2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 1996 David S. Miller (davem@davemloft.net)
7 * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org)
8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
10 #include <linux/cpu_pm.h>
11 #include <linux/hardirq.h>
12 #include <linux/init.h>
13 #include <linux/highmem.h>
14 #include <linux/kernel.h>
15 #include <linux/linkage.h>
16 #include <linux/preempt.h>
17 #include <linux/sched.h>
18 #include <linux/smp.h>
20 #include <linux/export.h>
21 #include <linux/bitops.h>
22 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
24 #include <asm/bcache.h>
25 #include <asm/bootinfo.h>
26 #include <asm/cache.h>
27 #include <asm/cacheops.h>
29 #include <asm/cpu-features.h>
30 #include <asm/cpu-type.h>
33 #include <asm/r4kcache.h>
34 #include <asm/sections.h>
35 #include <asm/mmu_context.h>
36 #include <asm/cacheflush.h> /* for run_uncached() */
37 #include <asm/traps.h>
38 #include <asm/mips-cps.h>
41 * Bits describing what cache ops an SMP callback function may perform.
43 * R4K_HIT - Virtual user or kernel address based cache operations. The
44 * active_mm must be checked before using user addresses, falling
46 * R4K_INDEX - Index based cache operations.
49 #define R4K_HIT BIT(0)
50 #define R4K_INDEX BIT(1)
53 * r4k_op_needs_ipi() - Decide if a cache op needs to be done on every core.
54 * @type: Type of cache operations (R4K_HIT or R4K_INDEX).
56 * Decides whether a cache op needs to be performed on every core in the system.
57 * This may change depending on the @type of cache operation, as well as the set
58 * of online CPUs, so preemption should be disabled by the caller to prevent CPU
59 * hotplug from changing the result.
61 * Returns: 1 if the cache operation @type should be done on every core in
63 * 0 if the cache operation @type is globalized and only needs to
64 * be performed on a simple CPU.
66 static inline bool r4k_op_needs_ipi(unsigned int type
)
68 /* The MIPS Coherence Manager (CM) globalizes address-based cache ops */
69 if (type
== R4K_HIT
&& mips_cm_present())
73 * Hardware doesn't globalize the required cache ops, so SMP calls may
74 * be needed, but only if there are foreign CPUs (non-siblings with
77 /* cpu_foreign_map[] undeclared when !CONFIG_SMP */
79 return !cpumask_empty(&cpu_foreign_map
[0]);
86 * Special Variant of smp_call_function for use by cache functions:
89 * o collapses to normal function call on UP kernels
90 * o collapses to normal function call on systems with a single shared
92 * o doesn't disable interrupts on the local CPU
94 static inline void r4k_on_each_cpu(unsigned int type
,
95 void (*func
)(void *info
), void *info
)
98 if (r4k_op_needs_ipi(type
))
99 smp_call_function_many(&cpu_foreign_map
[smp_processor_id()],
108 static unsigned long icache_size __read_mostly
;
109 static unsigned long dcache_size __read_mostly
;
110 static unsigned long vcache_size __read_mostly
;
111 static unsigned long scache_size __read_mostly
;
113 #define cpu_is_r4600_v1_x() ((read_c0_prid() & 0xfffffff0) == 0x00002010)
114 #define cpu_is_r4600_v2_x() ((read_c0_prid() & 0xfffffff0) == 0x00002020)
116 #define R4600_HIT_CACHEOP_WAR_IMPL \
118 if (IS_ENABLED(CONFIG_WAR_R4600_V2_HIT_CACHEOP) && \
119 cpu_is_r4600_v2_x()) \
120 *(volatile unsigned long *)CKSEG1; \
121 if (IS_ENABLED(CONFIG_WAR_R4600_V1_HIT_CACHEOP)) \
122 __asm__ __volatile__("nop;nop;nop;nop"); \
125 static void (*r4k_blast_dcache_page
)(unsigned long addr
);
127 static inline void r4k_blast_dcache_page_dc32(unsigned long addr
)
129 R4600_HIT_CACHEOP_WAR_IMPL
;
130 blast_dcache32_page(addr
);
133 static inline void r4k_blast_dcache_page_dc64(unsigned long addr
)
135 blast_dcache64_page(addr
);
138 static inline void r4k_blast_dcache_page_dc128(unsigned long addr
)
140 blast_dcache128_page(addr
);
143 static void r4k_blast_dcache_page_setup(void)
145 unsigned long dc_lsize
= cpu_dcache_line_size();
149 r4k_blast_dcache_page
= (void *)cache_noop
;
152 r4k_blast_dcache_page
= blast_dcache16_page
;
155 r4k_blast_dcache_page
= r4k_blast_dcache_page_dc32
;
158 r4k_blast_dcache_page
= r4k_blast_dcache_page_dc64
;
161 r4k_blast_dcache_page
= r4k_blast_dcache_page_dc128
;
169 #define r4k_blast_dcache_user_page r4k_blast_dcache_page
172 static void (*r4k_blast_dcache_user_page
)(unsigned long addr
);
174 static void r4k_blast_dcache_user_page_setup(void)
176 unsigned long dc_lsize
= cpu_dcache_line_size();
179 r4k_blast_dcache_user_page
= (void *)cache_noop
;
180 else if (dc_lsize
== 16)
181 r4k_blast_dcache_user_page
= blast_dcache16_user_page
;
182 else if (dc_lsize
== 32)
183 r4k_blast_dcache_user_page
= blast_dcache32_user_page
;
184 else if (dc_lsize
== 64)
185 r4k_blast_dcache_user_page
= blast_dcache64_user_page
;
190 void (* r4k_blast_dcache
)(void);
191 EXPORT_SYMBOL(r4k_blast_dcache
);
193 static void r4k_blast_dcache_setup(void)
195 unsigned long dc_lsize
= cpu_dcache_line_size();
198 r4k_blast_dcache
= (void *)cache_noop
;
199 else if (dc_lsize
== 16)
200 r4k_blast_dcache
= blast_dcache16
;
201 else if (dc_lsize
== 32)
202 r4k_blast_dcache
= blast_dcache32
;
203 else if (dc_lsize
== 64)
204 r4k_blast_dcache
= blast_dcache64
;
205 else if (dc_lsize
== 128)
206 r4k_blast_dcache
= blast_dcache128
;
209 /* force code alignment (used for CONFIG_WAR_TX49XX_ICACHE_INDEX_INV) */
210 #define JUMP_TO_ALIGN(order) \
211 __asm__ __volatile__( \
213 ".align\t" #order "\n\t" \
216 #define CACHE32_UNROLL32_ALIGN JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */
217 #define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11)
219 static inline void blast_r4600_v1_icache32(void)
223 local_irq_save(flags
);
225 local_irq_restore(flags
);
228 static inline void tx49_blast_icache32(void)
230 unsigned long start
= INDEX_BASE
;
231 unsigned long end
= start
+ current_cpu_data
.icache
.waysize
;
232 unsigned long ws_inc
