1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
3 * This software is available to you under a choice of one of two
4 * licenses. You may choose to be licensed under the terms of the GNU
5 * General Public License (GPL) Version 2, available from the file
6 * COPYING in the main directory of this source tree, or the
7 * OpenIB.org BSD license below:
9 * Redistribution and use in source and binary forms, with or
10 * without modification, are permitted provided that the following
13 * - Redistributions of source code must retain the above
14 * copyright notice, this list of conditions and the following
17 * - Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials
20 * provided with the distribution.
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 #include <crypto/aead.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/netdevice.h>
37 #include <net/inet_connection_sock.h>
40 #include <linux/skbuff_ref.h>
45 /* device_offload_lock is used to synchronize tls_dev_add
46 * against NETDEV_DOWN notifications.
48 static DECLARE_RWSEM(device_offload_lock
);
50 static struct workqueue_struct
*destruct_wq __read_mostly
;
52 static LIST_HEAD(tls_device_list
);
53 static LIST_HEAD(tls_device_down_list
);
54 static DEFINE_SPINLOCK(tls_device_lock
);
56 static struct page
*dummy_page
;
58 static void tls_device_free_ctx(struct tls_context
*ctx
)
60 if (ctx
->tx_conf
== TLS_HW
)
61 kfree(tls_offload_ctx_tx(ctx
));
63 if (ctx
->rx_conf
== TLS_HW
)
64 kfree(tls_offload_ctx_rx(ctx
));
66 tls_ctx_free(NULL
, ctx
);
69 static void tls_device_tx_del_task(struct work_struct
*work
)
71 struct tls_offload_context_tx
*offload_ctx
=
72 container_of(work
, struct tls_offload_context_tx
, destruct_work
);
73 struct tls_context
*ctx
= offload_ctx
->ctx
;
74 struct net_device
*netdev
;
76 /* Safe, because this is the destroy flow, refcount is 0, so
77 * tls_device_down can't store this field in parallel.
79 netdev
= rcu_dereference_protected(ctx
->netdev
,
80 !refcount_read(&ctx
->refcount
));
82 netdev
->tlsdev_ops
->tls_dev_del(netdev
, ctx
, TLS_OFFLOAD_CTX_DIR_TX
);
85 tls_device_free_ctx(ctx
);
88 static void tls_device_queue_ctx_destruction(struct tls_context
*ctx
)
90 struct net_device
*netdev
;
94 spin_lock_irqsave(&tls_device_lock
, flags
);
95 if (unlikely(!refcount_dec_and_test(&ctx
->refcount
))) {
96 spin_unlock_irqrestore(&tls_device_lock
, flags
);
100 list_del(&ctx
->list
); /* Remove from tls_device_list / tls_device_down_list */
102 /* Safe, because this is the destroy flow, refcount is 0, so
103 * tls_device_down can't store this field in parallel.
105 netdev
= rcu_dereference_protected(ctx
->netdev
,
106 !refcount_read(&ctx
->refcount
));
108 async_cleanup
= netdev
&& ctx
->tx_conf
== TLS_HW
;
110 struct tls_offload_context_tx
*offload_ctx
= tls_offload_ctx_tx(ctx
);
112 /* queue_work inside the spinlock
113 * to make sure tls_device_down waits for that work.
115 queue_work(destruct_wq
, &offload_ctx
->destruct_work
);
117 spin_unlock_irqrestore(&tls_device_lock
, flags
);
120 tls_device_free_ctx(ctx
);
123 /* We assume that the socket is already connected */
124 static struct net_device
*get_netdev_for_sock(struct sock
*sk
)
126 struct dst_entry
*dst
= sk_dst_get(sk
);
127 struct net_device
*netdev
= NULL
;
130 netdev
= netdev_sk_get_lowest_dev(dst
->dev
, sk
);
139 static void destroy_record(struct tls_record_info
*record
)
143 for (i
= 0; i
< record
->num_frags
; i
++)
144 __skb_frag_unref(&record
->frags
[i
], false);
148 static void delete_all_records(struct tls_offload_context_tx
*offload_ctx
)
150 struct tls_record_info
*info
, *temp
;
152 list_for_each_entry_safe(info
, temp
, &offload_ctx
->records_list
, list
) {
153 list_del(&info
->list
);
154 destroy_record(info
);
157 offload_ctx
->retransmit_hint
= NULL
;
160 static void tls_icsk_clean_acked(struct sock
*sk
, u32 acked_seq
)
162 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
163 struct tls_record_info
*info
, *temp
;
164 struct tls_offload_context_tx
*ctx
;
165 u64 deleted_records
= 0;
171 ctx
= tls_offload_ctx_tx(tls_ctx
);
173 spin_lock_irqsave(&ctx
->lock
, flags
);
174 info
= ctx
->retransmit_hint
;
175 if (info
&& !before(acked_seq
, info
->end_seq
))
176 ctx
->retransmit_hint
= NULL
;
178 list_for_each_entry_safe(info
, temp
, &ctx
->records_list
, list
) {
179 if (before(acked_seq
, info
->end_seq
))
181 list_del(&info
->list
);
183 destroy_record(info
);
187 ctx
->unacked_record_sn
+= deleted_records
;
188 spin_unlock_irqrestore(&ctx
->lock
, flags
);
191 /* At this point, there should be no references on this
192 * socket and no in-flight SKBs associated with this
193 * socket, so it is safe to free all the resources.
