1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (C) 2013 Imagination Technologies
4 * Author: Paul Burton <paul.burton@mips.com>
8 #include <linux/delay.h>
10 #include <linux/memblock.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/slab.h>
14 #include <linux/smp.h>
15 #include <linux/types.h>
16 #include <linux/irq.h>
18 #include <asm/bcache.h>
19 #include <asm/mips-cps.h>
20 #include <asm/mips_mt.h>
21 #include <asm/mipsregs.h>
22 #include <asm/pm-cps.h>
23 #include <asm/r4kcache.h>
24 #include <asm/regdef.h>
26 #include <asm/smp-cps.h>
30 #define BEV_VEC_SIZE 0x500
31 #define BEV_VEC_ALIGN 0x1000
39 static DECLARE_BITMAP(core_power
, NR_CPUS
);
40 static uint32_t core_entry_reg
;
41 static phys_addr_t cps_vec_pa
;
43 struct core_boot_config
*mips_cps_core_bootcfg
;
45 static unsigned __init
core_vpe_count(unsigned int cluster
, unsigned core
)
47 return min(smp_max_threads
, mips_cps_numvps(cluster
, core
));
50 static void __init
*mips_cps_build_core_entry(void *addr
)
52 extern void (*nmi_handler
)(void);
55 struct uasm_label labels
[2];
56 struct uasm_reloc relocs
[2];
57 struct uasm_label
*l
= labels
;
58 struct uasm_reloc
*r
= relocs
;
60 memset(labels
, 0, sizeof(labels
));
61 memset(relocs
, 0, sizeof(relocs
));
63 uasm_i_mfc0(&p
, GPR_K0
, C0_STATUS
);
64 UASM_i_LA(&p
, GPR_T9
, ST0_NMI
);
65 uasm_i_and(&p
, GPR_K0
, GPR_K0
, GPR_T9
);
67 uasm_il_bnez(&p
, &r
, GPR_K0
, label_not_nmi
);
69 UASM_i_LA(&p
, GPR_K0
, (long)&nmi_handler
);
71 uasm_l_not_nmi(&l
, p
);
74 uasm_i_lui(&p
, GPR_K0
, val
>> 16);
75 uasm_i_ori(&p
, GPR_K0
, GPR_K0
, val
& 0xffff);
76 uasm_i_mtc0(&p
, GPR_K0
, C0_CAUSE
);
77 val
= ST0_CU1
| ST0_CU0
| ST0_BEV
| ST0_KX_IF_64
;
78 uasm_i_lui(&p
, GPR_K0
, val
>> 16);
79 uasm_i_ori(&p
, GPR_K0
, GPR_K0
, val
& 0xffff);
80 uasm_i_mtc0(&p
, GPR_K0
, C0_STATUS
);
82 uasm_i_ori(&p
, GPR_A0
, 0, read_c0_config() & CONF_CM_CMASK
);
83 UASM_i_LA(&p
, GPR_A1
, (long)mips_gcr_base
);
84 #if defined(KBUILD_64BIT_SYM32) || defined(CONFIG_32BIT)
85 UASM_i_LA(&p
, GPR_T9
, CKSEG1ADDR(__pa_symbol(mips_cps_core_boot
)));
87 UASM_i_LA(&p
, GPR_T9
, TO_UNCAC(__pa_symbol(mips_cps_core_boot
)));
89 uasm_i_jr(&p
, GPR_T9
);
92 uasm_resolve_relocs(relocs
, labels
);
97 static int __init
allocate_cps_vecs(void)
99 /* Try to allocate in KSEG1 first */
100 cps_vec_pa
= memblock_phys_alloc_range(BEV_VEC_SIZE
, BEV_VEC_ALIGN
,
101 0x0, CSEGX_SIZE
- 1);
104 core_entry_reg
= CKSEG1ADDR(cps_vec_pa
) &
105 CM_GCR_Cx_RESET_BASE_BEVEXCBASE
;
107 if (!cps_vec_pa
&& mips_cm_is64
) {
108 cps_vec_pa
= memblock_phys_alloc_range(BEV_VEC_SIZE
, BEV_VEC_ALIGN
,
111 core_entry_reg
= (cps_vec_pa
& CM_GCR_Cx_RESET_BASE_BEVEXCBASE
) |
112 CM_GCR_Cx_RESET_BASE_MODE
;
121 static void __init