= 1UL << current_cpu_data
.icache
.waybit
;
233 unsigned long ws_end
= current_cpu_data
.icache
.ways
<<
234 current_cpu_data
.icache
.waybit
;
235 unsigned long ws
, addr
;
237 CACHE32_UNROLL32_ALIGN2
;
238 /* I'm in even chunk. blast odd chunks */
239 for (ws
= 0; ws
< ws_end
; ws
+= ws_inc
)
240 for (addr
= start
+ 0x400; addr
< end
; addr
+= 0x400 * 2)
241 cache_unroll(32, kernel_cache
, Index_Invalidate_I
,
243 CACHE32_UNROLL32_ALIGN
;
244 /* I'm in odd chunk. blast even chunks */
245 for (ws
= 0; ws
< ws_end
; ws
+= ws_inc
)
246 for (addr
= start
; addr
< end
; addr
+= 0x400 * 2)
247 cache_unroll(32, kernel_cache
, Index_Invalidate_I
,
251 static void (* r4k_blast_icache_page
)(unsigned long addr
);
253 static void r4k_blast_icache_page_setup(void)
255 unsigned long ic_lsize
= cpu_icache_line_size();
258 r4k_blast_icache_page
= (void *)cache_noop
;
259 else if (ic_lsize
== 16)
260 r4k_blast_icache_page
= blast_icache16_page
;
261 else if (ic_lsize
== 32 && current_cpu_type() == CPU_LOONGSON2EF
)
262 r4k_blast_icache_page
= loongson2_blast_icache32_page
;
263 else if (ic_lsize
== 32)
264 r4k_blast_icache_page
= blast_icache32_page
;
265 else if (ic_lsize
== 64)
266 r4k_blast_icache_page
= blast_icache64_page
;
267 else if (ic_lsize
== 128)
268 r4k_blast_icache_page
= blast_icache128_page
;
272 #define r4k_blast_icache_user_page r4k_blast_icache_page
275 static void (*r4k_blast_icache_user_page
)(unsigned long addr
);
277 static void r4k_blast_icache_user_page_setup(void)
279 unsigned long ic_lsize
= cpu_icache_line_size();
282 r4k_blast_icache_user_page
= (void *)cache_noop
;
283 else if (ic_lsize
== 16)
284 r4k_blast_icache_user_page
= blast_icache16_user_page
;
285 else if (ic_lsize
== 32)
286 r4k_blast_icache_user_page
= blast_icache32_user_page
;
287 else if (ic_lsize
== 64)
288 r4k_blast_icache_user_page
= blast_icache64_user_page
;
293 void (* r4k_blast_icache
)(void);
294 EXPORT_SYMBOL(r4k_blast_icache
);
296 static void r4k_blast_icache_setup(void)
298 unsigned long ic_lsize
= cpu_icache_line_size();
301 r4k_blast_icache
= (void *)cache_noop
;
302 else if (ic_lsize
== 16)
303 r4k_blast_icache
= blast_icache16
;
304 else if (ic_lsize
== 32) {
305 if (IS_ENABLED(CONFIG_WAR_R4600_V1_INDEX_ICACHEOP
) &&
307 r4k_blast_icache
= blast_r4600_v1_icache32
;
308 else if (IS_ENABLED(CONFIG_WAR_TX49XX_ICACHE_INDEX_INV
))
309 r4k_blast_icache
= tx49_blast_icache32
;
310 else if (current_cpu_type() == CPU_LOONGSON2EF
)
311 r4k_blast_icache
= loongson2_blast_icache32
;
313 r4k_blast_icache
= blast_icache32
;
314 } else if (ic_lsize
== 64)
315 r4k_blast_icache
= blast_icache64
;
316 else if (ic_lsize
== 128)
317 r4k_blast_icache
= blast_icache128
;
320 static void (* r4k_blast_scache_page
)(unsigned long addr
);
322 static void r4k_blast_scache_page_setup(void)
324 unsigned long sc_lsize
= cpu_scache_line_size();
326 if (scache_size
== 0)
327 r4k_blast_scache_page
= (void *)cache_noop
;
328 else if (sc_lsize
== 16)
329 r4k_blast_scache_page
= blast_scache16_page
;
330 else if (sc_lsize
== 32)
331 r4k_blast_scache_page
= blast_scache32_page
;
332 else if (sc_lsize
== 64)
333 r4k_blast_scache_page
= blast_scache64_page
;
334 else if (sc_lsize
== 128)
335 r4k_blast_scache_page
= blast_scache128_page
;
338 static void (* r4k_blast_scache
)(void);
340 static void r4k_blast_scache_setup(void)
342 unsigned long sc_lsize
= cpu_scache_line_size();
344 if (scache_size
== 0)
345 r4k_blast_scache
= (void *)cache_noop
;
346 else if (sc_lsize
== 16)
347 r4k_blast_scache
= blast_scache16
;
348 else if (sc_lsize
== 32)
349 r4k_blast_scache
= blast_scache32
;
350 else if (sc_lsize
== 64)
351 r4k_blast_scache
= blast_scache64
;
352 else if (sc_lsize
== 128)
353 r4k_blast_scache
= blast_scache128
;
356 static void (*r4k_blast_scache_node
)(long node
);
358 static void r4k_blast_scache_node_setup(void)
360 unsigned long sc_lsize
= cpu_scache_line_size();
362 if (current_cpu_type() != CPU_LOONGSON64
)
363 r4k_blast_scache_node
= (void *)cache_noop
;
364 else if (sc_lsize
== 16)
365 r4k_blast_scache_node
= blast_scache16_node
;
366 else if (sc_lsize
== 32)
367 r4k_blast_scache_node
= blast_scache32_node
;
368 else if (sc_lsize
== 64)
369 r4k_blast_scache_node
= blast_scache64_node
;
370 else if (sc_lsize
== 128)
371 r4k_blast_scache_node
= blast_scache128_node
;
374 static inline void local_r4k___flush_cache_all(void * args
)
376 switch (current_cpu_type()) {
377 case CPU_LOONGSON2EF
:
387 * These caches are inclusive caches, that is, if something
388 * is not cached in the S-cache, we know it also won't be
389 * in one of the primary caches.
395 /* Use get_ebase_cpunum() for both NUMA=y/n */
396 r4k_blast_scache_node(get_ebase_cpunum() >> 2);
411 static void r4k___flush_cache_all(void)
413 r4k_on_each_cpu(R4K_INDEX
, local_r4k___flush_cache_all
, NULL
);
417 * has_valid_asid() - Determine if an mm already has an ASID.
419 * @type: R4K_HIT or R4K_INDEX, type of cache op.
421 * Determines whether @mm already has an ASID on any of the CPUs which cache ops
422 * of type @type within an r4k_on_each_cpu() call will affect. If
423 * r4k_on_each_cpu() does an SMP call to a single VPE in each core, then the
424 * scope of the operation is confined to sibling CPUs, otherwise all online CPUs
425 * will need to be checked.
427 * Must be called in non-preemptive context.
429 * Returns: 1 if the CPUs affected by @type cache ops have an ASID for @mm.
432 static inline int has_valid_asid(const struct mm_struct
*mm
, unsigned int type
)
435 const cpumask_t
*mask
= cpu_present_mask
;
438 return cpu_context(0, mm
) != 0;
440 /* cpu_sibling_map[] undeclared when !CONFIG_SMP */
443 * If r4k_on_each_cpu does SMP calls, it does them to a single VPE in
444 * each foreign core, so we only need to worry about siblings.
445 * Otherwise we need to worry about all present CPUs.
