1 // SPDX-License-Identifier: GPL-2.0-or-later
4 * Copyright (C) 2000, 2001 Kanoj Sarcar
5 * Copyright (C) 2000, 2001 Ralf Baechle
6 * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
7 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
9 #include <linux/cache.h>
10 #include <linux/delay.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/profile.h>
14 #include <linux/smp.h>
15 #include <linux/spinlock.h>
16 #include <linux/threads.h>
17 #include <linux/export.h>
18 #include <linux/time.h>
19 #include <linux/timex.h>
20 #include <linux/sched/mm.h>
21 #include <linux/cpumask.h>
22 #include <linux/cpu.h>
23 #include <linux/err.h>
24 #include <linux/ftrace.h>
25 #include <linux/irqdomain.h>
27 #include <linux/of_irq.h>
29 #include <linux/atomic.h>
31 #include <asm/ginvt.h>
32 #include <asm/processor.h>
34 #include <asm/r4k-timer.h>
35 #include <asm/mips-cps.h>
36 #include <asm/mmu_context.h>
38 #include <asm/setup.h>
41 int __cpu_number_map
[CONFIG_MIPS_NR_CPU_NR_MAP
]; /* Map physical to logical */
42 EXPORT_SYMBOL(__cpu_number_map
);
44 int __cpu_logical_map
[NR_CPUS
]; /* Map logical to physical */
45 EXPORT_SYMBOL(__cpu_logical_map
);
47 /* Number of TCs (or siblings in Intel speak) per CPU core */
48 int smp_num_siblings
= 1;
49 EXPORT_SYMBOL(smp_num_siblings
);
51 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
52 cpumask_t cpu_sibling_map
[NR_CPUS
] __read_mostly
;
53 EXPORT_SYMBOL(cpu_sibling_map
);
55 /* representing the core map of multi-core chips of each logical CPU */
56 cpumask_t cpu_core_map
[NR_CPUS
] __read_mostly
;
57 EXPORT_SYMBOL(cpu_core_map
);
59 static DECLARE_COMPLETION(cpu_starting
);
60 static DECLARE_COMPLETION(cpu_running
);
63 * A logical cpu mask containing only one VPE per core to
64 * reduce the number of IPIs on large MT systems.
66 cpumask_t cpu_foreign_map
[NR_CPUS
] __read_mostly
;
67 EXPORT_SYMBOL(cpu_foreign_map
);
69 /* representing cpus for which sibling maps can be computed */
70 static cpumask_t cpu_sibling_setup_map
;
72 /* representing cpus for which core maps can be computed */
73 static cpumask_t cpu_core_setup_map
;
75 cpumask_t cpu_coherent_mask
;
77 unsigned int smp_max_threads __initdata
= UINT_MAX
;
79 static int __init
early_nosmt(char *s
)
84 early_param("nosmt", early_nosmt
);
86 static int __init
early_smt(char *s
)
88 get_option(&s
, &smp_max_threads
);
89 /* Ensure at least one thread is available */
90 smp_max_threads
= clamp_val(smp_max_threads
, 1U, UINT_MAX
);
93 early_param("smt", early_smt
);
95 #ifdef CONFIG_GENERIC_IRQ_IPI
96 static struct irq_desc
*call_desc
;
97 static struct irq_desc
*sched_desc
;
100 static inline void set_cpu_sibling_map(int cpu
)
104 cpumask_set_cpu(cpu
, &cpu_sibling_setup_map
);
106 if (smp_num_siblings
> 1) {
107 for_each_cpu(i
, &cpu_sibling_setup_map
) {
108 if (cpus_are_siblings(cpu
, i
)) {
109 cpumask_set_cpu(i
, &cpu_sibling_map
[cpu
]);
110 cpumask_set_cpu(cpu
, &cpu_sibling_map
[i
]);
114 cpumask_set_cpu(cpu
, &cpu_sibling_map
[cpu
]);
117 static inline void set_cpu_core_map(int cpu
)
121 cpumask_set_cpu(cpu
, &cpu_core_setup_map
);
123 for_each_cpu(i
, &cpu_core_setup_map
) {
124 if (cpu_data
[cpu
].package
== cpu_data
[i
].package
) {
125 cpumask_set_cpu(i
, &cpu_core_map
[cpu
]);
126 cpumask_set_cpu(cpu
, &cpu_core_map
[i
]);
132 * Calculate a new cpu_foreign_map mask whenever a
133 * new cpu appears or disappears.