setup_cps_vecs(void)
125 cps_vec
= (void *)CKSEG1ADDR_OR_64BIT(cps_vec_pa
);
126 mips_cps_build_core_entry(cps_vec
);
128 memcpy(cps_vec
+ 0x200, &excep_tlbfill
, 0x80);
129 memcpy(cps_vec
+ 0x280, &excep_xtlbfill
, 0x80);
130 memcpy(cps_vec
+ 0x300, &excep_cache
, 0x80);
131 memcpy(cps_vec
+ 0x380, &excep_genex
, 0x80);
132 memcpy(cps_vec
+ 0x400, &excep_intex
, 0x80);
133 memcpy(cps_vec
+ 0x480, &excep_ejtag
, 0x80);
135 /* Make sure no prefetched data in cache */
136 blast_inv_dcache_range(CKSEG0ADDR_OR_64BIT(cps_vec_pa
), CKSEG0ADDR_OR_64BIT(cps_vec_pa
) + BEV_VEC_SIZE
);
137 bc_inv(CKSEG0ADDR_OR_64BIT(cps_vec_pa
), BEV_VEC_SIZE
);
141 static void __init
cps_smp_setup(void)
143 unsigned int nclusters
, ncores
, nvpes
, core_vpes
;
146 /* Detect & record VPE topology */
148 nclusters
= mips_cps_numclusters();
149 pr_info("%s topology ", cpu_has_mips_r6
? "VP" : "VPE");
150 for (cl
= 0; cl
< nclusters
; cl
++) {
155 ncores
= mips_cps_numcores(cl
);
156 for (c
= 0; c
< ncores
; c
++) {
157 core_vpes
= core_vpe_count(cl
, c
);
161 pr_cont("%u", core_vpes
);
163 /* Use the number of VPEs in cluster 0 core 0 for smp_num_siblings */
165 smp_num_siblings
= core_vpes
;
167 for (v
= 0; v
< min_t(int, core_vpes
, NR_CPUS
- nvpes
); v
++) {
168 cpu_set_cluster(&cpu_data
[nvpes
+ v
], cl
);
169 cpu_set_core(&cpu_data
[nvpes
+ v
], c
);
170 cpu_set_vpe_id(&cpu_data
[nvpes
+ v
], v
);
178 pr_cont(" total %u\n", nvpes
);
180 /* Indicate present CPUs (CPU being synonymous with VPE) */
181 for (v
= 0; v
< min_t(unsigned, nvpes
, NR_CPUS
); v
++) {
182 set_cpu_possible(v
, cpu_cluster(&cpu_data
[v
]) == 0);
183 set_cpu_present(v
, cpu_cluster(&cpu_data
[v
]) == 0);
184 __cpu_number_map
[v
] = v
;
185 __cpu_logical_map
[v
] = v
;
188 /* Set a coherent default CCA (CWB) */
189 change_c0_config(CONF_CM_CMASK
, 0x5);
191 /* Core 0 is powered up (we're running on it) */
192 bitmap_set(core_power
, 0, 1);
194 /* Initialise core 0 */
195 mips_cps_core_init();
197 /* Make core 0 coherent with everything */
198 write_gcr_cl_coherence(0xff);
200 if (allocate_cps_vecs())
201 pr_err("Failed to allocate CPS vectors\n");
203 if (core_entry_reg
&& mips_cm_revision() >= CM_REV_CM3
)
204 write_gcr_bev_base(core_entry_reg
);
206 #ifdef CONFIG_MIPS_MT_FPAFF
207 /* If we have an FPU, enroll ourselves in the FPU-full mask */
209 cpumask_set_cpu(0, &mt_fpu_cpumask
);
210 #endif /* CONFIG_MIPS_MT_FPAFF */
213 static void __init
cps_prepare_cpus(unsigned int max_cpus
)
215 unsigned ncores
, core_vpes
, c
, cca
;
216 bool cca_unsuitable
, cores_limited
;
218 mips_mt_set_cpuoptions();
220 if (!core_entry_reg
) {
221 pr_err("core_entry address unsuitable, disabling smp-cps\n");
225 /* Detect whether the CCA is unsuited to multi-core SMP */