447 if (r4k_op_needs_ipi(type
))
448 mask
= &cpu_sibling_map
[smp_processor_id()];
450 for_each_cpu(i
, mask
)
451 if (cpu_context(i
, mm
))
456 static void r4k__flush_cache_vmap(void)
461 static void r4k__flush_cache_vunmap(void)
467 * Note: flush_tlb_range() assumes flush_cache_range() sufficiently flushes
468 * whole caches when vma is executable.
470 static inline void local_r4k_flush_cache_range(void * args
)
472 struct vm_area_struct
*vma
= args
;
473 int exec
= vma
->vm_flags
& VM_EXEC
;
475 if (!has_valid_asid(vma
->vm_mm
, R4K_INDEX
))
479 * If dcache can alias, we must blast it since mapping is changing.
480 * If executable, we must ensure any dirty lines are written back far
481 * enough to be visible to icache.
483 if (cpu_has_dc_aliases
|| (exec
&& !cpu_has_ic_fills_f_dc
))
485 /* If executable, blast stale lines from icache */
490 static void r4k_flush_cache_range(struct vm_area_struct
*vma
,
491 unsigned long start
, unsigned long end
)
493 int exec
= vma
->vm_flags
& VM_EXEC
;
495 if (cpu_has_dc_aliases
|| exec
)
496 r4k_on_each_cpu(R4K_INDEX
, local_r4k_flush_cache_range
, vma
);
499 static inline void local_r4k_flush_cache_mm(void * args
)
501 struct mm_struct
*mm
= args
;
503 if (!has_valid_asid(mm
, R4K_INDEX
))
507 * Kludge alert. For obscure reasons R4000SC and R4400SC go nuts if we
508 * only flush the primary caches but R1x000 behave sane ...
509 * R4000SC and R4400SC indexed S-cache ops also invalidate primary
510 * caches, so we can bail out early.
512 if (current_cpu_type() == CPU_R4000SC
||
513 current_cpu_type() == CPU_R4000MC
||
514 current_cpu_type() == CPU_R4400SC
||
515 current_cpu_type() == CPU_R4400MC
) {
523 static void r4k_flush_cache_mm(struct mm_struct
*mm
)
525 if (!cpu_has_dc_aliases
)
528 r4k_on_each_cpu(R4K_INDEX
, local_r4k_flush_cache_mm
, mm
);
531 struct flush_cache_page_args
{
532 struct vm_area_struct
*vma
;
537 static inline void local_r4k_flush_cache_page(void *args
)
539 struct flush_cache_page_args
*fcp_args
= args
;
540 struct vm_area_struct
*vma
= fcp_args
->vma
;
541 unsigned long addr
= fcp_args
->addr
;
542 struct page
*page
= pfn_to_page(fcp_args
->pfn
);
543 int exec
= vma
->vm_flags
& VM_EXEC
;
544 struct mm_struct
*mm
= vma
->vm_mm
;
545 int map_coherent
= 0;
551 * If owns no valid ASID yet, cannot possibly have gotten
552 * this page into the cache.
554 if (!has_valid_asid(mm
, R4K_HIT
))
558 pmdp
= pmd_off(mm
, addr
);
559 ptep
= pte_offset_kernel(pmdp
, addr
);
562 * If the page isn't marked valid, the page cannot possibly be
565 if (!(pte_present(*ptep
)))
568 if ((mm
== current
->active_mm
) && (pte_val(*ptep
) & _PAGE_VALID
))
571 struct folio
*folio
= page_folio(page
);
573 * Use kmap_coherent or kmap_atomic to do flushes for
574 * another ASID than the current one.
576 map_coherent
= (cpu_has_dc_aliases
&&
577 folio_mapped(folio
) &&
578 !folio_test_dcache_dirty(folio
));
580 vaddr
= kmap_coherent(page
, addr
);
582 vaddr
= kmap_atomic(page
);
583 addr
= (unsigned long)vaddr
;
586 if (cpu_has_dc_aliases
|| (exec
&& !cpu_has_ic_fills_f_dc
)) {
587 vaddr
? r4k_blast_dcache_page(addr
) :
588 r4k_blast_dcache_user_page(addr
);
589 if (exec
&& !cpu_icache_snoops_remote_store
)
590 r4k_blast_scache_page(addr
);
593 if (vaddr
&& cpu_has_vtag_icache
&& mm
== current
->active_mm
) {
594 drop_mmu_context(mm
);
596 vaddr
? r4k_blast_icache_page(addr
) :
597 r4k_blast_icache_user_page(addr
);
604 kunmap_atomic(vaddr
);
608 static void r4k_flush_cache_page(struct vm_area_struct
*vma
,
609 unsigned long addr
, unsigned long pfn
)
611 struct flush_cache_page_args args
;
617 r4k_on_each_cpu(R4K_HIT
, local_r4k_flush_cache_page
, &args
);
620 static inline void local_r4k_flush_data_cache_page(void * addr
)
622 r4k_blast_dcache_page((unsigned long) addr
);
625 static void r4k_flush_data_cache_page(unsigned long addr
)
628 local_r4k_flush_data_cache_page((void *)addr
);
630 r4k_on_each_cpu(R4K_HIT
, local_r4k_flush_data_cache_page
,
634 struct flush_icache_range_args
{
641 static inline void __local_r4k_flush_icache_range(unsigned long start
,
646 if (!cpu_has_ic_fills_f_dc
) {
647 if (type
== R4K_INDEX
||
648 (type
& R4K_INDEX
&& end
- start
>= dcache_size
)) {
651 R4600_HIT_CACHEOP_WAR_IMPL
;
653 protected_blast_dcache_range(start
, end
);
655 blast_dcache_range(start
, end
);
659 if (type
== R4K_INDEX
||
660 (type
& R4K_INDEX
&& end
- start
> icache_size
))
663 switch (boot_cpu_type()) {
664 case CPU_LOONGSON2EF
:
665 protected_loongson2_blast_icache_range(start
, end
);
670 protected_blast_icache_range(start
, end
);
672 blast_icache_range(start
, end
);
678 static inline void local_r4k_flush_icache_range(unsigned long start
,
681 __local_r4k_flush_icache_range(start
, end
, R4K_HIT
| R4K_INDEX
, false);
684 static inline void local_r4k_flush_icache_user_range(unsigned long start
,
687 __local_r4k_flush_icache_range(start
, end
, R4K_HIT
| R4K_INDEX
, true);
690 static inline void local_r4k_flush_icache_range_ipi(void *args
)
692 struct flush_icache_range_args
*fir_args
= args
;
693 unsigned long start
= fir_args
->start
;
694 unsigned long end
= fir_args
->end
;
695 unsigned int type
= fir_args
->type
;
696 bool user
= fir_args
->user
;
698 __local_r4k_flush_icache_range(start
, end
, type
, user
);
701 static void __r4k_flush_icache_range(unsigned long start
, unsigned long end
,
704 struct flush_icache_range_args args
;
705 unsigned long size
, cache_size
;
709 args
.type
= R4K_HIT
| R4K_INDEX
;
713 * Indexed cache ops require an SMP call.
714 * Consider if that can or should be avoided.
717 if (r4k_op_needs_ipi(R4K_INDEX
) && !r4k_op_needs_ipi(R4K_HIT
)) {
719 * If address-based cache ops don't require an SMP call, then
720 * use them exclusively for small flushes.
