1 // SPDX-License-Identifier: GPL-2.0
2 /* linux/arch/sparc/kernel/time.c
4 * Copyright (C) 1995 David S. Miller (davem@davemloft.net)
5 * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu)
7 * Chris Davis (cdavis@cois.on.ca) 03/27/1998
8 * Added support for the intersil on the sun4/4200
10 * Gleb Raiko (rajko@mech.math.msu.su) 08/18/1998
11 * Support for MicroSPARC-IIep, PCI CPU.
13 * This file handles the Sparc specific time handling details.
15 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
16 * "A Kernel Model for Precision Timekeeping" by Dave Mills
18 #include <linux/errno.h>
19 #include <linux/module.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/param.h>
23 #include <linux/string.h>
25 #include <linux/interrupt.h>
26 #include <linux/time.h>
27 #include <linux/rtc/m48t59.h>
28 #include <linux/timex.h>
29 #include <linux/clocksource.h>
30 #include <linux/clockchips.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/ioport.h>
34 #include <linux/profile.h>
36 #include <linux/platform_device.h>
38 #include <asm/mc146818rtc.h>
39 #include <asm/oplib.h>
40 #include <asm/timex.h>
41 #include <asm/timer.h>
44 #include <asm/idprom.h>
47 #include <asm/irq_regs.h>
48 #include <asm/setup.h>
53 static __cacheline_aligned_in_smp
DEFINE_SEQLOCK(timer_cs_lock
);
54 static __volatile__ u64 timer_cs_internal_counter
= 0;
55 static char timer_cs_enabled
= 0;
57 static struct clock_event_device timer_ce
;
58 static char timer_ce_enabled
= 0;
61 DEFINE_PER_CPU(struct clock_event_device
, sparc32_clockevent
);
64 DEFINE_SPINLOCK(rtc_lock
);
65 EXPORT_SYMBOL(rtc_lock
);
67 unsigned long profile_pc(struct pt_regs
*regs
)
69 extern char __copy_user_begin
[], __copy_user_end
[];
70 extern char __bzero_begin
[], __bzero_end
[];
72 unsigned long pc
= regs
->pc
;
74 if (in_lock_functions(pc
) ||
75 (pc
>= (unsigned long) __copy_user_begin
&&
76 pc
< (unsigned long) __copy_user_end
) ||
77 (pc
>= (unsigned long) __bzero_begin
&&
78 pc
< (unsigned long) __bzero_end
))
79 pc
= regs
->u_regs
[UREG_RETPC
];
83 EXPORT_SYMBOL(profile_pc
);
85 volatile u32 __iomem
*master_l10_counter
;
87 irqreturn_t notrace
timer_interrupt(int dummy
, void *dev_id
)
89 if (timer_cs_enabled
) {
90 write_seqlock(&timer_cs_lock
);
91 timer_cs_internal_counter
++;
92 sparc_config
.clear_clock_irq();
93 write_sequnlock(&timer_cs_lock
);
95 sparc_config
.clear_clock_irq();
99 timer_ce
.event_handler(&timer_ce
);
104 static int timer_ce_shutdown(struct clock_event_device
*evt
)
106 timer_ce_enabled
= 0;
111 static int timer_ce_set_periodic(struct clock_event_device
*evt
)
113 timer_ce_enabled
= 1;
118 static __init
void setup_timer_ce(void)
120 struct clock_event_device
*ce
= &timer_ce
;
122 BUG_ON(smp_processor_id() != boot_cpu_id
);
124 ce
->name
= "timer_ce";
126 ce
->features
= CLOCK_EVT_FEAT_PERIODIC
;
127 ce
->set_state_shutdown
= timer_ce_shutdown
;
128 ce
->set_state_periodic
= timer_ce_set_periodic
;
129 ce
->tick_resume
= timer_ce_set_periodic
;
130 ce
->cpumask
= cpu_possible_mask
;
132 ce
->mult
= div_sc(sparc_config
.clock_rate
, NSEC_PER_SEC
,
134 clockevents_register_device(ce
);
137 static unsigned int sbus_cycles_offset(void)
141 val
= sbus_readl(master_l10_counter
);
142 offset
= (val
>> TIMER_VALUE_SHIFT
) & TIMER_VALUE_MASK
;
145 if (val
& TIMER_LIMIT_BIT
)
146 offset
+= sparc_config
.cs_period
;
151 static u64
timer_cs_read(struct clocksource
*cs
)
153 unsigned int seq
, offset
;
157 seq
= read_seqbegin(&timer_cs_lock
);
159 cycles
= timer_cs_internal_counter
;
160 offset
= sparc_config
.get_cycles_offset();
161 } while (read_seqretry(&timer_cs_lock
, seq
));
163 /* Count absolute cycles */
164 cycles
*= sparc_config
.cs_period
;
170 static struct clocksource timer_cs
= {
173 .read
= timer_cs_read
,
174 .mask
= CLOCKSOURCE_MASK(64),
175 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
178 static __init
int setup_timer_cs(void)
180 timer_cs_enabled
= 1;
181 return clocksource_register_hz(&timer_cs
, sparc_config
.clock_rate
