2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * A small micro-assembler. It is intentionally kept simple, does only
7 * support a subset of instructions, and does not try to hide pipeline
8 * effects like branch delay slots.
10 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
11 * Copyright (C) 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
13 * Copyright (C) 2012, 2013 MIPS Technologies, Inc. All rights reserved.
16 #include <linux/kernel.h>
17 #include <linux/types.h>
28 #define SCIMM_MASK 0xfffff
31 /* This macro sets the non-variable bits of an instruction. */
32 #define M(a, b, c, d, e, f) \
40 /* This macro sets the non-variable bits of an R6 instruction. */
41 #define M6(a, b, c, d, e) \
50 static const struct insn insn_table
[insn_invalid
] = {
51 [insn_addiu
] = {M(addiu_op
, 0, 0, 0, 0, 0), RS
| RT
| SIMM
},
52 [insn_addu
] = {M(spec_op
, 0, 0, 0, 0, addu_op
), RS
| RT
| RD
},
53 [insn_and
] = {M(spec_op
, 0, 0, 0, 0, and_op
), RS
| RT
| RD
},
54 [insn_andi
] = {M(andi_op
, 0, 0, 0, 0, 0), RS
| RT
| UIMM
},
55 [insn_bbit0
] = {M(lwc2_op
, 0, 0, 0, 0, 0), RS
| RT
| BIMM
},
56 [insn_bbit1
] = {M(swc2_op
, 0, 0, 0, 0, 0), RS
| RT
| BIMM
},
57 [insn_beq
] = {M(beq_op
, 0, 0, 0, 0, 0), RS
| RT
| BIMM
},
58 [insn_beql
] = {M(beql_op
, 0, 0, 0, 0, 0), RS
| RT
| BIMM
},
59 [insn_bgez
] = {M(bcond_op
, 0, bgez_op
, 0, 0, 0), RS
| BIMM
},
60 [insn_bgezl
] = {M(bcond_op
, 0, bgezl_op
, 0, 0, 0), RS
| BIMM
},
61 [insn_bgtz
] = {M(bgtz_op
, 0, 0, 0, 0, 0), RS
| BIMM
},
62 [insn_blez
] = {M(blez_op
, 0, 0, 0, 0, 0), RS
| BIMM
},
63 [insn_bltz
] = {M(bcond_op
, 0, bltz_op
, 0, 0, 0), RS
| BIMM
},
64 [insn_bltzl
] = {M(bcond_op
, 0, bltzl_op
, 0, 0, 0), RS
| BIMM
},
65 [insn_bne
] = {M(bne_op
, 0, 0, 0, 0, 0), RS
| RT
| BIMM
},
66 [insn_break
] = {M(spec_op
, 0, 0, 0, 0, break_op
), SCIMM
},
67 #ifndef CONFIG_CPU_MIPSR6
68 [insn_cache
] = {M(cache_op
, 0, 0, 0, 0, 0), RS
| RT
| SIMM
},
70 [insn_cache
] = {M6(spec3_op
, 0, 0, 0, cache6_op
), RS
| RT
| SIMM9
},
72 [insn_cfc1
] = {M(cop1_op
, cfc_op
, 0, 0, 0, 0), RT
| RD
},
73 [insn_cfcmsa
] = {M(msa_op
, 0, msa_cfc_op
, 0, 0, msa_elm_op
), RD
| RE
},
74 [insn_ctc1
] = {M(cop1_op
, ctc_op
, 0, 0, 0, 0), RT
| RD
},
75 [insn_ctcmsa
] = {M(msa_op
, 0, msa_ctc_op
, 0, 0, msa_elm_op
), RD
| RE
},
76 [insn_daddiu
] = {M(daddiu_op
, 0, 0, 0, 0, 0), RS