723 cache_size
= icache_size
;
724 if (!cpu_has_ic_fills_f_dc
) {
726 cache_size
+= dcache_size
;
728 if (size
<= cache_size
)
729 args
.type
&= ~R4K_INDEX
;
731 r4k_on_each_cpu(args
.type
, local_r4k_flush_icache_range_ipi
, &args
);
733 instruction_hazard();
736 static void r4k_flush_icache_range(unsigned long start
, unsigned long end
)
738 return __r4k_flush_icache_range(start
, end
, false);
741 static void r4k_flush_icache_user_range(unsigned long start
, unsigned long end
)
743 return __r4k_flush_icache_range(start
, end
, true);
746 #ifdef CONFIG_DMA_NONCOHERENT
748 static void r4k_dma_cache_wback_inv(unsigned long addr
, unsigned long size
)
750 /* Catch bad driver code */
751 if (WARN_ON(size
== 0))
755 if (cpu_has_inclusive_pcaches
) {
756 if (size
>= scache_size
) {
757 if (current_cpu_type() != CPU_LOONGSON64
)
760 r4k_blast_scache_node(pa_to_nid(addr
));
762 blast_scache_range(addr
, addr
+ size
);
770 * Either no secondary cache or the available caches don't have the
771 * subset property so we have to flush the primary caches
773 * If we would need IPI to perform an INDEX-type operation, then
774 * we have to use the HIT-type alternative as IPI cannot be used
775 * here due to interrupts possibly being disabled.
777 if (!r4k_op_needs_ipi(R4K_INDEX
) && size
>= dcache_size
) {
780 R4600_HIT_CACHEOP_WAR_IMPL
;
781 blast_dcache_range(addr
, addr
+ size
);
785 bc_wback_inv(addr
, size
);
789 static void prefetch_cache_inv(unsigned long addr
, unsigned long size
)
791 unsigned int linesz
= cpu_scache_line_size();
792 unsigned long addr0
= addr
, addr1
;
794 addr0
&= ~(linesz
- 1);
795 addr1
= (addr0
+ size
- 1) & ~(linesz
- 1);
797 protected_writeback_scache_line(addr0
);
798 if (likely(addr1
!= addr0
))
799 protected_writeback_scache_line(addr1
);
804 if (likely(addr1
!= addr0
))
805 protected_writeback_scache_line(addr0
);
810 if (likely(addr1
> addr0
))
811 protected_writeback_scache_line(addr0
);
814 static void r4k_dma_cache_inv(unsigned long addr
, unsigned long size
)
816 /* Catch bad driver code */
817 if (WARN_ON(size
== 0))
822 if (current_cpu_type() == CPU_BMIPS5000
)
823 prefetch_cache_inv(addr
, size
);
825 if (cpu_has_inclusive_pcaches
) {
826 if (size
>= scache_size
) {
827 if (current_cpu_type() != CPU_LOONGSON64
)
830 r4k_blast_scache_node(pa_to_nid(addr
));
833 * There is no clearly documented alignment requirement
834 * for the cache instruction on MIPS processors and
835 * some processors, among them the RM5200 and RM7000
836 * QED processors will throw an address error for cache
837 * hit ops with insufficient alignment. Solved by
838 * aligning the address to cache line size.
840 blast_inv_scache_range(addr
, addr
+ size
);
847 if (!r4k_op_needs_ipi(R4K_INDEX
) && size
>= dcache_size
) {
850 R4600_HIT_CACHEOP_WAR_IMPL
;
851 blast_inv_dcache_range(addr
, addr
+ size
);
858 #endif /* CONFIG_DMA_NONCOHERENT */
860 static void r4k_flush_icache_all(void)
862 if (cpu_has_vtag_icache
)
866 struct flush_kernel_vmap_range_args
{
871 static inline void local_r4k_flush_kernel_vmap_range_index(void *args
)
874 * Aliases only affect the primary caches so don't bother with
875 * S-caches or T-caches.
880 static inline void local_r4k_flush_kernel_vmap_range(void *args
)
882 struct flush_kernel_vmap_range_args
*vmra
= args
;
883 unsigned long vaddr
= vmra
->vaddr
;
884 int size
= vmra
->size
;
887 * Aliases only affect the primary caches so don't bother with
888 * S-caches or T-caches.
890 R4600_HIT_CACHEOP_WAR_IMPL
;
891 blast_dcache_range(vaddr
, vaddr
+ size
);
894 static void r4k_flush_kernel_vmap_range(unsigned long vaddr
, int size
)
896 struct flush_kernel_vmap_range_args args
;
898 args
.vaddr
= (unsigned long) vaddr
;
901 if (size
>= dcache_size
)
902 r4k_on_each_cpu(R4K_INDEX
,
903 local_r4k_flush_kernel_vmap_range_index
, NULL
);
905 r4k_on_each_cpu(R4K_HIT
, local_r4k_flush_kernel_vmap_range
,
909 static inline void rm7k_erratum31(void)
911 const unsigned long ic_lsize
= 32;
914 /* RM7000 erratum #31. The icache is screwed at startup. */
918 for (addr
= INDEX_BASE
; addr
<= INDEX_BASE
+ 4096; addr
+= ic_lsize
) {
919 __asm__
__volatile__ (
923 "cache\t%1, 0(%0)\n\t"
924 "cache\t%1, 0x1000(%0)\n\t"
925 "cache\t%1, 0x2000(%0)\n\t"
926 "cache\t%1, 0x3000(%0)\n\t"
927 "cache\t%2, 0(%0)\n\t"
928 "cache\t%2, 0x1000(%0)\n\t"
929 "cache\t%2, 0x2000(%0)\n\t"
930 "cache\t%2, 0x3000(%0)\n\t"
931 "cache\t%1, 0(%0)\n\t"
932 "cache\t%1, 0x1000(%0)\n\t"
933 "cache\t%1, 0x2000(%0)\n\t"
934 "cache\t%1, 0x3000(%0)\n\t"
937 : "r" (addr
), "i" (Index_Store_Tag_I
), "i" (Fill_I
));
941 static inline int alias_74k_erratum(struct cpuinfo_mips
*c
)
943 unsigned int imp
= c
->processor_id
& PRID_IMP_MASK
;
944 unsigned int rev
= c
->processor_id
& PRID_REV_MASK
;
948 * Early versions of the 74K do not update the cache tags on a
949 * vtag miss/ptag hit which can occur in the case of KSEG0/KUSEG
950 * aliases. In this case it is better to treat the cache as always
951 * having aliases. Also disable the synonym tag update feature
952 * where available. In this case no opportunistic tag update will
953 * happen where a load causes a virtual address miss but a physical
954 * address hit during a D-cache look-up.