135 void calculate_cpu_foreign_map(void)
137 int i
, k
, core_present
;
138 cpumask_t temp_foreign_map
;
140 /* Re-calculate the mask */
141 cpumask_clear(&temp_foreign_map
);
142 for_each_online_cpu(i
) {
144 for_each_cpu(k
, &temp_foreign_map
)
145 if (cpus_are_siblings(i
, k
))
148 cpumask_set_cpu(i
, &temp_foreign_map
);
151 for_each_online_cpu(i
)
152 cpumask_andnot(&cpu_foreign_map
[i
],
153 &temp_foreign_map
, &cpu_sibling_map
[i
]);
156 const struct plat_smp_ops
*mp_ops
;
157 EXPORT_SYMBOL(mp_ops
);
159 void register_smp_ops(const struct plat_smp_ops
*ops
)
162 printk(KERN_WARNING
"Overriding previously set SMP ops\n");
167 #ifdef CONFIG_GENERIC_IRQ_IPI
168 void mips_smp_send_ipi_single(int cpu
, unsigned int action
)
170 mips_smp_send_ipi_mask(cpumask_of(cpu
), action
);
173 void mips_smp_send_ipi_mask(const struct cpumask
*mask
, unsigned int action
)
179 local_irq_save(flags
);
182 case SMP_CALL_FUNCTION
:
183 __ipi_send_mask(call_desc
, mask
);
186 case SMP_RESCHEDULE_YOURSELF
:
187 __ipi_send_mask(sched_desc
, mask
);
194 if (mips_cpc_present()) {
195 for_each_cpu(cpu
, mask
) {
196 if (cpus_are_siblings(cpu
, smp_processor_id()))
199 core
= cpu_core(&cpu_data
[cpu
]);
201 while (!cpumask_test_cpu(cpu
, &cpu_coherent_mask
)) {
202 mips_cm_lock_other_cpu(cpu
, CM_GCR_Cx_OTHER_BLOCK_LOCAL
);
203 mips_cpc_lock_other(core
);
204 write_cpc_co_cmd(CPC_Cx_CMD_PWRUP
);
205 mips_cpc_unlock_other();
206 mips_cm_unlock_other();
211 local_irq_restore(flags
);
215 static irqreturn_t
ipi_resched_interrupt(int irq
, void *dev_id
)
222 static irqreturn_t
ipi_call_interrupt(int irq
, void *dev_id
)
224 generic_smp_call_function_interrupt();
229 static void smp_ipi_init_one(unsigned int virq
, const char *name
,
230 irq_handler_t handler
)
234 irq_set_handler(virq
, handle_percpu_irq
);
235 ret
= request_irq(virq
, handler
, IRQF_PERCPU
, name
, NULL
);
239 static unsigned int call_virq
, sched_virq
;
241 int mips_smp_ipi_allocate(const struct cpumask
*mask
)
244 struct irq_domain
*ipidomain
;
245 struct device_node
*node
;
247 node
= of_irq_find_parent(of_root
);
248 ipidomain
= irq_find_matching_host(node
, DOMAIN_BUS_IPI
);
251 * Some platforms have half DT setup. So if we found irq node but
252 * didn't find an ipidomain, try to search for one that is not in the
255 if (node
&& !ipidomain
)
256 ipidomain
= irq_find_matching_host(NULL
, DOMAIN_BUS_IPI
);
259 * There are systems which use IPI IRQ domains, but only have one
260 * registered when some runtime condition is met. For example a Malta
261 * kernel may include support for GIC & CPU interrupt controller IPI
262 * IRQ domains, but if run on a system with no GIC & no MT ASE then
263 * neither will be supported or registered.