| RT
| SIMM
},
77 [insn_daddu
] = {M(spec_op
, 0, 0, 0, 0, daddu_op
), RS
| RT
| RD
},
78 [insn_ddivu
] = {M(spec_op
, 0, 0, 0, 0, ddivu_op
), RS
| RT
},
79 [insn_ddivu_r6
] = {M(spec_op
, 0, 0, 0, ddivu_ddivu6_op
, ddivu_op
),
81 [insn_di
] = {M(cop0_op
, mfmc0_op
, 0, 12, 0, 0), RT
},
82 [insn_dins
] = {M(spec3_op
, 0, 0, 0, 0, dins_op
), RS
| RT
| RD
| RE
},
83 [insn_dinsm
] = {M(spec3_op
, 0, 0, 0, 0, dinsm_op
), RS
| RT
| RD
| RE
},
84 [insn_dinsu
] = {M(spec3_op
, 0, 0, 0, 0, dinsu_op
), RS
| RT
| RD
| RE
},
85 [insn_divu
] = {M(spec_op
, 0, 0, 0, 0, divu_op
), RS
| RT
},
86 [insn_divu_r6
] = {M(spec_op
, 0, 0, 0, divu_divu6_op
, divu_op
),
88 [insn_dmfc0
] = {M(cop0_op
, dmfc_op
, 0, 0, 0, 0), RT
| RD
| SET
},
89 [insn_dmodu
] = {M(spec_op
, 0, 0, 0, ddivu_dmodu_op
, ddivu_op
),
91 [insn_dmtc0
] = {M(cop0_op
, dmtc_op
, 0, 0, 0, 0), RT
| RD
| SET
},
92 [insn_dmultu
] = {M(spec_op
, 0, 0, 0, 0, dmultu_op
), RS
| RT
},
93 [insn_dmulu
] = {M(spec_op
, 0, 0, 0, dmultu_dmulu_op
, dmultu_op
),
95 [insn_drotr
] = {M(spec_op
, 1, 0, 0, 0, dsrl_op
), RT
| RD
| RE
},
96 [insn_drotr32
] = {M(spec_op
, 1, 0, 0, 0, dsrl32_op
), RT
| RD
| RE
},
97 [insn_dsbh
] = {M(spec3_op
, 0, 0, 0, dsbh_op
, dbshfl_op
), RT
| RD
},
98 [insn_dshd
] = {M(spec3_op
, 0, 0, 0, dshd_op
, dbshfl_op
), RT
| RD
},
99 [insn_dsll
] = {M(spec_op
, 0, 0, 0, 0, dsll_op
), RT
| RD
| RE
},
100 [insn_dsll32
] = {M(spec_op
, 0, 0, 0, 0, dsll32_op
), RT
| RD
| RE
},
101 [insn_dsllv
] = {M(spec_op
, 0, 0, 0, 0, dsllv_op
), RS
| RT
| RD
},
102 [insn_dsra
] = {M(spec_op
, 0, 0, 0, 0, dsra_op
), RT
| RD
| RE
},
103 [insn_dsra32
] = {M(spec_op
, 0, 0, 0, 0, dsra32_op
), RT
| RD
| RE
},
104 [insn_dsrav
] = {M(spec_op
, 0, 0, 0, 0, dsrav_op
), RS
| RT
| RD
},
105 [insn_dsrl
] = {M(spec_op
, 0, 0, 0, 0, dsrl_op
), RT
| RD
| RE
},
106 [insn_dsrl32
] = {M(spec_op
, 0, 0, 0, 0, dsrl32_op
), RT
| RD
| RE
},
107 [insn_dsrlv
] = {M(spec_op
, 0, 0, 0, 0, dsrlv_op
), RS
| RT
| RD
},
108 [insn_dsubu
] = {M(spec_op
, 0, 0, 0, 0, dsubu_op
), RS
| RT
| RD
},
109 [insn_eret
] = {M(cop0_op
, cop_op
, 0, 0, 0, eret_op
), 0},
110 [insn_ext
] = {M(spec3_op
, 0, 0, 0, 0, ext_op
), RS
| RT
| RD
| RE
},
111 [insn_ins
] = {M(spec3_op
, 0, 0, 0, 0, ins_op
), RS
| RT
| RD
| RE
},
112 [insn_j
] = {M(j_op
, 0, 0, 0, 0, 0), JIMM
},
113 [insn_jal
] = {M(jal_op
, 0, 0, 0, 0, 0), JIMM