958 if (rev
<= PRID_REV_ENCODE_332(2, 4, 0))
960 if (rev
== PRID_REV_ENCODE_332(2, 4, 0))
961 write_c0_config6(read_c0_config6() | MTI_CONF6_SYND
);
964 if (rev
<= PRID_REV_ENCODE_332(1, 1, 0)) {
966 write_c0_config6(read_c0_config6() | MTI_CONF6_SYND
);
976 static void b5k_instruction_hazard(void)
980 __asm__
__volatile__(
981 " nop; nop; nop; nop; nop; nop; nop; nop\n"
982 " nop; nop; nop; nop; nop; nop; nop; nop\n"
983 " nop; nop; nop; nop; nop; nop; nop; nop\n"
984 " nop; nop; nop; nop; nop; nop; nop; nop\n"
988 static char *way_string
[] = { NULL
, "direct mapped", "2-way",
989 "3-way", "4-way", "5-way", "6-way", "7-way", "8-way",
990 "9-way", "10-way", "11-way", "12-way",
991 "13-way", "14-way", "15-way", "16-way",
994 static void probe_pcache(void)
996 struct cpuinfo_mips
*c
= ¤t_cpu_data
;
997 unsigned int config
= read_c0_config();
998 unsigned int prid
= read_c0_prid();
999 int has_74k_erratum
= 0;
1000 unsigned long config1
;
1003 switch (current_cpu_type()) {
1004 case CPU_R4600
: /* QED style two way caches? */
1008 icache_size
= 1 << (12 + ((config
& CONF_IC
) >> 9));
1009 c
->icache
.linesz
= 16 << ((config
& CONF_IB
) >> 5);
1011 c
->icache
.waybit
= __ffs(icache_size
/2);
1013 dcache_size
= 1 << (12 + ((config
& CONF_DC
) >> 6));
1014 c
->dcache
.linesz
= 16 << ((config
& CONF_DB
) >> 4);
1016 c
->dcache
.waybit
= __ffs(dcache_size
/2);
1018 c
->options
|= MIPS_CPU_CACHE_CDEX_P
;
1022 icache_size
= 1 << (12 + ((config
& CONF_IC
) >> 9));
1023 c
->icache
.linesz
= 16 << ((config
& CONF_IB
) >> 5);
1025 c
->icache
.waybit
= 0;
1027 dcache_size
= 1 << (12 + ((config
& CONF_DC
) >> 6));
1028 c
->dcache
.linesz
= 16 << ((config
& CONF_DB
) >> 4);
1030 c
->dcache
.waybit
= 0;
1032 c
->options
|= MIPS_CPU_CACHE_CDEX_P
| MIPS_CPU_PREFETCH
;
1036 icache_size
= 1 << (12 + ((config
& CONF_IC
) >> 9));
1037 c
->icache
.linesz
= 16 << ((config
& CONF_IB
) >> 5);
1039 c
->icache
.waybit
= 0;
1041 dcache_size
= 1 << (12 + ((config
& CONF_DC
) >> 6));
1042 c
->dcache
.linesz
= 16 << ((config
& CONF_DB
) >> 4);
1044 c
->dcache
.waybit
= 0;
1046 c
->options
|= MIPS_CPU_CACHE_CDEX_P
;
1047 c
->options
|= MIPS_CPU_PREFETCH
;
1057 icache_size
= 1 << (12 + ((config
& CONF_IC
) >> 9));
1058 c
->icache
.linesz
= 16 << ((config
& CONF_IB
) >> 5);
1060 c
->icache
.waybit
= 0; /* doesn't matter */
1062 dcache_size
= 1 << (12 + ((config
& CONF_DC
) >> 6));
1063 c
->dcache
.linesz
= 16 << ((config
& CONF_DB
) >> 4);
1065 c
->dcache
.waybit
= 0; /* does not matter */
1067 c
->options
|= MIPS_CPU_CACHE_CDEX_P
;
1074 icache_size
= 1 << (12 + ((config
& R10K_CONF_IC
) >> 29));
1075 c
->icache
.linesz
= 64;
1077 c
->icache
.waybit
= 0;
1079 dcache_size
= 1 << (12 + ((config
& R10K_CONF_DC
) >> 26));
1080 c
->dcache
.linesz
= 32;
1082 c
->dcache
.waybit
= 0;
1084 c
->options
|= MIPS_CPU_PREFETCH
;
1090 icache_size
= 1 << (12 + ((config
& CONF_IC
) >> 9));
1091 c
->icache
.linesz
= 16 << ((config
& CONF_IB
) >> 5);
1093 c
->icache
.waybit
= __ffs(icache_size
/ c
->icache
.ways
);
1095 dcache_size
= 1 << (12 + ((config
& CONF_DC
) >> 6));
1096 c
->dcache
.linesz
= 16 << ((config
& CONF_DB
) >> 4);
1098 c
->dcache
.waybit
= __ffs(dcache_size
/ c
->dcache
.ways
);
1100 c
->options
|= MIPS_CPU_CACHE_CDEX_P
;
1101 c
->options
|= MIPS_CPU_PREFETCH
;
1104 case CPU_LOONGSON2EF
:
1105 icache_size
= 1 << (12 + ((config
& CONF_IC
) >> 9));
1106 c
->icache
.linesz
= 16 << ((config
& CONF_IB
) >> 5);
1111 c
->icache
.waybit
= 0;
1113 dcache_size
= 1 << (12 + ((config
& CONF_DC
) >> 6));
1114 c
->dcache
.linesz
= 16 << ((config
& CONF_DB
) >> 4);
1119 c
->dcache
.waybit
= 0;
1122 case CPU_LOONGSON64
:
1123 config1
= read_c0_config1();
1124 lsize
= (config1
>> 19) & 7;
1126 c
->icache
.linesz
= 2 << lsize
;
1128 c
->icache
.linesz
= 0;
1129 c
->icache
.sets
= 64 << ((config1
>> 22) & 7);
1130 c
->icache
.ways
= 1 + ((config1
>> 16) & 7);
1131 icache_size
= c
->icache
.sets
*
1134 c
->icache
.waybit
= 0;
1136 lsize
= (config1
>> 10) & 7;
1138 c
->dcache
.linesz
= 2 << lsize
;
1140 c
->dcache
.linesz
= 0;
1141 c
->dcache
.sets
= 64 << ((config1
>> 13) & 7);
1142 c
->dcache
.ways
= 1 + ((config1
>> 7) & 7);
1143 dcache_size
= c
->dcache
.sets
*
1146 c
->dcache
.waybit
= 0;
1147 if ((c
->processor_id
& (PRID_IMP_MASK
| PRID_REV_MASK
)) >=
1148 (PRID_IMP_LOONGSON_64C
| PRID_REV_LOONGSON3A_R2_0
) ||
1149 (c
->processor_id
& PRID_IMP_MASK
) == PRID_IMP_LOONGSON_64R
)
1150 c
->options
|= MIPS_CPU_PREFETCH
;
1153 case CPU_CAVIUM_OCTEON3
:
1154 /* For now lie about the number of ways. */
1155 c
->icache
.linesz
= 128;
1156 c
->icache
.sets
= 16;
1158 c
->icache
.flags
|= MIPS_CACHE_VTAG
;
1159 icache_size
= c
->icache
.sets
* c
->icache
.ways
* c
->icache
.linesz
;
1161 c
->dcache
.linesz
= 128;
1164 dcache_size
= c
->dcache
.sets
* c
->dcache
.ways
* c
->dcache
.linesz
;
1165 c
->options
|= MIPS_CPU_PREFETCH
;
1169 if (!(config
& MIPS_CONF_M
))
1170 panic("Don't know how to probe P-caches on this cpu.");
1173 * So we seem to be a MIPS32 or MIPS64 CPU
1174 * So let's probe the I-cache ...