265 * We only have a problem if we're actually using multiple CPUs so fail
266 * loudly if that is the case. Otherwise simply return, skipping IPI
267 * setup, if we're running with only a single CPU.
270 BUG_ON(num_present_cpus() > 1);
274 virq
= irq_reserve_ipi(ipidomain
, mask
);
279 virq
= irq_reserve_ipi(ipidomain
, mask
);
284 if (irq_domain_is_ipi_per_cpu(ipidomain
)) {
287 for_each_cpu(cpu
, mask
) {
288 smp_ipi_init_one(call_virq
+ cpu
, "IPI call",
290 smp_ipi_init_one(sched_virq
+ cpu
, "IPI resched",
291 ipi_resched_interrupt
);
294 smp_ipi_init_one(call_virq
, "IPI call", ipi_call_interrupt
);
295 smp_ipi_init_one(sched_virq
, "IPI resched",
296 ipi_resched_interrupt
);
302 int mips_smp_ipi_free(const struct cpumask
*mask
)
304 struct irq_domain
*ipidomain
;
305 struct device_node
*node
;
307 node
= of_irq_find_parent(of_root
);
308 ipidomain
= irq_find_matching_host(node
, DOMAIN_BUS_IPI
);
311 * Some platforms have half DT setup. So if we found irq node but
312 * didn't find an ipidomain, try to search for one that is not in the
315 if (node
&& !ipidomain
)
316 ipidomain
= irq_find_matching_host(NULL
, DOMAIN_BUS_IPI
);
320 if (irq_domain_is_ipi_per_cpu(ipidomain
)) {
323 for_each_cpu(cpu
, mask
) {
324 free_irq(call_virq
+ cpu
, NULL
);
325 free_irq(sched_virq
+ cpu
, NULL
);
328 irq_destroy_ipi(call_virq
, mask
);
329 irq_destroy_ipi(sched_virq
, mask
);
334 static int __init
mips_smp_ipi_init(void)
336 if (num_possible_cpus() == 1)
339 mips_smp_ipi_allocate(cpu_possible_mask
);
341 call_desc
= irq_to_desc(call_virq
);
342 sched_desc
= irq_to_desc(sched_virq
);
346 early_initcall(mips_smp_ipi_init
);
350 * First C code run on the secondary CPUs after being started up by
353 asmlinkage
void start_secondary(void)
355 unsigned int cpu
= raw_smp_processor_id();
358 per_cpu_trap_init(false);
359 rcutree_report_cpu_starting(cpu
);
360 mips_clockevent_init();
361 mp_ops
->init_secondary();
366 * XXX parity protection should be folded in here when it's converted
367 * to an option instead of something based on .cputype
371 cpu_data
[cpu
].udelay_val
= loops_per_jiffy
;
373 set_cpu_sibling_map(cpu
);
374 set_cpu_core_map(cpu
);
376 cpumask_set_cpu(cpu
, &cpu_coherent_mask
);
377 notify_cpu_starting(cpu
);
379 /* Notify boot CPU that we're starting & ready to sync counters */
380 complete(&cpu_starting
);
382 synchronise_count_slave(cpu
);
384 /* The CPU is running and counters synchronised, now mark it online */
385 set_cpu_online(cpu
, true);
387 calculate_cpu_foreign_map();
390 * Notify boot CPU that we're up & online and it can safely return
393 complete(&cpu_running
);
396 * irq will be enabled in ->smp_finish(), enabling it too early
399 WARN_ON_ONCE(!irqs_disabled());
400 mp_ops
->smp_finish();
402 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE
);
405 static void stop_this_cpu(void *dummy
)
411 set_cpu_online(smp_processor_id(), false);
412 calculate_cpu_foreign_map();
