts to connect to @addr.
3642 * Returns 0 or an error code.
3645 int kernel_connect(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
,
3648 struct sockaddr_storage address
;
3650 memcpy(&address
, addr
, addrlen
);
3652 return READ_ONCE(sock
->ops
)->connect(sock
, (struct sockaddr
*)&address
,
3655 EXPORT_SYMBOL(kernel_connect
);
3658 * kernel_getsockname - get the address which the socket is bound (kernel space)
3660 * @addr: address holder
3662 * Fills the @addr pointer with the address which the socket is bound.
3663 * Returns the length of the address in bytes or an error code.
3666 int kernel_getsockname(struct socket
*sock
, struct sockaddr
*addr
)
3668 return READ_ONCE(sock
->ops
)->getname(sock
, addr
, 0);
3670 EXPORT_SYMBOL(kernel_getsockname
);
3673 * kernel_getpeername - get the address which the socket is connected (kernel space)
3675 * @addr: address holder
3677 * Fills the @addr pointer with the address which the socket is connected.
3678 * Returns the length of the address in bytes or an error code.
3681 int kernel_getpeername(struct socket
*sock
, struct sockaddr
*addr
)
3683 return READ_ONCE(sock
->ops
)->getname(sock
, addr
, 1);
3685 EXPORT_SYMBOL(kernel_getpeername
);
3688 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3690 * @how: connection part
3692 * Returns 0 or an error.
3695 int kernel_sock_shutdown(struct socket
*sock
, enum sock_shutdown_cmd how
)
3697 return READ_ONCE(sock
->ops
)->shutdown(sock
, how
);
3699 EXPORT_SYMBOL(kernel_sock_shutdown
);
3702 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3705 * This routine returns the IP overhead imposed by a socket i.e.
3706 * the length of the underlying IP header, depending on whether
3707 * this is an IPv4 or IPv6 socket and the length from IP options turned
3708 * on at the socket. Assumes that the caller has a lock on the socket.
3711 u32
kernel_sock_ip_overhead(struct sock
*sk
)
3713 struct inet_sock
*inet
;
3714 struct ip_options_rcu
*opt
;
3716 #if IS_ENABLED(CONFIG_IPV6)
3717 struct ipv6_pinfo
*np
;
3718 struct ipv6_txoptions
*optv6
= NULL
;
3719 #endif /* IS_ENABLED(CONFIG_IPV6) */
3724 switch (sk
->sk_family
) {
3727 overhead
+= sizeof(struct iphdr
);
3728 opt
= rcu_dereference_protected(inet
->inet_opt
,
3729 sock_owned_by_user(sk
));
3731 overhead
+= opt
->opt
.optlen
;
3733 #if IS_ENABLED(CONFIG_IPV6)
3736 overhead
+= sizeof(struct ipv6hdr
);
3738 optv6
= rcu_dereference_protected(np
->opt
,
3739 sock_owned_by_user(sk
));
3741 overhead
+= (optv6
->opt_flen
+ optv6
->opt_nflen
);
3743 #endif /* IS_ENABLED(CONFIG_IPV6) */
3744 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3748 EXPORT_SYMBOL(kernel_sock_ip_overhead
);