);
185 static int percpu_ce_shutdown(struct clock_event_device
*evt
)
187 int cpu
= cpumask_first(evt
->cpumask
);
189 sparc_config
.load_profile_irq(cpu
, 0);
193 static int percpu_ce_set_periodic(struct clock_event_device
*evt
)
195 int cpu
= cpumask_first(evt
->cpumask
);
197 sparc_config
.load_profile_irq(cpu
, SBUS_CLOCK_RATE
/ HZ
);
201 static int percpu_ce_set_next_event(unsigned long delta
,
202 struct clock_event_device
*evt
)
204 int cpu
= cpumask_first(evt
->cpumask
);
205 unsigned int next
= (unsigned int)delta
;
207 sparc_config
.load_profile_irq(cpu
, next
);
211 void register_percpu_ce(int cpu
)
213 struct clock_event_device
*ce
= &per_cpu(sparc32_clockevent
, cpu
);
214 unsigned int features
= CLOCK_EVT_FEAT_PERIODIC
;
216 if (sparc_config
.features
& FEAT_L14_ONESHOT
)
217 features
|= CLOCK_EVT_FEAT_ONESHOT
;
219 ce
->name
= "percpu_ce";
221 ce
->features
= features
;
222 ce
->set_state_shutdown
= percpu_ce_shutdown
;
223 ce
->set_state_periodic
= percpu_ce_set_periodic
;
224 ce
->set_state_oneshot
= percpu_ce_shutdown
;
225 ce
->set_next_event
= percpu_ce_set_next_event
;
226 ce
->cpumask
= cpumask_of(cpu
);
228 ce
->mult
= div_sc(sparc_config
.clock_rate
, NSEC_PER_SEC
,
230 ce
->max_delta_ns
= clockevent_delta2ns(sparc_config
.clock_rate
, ce
);
231 ce
->max_delta_ticks
= (unsigned long)sparc_config
.clock_rate
;
232 ce
->min_delta_ns
= clockevent_delta2ns(100, ce
);
233 ce
->min_delta_ticks
= 100;
235 clockevents_register_device(ce
);
239 static unsigned char mostek_read_byte(struct device
*dev
, u32 ofs
)
241 struct platform_device
*pdev
= to_platform_device(dev
);
242 struct m48t59_plat_data
*pdata
= pdev
->dev
.platform_data
;
244 return readb(pdata
->ioaddr
+ ofs
);
247 static void mostek_write_byte(struct device
*dev
, u32 ofs
, u8 val
)
249 struct platform_device
*pdev
= to_platform_device(dev
);
250 struct m48t59_plat_data
*pdata
= pdev
->dev
.platform_data
;
252 writeb(val
, pdata
->ioaddr
+ ofs
);
255 static struct m48t59_plat_data m48t59_data
= {
256 .read_byte
= mostek_read_byte
,
257 .write_byte
= mostek_write_byte
,
260 /* resource is set at runtime */
261 static struct platform_device m48t59_rtc
= {
262 .name
= "rtc-m48t59",
266 .platform_data
= &m48t59_data
,
270 static int clock_probe(struct platform_device
*op
)
272 struct device_node
*dp
= op
->dev
.of_node
;
273 const char *model
= of_get_property(dp
, "model", NULL
);
278 /* Only the primary RTC has an address property */
279 if (!of_property_present(dp
, "address"))
282 m48t59_rtc
.resource
= &op
->resource
[0];
283 if (!strcmp(model
, "mk48t02")) {
284 /* Map the clock register io area read-only */
285 m48t59_data
.ioaddr
= of_ioremap(&op
->resource
[0], 0,
287 m48t59_data
.type
= M48T59RTC_TYPE_M48T02
;
288 } else if (!strcmp(model
, "mk48t08")) {
289 m48t59_data
.ioaddr
= of_ioremap(&op
->resource
[0], 0,
291 m48t59_data
.type
= M48T59RTC_TYPE_M48T08
;
295 if (platform_device_register(&m48t59_rtc
) < 0)
296 printk(KERN_ERR
"Registering RTC device failed\n");
301 static const struct of_device_id clock_match
[] = {
308 static struct platform_driver clock_driver
= {
309 .probe
= clock_probe
,
312 .of_match_table
= clock_match
,
317 /* Probe for the mostek real time clock chip. */
318 static int __init
clock_init(void)
320 return platform_driver_register(&clock_driver
);
322 /* Must be after subsys_initcall() so that busses are probed. Must
323 * be before device_initcall() because things like the RTC driver
324 * need to see the clock registers.
326 fs_initcall(clock_init
);
328 static void __init
sparc32_late_time_init(void)
330 if (sparc_config
.features
& FEAT_L10_CLOCKEVENT
)
332 if (sparc_config
.features
& FEAT_L10_CLOCKSOURCE
)
335 register_percpu_ce(smp_processor_id());
339 static void __init
sbus_time_init(void)
341 sparc_config
.get_cycles_offset
= sbus_cycles_offset
;
342 sparc_config
.init_timers();
345 void __init
time_init(void)
347 sparc_config
.features
= 0;
348 late_time_init
= sparc32_late_time_init
;