195 void tls_device_sk_destruct(struct sock
*sk
)
197 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
198 struct tls_offload_context_tx
*ctx
= tls_offload_ctx_tx(tls_ctx
);
200 tls_ctx
->sk_destruct(sk
);
202 if (tls_ctx
->tx_conf
== TLS_HW
) {
203 if (ctx
->open_record
)
204 destroy_record(ctx
->open_record
);
205 delete_all_records(ctx
);
206 crypto_free_aead(ctx
->aead_send
);
207 clean_acked_data_disable(inet_csk(sk
));
210 tls_device_queue_ctx_destruction(tls_ctx
);
212 EXPORT_SYMBOL_GPL(tls_device_sk_destruct
);
214 void tls_device_free_resources_tx(struct sock
*sk
)
216 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
218 tls_free_partial_record(sk
, tls_ctx
);
221 void tls_offload_tx_resync_request(struct sock
*sk
, u32 got_seq
, u32 exp_seq
)
223 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
225 trace_tls_device_tx_resync_req(sk
, got_seq
, exp_seq
);
226 WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED
, &tls_ctx
->flags
));
228 EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request
);
230 static void tls_device_resync_tx(struct sock
*sk
, struct tls_context
*tls_ctx
,
233 struct net_device
*netdev
;
237 tcp_write_collapse_fence(sk
);
238 rcd_sn
= tls_ctx
->tx
.rec_seq
;
240 trace_tls_device_tx_resync_send(sk
, seq
, rcd_sn
);
241 down_read(&device_offload_lock
);
242 netdev
= rcu_dereference_protected(tls_ctx
->netdev
,
243 lockdep_is_held(&device_offload_lock
));
245 err
= netdev
->tlsdev_ops
->tls_dev_resync(netdev
, sk
, seq
,
247 TLS_OFFLOAD_CTX_DIR_TX
);
248 up_read(&device_offload_lock
);
252 clear_bit_unlock(TLS_TX_SYNC_SCHED
, &tls_ctx
->flags
);
255 static void tls_append_frag(struct tls_record_info
*record
,
256 struct page_frag
*pfrag
,
261 frag
= &record
->frags
[record
->num_frags
- 1];
262 if (skb_frag_page(frag
) == pfrag
->page
&&
263 skb_frag_off(frag
) + skb_frag_size(frag
) == pfrag
->offset
) {
264 skb_frag_size_add(frag
, size
);
267 skb_frag_fill_page_desc(frag
, pfrag
->page
, pfrag
->offset
,
270 get_page(pfrag
->page
);
273 pfrag
->offset
+= size
;
277 static int tls_push_record(struct sock
*sk
,
278 struct tls_context
*ctx
,
279 struct tls_offload_context_tx
*offload_ctx
,
280 struct tls_record_info
*record
,
283 struct tls_prot_info
*prot
= &ctx
->prot_info
;
284 struct tcp_sock
*tp
= tcp_sk(sk
);
288 record
->end_seq
= tp
->write_seq
+ record
->len
;
289 list_add_tail_rcu(&record
->list
, &offload_ctx
->records_list
);
290 offload_ctx
->open_record
= NULL
;
292 if (test_bit(TLS_TX_SYNC_SCHED
, &ctx
->flags
))
293 tls_device_resync_tx(sk
, ctx
, tp
->write_seq
);
295 tls_advance_record_sn(sk
, prot
, &ctx
->tx
);
297 for (i
= 0; i
< record
->num_frags
; i
++) {
298 frag
= &record
->frags
[i
];
299 sg_unmark_end(&offload_ctx
->sg_tx_data
[i
]);
300 sg_set_page(&offload_ctx
->sg_tx_data
[i
], skb_frag_page(frag
),
301 skb_frag_size(frag
), skb_frag_off(frag
));
302 sk_mem_charge(sk
, skb_frag_size(frag
));
303 get_page(skb_frag_page(frag
));
305 sg_mark_end(&offload_ctx
->sg_tx_data
[record
->num_frags
- 1]);
307 /* all ready, send */
308 return tls_push_sg(sk
, ctx
, offload_ctx
->sg_tx_data
, 0, flags
);
311 static void tls_device_record_close(struct sock
*sk
,
312 struct tls_context
*ctx
,
313 struct tls_record_info
*record
,
314 struct page_frag
*pfrag
,
315 unsigned char record_type
)
317 struct tls_prot_info
*prot
= &ctx
->prot_info
;
318 struct page_frag dummy_tag_frag
;
321 * device will fill in the tag, we just need to append a placeholder
322 * use socket memory to improve coalescing (re-using a single buffer
323 * increases frag count)
324 * if we can't allocate memory now use the dummy page
326 if (unlikely(pfrag
->size
- pfrag
->offset
< prot
->tag_size
) &&
327 !skb_page_frag_refill(prot
->tag_size
, pfrag
, sk
->sk_allocation
)) {
328 dummy_tag_frag
.page
= dummy_page
;
329 dummy_tag_frag
.offset
= 0;
330 pfrag
= &dummy_tag_frag
;
332 tls_append_frag(record
, pfrag
, prot
->tag_size
);
335 tls_fill_prepend(ctx
, skb_frag_address(&record
->frags
[0]),
336 record
->len
- prot
->overhead_size
,
340 static int tls_create_new_record(struct tls_offload_context_tx
*offload_ctx
,
341 struct page_frag
*pfrag
,
344 struct tls_record_info
*record
;
347 record
= kmalloc(sizeof(*record
), GFP_KERNEL
);
351 frag
= &record
->frags
[0];
352 skb_frag_fill_page_desc(frag
, pfrag
->page
, pfrag
->offset
,
355 get_page(pfrag
->page
);
356 pfrag
->offset
+= prepend_size
;
358 record
->num_frags
= 1;
359 record
->len
= prepend_size
;
360 offload_ctx
->open_record
= record
;
364 static int tls_do_allocation(struct sock
*sk
,
365 struct tls_offload_context_tx
*offload_ctx
,
366 struct page_frag
*pfrag
,
371 if (!offload_ctx
->open_record
) {
372 if (unlikely(!skb_page_frag_refill(prepend_size
, pfrag
,
373 sk
->sk_allocation
))) {
374 READ_ONCE(sk
->sk_prot
)->enter_memory_pressure(sk
);
375 sk_stream_moderate_sndbuf(sk