226 cca
= read_c0_config() & CONF_CM_CMASK
;
230 /* The CCA is coherent, multi-core is fine */
231 cca_unsuitable
= false;
235 /* CCA is not coherent, multi-core is not usable */
236 cca_unsuitable
= true;
239 /* Warn the user if the CCA prevents multi-core */
240 cores_limited
= false;
241 if (cca_unsuitable
|| cpu_has_dc_aliases
) {
242 for_each_present_cpu(c
) {
243 if (cpus_are_siblings(smp_processor_id(), c
))
246 set_cpu_present(c
, false);
247 cores_limited
= true;
251 pr_warn("Using only one core due to %s%s%s\n",
252 cca_unsuitable
? "unsuitable CCA" : "",
253 (cca_unsuitable
&& cpu_has_dc_aliases
) ? " & " : "",
254 cpu_has_dc_aliases
? "dcache aliasing" : "");
258 /* Allocate core boot configuration structs */
259 ncores
= mips_cps_numcores(0);
260 mips_cps_core_bootcfg
= kcalloc(ncores
, sizeof(*mips_cps_core_bootcfg
),
262 if (!mips_cps_core_bootcfg
) {
263 pr_err("Failed to allocate boot config for %u cores\n", ncores
);
267 /* Allocate VPE boot configuration structs */
268 for (c
= 0; c
< ncores
; c
++) {
269 core_vpes
= core_vpe_count(0, c
);
270 mips_cps_core_bootcfg
[c
].vpe_config
= kcalloc(core_vpes
,
271 sizeof(*mips_cps_core_bootcfg
[c
].vpe_config
),
273 if (!mips_cps_core_bootcfg
[c
].vpe_config
) {
274 pr_err("Failed to allocate %u VPE boot configs\n",
280 /* Mark this CPU as booted */
281 atomic_set(&mips_cps_core_bootcfg
[cpu_core(¤t_cpu_data
)].vpe_mask
,
282 1 << cpu_vpe_id(¤t_cpu_data
));
286 /* Clean up allocations */
287 if (mips_cps_core_bootcfg
) {
288 for (c
= 0; c
< ncores
; c
++)
289 kfree(mips_cps_core_bootcfg
[c
].vpe_config
);
290 kfree(mips_cps_core_bootcfg
);
291 mips_cps_core_bootcfg
= NULL
;
294 /* Effectively disable SMP by declaring CPUs not present */
295 for_each_possible_cpu(c
) {
298 set_cpu_present(c
, false);
302 static void boot_core(unsigned int core
, unsigned int vpe_id
)
307 /* Select the appropriate core */
308 mips_cm_lock_other(0, core
, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL
);
310 /* Set its reset vector */
311 write_gcr_co_reset_base(core_entry_reg
);
313 /* Ensure its coherency is disabled */
314 write_gcr_co_coherence(0);
316 /* Start it with the legacy memory map and exception base */
317 write_gcr_co_reset_ext_base(CM_GCR_Cx_RESET_EXT_BASE_UEB
);
319 /* Ensure the core can access the GCRs */
320 if (mips_cm_revision() < CM_REV_CM3
)
321 set_gcr_access(1 << core
);
323 set_gcr_access_cm3(1 << core
);
325 if (mips_cpc_present()) {
327 mips_cpc_lock_other(core
);
329 if (mips_cm_revision() >= CM_REV_CM3
) {
330 /* Run only the requested VP following the reset */
331 write_cpc_co_vp_stop(0xf);
332 write_cpc_co_vp_run(1 << vpe_id
);
335 * Ensure that the VP_RUN register is written before the
341 write_cpc_co_cmd(CPC_Cx_CMD_RESET
);
345 stat
= read_cpc_co_stat_conf();
346 seq_state
= stat
& CPC_Cx_STAT_CONF_SEQSTATE
;
347 seq_state
>>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE
);
349 /* U6 == coherent execution, ie. the core is up */
350 if (seq_state
== CPC_Cx_STAT_CONF_SEQSTATE_U6
)
353 /* Delay a little while before we start warning */
360 pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
365 mips_cpc_unlock_other();
367 /* Take the core out of reset */
368 write_gcr_co_reset_release(0);
371 mips_cm_unlock_other();
373 /* The core is now powered up */
374 bitmap_set(core_power
, core
, 1);
377 static void remote_vpe_boot(void *dummy
)
379 unsigned core
= cpu_core(¤t_cpu_data
);
380 struct core_boot_config
*core_cfg
= &mips_cps_core_bootcfg
[core
];
382 mips_cps_boot_vpes(core_cfg
, cpu_vpe_id(¤t_cpu_data
));
385 static int cps_boot_secondary(int cpu
, struct task_struct
*idle
)
387 unsigned core
= cpu_core(&cpu_data
[cpu
]);
388 unsigned vpe_id
= cpu_vpe_id(&cpu_data
[cpu
]);
389 struct core_boot_config
*core_cfg
= &mips_cps_core_bootcfg
[core
];
390 struct vpe_boot_config
*vpe_cfg
= &core_cfg
->vpe_config
[vpe_id
];
394 /* We don't yet support booting CPUs in other clusters */
395 if (cpu_cluster(&cpu_data
[cpu
]) != cpu_cluster(&raw_current_cpu_data
))
398 vpe_cfg
->pc
= (unsigned long)&smp_bootstrap
;
399 vpe_cfg
->sp
= __KSTK_TOS(idle
);
400 vpe_cfg
->gp
= (unsigned long)task_thread_info(idle
);
402 atomic_or(1 << cpu_vpe_id(&cpu_data
[cpu
]), &core_cfg
->vpe_mask
);
406 if (!test_bit(core
, core_power
)) {
407 /* Boot a VPE on a powered down core */
408 boot_core(core
, vpe_id
);
413 mips_cm_lock_other(0, core
, vpe_id
, CM_GCR_Cx_OTHER_BLOCK_LOCAL
);
414 write_gcr_co_reset_base(core_entry_reg
);
415 mips_cm_unlock_other();
418 if (!cpus_are_siblings(cpu
, smp_processor_id())) {
419 /* Boot a VPE on another powered up core */
420 for (remote
= 0; remote
< NR_CPUS
; remote
++) {
421 if (!cpus_are_siblings(cpu
, remote
))
423 if (cpu_online(remote
))
426 if (remote
>= NR_CPUS
) {
427 pr_crit("No online CPU in core %u to start CPU%d\n",
432 err
= smp_call_function_single(remote
, remote_vpe_boot
,
435 panic("Failed to call remote CPU\n");
439 BUG_ON(!cpu_has_mipsmt
&& !cpu_has_vp
);
441 /* Boot a VPE on this core */
442 mips_cps_boot_vpes(core_cfg
, vpe_id
);
448 static void cps_init_secondary(void)
450 int core
= cpu_core(¤t_cpu_data
);
452 /* Disable MT - we only want to run 1 TC per VPE */
456 if (mips_cm_revision() >= CM_REV_CM3
) {
457 unsigned int ident
= read_gic_vl_ident();
460 * Ensure that our calculation of the VP ID matches up with
461 * what the GIC reports, otherwise we'll have configured
462 * interrupts incorrectly.
