1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * User-space Probes (UProbes) for sparc
5 * Copyright (C) 2013 Oracle Inc.
8 * Jose E. Marchesi <jose.marchesi@oracle.com>
9 * Eric Saint Etienne <eric.saint.etienne@oracle.com>
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/uprobes.h>
15 #include <linux/uaccess.h>
16 #include <linux/sched.h> /* For struct task_struct */
17 #include <linux/kdebug.h>
19 #include <asm/cacheflush.h>
23 /* Compute the address of the breakpoint instruction and return it.
25 * Note that uprobe_get_swbp_addr is defined as a weak symbol in
26 * kernel/events/uprobe.c.
28 unsigned long uprobe_get_swbp_addr(struct pt_regs
*regs
)
30 return instruction_pointer(regs
);
33 static void copy_to_page(struct page
*page
, unsigned long vaddr
,
34 const void *src
, int len
)
36 void *kaddr
= kmap_atomic(page
);
38 memcpy(kaddr
+ (vaddr
& ~PAGE_MASK
), src
, len
);
42 /* Fill in the xol area with the probed instruction followed by the
43 * single-step trap. Some fixups in the copied instruction are
44 * performed at this point.
46 * Note that uprobe_xol_copy is defined as a weak symbol in
47 * kernel/events/uprobe.c.
49 void arch_uprobe_copy_ixol(struct page
*page
, unsigned long vaddr
,
50 void *src
, unsigned long len
)
52 const u32 stp_insn
= UPROBE_STP_INSN
;
53 u32 insn
= *(u32
*) src
;
55 /* Branches annulling their delay slot must be fixed to not do
56 * so. Clearing the annul bit on these instructions we can be
57 * sure the single-step breakpoint in the XOL slot will be
61 u32 op
= (insn
>> 30) & 0x3;
62 u32 op2
= (insn
>> 22) & 0x7;
65 (op2
== 1 || op2
== 2 || op2
== 3 || op2
== 5 || op2
== 6) &&
66 (insn
& ANNUL_BIT
) == ANNUL_BIT
)
69 copy_to_page(page
, vaddr
, &insn
, len
);
70 copy_to_page(page
, vaddr
+len
, &stp_insn
, 4);
74 /* Instruction analysis/validity.
76 * This function returns 0 on success or a -ve number on error.
78 int arch_uprobe_analyze_insn(struct arch_uprobe
*auprobe
,
79 struct mm_struct
*mm
, unsigned long addr
)
81 /* Any unsupported instruction? Then return -EINVAL */
85 /* If INSN is a relative control transfer instruction, return the
86 * corrected branch destination value.
88 * Note that regs->tpc and regs->tnpc still hold the values of the
89 * program counters at the time of the single-step trap due to the
90 * execution of the UPROBE_STP_INSN at utask->xol_vaddr + 4.
93 static unsigned long relbranch_fixup(u32 insn
, struct uprobe_task
*utask
,
96 /* Branch not taken, no mods necessary. */
97 if (regs
->tnpc
== regs
->tpc
+ 0x4UL
)
98 return utask
->autask
.saved_tnpc
+ 0x4UL
;
100 /* The three cases are call, branch w/prediction,
101 * and traditional branch.
103 if ((insn
& 0xc0000000) == 0x40000000 ||
104 (insn
& 0xc1c00000) == 0x00400000 ||
105 (insn
& 0xc1c00000) == 0x00800000) {
106 unsigned long real_pc
= (unsigned long) utask
->vaddr
;
107 unsigned long ixol_addr
= utask
->xol_vaddr
;
109 /* The instruction did all the work for us
110 * already, just apply the offset to the correct
111 * instruction location.
113 return (real_pc
+ (regs
->tnpc
- ixol_addr
));
116 /* It is jmpl or some other absolute PC modification instruction,
122 /* If INSN is an instruction which writes its PC location
123 * into a destination register, fix that up.
125 static int retpc_fixup(struct pt_regs
*regs
, u32 insn
,
126 unsigned long real_pc
)
128 unsigned long *slot
= NULL
;
131 /* Simplest case is 'call', which always uses %o7 */
132 if ((insn
& 0xc0000000) == 0x40000000)
133 slot
= ®s
->u_regs
[UREG_I7
];
135 /* 'jmpl' encodes the register inside of the opcode */
136 if ((insn
& 0xc1f80000) == 0x81c00000) {
137 unsigned long rd
= ((insn
>> 25) & 0x1f);
140 slot
= ®s
->u_regs
[rd
];
142 unsigned long fp
= regs
->u_regs
[UREG_FP
];
143 /* Hard case, it goes onto the stack. */
147 if (test_thread_64bit_stack(fp
)) {
148 unsigned long __user
*uslot
=
149 (unsigned long __user
*) (fp
+ STACK_BIAS
) + rd
;
150 rc
= __put_user(real_pc
, uslot
);
152 unsigned int __user
*uslot
= (unsigned int
154 rc
= __put_user((u32
) real_pc
, uslot
);
163 /* Single-stepping can be avoided for certain instructions: NOPs and
164 * instructions that can be emulated. This function determines
165 * whether the instruction where the uprobe is installed falls in one
166 * of these cases and emulates it.