);
379 ret
= tls_create_new_record(offload_ctx
, pfrag
, prepend_size
);
383 if (pfrag
->size
> pfrag
->offset
)
387 if (!sk_page_frag_refill(sk
, pfrag
))
393 static int tls_device_copy_data(void *addr
, size_t bytes
, struct iov_iter
*i
)
395 size_t pre_copy
, nocache
;
397 pre_copy
= ~((unsigned long)addr
- 1) & (SMP_CACHE_BYTES
- 1);
399 pre_copy
= min(pre_copy
, bytes
);
400 if (copy_from_iter(addr
, pre_copy
, i
) != pre_copy
)
406 nocache
= round_down(bytes
, SMP_CACHE_BYTES
);
407 if (copy_from_iter_nocache(addr
, nocache
, i
) != nocache
)
412 if (bytes
&& copy_from_iter(addr
, bytes
, i
) != bytes
)
418 static int tls_push_data(struct sock
*sk
,
419 struct iov_iter
*iter
,
420 size_t size
, int flags
,
421 unsigned char record_type
)
423 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
424 struct tls_prot_info
*prot
= &tls_ctx
->prot_info
;
425 struct tls_offload_context_tx
*ctx
= tls_offload_ctx_tx(tls_ctx
);
426 struct tls_record_info
*record
;
427 int tls_push_record_flags
;
428 struct page_frag
*pfrag
;
429 size_t orig_size
= size
;
430 u32 max_open_record_len
;
437 ~(MSG_MORE
| MSG_DONTWAIT
| MSG_NOSIGNAL
|
438 MSG_SPLICE_PAGES
| MSG_EOR
))
441 if ((flags
& (MSG_MORE
| MSG_EOR
)) == (MSG_MORE
| MSG_EOR
))
444 if (unlikely(sk
->sk_err
))
447 flags
|= MSG_SENDPAGE_DECRYPTED
;
448 tls_push_record_flags
= flags
| MSG_MORE
;
450 timeo
= sock_sndtimeo(sk
, flags
& MSG_DONTWAIT
);
451 if (tls_is_partially_sent_record(tls_ctx
)) {
452 rc
= tls_push_partial_record(sk
, tls_ctx
, flags
);
457 pfrag
= sk_page_frag(sk
);
459 /* TLS_HEADER_SIZE is not counted as part of the TLS record, and
460 * we need to leave room for an authentication tag.
462 max_open_record_len
= TLS_MAX_PAYLOAD_SIZE
+
465 rc
= tls_do_allocation(sk
, ctx
, pfrag
, prot
->prepend_size
);
467 rc
= sk_stream_wait_memory(sk
, &timeo
);
471 record
= ctx
->open_record
;
475 if (record_type
!= TLS_RECORD_TYPE_DATA
) {
476 /* avoid sending partial
477 * record with type !=
481 destroy_record(record
);
482 ctx
->open_record
= NULL
;
483 } else if (record
->len
> prot
->prepend_size
) {
490 record
= ctx
->open_record
;
492 copy
= min_t(size_t, size
, max_open_record_len
- record
->len
);
493 if (copy
&& (flags
& MSG_SPLICE_PAGES
)) {
494 struct page_frag zc_pfrag
;
495 struct page
**pages
= &zc_pfrag
.page
;
498 rc
= iov_iter_extract_pages(iter
, &pages
,
507 if (WARN_ON_ONCE(!sendpage_ok(zc_pfrag
.page
))) {
508 iov_iter_revert(iter
, copy
);
513 zc_pfrag
.offset
= off
;
514 zc_pfrag
.size
= copy
;
515 tls_append_frag(record
, &zc_pfrag
, copy
);
517 copy
= min_t(size_t, copy
, pfrag
->size
- pfrag
->offset
);
519 rc
= tls_device_copy_data(page_address(pfrag
->page
) +
524 tls_append_frag(record
, pfrag
, copy
);
530 tls_push_record_flags
= flags
;
531 if (flags
& MSG_MORE
) {
539 if (done
|| record
->len
>= max_open_record_len
||
540 (record
->num_frags
>= MAX_SKB_FRAGS
- 1)) {
541 tls_device_record_close(sk
, tls_ctx
, record
,
544 rc
= tls_push_record(sk
,
548 tls_push_record_flags
);
554 tls_ctx
->pending_open_record_frags
= more
;
556 if (orig_size
- size
> 0)
557 rc
= orig_size
- size
;
562 int tls_device_sendmsg(struct sock
*sk
, struct msghdr
*msg
, size_t size
)
564 unsigned char record_type
= TLS_RECORD_TYPE_DATA
;
565 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
568 if (!tls_ctx
->zerocopy_sendfile
)
569 msg
->msg_flags
&= ~MSG_SPLICE_PAGES
;
571 mutex_lock(&tls_ctx
->tx_lock
);
574 if (unlikely(msg
->msg_controllen
)) {
575 rc
= tls_process_cmsg(sk
, msg
, &record_type
);
580 rc
= tls_push_data(sk
, &msg
->msg_iter
, size
, msg
->msg_flags
,
585 mutex_unlock(&tls_ctx
->tx_lock
);
589 void tls_device_splice_eof(struct socket
*sock
)
591 struct sock
*sk
= sock
->sk
;
592 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
593 struct iov_iter iter
= {};
595 if (!tls_is_partially_sent_record(tls_ctx
))
598 mutex_lock(&tls_ctx
->tx_lock
);
601 if (tls_is_partially_sent_record(tls_ctx
)) {
602 iov_iter_bvec(&iter
, ITER_SOURCE
, NULL
, 0, 0);
603 tls_push_data(sk
, &iter
, 0, 0, TLS_RECORD_TYPE_DATA
);
607 mutex_unlock(&tls_ctx
->tx_lock
);
610 struct tls_record_info
*tls_get_record(struct tls_offload_context_tx
*context
,
611 u32 seq
, u64
*p_record_sn
)
613 u64 record_sn
= context
->hint_record_sn
;
614 struct tls_record_info
*info
, *last
;
616 info
= context
->retransmit_hint
;
618 before(seq
, info
->end_seq
- info
->len
)) {
619 /* if retransmit_hint is irrelevant start
620 * from the beginning of the list
622 info
= list_first_entry_or_null(&context
->records_list
,
623 struct tls_record_info
, list
);
626 /* send the start_marker record if seq number is before the
627 * tls offload start marker sequence number. This record is
628 * required to handle TCP packets which are before TLS offload
630 * And if it's not start marker, look if this seq number
631 * belongs to the list.