464 BUG_ON(ident
!= mips_cm_vp_id(smp_processor_id()));
467 if (core
> 0 && !read_gcr_cl_coherence())
468 pr_warn("Core %u is not in coherent domain\n", core
);
471 clear_c0_status(ST0_IM
);
473 change_c0_status(ST0_IM
, STATUSF_IP2
| STATUSF_IP3
|
474 STATUSF_IP4
| STATUSF_IP5
|
475 STATUSF_IP6
| STATUSF_IP7
);
478 static void cps_smp_finish(void)
480 write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency
/ HZ
));
482 #ifdef CONFIG_MIPS_MT_FPAFF
483 /* If we have an FPU, enroll ourselves in the FPU-full mask */
485 cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask
);
486 #endif /* CONFIG_MIPS_MT_FPAFF */
491 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_KEXEC_CORE)
498 static void cps_shutdown_this_cpu(enum cpu_death death
)
500 unsigned int cpu
, core
, vpe_id
;
502 cpu
= smp_processor_id();
503 core
= cpu_core(&cpu_data
[cpu
]);
505 if (death
== CPU_DEATH_HALT
) {
506 vpe_id
= cpu_vpe_id(&cpu_data
[cpu
]);
508 pr_debug("Halting core %d VP%d\n", core
, vpe_id
);
509 if (cpu_has_mipsmt
) {
511 write_c0_tchalt(TCHALT_H
);
512 instruction_hazard();
513 } else if (cpu_has_vp
) {
514 write_cpc_cl_vp_stop(1 << vpe_id
);
516 /* Ensure that the VP_STOP register is written */
520 if (IS_ENABLED(CONFIG_HOTPLUG_CPU
)) {
521 pr_debug("Gating power to core %d\n", core
);
522 /* Power down the core */
523 cps_pm_enter_state(CPS_PM_POWER_GATED
);
528 #ifdef CONFIG_KEXEC_CORE
530 static void cps_kexec_nonboot_cpu(void)
532 if (cpu_has_mipsmt
|| cpu_has_vp
)
533 cps_shutdown_this_cpu(CPU_DEATH_HALT
);
535 cps_shutdown_this_cpu(CPU_DEATH_POWER
);
538 #endif /* CONFIG_KEXEC_CORE */
540 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_KEXEC_CORE */
542 #ifdef CONFIG_HOTPLUG_CPU
544 static int cps_cpu_disable(void)
546 unsigned cpu
= smp_processor_id();
547 struct core_boot_config
*core_cfg
;
549 if (!cps_pm_support_state(CPS_PM_POWER_GATED
))
552 core_cfg
= &mips_cps_core_bootcfg
[cpu_core(¤t_cpu_data
)];
553 atomic_sub(1 << cpu_vpe_id(¤t_cpu_data
), &core_cfg
->vpe_mask
);
554 smp_mb__after_atomic();
555 set_cpu_online(cpu
, false);
556 calculate_cpu_foreign_map();
557 irq_migrate_all_off_this_cpu();
562 static unsigned cpu_death_sibling
;
563 static enum cpu_death cpu_death
;
571 cpu
= smp_processor_id();
572 cpu_death
= CPU_DEATH_POWER
;
574 pr_debug("CPU%d going offline\n", cpu
);
576 if (cpu_has_mipsmt
|| cpu_has_vp
) {
577 /* Look for another online VPE within the core */
578 for_each_online_cpu(cpu_death_sibling
) {
579 if (!cpus_are_siblings(cpu
, cpu_death_sibling
))
583 * There is an online VPE within the core. Just halt
584 * this TC and leave the core alone.
586 cpu_death
= CPU_DEATH_HALT
;
591 cpuhp_ap_report_dead();
593 cps_shutdown_this_cpu(cpu_death
);
595 /* This should never be reached */
596 panic("Failed to offline CPU %u", cpu
);
599 static void wait_for_sibling_halt(void *ptr_cpu
)
601 unsigned cpu
= (unsigned long)ptr_cpu
;
602 unsigned vpe_id
= cpu_vpe_id(&cpu_data
[cpu
]);
607 local_irq_save(flags
);
609 halted
= read_tc_c0_tchalt();
610 local_irq_restore(flags
);
611 } while (!(halted
& TCHALT_H
));
614 static void cps_cpu_die(unsigned int cpu
) { }
616 static void cps_cleanup_dead_cpu(unsigned cpu
)
618 unsigned core
= cpu_core(&cpu_data
[cpu
]);
619 unsigned int vpe_id
= cpu_vpe_id(&cpu_data
[cpu
]);
625 * Now wait for the CPU to actually offline. Without doing this that
626 * offlining may race with one or more of:
628 * - Onlining the CPU again.
629 * - Powering down the core if another VPE within it is offlined.
630 * - A sibling VPE entering a non-coherent state.
632 * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
633 * with which we could race, so do nothing.
635 if (cpu_death
== CPU_DEATH_POWER
) {
637 * Wait for the core to enter a powered down or clock gated
638 * state, the latter happening when a JTAG probe is connected
639 * in which case the CPC will refuse to power down the core.
641 fail_time
= ktime_add_ms(ktime_get(), 2000);
643 mips_cm_lock_other(0, core
, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL
);
644 mips_cpc_lock_other(core
);
645 stat
= read_cpc_co_stat_conf();
646 stat
&= CPC_Cx_STAT_CONF_SEQSTATE
;
647 stat
>>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE
);
648 mips_cpc_unlock_other();
649 mips_cm_unlock_other();
651 if (stat
== CPC_Cx_STAT_CONF_SEQSTATE_D0
||
652 stat
== CPC_Cx_STAT_CONF_SEQSTATE_D2
||
653 stat
== CPC_Cx_STAT_CONF_SEQSTATE_U2
)
657 * The core ought to have powered down, but didn't &
658 * now we don't really know what state it's in. It's
659 * likely that its _pwr_up pin has been wired to logic
660 * 1 & it powered back up as soon as we powered it
663 * The best we can do is warn the user & continue in
664 * the hope that the core is doing nothing harmful &
665 * might behave properly if we online it later.
667 if (WARN(ktime_after(ktime_get(), fail_time
),
668 "CPU%u hasn't powered down, seq. state %u\n",
673 /* Indicate the core is powered off */
674 bitmap_clear(core_power
, core
, 1);
675 } else if (cpu_has_mipsmt
) {
677 * Have a CPU with access to the offlined CPUs registers wait
678 * for its TC to halt.
680 err
= smp_call_function_single(cpu_death_sibling
,
681 wait_for_sibling_halt
,
682 (void *)(unsigned long)cpu
, 1);
684 panic("Failed to call remote sibling CPU\n");
685 } else if (cpu_has_vp
) {
687 mips_cm_lock_other(0, core
, vpe_id
, CM_GCR_Cx_OTHER_BLOCK_LOCAL
);
688 stat
= read_cpc_co_vp_running();
689 mips_cm_unlock_other();
690 } while (stat
& (1 << vpe_id
));
694 #endif /* CONFIG_HOTPLUG_CPU */
696 static const struct plat_smp_ops cps_smp_ops
= {
697 .smp_setup
= cps_smp_setup
,
698 .prepare_cpus
= cps_prepare_cpus
,
699 .boot_secondary
= cps_boot_secondary
,
700 .init_secondary
= cps_init_secondary
,
701 .smp_finish
= cps_smp_finish
,
702 .send_ipi_single
= mips_smp_send_ipi_single
,
703 .send_ipi_mask
= mips_smp_send_ipi_mask
,
704 #ifdef CONFIG_HOTPLUG_CPU
705 .cpu_disable
= cps_cpu_disable
,
706 .cpu_die
= cps_cpu_die
,
707 .cleanup_dead_cpu
= cps_cleanup_dead_cpu
,
709 #ifdef CONFIG_KEXEC_CORE
710 .kexec_nonboot_cpu
= cps_kexec_nonboot_cpu
,
714 bool mips_cps_smp_in_use(void)
716 extern const struct plat_smp_ops
*mp_ops
;
717 return mp_ops
== &cps_smp_ops
;
720 int register_cps_smp_ops(void)
722 if (!mips_cm_present()) {
723 pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
727 /* check we have a GIC - we need one for IPIs */
728 if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX
)) {
729 pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
733 register_smp_ops(&cps_smp_ops
);