},
114 [insn_jalr
] = {M(spec_op
, 0, 0, 0, 0, jalr_op
), RS
| RD
},
115 #ifndef CONFIG_CPU_MIPSR6
116 [insn_jr
] = {M(spec_op
, 0, 0, 0, 0, jr_op
), RS
},
118 [insn_jr
] = {M(spec_op
, 0, 0, 0, 0, jalr_op
), RS
},
120 [insn_lb
] = {M(lb_op
, 0, 0, 0, 0, 0), RS
| RT
| SIMM
},
121 [insn_lbu
] = {M(lbu_op
, 0, 0, 0, 0, 0), RS
| RT
| SIMM
},
122 [insn_ld
] = {M(ld_op
, 0, 0, 0, 0, 0), RS
| RT
| SIMM
},
123 [insn_lddir
] = {M(lwc2_op
, 0, 0, 0, lddir_op
, mult_op
), RS
| RT
| RD
},
124 [insn_ldpte
] = {M(lwc2_op
, 0, 0, 0, ldpte_op
, mult_op
), RS
| RD
},
125 [insn_ldx
] = {M(spec3_op
, 0, 0, 0, ldx_op
, lx_op
), RS
| RT
| RD
},
126 [insn_lh
] = {M(lh_op
, 0, 0, 0, 0, 0), RS
| RT
| SIMM
},
127 [insn_lhu
] = {M(lhu_op
, 0, 0, 0, 0, 0), RS
| RT
| SIMM
},
128 #ifndef CONFIG_CPU_MIPSR6
129 [insn_ll
] = {M(ll_op
, 0, 0, 0, 0, 0), RS
| RT
| SIMM
},
130 [insn_lld
] = {M(lld_op
, 0, 0, 0, 0, 0), RS
| RT
| SIMM
},
132 [insn_ll
] = {M6(spec3_op
, 0, 0, 0, ll6_op
), RS
| RT
| SIMM9
},
133 [insn_lld
] = {M6(spec3_op
, 0, 0, 0, lld6_op
), RS
| RT
| SIMM9
},
135 [insn_lui
] = {M(lui_op
, 0, 0, 0, 0, 0), RT
| SIMM
},
136 [insn_lw
] = {M(lw_op
, 0, 0, 0, 0, 0), RS
| RT
| SIMM
},
137 [insn_lwu
] = {M(lwu_op
, 0, 0, 0, 0, 0), RS
| RT
| SIMM
},
138 [insn_lwx
] = {M(spec3_op
, 0, 0, 0, lwx_op
, lx_op
), RS
| RT
| RD
},
139 [insn_mfc0
] = {M(cop0_op
, mfc_op
, 0, 0, 0, 0), RT
| RD
| SET
},
140 [insn_mfhc0
] = {M(cop0_op
, mfhc0_op
, 0, 0, 0, 0), RT
| RD
| SET
},
141 [insn_mfhi
] = {M(spec_op
, 0, 0, 0, 0, mfhi_op
), RD
},
142 [insn_mflo
] = {M(spec_op
, 0, 0, 0, 0, mflo_op
), RD
},
143 [insn_modu
] = {M(spec_op
, 0, 0, 0, divu_modu_op
, divu_op
),
145 [insn_movn
] = {M(spec_op
, 0, 0, 0, 0, movn_op
), RS
| RT
| RD
},
146 [insn_movz
] = {M(spec_op
, 0, 0, 0, 0, movz_op
), RS
| RT
| RD
},
147 [insn_mtc0
] = {M(cop0_op
, mtc_op
, 0, 0, 0, 0), RT
| RD
| SET
},
148 [insn_mthc0
] = {M(cop0_op
, mthc0_op
, 0, 0, 0, 0), RT
| RD
| SET
},
149 [insn_mthi
] = {M(spec_op
, 0, 0, 0, 0, mthi_op
), RS
},
150 [insn_mtlo
] = {M(spec_op
, 0, 0, 0, 0, mtlo_op
), RS
},
151 [insn_mulu
] = {M(spec_op
, 0, 0, 0, multu_mulu_op
, multu_op
),
153 [insn_muhu
] = {M(spec_op
, 0, 0, 0, multu_muhu_op
, multu_op
),
155 #ifndef CONFIG_CPU_MIPSR6
156 [insn_mul
] = {M(spec2_op
, 0, 0, 0, 0, mul_op
), RS
| RT
| RD
},
158 [insn_mul
] = {M(spec_op
, 0, 0, 0, mult_mul_op
, mult_op
), RS
| RT
| RD
},
160 [insn_multu
] = {M(spec_op
, 0, 0, 0, 0, multu_op
), RS
| RT
},
161 [insn_nor
] = {M(spec_op
, 0, 0, 0, 0, nor_op
), RS
| RT
| RD
},
162 [insn_or
] = {M(spec_op
, 0, 0, 0, 0, or_op
), RS
| RT
| RD
},
163 [insn_ori
] = {M(ori_op
, 0, 0, 0, 0, 0), RS
| RT
| UIMM
},
164 #ifndef CONFIG_CPU_MIPSR6
165 [insn_pref
] = {M(pref_op
, 0, 0, 0, 0, 0), RS
| RT
| SIMM
},
167 [insn_pref
] = {M6(spec3_op
, 0, 0, 0, pref6_op
), RS
| RT
| SIMM9
},
169 [insn_rfe
] = {M(cop0_op
, cop_op
, 0, 0, 0, rfe_op
), 0},
170 [insn_rotr
] = {M(spec_op
, 1, 0, 0, 0, srl_op
), RT
| RD
| RE
},
171 [insn_sb
] = {M(sb_op
, 0, 0, 0, 0, 0), RS
| RT
| SIMM
},
172 #ifndef CONFIG_CPU_MIPSR6
173 [insn_sc
] = {M(sc_op
, 0, 0, 0, 0, 0), RS
| RT
| SIMM
},
174 [insn_scd
] = {M(scd_op
, 0, 0, 0, 0, 0), RS
| RT
| SIMM
},
176 [insn_sc
] = {M6(spec3_op
, 0, 0, 0, sc6_op
), RS
| RT
| SIMM9
},
177 [insn_scd
] = {M6(spec3_op
, 0, 0, 0, scd6_op
), RS
| RT
| SIMM9
},
179 [insn_sd
] = {M(sd_op
, 0, 0, 0, 0, 0), RS
| RT
| SIMM
},
180 [insn_seleqz
] = {M(spec_op
, 0, 0, 0, 0, seleqz_op
), RS
| RT
| RD
},
181 [insn_selnez
] = {M(spec_op
, 0, 0, 0, 0, selnez_op
), RS
| RT
| RD
},
182 [insn_sh
] = {M(sh_op
, 0, 0, 0, 0, 0), RS
| RT
| SIMM
},
183 [insn_sll
] = {M(spec_op
, 0, 0, 0, 0, sll_op
), RT
| RD
| RE
},
184 [insn_sllv
] = {M(spec_op
, 0, 0, 0, 0, sllv_op
), RS
| RT
| RD
},
185 [insn_slt
] = {M(spec_op
, 0, 0, 0, 0, slt_op
), RS
| RT
| RD
},
186 [insn_slti
] = {M(slti_op
, 0, 0, 0, 0, 0), RS
| RT
| SIMM
},
187 [insn_sltiu
] = {M(sltiu_op
, 0, 0, 0, 0, 0), RS
| RT
| SIMM
},
188 [insn_sltu
] = {M(spec_op
, 0, 0, 0, 0, sltu_op
), RS
| RT
| RD
},
189 [insn_sra
] = {M(spec_op
, 0, 0, 0, 0, sra_op
), RT
| RD
| RE
},
190 [insn_srav
] = {M(spec_op
, 0, 0, 0, 0, srav_op
), RS
| RT
| RD
},
191 [insn_srl
] = {M(spec_op
, 0, 0, 0, 0, srl_op
), RT
| RD
| RE
},
192 [insn_srlv
] = {M(spec_op
, 0, 0, 0, 0, srlv_op
), RS
| RT
| RD
},
193 [insn_subu
] = {M(spec_op
, 0, 0, 0, 0, subu_op
), RS
| RT
| RD
},
194 [insn_sw
] = {M(sw_op
, 0, 0, 0, 0, 0), RS
| RT
| SIMM
},
195 [insn_sync
] = {M(spec_op
, 0, 0, 0, 0, sync_op
), RE
},
196 [insn_syscall
] = {M(spec_op
, 0, 0, 0, 0, syscall_op
), SCIMM
},
197 [insn_tlbp
] = {M(cop0_op
, cop_op
, 0, 0, 0, tlbp_op
), 0},
198 [insn_tlbr
] = {M(cop0_op
, cop_op
, 0, 0, 0, tlbr_op
), 0},
199 [insn_tlbwi
] = {M(cop0_op
, cop_op
, 0, 0, 0, tlbwi_op
), 0},
200 [insn_tlbwr
] = {M(cop0_op
, cop_op
, 0, 0, 0, tlbwr_op
), 0},
201 [insn_wait
] = {M(cop0_op
, cop_op
, 0, 0, 0, wait_op
), SCIMM
},
202 [insn_wsbh
] = {M(spec3_op
, 0, 0, 0, wsbh_op
, bshfl_op
), RT
| RD
},
203 [insn_xor
] = {M(spec_op
, 0, 0, 0, 0, xor_op
), RS
| RT
| RD
},
204 [insn_xori
] = {M(xori_op
, 0, 0, 0, 0, 0), RS
| RT
| UIMM
},
205 [insn_yield
] = {M(spec3_op
, 0, 0, 0, 0, yield_op
), RS
| RD
},
210 static inline u32
build_bimm(s32 arg
)
212 WARN(arg
> 0x1ffff || arg
< -0x20000,
213 KERN_WARNING
"Micro-assembler field overflow\n");
215 WARN(arg
& 0x3, KERN_WARNING
"Invalid micro-assembler branch target\n");
217 return ((arg
< 0) ? (1 << 15) : 0) | ((arg
>> 2) & 0x7fff);
220 static inline u32
build_jimm(u32 arg
)
222 WARN(arg
& ~(JIMM_MASK
<< 2),
223 KERN_WARNING
"Micro-assembler field overflow\n");
225 return (arg
>> 2) & JIMM_MASK
;
229 * The order of opcode arguments is implicitly left to right,
230 * starting with RS and ending with FUNC or IMM.
232 static void build_insn(u32
**buf
, enum opcode opc
, ...)
234 const struct insn
*ip
;
238 if (opc
< 0 || opc
>= insn_invalid
||
239 (opc
== insn_daddiu
&& r4k_daddiu_bug()) ||
240 (insn_table
[opc
].match
== 0 && insn_table
[opc
].fields
== 0))
241 panic("Unsupported Micro-assembler instruction %d", opc
);
243 ip
= &insn_table
[opc
];
248 op
|= build_rs(va_arg(ap
, u32
));
250 op
|= build_rt(va_arg(ap
, u32
));
252 op
|= build_rd(va_arg(ap
, u32
));
254 op
|= build_re(va_arg(ap
, u32
));
255 if (ip
->fields
& SIMM
)
256 op
|= build_simm(va_arg(ap
, s32
));
257 if (ip
->fields
& UIMM
)
258 op
|= build_uimm(va_arg(ap
, u32
));
259 if (ip
->fields
& BIMM
)
260 op
|= build_bimm(va_arg(ap
, s32
));
261 if (ip
->fields
& JIMM
)
262 op
|= build_jimm(va_arg(ap
, u32
));
263 if (ip
->fields
& FUNC
)
264 op
|= build_func(va_arg(ap
, u32
));
265 if (ip
->fields
& SET
)
266 op
|= build_set(va_arg(ap
, u32
));
267 if (ip
->fields
& SCIMM
)
268 op
|= build_scimm(va_arg(ap
, u32
));
269 if (ip
->fields
& SIMM9
)
270 op
|= build_scimm9(va_arg(ap
, u32
));
278 __resolve_relocs(struct uasm_reloc
*rel
, struct uasm_label
*lab
)
280 long laddr
= (long)lab
->addr
;
281 long raddr
= (long)rel
->addr
;
285 *rel
->addr
|= build_bimm(laddr
- (raddr
+ 4));
289 panic("Unsupported Micro-assembler relocation %d",