633 if (likely(!tls_record_is_start_marker(info
))) {
634 /* we have the first record, get the last record to see
635 * if this seq number belongs to the list.
637 last
= list_last_entry(&context
->records_list
,
638 struct tls_record_info
, list
);
640 if (!between(seq
, tls_record_start_seq(info
),
644 record_sn
= context
->unacked_record_sn
;
647 /* We just need the _rcu for the READ_ONCE() */
649 list_for_each_entry_from_rcu(info
, &context
->records_list
, list
) {
650 if (before(seq
, info
->end_seq
)) {
651 if (!context
->retransmit_hint
||
653 context
->retransmit_hint
->end_seq
)) {
654 context
->hint_record_sn
= record_sn
;
655 context
->retransmit_hint
= info
;
657 *p_record_sn
= record_sn
;
658 goto exit_rcu_unlock
;
668 EXPORT_SYMBOL(tls_get_record
);
670 static int tls_device_push_pending_record(struct sock
*sk
, int flags
)
672 struct iov_iter iter
;
674 iov_iter_kvec(&iter
, ITER_SOURCE
, NULL
, 0, 0);
675 return tls_push_data(sk
, &iter
, 0, flags
, TLS_RECORD_TYPE_DATA
);
678 void tls_device_write_space(struct sock
*sk
, struct tls_context
*ctx
)
680 if (tls_is_partially_sent_record(ctx
)) {
681 gfp_t sk_allocation
= sk
->sk_allocation
;
683 WARN_ON_ONCE(sk
->sk_write_pending
);
685 sk
->sk_allocation
= GFP_ATOMIC
;
686 tls_push_partial_record(sk
, ctx
,
687 MSG_DONTWAIT
| MSG_NOSIGNAL
|
688 MSG_SENDPAGE_DECRYPTED
);
689 sk
->sk_allocation
= sk_allocation
;
693 static void tls_device_resync_rx(struct tls_context
*tls_ctx
,
694 struct sock
*sk
, u32 seq
, u8
*rcd_sn
)
696 struct tls_offload_context_rx
*rx_ctx
= tls_offload_ctx_rx(tls_ctx
);
697 struct net_device
*netdev
;
699 trace_tls_device_rx_resync_send(sk
, seq
, rcd_sn
, rx_ctx
->resync_type
);
701 netdev
= rcu_dereference(tls_ctx
->netdev
);
703 netdev
->tlsdev_ops
->tls_dev_resync(netdev
, sk
, seq
, rcd_sn
,
704 TLS_OFFLOAD_CTX_DIR_RX
);
706 TLS_INC_STATS(sock_net(sk
), LINUX_MIB_TLSRXDEVICERESYNC
);
710 tls_device_rx_resync_async(struct tls_offload_resync_async
*resync_async
,
711 s64 resync_req
, u32
*seq
, u16
*rcd_delta
)
713 u32 is_async
= resync_req
& RESYNC_REQ_ASYNC
;
714 u32 req_seq
= resync_req
>> 32;
715 u32 req_end
= req_seq
+ ((resync_req
>> 16) & 0xffff);
721 /* shouldn't get to wraparound:
722 * too long in async stage, something bad happened
724 if (WARN_ON_ONCE(resync_async
->rcd_delta
== USHRT_MAX
))
727 /* asynchronous stage: log all headers seq such that
728 * req_seq <= seq <= end_seq, and wait for real resync request
730 if (before(*seq
, req_seq
))
732 if (!after(*seq
, req_end
) &&
733 resync_async
->loglen
< TLS_DEVICE_RESYNC_ASYNC_LOGMAX
)
734 resync_async
->log
[resync_async
->loglen
++] = *seq
;
736 resync_async
->rcd_delta
++;
741 /* synchronous stage: check against the logged entries and
742 * proceed to check the next entries if no match was found
744 for (i
= 0; i
< resync_async
->loglen
; i
++)
745 if (req_seq
== resync_async
->log
[i
] &&
746 atomic64_try_cmpxchg(&resync_async
->req
, &resync_req
, 0)) {
747 *rcd_delta
= resync_async
->rcd_delta
- i
;
749 resync_async
->loglen
= 0;
750 resync_async
->rcd_delta
= 0;
754 resync_async
->loglen
= 0;
755 resync_async
->rcd_delta
= 0;
757 if (req_seq
== *seq
&&
758 atomic64_try_cmpxchg(&resync_async
->req
,
765 void tls_device_rx_resync_new_rec(struct sock
*sk
, u32 rcd_len
, u32 seq
)
767 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
768 struct tls_offload_context_rx
*rx_ctx
;
769 u8 rcd_sn
[TLS_MAX_REC_SEQ_SIZE
];
770 u32 sock_data
, is_req_pending
;
771 struct tls_prot_info
*prot
;
776 if (tls_ctx
->rx_conf
!= TLS_HW
)
778 if (unlikely(test_bit(TLS_RX_DEV_DEGRADED
, &tls_ctx
->flags
)))
781 prot
= &tls_ctx
->prot_info
;
782 rx_ctx
= tls_offload_ctx_rx(tls_ctx
);
783 memcpy(rcd_sn
, tls_ctx
->rx
.rec_seq
, prot
->rec_seq_size
);
785 switch (rx_ctx
->resync_type
) {
786 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ
:
787 resync_req
= atomic64_read(&rx_ctx
->resync_req
);
788 req_seq
= resync_req
>> 32;
789 seq
+= TLS_HEADER_SIZE
- 1;
790 is_req_pending
= resync_req
;
792 if (likely(!is_req_pending
) || req_seq
!= seq
||
793 !atomic64_try_cmpxchg(&rx_ctx
->resync_req
, &resync_req
, 0))
796 case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT
:
797 if (likely(!rx_ctx
->resync_nh_do_now
))
800 /* head of next rec is already in, note that the sock_inq will
801 * include the currently parsed message when called from parser
803 sock_data
= tcp_inq(sk
);
804 if (sock_data
> rcd_len
) {
805 trace_tls_device_rx_resync_nh_delay(sk
, sock_data
,
810 rx_ctx
->resync_nh_do_now
= 0;
812 tls_bigint_increment(rcd_sn
, prot
->rec_seq_size
);
814 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC
:
815 resync_req
= atomic64_read(&rx_ctx
->resync_async
->req
);
816 is_req_pending
= resync_req
;
817 if (likely(!is_req_pending
))
820 if (!tls_device_rx_resync_async(rx_ctx
->resync_async
,
821 resync_req
, &seq
, &rcd_delta
))
823 tls_bigint_subtract(rcd_sn
, rcd_delta
);
827 tls_device_resync_rx(tls_ctx
, sk
, seq
, rcd_sn
);
830 static void tls_device_core_ctrl_rx_resync(struct tls_context
*tls_ctx
,
831 struct tls_offload_context_rx
*ctx
,
832 struct sock
*sk
, struct sk_buff
*skb
)
834 struct strp_msg
*rxm
;
836 /* device will request resyncs by itself based on stream scan */
837 if (ctx
->resync_type
!= TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT
)
839 /* already scheduled */
840 if (ctx
->resync_nh_do_now
)
842 /* seen decrypted fragments since last fully-failed record */
843 if (ctx
->resync_nh_reset
) {
844 ctx
->resync_nh_reset
= 0;
845 ctx
->resync_nh
.decrypted_failed
= 1;
846 ctx
->resync_nh
.decrypted_tgt
= TLS_DEVICE_RESYNC_NH_START_IVAL
;
850 if (++ctx
->resync_nh
.decrypted_failed
<= ctx
->resync_nh
.decrypted_tgt
)
853 /* doing resync, bump the next target in case it fails */
854 if (ctx
->resync_nh
.decrypted_tgt
< TLS_DEVICE_RESYNC_NH_MAX_IVAL
)
855 ctx
->resync_nh
.decrypted_tgt
*= 2;
857 ctx
->resync_nh
.decrypted_tgt
+= TLS_DEVICE_RESYNC_NH_MAX_IVAL
;
861 /* head of next rec is already in, parser will sync for us */
862 if (tcp_inq(sk
) > rxm
->full_len
) {
863 trace_tls_device_rx_resync_nh_schedule(sk
);
864 ctx
->resync_nh_do_now
= 1;
866 struct tls_prot_info
*prot
= &tls_ctx
->prot_info
;
867 u8 rcd_sn
[TLS_MAX_REC_SEQ_SIZE
];
869 memcpy(rcd_sn
, tls_ctx
->rx
.rec_seq
, prot
->rec_seq_size
);
870 tls_bigint_increment(rcd_sn
, prot
->rec_seq_size
);
872 tls_device_resync_rx(tls_ctx
, sk
, tcp_sk(sk
)->copied_seq
,
878 tls_device_reencrypt(struct sock
*sk
, struct tls_context
*tls_ctx
)
880 struct tls_sw_context_rx
*sw_ctx
= tls_sw_ctx_rx(tls_ctx
);
881 const struct tls_cipher_desc
*cipher_desc
;
882 int err
, offset
, copy
, data_len
, pos
;
883 struct sk_buff
*skb
, *skb_iter
;
884 struct scatterlist sg
[1];
885 struct strp_msg
*rxm
;
886 char *orig_buf
, *buf
;
888 cipher_desc
= get_cipher_desc(tls_ctx
->crypto_recv
.info
.cipher_type
);
889 DEBUG_NET_WARN_ON_ONCE(!cipher_desc
|| !cipher_desc
->offloadable
);
891 rxm
= strp_msg(tls_strp_msg(sw_ctx
));
892 orig_buf
= kmalloc(rxm
->full_len
+ TLS_HEADER_SIZE
+ cipher_desc
->iv
,
898 err
= tls_strp_msg_cow(sw_ctx
);
902 skb
= tls_strp_msg(sw_ctx
);
904 offset
= rxm
->offset
;
906 sg_init_table(sg
, 1);
907 sg_set_buf(&sg
[0], buf
,
908 rxm
->full_len
+ TLS_HEADER_SIZE
+ cipher_desc
->iv
);
909 err
= skb_copy_bits(skb
, offset
, buf
, TLS_HEADER_SIZE
+ cipher_desc
->iv
);
913 /* We are interested only in the decrypted data not the auth */
914 err
= decrypt_skb(sk
, sg
);
920 data_len
= rxm
->full_len
- cipher_desc
->tag
;
922 if (skb_pagelen(skb
) > offset
) {
923 copy
= min_t(int, skb_pagelen(skb
) - offset
, data_len
);
925 if (skb
->decrypted
) {
926 err
= skb_store_bits(skb
, offset
, buf
, copy
);
935 pos
= skb_pagelen(skb
);
936 skb_walk_frags(skb
, skb_iter
) {
939 /* Practically all frags must belong to msg if reencrypt
940 * is needed with current strparser and coalescing logic,
941 * but strparser may "get optimized", so let's be safe.
943 if (pos
+ skb_iter
->len
<= offset
)
945 if (pos
>= data_len
+ rxm
->offset
)
948 frag_pos
= offset
- pos
;
949 copy
= min_t(int, skb_iter
->len
- frag_pos
,
950 data_len
+ rxm
->offset
- offset
);
952 if (skb_iter
->decrypted
) {
953 err
= skb_store_bits(skb_iter
, frag_pos
, buf
, copy
);
961 pos
+= skb_iter
->len
;
969 int tls_device_decrypted(struct sock
*sk
, struct tls_context
*tls_ctx
)
971 struct tls_offload_context_rx
*ctx
= tls_offload_ctx_rx(tls_ctx
);
972 struct tls_sw_context_rx
*sw_ctx
= tls_sw_ctx_rx(tls_ctx
);
973 struct sk_buff
*skb
= tls_strp_msg(sw_ctx
);
974 struct strp_msg
*rxm
= strp_msg(skb
);
975 int is_decrypted
, is_encrypted
;
977 if (!tls_strp_msg_mixed_decrypted(sw_ctx
)) {
978 is_decrypted
= skb
->decrypted
;
979 is_encrypted
= !is_decrypted
;
985 trace_tls_device_decrypted(sk
, tcp_sk(sk
)->copied_seq
- rxm
->full_len
,
986 tls_ctx
->rx
.rec_seq
, rxm
->full_len
,
987 is_encrypted
, is_decrypted
);
989 if (unlikely(test_bit(TLS_RX_DEV_DEGRADED
, &tls_ctx
->flags
))) {
990 if (likely(is_encrypted
|| is_decrypted
))
993 /* After tls_device_down disables the offload, the next SKB will
994 * likely have initial fragments decrypted, and final ones not
995 * decrypted. We need to reencrypt that single SKB.
997 return tls_device_reencrypt(sk
, tls_ctx
);
1000 /* Return immediately if the record is either entirely plaintext or
1001 * entirely ciphertext. Otherwise handle reencrypt partially decrypted
1005 ctx
->resync_nh_reset
= 1;
1006 return is_decrypted
;
1009 tls_device_core_ctrl_rx_resync(tls_ctx
, ctx
, sk
, skb
);
1013 ctx
->resync_nh_reset
= 1;
1014 return tls_device_reencrypt(sk
, tls_ctx
);
1017 static void tls_device_attach(struct tls_context
*ctx
, struct sock
*sk
,
1018 struct net_device
*netdev
)
1020 if (sk
->sk_destruct
!= tls_device_sk_destruct
) {
1021 refcount_set(&ctx
->refcount
, 1);
1023 RCU_INIT_POINTER(ctx
->netdev
, netdev
);
1024 spin_lock_irq(&tls_device_lock
);
1025 list_add_tail(&ctx
->list
, &tls_device_list
);
1026 spin_unlock_irq(&tls_device_lock
);
1028 ctx
->sk_destruct
= sk
->sk_destruct
;
1029 smp_store_release(&sk
->sk_destruct
, tls_device_sk_destruct
);
1033 static struct tls_offload_context_tx
*alloc_offload_ctx_tx(struct tls_context
*ctx
)
1035 struct tls_offload_context_tx
*offload_ctx
;
1038 offload_ctx
= kzalloc(sizeof(*offload_ctx
), GFP_KERNEL
);
1042 INIT_WORK(&offload_ctx
->destruct_work
, tls_device_tx_del_task
);
1043 INIT_LIST_HEAD(&offload_ctx
->records_list
);
1044 spin_lock_init(&offload_ctx
->lock
);
1045 sg_init_table(offload_ctx
->sg_tx_data
,
1046 ARRAY_SIZE(offload_ctx
->sg_tx_data
));
1048 /* start at rec_seq - 1 to account for the start marker record */
1049 memcpy(&rcd_sn
, ctx
->tx
.rec_seq
, sizeof(rcd_sn
));
1050 offload_ctx
->unacked_record_sn
= be64_to_cpu(rcd_sn
) - 1;
1052 offload_ctx
->ctx
= ctx
;
1057 int tls_set_device_offload(struct sock
*sk
)
1059 struct tls_record_info
*start_marker_record
;
1060 struct tls_offload_context_tx
*offload_ctx
;
1061 const struct tls_cipher_desc
*cipher_desc
;
1062 struct tls_crypto_info
*crypto_info
;
1063 struct tls_prot_info
*prot
;
1064 struct net_device
*netdev
;
1065 struct tls_context
*ctx
;
1069 ctx
= tls_get_ctx(sk
);
1070 prot
= &ctx
->prot_info
;
1072 if (ctx
->priv_ctx_tx
)
1075 netdev
= get_netdev_for_sock(sk
);
1077 pr_err_ratelimited("%s: netdev not found\n", __func__
);
1081 if (!(netdev
->features
& NETIF_F_HW_TLS_TX
)) {
1083 goto release_netdev
;
1086 crypto_info
= &ctx
->crypto_send
.info
;
1087 if (crypto_info
->version
!= TLS_1_2_VERSION
) {
1089 goto release_netdev
;
1092 cipher_desc
= get_cipher_desc(crypto_info
->cipher_type
);
1093 if (!cipher_desc
|| !cipher_desc
->offloadable
) {
1095 goto release_netdev
;
1098 rc
= init_prot_info(prot
, crypto_info
, cipher_desc
);
1100 goto release_netdev
;
1102 iv
= crypto_info_iv(crypto_info
, cipher_desc
);
1103 rec_seq
= crypto_info_rec_seq(crypto_info
, cipher_desc
);
1105 memcpy(ctx
->tx
.iv
+ cipher_desc
->salt
, iv
, cipher_desc
->iv
);
1106 memcpy(ctx
->tx
.rec_seq
, rec_seq
, cipher_desc
->rec_seq
);
1108 start_marker_record
= kmalloc(sizeof(*start_marker_record
), GFP_KERNEL
);
1109 if (!start_marker_record
) {
1111 goto release_netdev
;
1114 offload_ctx
= alloc_offload_ctx_tx(ctx
);
1117 goto free_marker_record
;
1120 rc
= tls_sw_fallback_init(sk
, offload_ctx
, crypto_info
);
1122 goto free_offload_ctx
;
1124 start_marker_record
->end_seq
= tcp_sk(sk
)->write_seq
;
1125 start_marker_record
->len
= 0;
1126 start_marker_record
->num_frags
= 0;
1127 list_add_tail(&start_marker_record
->list
, &offload_ctx
->records_list
);
1129 clean_acked_data_enable(inet_csk(sk
), &tls_icsk_clean_acked
);
1130 ctx
->push_pending_record
= tls_device_push_pending_record
;
1132 /* TLS offload is greatly simplified if we don't send
1133 * SKBs where only part of the payload needs to be encrypted.
1134 * So mark the last skb in the write queue as end of record.
1136 tcp_write_collapse_fence(sk
);
1138 /* Avoid offloading if the device is down
1139 * We don't want to offload new flows after
1140 * the NETDEV_DOWN event
1142 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1143 * handler thus protecting from the device going down before
1144 * ctx was added to tls_device_list.
1146 down_read(&device_offload_lock
);
1147 if (!(netdev
->flags
& IFF_UP
)) {
1152 ctx
->priv_ctx_tx
= offload_ctx
;
1153 rc
= netdev
->tlsdev_ops
->tls_dev_add(netdev
, sk
, TLS_OFFLOAD_CTX_DIR_TX
,
1154 &ctx
->crypto_send
.info
,
1155 tcp_sk(sk
)->write_seq
);
1156 trace_tls_device_offload_set(sk
, TLS_OFFLOAD_CTX_DIR_TX
,
1157 tcp_sk(sk
)->write_seq
, rec_seq
, rc
);
1161 tls_device_attach(ctx
, sk
, netdev
);
1162 up_read(&device_offload_lock
);
1164 /* following this assignment tls_is_skb_tx_device_offloaded
1165 * will return true and the context might be accessed
1166 * by the netdev's xmit function.
1168 smp_store_release(&sk
->sk_validate_xmit_skb
, tls_validate_xmit_skb
);
1174 up_read(&device_offload_lock
);
1175 clean_acked_data_disable(inet_csk(sk
));
1176 crypto_free_aead(offload_ctx
->aead_send
);
1179 ctx
->priv_ctx_tx
= NULL
;
1181 kfree(start_marker_record
);
1187 int tls_set_device_offload_rx(struct sock
*sk
, struct tls_context
*ctx
)
1189 struct tls12_crypto_info_aes_gcm_128
*info
;
1190 struct tls_offload_context_rx
*context
;
1191 struct net_device
*netdev
;
1194 if (ctx
->crypto_recv
.info
.version
!= TLS_1_2_VERSION
)
1197 netdev
= get_netdev_for_sock(sk
);
1199 pr_err_ratelimited("%s: netdev not found\n", __func__
);
1203 if (!(netdev
->features
& NETIF_F_HW_TLS_RX
)) {
1205 goto release_netdev
;
1208 /* Avoid offloading if the device is down
1209 * We don't want to offload new flows after
1210 * the NETDEV_DOWN event
1212 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1213 * handler thus protecting from the device going down before
1214 * ctx was added to tls_device_list.