168 * This function returns true if the single-stepping can be skipped,
171 bool arch_uprobe_skip_sstep(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
173 /* We currently only emulate NOP instructions.
176 if (auprobe
->ixol
== (1 << 24)) {
185 /* Prepare to execute out of line. At this point
186 * current->utask->xol_vaddr points to an allocated XOL slot properly
187 * initialized with the original instruction and the single-stepping
190 * This function returns 0 on success, any other number on error.
192 int arch_uprobe_pre_xol(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
194 struct uprobe_task
*utask
= current
->utask
;
195 struct arch_uprobe_task
*autask
= ¤t
->utask
->autask
;
197 /* Save the current program counters so they can be restored
200 autask
->saved_tpc
= regs
->tpc
;
201 autask
->saved_tnpc
= regs
->tnpc
;
203 /* Adjust PC and NPC so the first instruction in the XOL slot
204 * will be executed by the user task.
206 instruction_pointer_set(regs
, utask
->xol_vaddr
);
211 /* Prepare to resume execution after the single-step. Called after
212 * single-stepping. To avoid the SMP problems that can occur when we
213 * temporarily put back the original opcode to single-step, we
214 * single-stepped a copy of the instruction.
216 * This function returns 0 on success, any other number on error.
218 int arch_uprobe_post_xol(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
220 struct uprobe_task
*utask
= current
->utask
;
221 struct arch_uprobe_task
*autask
= &utask
->autask
;
222 u32 insn
= auprobe
->ixol
;
225 if (utask
->state
== UTASK_SSTEP_ACK
) {
226 regs
->tnpc
= relbranch_fixup(insn
, utask
, regs
);
227 regs
->tpc
= autask
->saved_tnpc
;
228 rc
= retpc_fixup(regs
, insn
, (unsigned long) utask
->vaddr
);
230 regs
->tnpc
= utask
->vaddr
+4;
231 regs
->tpc
= autask
->saved_tnpc
+4;
236 /* Handler for uprobe traps. This is called from the traps table and
237 * triggers the proper die notification.
239 asmlinkage
void uprobe_trap(struct pt_regs
*regs
,
240 unsigned long trap_level
)
242 BUG_ON(trap_level
!= 0x173 && trap_level
!= 0x174);
244 /* We are only interested in user-mode code. Uprobe traps
245 * shall not be present in kernel code.
247 if (!user_mode(regs
)) {
249 bad_trap(regs
, trap_level
);
253 /* trap_level == 0x173 --> ta 0x73
254 * trap_level == 0x174 --> ta 0x74
256 if (notify_die((trap_level
== 0x173) ? DIE_BPT
: DIE_SSTEP
,
257 (trap_level
== 0x173) ? "bpt" : "sstep",
258 regs
, 0, trap_level
, SIGTRAP
) != NOTIFY_STOP
)
259 bad_trap(regs
, trap_level
);
262 /* Callback routine for handling die notifications.
264 int arch_uprobe_exception_notify(struct notifier_block
*self
,
265 unsigned long val
, void *data
)
267 int ret
= NOTIFY_DONE
;
268 struct die_args
*args
= (struct die_args
*)data
;
270 /* We are only interested in userspace traps */
271 if (args
->regs
&& !user_mode(args
->regs
))
276 if (uprobe_pre_sstep_notifier(args
->regs
))
281 if (uprobe_post_sstep_notifier(args
->regs
))
291 /* This function gets called when a XOL instruction either gets
292 * trapped or the thread has a fatal signal, so reset the instruction
293 * pointer to its probed address.
295 void arch_uprobe_abort_xol(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
297 struct uprobe_task
*utask
= current
->utask
;
299 instruction_pointer_set(regs
, utask
->vaddr
);
302 /* If xol insn itself traps and generates a signal(Say,
303 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
304 * instruction jumps back to its own address.
306 bool arch_uprobe_xol_was_trapped(struct task_struct
*t
)
312 arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr
,
313 struct pt_regs
*regs
)
315 unsigned long orig_ret_vaddr
= regs
->u_regs
[UREG_I7
];
317 regs
->u_regs
[UREG_I7
] = trampoline_vaddr
-8;
319 return orig_ret_vaddr
+ 8;