1176 config1
= read_c0_config1();
1178 lsize
= (config1
>> 19) & 7;
1180 /* IL == 7 is reserved */
1182 panic("Invalid icache line size");
1184 c
->icache
.linesz
= lsize
? 2 << lsize
: 0;
1186 c
->icache
.sets
= 32 << (((config1
>> 22) + 1) & 7);
1187 c
->icache
.ways
= 1 + ((config1
>> 16) & 7);
1189 icache_size
= c
->icache
.sets
*
1192 c
->icache
.waybit
= __ffs(icache_size
/c
->icache
.ways
);
1194 if (config
& MIPS_CONF_VI
)
1195 c
->icache
.flags
|= MIPS_CACHE_VTAG
;
1198 * Now probe the MIPS32 / MIPS64 data cache.
1200 c
->dcache
.flags
= 0;
1202 lsize
= (config1
>> 10) & 7;
1204 /* DL == 7 is reserved */
1206 panic("Invalid dcache line size");
1208 c
->dcache
.linesz
= lsize
? 2 << lsize
: 0;
1210 c
->dcache
.sets
= 32 << (((config1
>> 13) + 1) & 7);
1211 c
->dcache
.ways
= 1 + ((config1
>> 7) & 7);
1213 dcache_size
= c
->dcache
.sets
*
1216 c
->dcache
.waybit
= __ffs(dcache_size
/c
->dcache
.ways
);
1218 c
->options
|= MIPS_CPU_PREFETCH
;
1223 * Processor configuration sanity check for the R4000SC erratum
1224 * #5. With page sizes larger than 32kB there is no possibility
1225 * to get a VCE exception anymore so we don't care about this
1226 * misconfiguration. The case is rather theoretical anyway;
1227 * presumably no vendor is shipping his hardware in the "bad"
1230 if ((prid
& PRID_IMP_MASK
) == PRID_IMP_R4000
&&
1231 (prid
& PRID_REV_MASK
) < PRID_REV_R4400
&&
1232 !(config
& CONF_SC
) && c
->icache
.linesz
!= 16 &&
1233 PAGE_SIZE
<= 0x8000)
1234 panic("Improper R4000SC processor configuration detected");
1236 /* compute a couple of other cache variables */
1237 c
->icache
.waysize
= icache_size
/ c
->icache
.ways
;
1238 c
->dcache
.waysize
= dcache_size
/ c
->dcache
.ways
;
1240 c
->icache
.sets
= c
->icache
.linesz
?
1241 icache_size
/ (c
->icache
.linesz
* c
->icache
.ways
) : 0;
1242 c
->dcache
.sets
= c
->dcache
.linesz
?
1243 dcache_size
/ (c
->dcache
.linesz
* c
->dcache
.ways
) : 0;
1246 * R1x000 P-caches are odd in a positive way. They're 32kB 2-way
1247 * virtually indexed so normally would suffer from aliases. So
1248 * normally they'd suffer from aliases but magic in the hardware deals
1249 * with that for us so we don't need to take care ourselves.
1251 switch (current_cpu_type()) {
1258 c
->dcache
.flags
|= MIPS_CACHE_PINDEX
;
1269 has_74k_erratum
= alias_74k_erratum(c
);
1276 case CPU_INTERAPTIV
:
1280 case CPU_QEMU_GENERIC
:
1283 if (!(read_c0_config7() & MIPS_CONF7_IAR
) &&
1284 (c
->icache
.waysize
> PAGE_SIZE
))
1285 c
->icache
.flags
|= MIPS_CACHE_ALIASES
;
1286 if (!has_74k_erratum
&& (read_c0_config7() & MIPS_CONF7_AR
)) {
1288 * Effectively physically indexed dcache,
1289 * thus no virtual aliases.
1291 c
->dcache
.flags
|= MIPS_CACHE_PINDEX
;
1296 if (has_74k_erratum
|| c
->dcache
.waysize
> PAGE_SIZE
)
1297 c
->dcache
.flags
|= MIPS_CACHE_ALIASES
;
1300 /* Physically indexed caches don't suffer from virtual aliasing */
1301 if (c
->dcache
.flags
& MIPS_CACHE_PINDEX
)
1302 c
->dcache
.flags
&= ~MIPS_CACHE_ALIASES
;
1305 * In systems with CM the icache fills from L2 or closer caches, and
1306 * thus sees remote stores without needing to write them back any
1307 * further than that.
1309 if (mips_cm_present())
1310 c
->icache
.flags
|= MIPS_IC_SNOOPS_REMOTE
;
1312 switch (current_cpu_type()) {
1315 * Some older 20Kc chips doesn't have the 'VI' bit in
1316 * the config register.
1318 c
->icache
.flags
|= MIPS_CACHE_VTAG
;
1324 c
->icache
.flags
|= MIPS_CACHE_IC_F_DC
;
1328 c
->icache
.flags
|= MIPS_CACHE_IC_F_DC
;
1329 /* Cache aliases are handled in hardware; allow HIGHMEM */
1330 c
->dcache
.flags
&= ~MIPS_CACHE_ALIASES
;
1333 case CPU_LOONGSON2EF
:
1335 * LOONGSON2 has 4 way icache, but when using indexed cache op,
1336 * one op will act on all 4 ways
1341 pr_info("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
1343 c
->icache
.flags
& MIPS_CACHE_VTAG
? "VIVT" : "VIPT",
1344 way_string
[c
->icache
.ways
], c
->icache
.linesz
);
1346 pr_info("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n",
1347 dcache_size
>> 10, way_string
[c
->dcache
.ways
],
1348 (c
->dcache
.flags
& MIPS_CACHE_PINDEX
) ? "PIPT" : "VIPT",
1349 (c
->dcache
.flags
& MIPS_CACHE_ALIASES
) ?
1350 "cache aliases" : "no aliases",
1354 static void probe_vcache(void)
1356 struct cpuinfo_mips
*c
= ¤t_cpu_data
;
1357 unsigned int config2
, lsize
;
1359 if (current_cpu_type() != CPU_LOONGSON64
)
1362 config2
= read_c0_config2();
1363 if ((lsize
= ((config2
>> 20) & 15)))
1364 c
->vcache
.linesz
= 2 << lsize
;
1366 c
->vcache
.linesz
= lsize
;
1368 c
->vcache
.sets
= 64 << ((config2
>> 24) & 15);
1369 c
->vcache
.ways
= 1 + ((config2
>> 16) & 15);
1371 vcache_size
= c
->vcache
.sets
* c
->vcache
.ways
* c
->vcache
.linesz
;
1373 c
->vcache
.waybit
= 0;
1374 c
->vcache
.waysize
= vcache_size
/ c
->vcache
.ways
;
1376 pr_info("Unified victim cache %ldkB %s, linesize %d bytes.\n",
1377 vcache_size
>> 10, way_string
[c
->vcache
.ways
], c
->vcache
.linesz
);
1381 * If you even _breathe_ on this function, look at the gcc output and make sure
1382 * it does not pop things on and off the stack for the cache sizing loop that
1383 * executes in KSEG1 space or else you will crash and burn badly. You have
1386 static int probe_scache(void)
1388 unsigned long flags
, addr
, begin
, end
, pow2
;
1389 unsigned int config
= read_c0_config();
1390 struct cpuinfo_mips
*c
= ¤t_cpu_data
;
1392 if (config
& CONF_SC
)
1395 begin
= (unsigned long) &_stext
;
1396 begin
&= ~((4 * 1024 * 1024) - 1);
1397 end
= begin
+ (4 * 1024 * 1024);
1400 * This is such a bitch, you'd think they would make it easy to do
1401 * this. Away you daemons of stupidity!
1403 local_irq_save(flags
);
1405 /* Fill each size-multiple cache line with a valid tag. */
1407 for (addr
= begin
; addr
< end
; addr
= (begin
+ pow2
)) {
1408 unsigned long *p
= (unsigned long *) addr
;
1409 __asm__
__volatile__("nop" : : "r" (*p
)); /* whee... */
1413 /* Load first line with zero (therefore invalid) tag. */
1416 __asm__
__volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
1417 cache_op(Index_Store_Tag_I
, begin
);
1418 cache_op(Index_Store_Tag_D
, begin
);
1419 cache_op(Index_Store_Tag_SD
, begin
);
1421 /* Now search for the wrap around point. */
1422 pow2
= (128 * 1024);
1423 for (addr
= begin
+ (128 * 1024); addr
< end
; addr
= begin
+ pow2
) {
1424 cache_op(Index_Load_Tag_SD
, addr
);
1425 __asm__
__volatile__("nop; nop; nop; nop;"); /* hazard... */
1426 if (!read_c0_taglo())
1430 local_irq_restore(flags
);
1434 c
->scache
.linesz
= 16 << ((config
& R4K_CONF_SB
) >> 22);
1436 c
->scache
.waybit
= 0; /* does not matter */
1441 static void loongson2_sc_init(void)
1443 struct cpuinfo_mips
*c
= ¤t_cpu_data
;
1445 scache_size
= 512*1024;
1446 c
->scache
.linesz
= 32;
1448 c
->scache
.waybit
= 0;
1449 c
->scache
.waysize
= scache_size
/ (c
->scache
.ways
);
1450 c
->scache
.sets
= scache_size
/ (c
->scache
.linesz
* c
->scache
.ways
);
1451 pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1452 scache_size
>> 10, way_string
[c
->scache
.ways
], c
->scache
.linesz
);
1454 c
->options
|= MIPS_CPU_INCLUSIVE_CACHES
;
1457 static void loongson3_sc_init(void)
1459 struct cpuinfo_mips
*c
= ¤t_cpu_data
;
1460 unsigned int config2
, lsize
;
1462 config2
= read_c0_config2();
1463 lsize
= (config2
>> 4) & 15;
1465 c
->scache
.linesz
= 2 << lsize
;
1467 c
->scache
.linesz
= 0;
1468 c
->scache
.sets
= 64 << ((config2
>> 8) & 15);
1469 c
->scache
.ways
= 1 + (config2
& 15);
1471 /* Loongson-3 has 4-Scache banks, while Loongson-2K have only 2 banks */
1472 if ((c
->processor_id
& PRID_IMP_MASK
) == PRID_IMP_LOONGSON_64R
)
1473 c
->scache
.sets
*= 2;
1475 c
->scache
.sets
*= 4;
1477 scache_size
= c
->scache
.sets
* c
->scache
.ways
* c
->scache
.linesz
;
1479 c
->scache
.waybit
= 0;
1480 c
->scache
.waysize
= scache_size
/ c
->scache
.ways
;
1481 pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1482 scache_size
>> 10, way_string
[c
->scache
.ways
], c
->scache
.linesz
);
1484 c
->options
|= MIPS_CPU_INCLUSIVE_CACHES
;
1488 static void setup_scache(void)
1490 struct cpuinfo_mips
*c
= ¤t_cpu_data
;
1491 unsigned int config
= read_c0_config();
1495 * Do the probing thing on R4000SC and R4400SC processors. Other
1496 * processors don't have a S-cache that would be relevant to the
1497 * Linux memory management.
1499 switch (current_cpu_type()) {
1504 sc_present
= run_uncached(probe_scache
);
1506 c
->options
|= MIPS_CPU_CACHE_CDEX_S
;
1513 scache_size
= 0x80000 << ((config
& R10K_CONF_SS
) >> 16);
1514 c
->scache
.linesz
= 64 << ((config
>> 13) & 1);
1516 c
->scache
.waybit
= 0;
1522 #ifdef CONFIG_R5000_CPU_SCACHE
1528 #ifdef CONFIG_RM7000_CPU_SCACHE
1533 case CPU_LOONGSON2EF
:
1534 loongson2_sc_init();
1537 case CPU_LOONGSON64
:
1538 loongson3_sc_init();
1541 case CPU_CAVIUM_OCTEON3
:
1542 /* don't need to worry about L2, fully coherent */
1546 if (c
->isa_level
& (MIPS_CPU_ISA_M32R1
| MIPS_CPU_ISA_M64R1
|
1547 MIPS_CPU_ISA_M32R2
| MIPS_CPU_ISA_M64R2
|
1548 MIPS_CPU_ISA_M32R5
| MIPS_CPU_ISA_M64R5
|
1549 MIPS_CPU_ISA_M32R6
| MIPS_CPU_ISA_M64R6
)) {
1550 #ifdef CONFIG_MIPS_CPU_SCACHE
1551 if (mips_sc_init ()) {
1552 scache_size
= c
->scache
.ways
* c
->scache
.sets
* c
->scache
.linesz
;
1553 printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n",
1555 way_string
[c
->scache
.ways
], c
->scache
.linesz
);
1557 if (current_cpu_type() == CPU_BMIPS5000
)
1558 c
->options
|= MIPS_CPU_INCLUSIVE_CACHES
;
1562 if (!(c
->scache
.flags
& MIPS_CACHE_NOT_PRESENT
))
1563 panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
1573 /* compute a couple of other cache variables */
1574 c
->scache
.waysize
= scache_size
/ c
->scache
.ways
;
1576 c
->scache
.sets
= scache_size
/ (c
->scache
.linesz
* c
->scache
.ways
);
1578 printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1579 scache_size
>> 10, way_string
[c
->scache
.ways
], c
->scache
.linesz
);
1581 c
->options
|= MIPS_CPU_INCLUSIVE_CACHES
;
1584 void au1x00_fixup_config_od(void)
1587 * c0_config.od (bit 19) was write only (and read as 0)
1588 * on the early revisions of Alchemy SOCs. It disables the bus
1589 * transaction overlapping and needs to be set to fix various errata.
1591 switch (read_c0_prid()) {
1592 case 0x00030100: /* Au1000 DA */
1593 case 0x00030201: /* Au1000 HA */
1594 case 0x00030202: /* Au1000 HB */
1595 case 0x01030200: /* Au1500 AB */
1597 * Au1100 errata actually keeps silence about this bit, so we set it
1598 * just in case for those revisions that require it to be set according
1599 * to the (now gone) cpu table.