417 void smp_send_stop(void)
419 smp_call_function(stop_this_cpu
, NULL
, 0);
422 void __init
smp_cpus_done(unsigned int max_cpus
)
426 /* called from main before smp_init() */
427 void __init
smp_prepare_cpus(unsigned int max_cpus
)
429 init_new_context(current
, &init_mm
);
430 current_thread_info()->cpu
= 0;
431 mp_ops
->prepare_cpus(max_cpus
);
432 set_cpu_sibling_map(0);
434 calculate_cpu_foreign_map();
435 #ifndef CONFIG_HOTPLUG_CPU
436 init_cpu_present(cpu_possible_mask
);
438 cpumask_copy(&cpu_coherent_mask
, cpu_possible_mask
);
441 /* preload SMP state for boot cpu */
442 void __init
smp_prepare_boot_cpu(void)
444 if (mp_ops
->prepare_boot_cpu
)
445 mp_ops
->prepare_boot_cpu();
446 set_cpu_possible(0, true);
447 set_cpu_online(0, true);
450 int __cpu_up(unsigned int cpu
, struct task_struct
*tidle
)
454 err
= mp_ops
->boot_secondary(cpu
, tidle
);
458 /* Wait for CPU to start and be ready to sync counters */
459 if (!wait_for_completion_timeout(&cpu_starting
,
460 msecs_to_jiffies(1000))) {
461 pr_crit("CPU%u: failed to start\n", cpu
);
465 /* Wait for CPU to finish startup & mark itself online before return */
466 wait_for_completion(&cpu_running
);
470 #ifdef CONFIG_PROFILING
471 /* Not really SMP stuff ... */
472 int setup_profiling_timer(unsigned int multiplier
)
478 static void flush_tlb_all_ipi(void *info
)
480 local_flush_tlb_all();
483 void flush_tlb_all(void)
489 instruction_hazard();
494 on_each_cpu(flush_tlb_all_ipi
, NULL
, 1);
497 static void flush_tlb_mm_ipi(void *mm
)
499 drop_mmu_context((struct mm_struct
*)mm
);
503 * Special Variant of smp_call_function for use by TLB functions:
506 * o collapses to normal function call on UP kernels
507 * o collapses to normal function call on systems with a single shared
510 static inline void smp_on_other_tlbs(void (*func
) (void *info
), void *info
)
512 smp_call_function(func
, info
, 1);
515 static inline void smp_on_each_tlb(void (*func
) (void *info
), void *info
)
519 smp_on_other_tlbs(func
, info
);
526 * The following tlb flush calls are invoked when old translations are
527 * being torn down, or pte attributes are changing. For single threaded
528 * address spaces, a new context is obtained on the current cpu, and tlb
529 * context on other cpus are invalidated to force a new context allocation
530 * at switch_mm time, should the mm ever be used on other cpus. For
531 * multithreaded address spaces, inter-CPU interrupts have to be sent.
532 * Another case where inter-CPU interrupts are required is when the target
533 * mm might be active on another cpu (eg debuggers doing the flushes on
534 * behalf of debugees, kswapd stealing pages from another process etc).
538 void flush_tlb_mm(struct mm_struct
*mm
)
543 if (atomic_read(&mm
->mm_users
) == 0)
544 return; /* happens as a result of exit_mmap() */
550 * No need to worry about other CPUs - the ginvt in
551 * drop_mmu_context() will be globalized.