1216 down_read(&device_offload_lock
);
1217 if (!(netdev
->flags
& IFF_UP
)) {
1222 context
= kzalloc(sizeof(*context
), GFP_KERNEL
);
1227 context
->resync_nh_reset
= 1;
1229 ctx
->priv_ctx_rx
= context
;
1230 rc
= tls_set_sw_offload(sk
, 0);
1234 rc
= netdev
->tlsdev_ops
->tls_dev_add(netdev
, sk
, TLS_OFFLOAD_CTX_DIR_RX
,
1235 &ctx
->crypto_recv
.info
,
1236 tcp_sk(sk
)->copied_seq
);
1237 info
= (void *)&ctx
->crypto_recv
.info
;
1238 trace_tls_device_offload_set(sk
, TLS_OFFLOAD_CTX_DIR_RX
,
1239 tcp_sk(sk
)->copied_seq
, info
->rec_seq
, rc
);
1241 goto free_sw_resources
;
1243 tls_device_attach(ctx
, sk
, netdev
);
1244 up_read(&device_offload_lock
);
1251 up_read(&device_offload_lock
);
1252 tls_sw_free_resources_rx(sk
);
1253 down_read(&device_offload_lock
);
1255 ctx
->priv_ctx_rx
= NULL
;
1257 up_read(&device_offload_lock
);
1263 void tls_device_offload_cleanup_rx(struct sock
*sk
)
1265 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
1266 struct net_device
*netdev
;
1268 down_read(&device_offload_lock
);
1269 netdev
= rcu_dereference_protected(tls_ctx
->netdev
,
1270 lockdep_is_held(&device_offload_lock
));
1274 netdev
->tlsdev_ops
->tls_dev_del(netdev
, tls_ctx
,
1275 TLS_OFFLOAD_CTX_DIR_RX
);
1277 if (tls_ctx
->tx_conf
!= TLS_HW
) {
1279 rcu_assign_pointer(tls_ctx
->netdev
, NULL
);
1281 set_bit(TLS_RX_DEV_CLOSED
, &tls_ctx
->flags
);
1284 up_read(&device_offload_lock
);
1285 tls_sw_release_resources_rx(sk
);
1288 static int tls_device_down(struct net_device
*netdev
)
1290 struct tls_context
*ctx
, *tmp
;
1291 unsigned long flags
;
1294 /* Request a write lock to block new offload attempts */
1295 down_write(&device_offload_lock
);
1297 spin_lock_irqsave(&tls_device_lock
, flags
);
1298 list_for_each_entry_safe(ctx
, tmp
, &tls_device_list
, list
) {
1299 struct net_device
*ctx_netdev
=
1300 rcu_dereference_protected(ctx
->netdev
,
1301 lockdep_is_held(&device_offload_lock
));
1303 if (ctx_netdev
!= netdev
||
1304 !refcount_inc_not_zero(&ctx
->refcount
))
1307 list_move(&ctx
->list
, &list
);
1309 spin_unlock_irqrestore(&tls_device_lock
, flags
);
1311 list_for_each_entry_safe(ctx
, tmp
, &list
, list
) {
1312 /* Stop offloaded TX and switch to the fallback.
1313 * tls_is_skb_tx_device_offloaded will return false.
1315 WRITE_ONCE(ctx
->sk
->sk_validate_xmit_skb
, tls_validate_xmit_skb_sw
);
1317 /* Stop the RX and TX resync.
1318 * tls_dev_resync must not be called after tls_dev_del.
1320 rcu_assign_pointer(ctx
->netdev
, NULL
);
1322 /* Start skipping the RX resync logic completely. */
1323 set_bit(TLS_RX_DEV_DEGRADED
, &ctx
->flags
);
1325 /* Sync with inflight packets. After this point:
1326 * TX: no non-encrypted packets will be passed to the driver.
1327 * RX: resync requests from the driver will be ignored.
1331 /* Release the offload context on the driver side. */
1332 if (ctx
->tx_conf
== TLS_HW
)
1333 netdev
->tlsdev_ops
->tls_dev_del(netdev
, ctx
,
1334 TLS_OFFLOAD_CTX_DIR_TX
);
1335 if (ctx
->rx_conf
== TLS_HW
&&
1336 !test_bit(TLS_RX_DEV_CLOSED
, &ctx
->flags
))
1337 netdev
->tlsdev_ops
->tls_dev_del(netdev
, ctx
,
1338 TLS_OFFLOAD_CTX_DIR_RX
);
1342 /* Move the context to a separate list for two reasons:
1343 * 1. When the context is deallocated, list_del is called.
1344 * 2. It's no longer an offloaded context, so we don't want to
1345 * run offload-specific code on this context.
1347 spin_lock_irqsave(&tls_device_lock
, flags
);
1348 list_move_tail(&ctx
->list
, &tls_device_down_list
);
1349 spin_unlock_irqrestore(&tls_device_lock
, flags
);
1351 /* Device contexts for RX and TX will be freed in on sk_destruct
1352 * by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW.
1353 * Now release the ref taken above.
1355 if (refcount_dec_and_test(&ctx
->refcount
)) {
1356 /* sk_destruct ran after tls_device_down took a ref, and
1357 * it returned early. Complete the destruction here.
1359 list_del(&ctx
->list
);
1360 tls_device_free_ctx(ctx
);
1364 up_write(&device_offload_lock
);
1366 flush_workqueue(destruct_wq
);
1371 static int tls_dev_event(struct notifier_block
*this, unsigned long event
,
1374 struct net_device
*dev
= netdev_notifier_info_to_dev(ptr
);
1376 if (!dev
->tlsdev_ops
&&
1377 !(dev
->features
& (NETIF_F_HW_TLS_RX
| NETIF_F_HW_TLS_TX
)))
1381 case NETDEV_REGISTER
:
1382 case NETDEV_FEAT_CHANGE
:
1383 if (netif_is_bond_master(dev
))
1385 if ((dev
->features
& NETIF_F_HW_TLS_RX
) &&
1386 !dev
->tlsdev_ops
->tls_dev_resync
)
1389 if (dev
->tlsdev_ops
&&
1390 dev
->tlsdev_ops
->tls_dev_add
&&
1391 dev
->tlsdev_ops
->tls_dev_del
)
1396 return tls_device_down(dev
);
1401 static struct notifier_block tls_dev_notifier
= {
1402 .notifier_call
= tls_dev_event
,
1405 int __init
tls_device_init(void)
1409 dummy_page
= alloc_page(GFP_KERNEL
);
1413 destruct_wq
= alloc_workqueue("ktls_device_destruct", 0, 0);
1416 goto err_free_dummy
;
1419 err
= register_netdevice_notifier(&tls_dev_notifier
);
1421 goto err_destroy_wq
;
1426 destroy_workqueue(destruct_wq
);
1428 put_page(dummy_page
);
1432 void __exit
tls_device_cleanup(void)
1434 unregister_netdevice_notifier(&tls_dev_notifier
);
1435 destroy_workqueue(destruct_wq
);
1436 clean_acked_data_flush();
1437 put_page(dummy_page
);