1601 case 0x02030200: /* Au1100 AB */
1602 case 0x02030201: /* Au1100 BA */
1603 case 0x02030202: /* Au1100 BC */
1604 set_c0_config(1 << 19);
1609 /* CP0 hazard avoidance. */
1610 #define NXP_BARRIER() \
1611 __asm__ __volatile__( \
1612 ".set noreorder\n\t" \
1613 "nop; nop; nop; nop; nop; nop;\n\t" \
1616 static void nxp_pr4450_fixup_config(void)
1618 unsigned long config0
;
1620 config0
= read_c0_config();
1622 /* clear all three cache coherency fields */
1623 config0
&= ~(0x7 | (7 << 25) | (7 << 28));
1624 config0
|= (((_page_cachable_default
>> _CACHE_SHIFT
) << 0) |
1625 ((_page_cachable_default
>> _CACHE_SHIFT
) << 25) |
1626 ((_page_cachable_default
>> _CACHE_SHIFT
) << 28));
1627 write_c0_config(config0
);
1631 static int cca
= -1;
1633 static int __init
cca_setup(char *str
)
1635 get_option(&str
, &cca
);
1640 early_param("cca", cca_setup
);
1642 static void coherency_setup(void)
1644 if (cca
< 0 || cca
> 7)
1645 cca
= read_c0_config() & CONF_CM_CMASK
;
1646 _page_cachable_default
= cca
<< _CACHE_SHIFT
;
1648 pr_debug("Using cache attribute %d\n", cca
);
1649 change_c0_config(CONF_CM_CMASK
, cca
);
1652 * c0_status.cu=0 specifies that updates by the sc instruction use
1653 * the coherency mode specified by the TLB; 1 means cacheable
1654 * coherent update on write will be used. Not all processors have
1655 * this bit and; some wire it to zero, others like Toshiba had the
1656 * silly idea of putting something else there ...
1658 switch (current_cpu_type()) {
1665 clear_c0_config(CONF_CU
);
1668 * We need to catch the early Alchemy SOCs with
1669 * the write-only co_config.od bit and set it back to one on:
1670 * Au1000 rev DA, HA, HB; Au1100 AB, BA, BC, Au1500 AB
1673 au1x00_fixup_config_od();
1676 case PRID_IMP_PR4450
:
1677 nxp_pr4450_fixup_config();
1682 static void r4k_cache_error_setup(void)
1684 extern char __weak except_vec2_generic
;
1685 extern char __weak except_vec2_sb1
;
1687 switch (current_cpu_type()) {
1690 set_uncached_handler(0x100, &except_vec2_sb1
, 0x80);
1694 set_uncached_handler(0x100, &except_vec2_generic
, 0x80);
1699 void r4k_cache_init(void)
1701 extern void build_clear_page(void);
1702 extern void build_copy_page(void);
1703 struct cpuinfo_mips
*c
= ¤t_cpu_data
;
1709 r4k_blast_dcache_page_setup();
1710 r4k_blast_dcache_setup();
1711 r4k_blast_icache_page_setup();
1712 r4k_blast_icache_setup();
1713 r4k_blast_scache_page_setup();
1714 r4k_blast_scache_setup();
1715 r4k_blast_scache_node_setup();
1717 r4k_blast_dcache_user_page_setup();
1718 r4k_blast_icache_user_page_setup();
1722 * Some MIPS32 and MIPS64 processors have physically indexed caches.
1723 * This code supports virtually indexed processors and will be
1724 * unnecessarily inefficient on physically indexed processors.
1726 if (c
->dcache
.linesz
&& cpu_has_dc_aliases
)
1727 shm_align_mask
= max_t( unsigned long,
1728 c
->dcache
.sets
* c
->dcache
.linesz
- 1,
1731 shm_align_mask
= PAGE_SIZE
-1;
1733 __flush_cache_vmap
= r4k__flush_cache_vmap
;
1734 __flush_cache_vunmap
= r4k__flush_cache_vunmap
;
1736 flush_cache_all
= cache_noop
;
1737 __flush_cache_all
= r4k___flush_cache_all
;
1738 flush_cache_mm
= r4k_flush_cache_mm
;
1739 flush_cache_page
= r4k_flush_cache_page
;
1740 flush_cache_range
= r4k_flush_cache_range
;
1742 __flush_kernel_vmap_range
= r4k_flush_kernel_vmap_range
;
1744 flush_icache_all
= r4k_flush_icache_all
;
1745 flush_data_cache_page
= r4k_flush_data_cache_page
;
1746 flush_icache_range
= r4k_flush_icache_range
;
1747 local_flush_icache_range
= local_r4k_flush_icache_range
;
1748 __flush_icache_user_range
= r4k_flush_icache_user_range
;
1749 __local_flush_icache_user_range
= local_r4k_flush_icache_user_range
;
1751 #ifdef CONFIG_DMA_NONCOHERENT
1752 _dma_cache_wback_inv
= r4k_dma_cache_wback_inv
;
1753 _dma_cache_wback
= r4k_dma_cache_wback_inv
;
1754 _dma_cache_inv
= r4k_dma_cache_inv
;
1755 #endif /* CONFIG_DMA_NONCOHERENT */
1761 * We want to run CMP kernels on core with and without coherent
1762 * caches. Therefore, do not use CONFIG_MIPS_CMP to decide whether
1763 * or not to flush caches.
1765 local_r4k___flush_cache_all(NULL
);
1768 board_cache_error_setup
= r4k_cache_error_setup
;
1773 switch (current_cpu_type()) {
1776 /* No IPI is needed because all CPUs share the same D$ */
1777 flush_data_cache_page
= r4k_blast_dcache_page
;
1780 /* We lose our superpowers if L2 is disabled */
1781 if (c
->scache
.flags
& MIPS_CACHE_NOT_PRESENT
)
1784 /* I$ fills from D$ just by emptying the write buffers */
1785 flush_cache_page
= (void *)b5k_instruction_hazard
;
1786 flush_cache_range
= (void *)b5k_instruction_hazard
;
1787 flush_data_cache_page
= (void *)b5k_instruction_hazard
;
1788 flush_icache_range
= (void *)b5k_instruction_hazard
;
1789 local_flush_icache_range
= (void *)b5k_instruction_hazard
;
1792 /* Optimization: an L2 flush implicitly flushes the L1 */
1793 current_cpu_data
.options
|= MIPS_CPU_INCLUSIVE_CACHES
;
1795 case CPU_LOONGSON64
:
1796 /* Loongson-3 maintains cache coherency by hardware */
1797 __flush_cache_all
= cache_noop
;
1798 __flush_cache_vmap
= cache_noop
;
1799 __flush_cache_vunmap
= cache_noop
;
1800 __flush_kernel_vmap_range
= (void *)cache_noop
;
1801 flush_cache_mm
= (void *)cache_noop
;
1802 flush_cache_page
= (void *)cache_noop
;
1803 flush_cache_range
= (void *)cache_noop
;
1804 flush_icache_all
= (void *)cache_noop
;
1805 flush_data_cache_page
= (void *)cache_noop
;
1810 static int r4k_cache_pm_notifier(struct notifier_block
*self
, unsigned long cmd
,
1814 case CPU_PM_ENTER_FAILED
:
1823 static struct notifier_block r4k_cache_pm_notifier_block
= {
1824 .notifier_call
= r4k_cache_pm_notifier
,
1827 static int __init
r4k_cache_init_pm(void)
1829 return cpu_pm_register_notifier(&r4k_cache_pm_notifier_block
);
1831 arch_initcall(r4k_cache_init_pm
);