553 } else if ((atomic_read(&mm
->mm_users
) != 1) || (current
->mm
!= mm
)) {
554 smp_on_other_tlbs(flush_tlb_mm_ipi
, mm
);
558 for_each_online_cpu(cpu
) {
559 if (cpu
!= smp_processor_id() && cpu_context(cpu
, mm
))
560 set_cpu_context(cpu
, mm
, 0);
563 drop_mmu_context(mm
);
568 struct flush_tlb_data
{
569 struct vm_area_struct
*vma
;
574 static void flush_tlb_range_ipi(void *info
)
576 struct flush_tlb_data
*fd
= info
;
578 local_flush_tlb_range(fd
->vma
, fd
->addr1
, fd
->addr2
);
581 void flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
)
583 struct mm_struct
*mm
= vma
->vm_mm
;
590 old_mmid
= read_c0_memorymapid();
591 write_c0_memorymapid(cpu_asid(0, mm
));
593 addr
= round_down(start
, PAGE_SIZE
* 2);
594 end
= round_up(end
, PAGE_SIZE
* 2);
598 addr
+= PAGE_SIZE
* 2;
599 } while (addr
< end
);
600 write_c0_memorymapid(old_mmid
);
601 instruction_hazard();
603 } else if ((atomic_read(&mm
->mm_users
) != 1) || (current
->mm
!= mm
)) {
604 struct flush_tlb_data fd
= {
610 smp_on_other_tlbs(flush_tlb_range_ipi
, &fd
);
611 local_flush_tlb_range(vma
, start
, end
);
614 int exec
= vma
->vm_flags
& VM_EXEC
;
616 for_each_online_cpu(cpu
) {
618 * flush_cache_range() will only fully flush icache if
619 * the VMA is executable, otherwise we must invalidate
620 * ASID without it appearing to has_valid_asid() as if
621 * mm has been completely unused by that CPU.
623 if (cpu
!= smp_processor_id() && cpu_context(cpu
, mm
))
624 set_cpu_context(cpu
, mm
, !exec
);
626 local_flush_tlb_range(vma
, start
, end
);
631 static void flush_tlb_kernel_range_ipi(void *info
)
633 struct flush_tlb_data
*fd
= info
;
635 local_flush_tlb_kernel_range(fd
->addr1
, fd
->addr2
);
638 void flush_tlb_kernel_range(unsigned long start
, unsigned long end
)
640 struct flush_tlb_data fd
= {
645 on_each_cpu(flush_tlb_kernel_range_ipi
, &fd
, 1);
648 static void flush_tlb_page_ipi(void *info
)
650 struct flush_tlb_data
*fd
= info
;
652 local_flush_tlb_page(fd
->vma
, fd
->addr1
);
655 void flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
)
662 old_mmid
= read_c0_memorymapid();
663 write_c0_memorymapid(cpu_asid(0, vma
->vm_mm
));
667 write_c0_memorymapid(old_mmid
);
668 instruction_hazard();
670 } else if ((atomic_read(&vma
->vm_mm
->mm_users
) != 1) ||
671 (current
->mm
!= vma
->vm_mm
)) {
672 struct flush_tlb_data fd
= {
677 smp_on_other_tlbs(flush_tlb_page_ipi
, &fd
);
678 local_flush_tlb_page(vma
, page
);
682 for_each_online_cpu(cpu
) {
684 * flush_cache_page() only does partial flushes, so
685 * invalidate ASID without it appearing to
686 * has_valid_asid() as if mm has been completely unused
689 if (cpu
!= smp_processor_id() && cpu_context(cpu
, vma
->vm_mm
))
690 set_cpu_context(cpu
, vma
->vm_mm
, 1);
692 local_flush_tlb_page(vma
, page
);
697 static void flush_tlb_one_ipi(void *info
)
699 unsigned long vaddr
= (unsigned long) info
;
701 local_flush_tlb_one(vaddr
);
704 void flush_tlb_one(unsigned long vaddr
)
706 smp_on_each_tlb(flush_tlb_one_ipi
, (void *) vaddr
);
709 EXPORT_SYMBOL(flush_tlb_page
);
710 EXPORT_SYMBOL(flush_tlb_one
);
712 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD
713 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu
)
715 if (mp_ops
->cleanup_dead_cpu
)
716 mp_ops
->cleanup_dead_cpu(cpu
);
720 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
722 static void tick_broadcast_callee(void *info
)
724 tick_receive_broadcast();
727 static DEFINE_PER_CPU(call_single_data_t
, tick_broadcast_csd
) =
728 CSD_INIT(tick_broadcast_callee
, NULL
);
730 void tick_broadcast(const struct cpumask
*mask
)
732 call_single_data_t
*csd
;
735 for_each_cpu(cpu
, mask
) {
736 csd
= &per_cpu(tick_broadcast_csd
, cpu
);
737 smp_call_function_single_async(cpu
, csd
);
741 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */