1 // SPDX-License-Identifier: GPL-2.0
3 * arch/sparc64/mm/init.c
5 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
6 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
9 #include <linux/extable.h>
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/string.h>
13 #include <linux/init.h>
14 #include <linux/memblock.h>
16 #include <linux/hugetlb.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/ioport.h>
27 #include <linux/percpu.h>
28 #include <linux/mmzone.h>
29 #include <linux/gfp.h>
30 #include <linux/bootmem_info.h>
34 #include <asm/pgalloc.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
38 #include <linux/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
42 #include <asm/starfire.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
47 #include <asm/hypervisor.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/setup.h>
56 unsigned long kern_linear_pte_xor
[4] __read_mostly
;
57 static unsigned long page_cache4v_flag
;
59 /* A bitmap, two bits for every 256MB of physical memory. These two
60 * bits determine what page size we use for kernel linear
61 * translations. They form an index into kern_linear_pte_xor[]. The
62 * value in the indexed slot is XOR'd with the TLB miss virtual
63 * address to form the resulting TTE. The mapping is:
70 * All sun4v chips support 256MB pages. Only SPARC-T4 and later
71 * support 2GB pages, and hopefully future cpus will support the 16GB
72 * pages as well. For slots 2 and 3, we encode a 256MB TTE xor there
73 * if these larger page sizes are not supported by the cpu.
75 * It would be nice to determine this from the machine description
76 * 'cpu' properties, but we need to have this table setup before the
77 * MDESC is initialized.
80 #ifndef CONFIG_DEBUG_PAGEALLOC
81 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
82 * Space is allocated for this right after the trap table in
83 * arch/sparc64/kernel/head.S
85 extern struct tsb swapper_4m_tsb
[KERNEL_TSB4M_NENTRIES
];
87 extern struct tsb swapper_tsb
[KERNEL_TSB_NENTRIES
];
89 static unsigned long cpu_pgsz_mask
;
91 #define MAX_BANKS 1024
93 static struct linux_prom64_registers pavail
[MAX_BANKS
];
94 static int pavail_ents
;
96 u64 numa_latency
[MAX_NUMNODES
][MAX_NUMNODES
];
98 static int cmp_p64(const void *a
, const void *b
)
100 const struct linux_prom64_registers
*x
= a
, *y
= b
;
102 if (x
->phys_addr
> y
->phys_addr
)
104 if (x
->phys_addr
< y
->phys_addr
)
109 static void __init
read_obp_memory(const char *property
,
110 struct linux_prom64_registers
*regs
,
113 phandle node
= prom_finddevice("/memory");
114 int prop_size
= prom_getproplen(node
, property
);
117 ents
= prop_size
/ sizeof(struct linux_prom64_registers
);
118 if (ents
> MAX_BANKS
) {
119 prom_printf("The machine has more %s property entries than "
120 "this kernel can support (%d).\n",
121 property
, MAX_BANKS
);
125 ret
= prom_getproperty(node
, property
, (char *) regs
, prop_size
);
127 prom_printf("Couldn't get %s property from /memory.\n",
132 /* Sanitize what we got from the firmware, by page aligning
135 for (i
= 0; i
< ents
; i
++) {
136 unsigned long base
, size
;
138 base
= regs
[i
].phys_addr
;
139 size
= regs
[i
].reg_size
;
142 if (base
& ~PAGE_MASK
) {
143 unsigned long new_base
= PAGE_ALIGN(base
);
145 size
-= new_base
- base
;
146 if ((long) size
< 0L)
151 /* If it is empty, simply get rid of it.
152 * This simplifies the logic of the other
153 * functions that process these arrays.
155 memmove(®s
[i
], ®s
[i
+ 1],
156 (ents
- i
- 1) * sizeof(regs
[0]));
161 regs
[i
].phys_addr
= base
;
162 regs
[i
].reg_size
= size
;
167 sort(regs
, ents
, sizeof(struct linux_prom64_registers
),
171 /* Kernel physical address base and size in bytes. */
172 unsigned long kern_base __read_mostly
;
173 unsigned long kern_size __read_mostly
;
175 /* Initial ramdisk setup */
176 extern unsigned long sparc_ramdisk_image64
;
177 extern unsigned int sparc_ramdisk_image
;
178 extern unsigned int sparc_ramdisk_size
;
180 struct page
*mem_map_zero __read_mostly
;
181 EXPORT_SYMBOL(mem_map_zero
);
183 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly
;
185 unsigned long sparc64_kern_pri_context __read_mostly
;
186 unsigned long sparc64_kern_pri_nuc_bits __read_mostly
;
187 unsigned long sparc64_kern_sec_context __read_mostly
;
189 int num_kernel_image_mappings
;
191 #ifdef CONFIG_DEBUG_DCFLUSH
192 atomic_t dcpage_flushes
= ATOMIC_INIT(0);
194 atomic_t dcpage_flushes_xcall
= ATOMIC_INIT(0);
198 inline void flush_dcache_folio_impl(struct folio
*folio
)
200 unsigned int i
, nr
= folio_nr_pages(folio
);
202 BUG_ON(tlb_type
== hypervisor
);
203 #ifdef CONFIG_DEBUG_DCFLUSH
204 atomic_inc(&dcpage_flushes
);
207 #ifdef DCACHE_ALIASING_POSSIBLE
208 for (i
= 0; i
< nr
; i
++)
209 __flush_dcache_page(folio_address(folio
) + i
* PAGE_SIZE
,
210 ((tlb_type
== spitfire
) &&
211 folio_flush_mapping(folio
) != NULL
));
213 if (folio_flush_mapping(folio
) != NULL
&&
214 tlb_type
== spitfire
) {
215 for (i
= 0; i
< nr
; i
++)
216 __flush_icache_page((pfn
+ i
) * PAGE_SIZE
);
221 #define PG_dcache_dirty PG_arch_1
222 #define PG_dcache_cpu_shift 32UL
223 #define PG_dcache_cpu_mask \
224 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
226 #define dcache_dirty_cpu(folio) \
227 (((folio)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
229 static inline void set_dcache_dirty(struct folio
*folio
, int this_cpu
)
231 unsigned long mask
= this_cpu
;
232 unsigned long non_cpu_bits
;
234 non_cpu_bits
= ~(PG_dcache_cpu_mask
<< PG_dcache_cpu_shift
);
235 mask
= (mask
<< PG_dcache_cpu_shift
) | (1UL << PG_dcache_dirty
);
237 __asm__
__volatile__("1:\n\t"
239 "and %%g7, %1, %%g1\n\t"
240 "or %%g1, %0, %%g1\n\t"
241 "casx [%2], %%g7, %%g1\n\t"
243 "bne,pn %%xcc, 1b\n\t"
246 : "r" (mask
), "r" (non_cpu_bits
), "r" (&folio
->flags
)
250 static inline void clear_dcache_dirty_cpu(struct folio
*folio
, unsigned long cpu
)
252 unsigned long mask
= (1UL << PG_dcache_dirty
);
254 __asm__
__volatile__("! test_and_clear_dcache_dirty\n"
257 "srlx %%g7, %4, %%g1\n\t"
258 "and %%g1, %3, %%g1\n\t"
260 "bne,pn %%icc, 2f\n\t"
261 " andn %%g7, %1, %%g1\n\t"
262 "casx [%2], %%g7, %%g1\n\t"
264 "bne,pn %%xcc, 1b\n\t"
268 : "r" (cpu
), "r" (mask
), "r" (&folio
->flags
),
269 "i" (PG_dcache_cpu_mask
),
270 "i" (PG_dcache_cpu_shift
)
274 static inline void tsb_insert(struct tsb
*ent
, unsigned long tag
, unsigned long pte
)
276 unsigned long tsb_addr
= (unsigned long) ent
;
278 if (tlb_type
== cheetah_plus
|| tlb_type
== hypervisor
)
279 tsb_addr
= __pa(tsb_addr
);
281 __tsb_insert(tsb_addr
, tag
, pte
);
284 unsigned long _PAGE_ALL_SZ_BITS __read_mostly
;
286 static void flush_dcache(unsigned long pfn
)
290 page
= pfn_to_page(pfn
);
292 struct folio
*folio
= page_folio(page
);
293 unsigned long pg_flags
;
295 pg_flags
= folio
->flags
;
296 if (pg_flags
& (1UL << PG_dcache_dirty
)) {
297 int cpu
= ((pg_flags
>> PG_dcache_cpu_shift
) &
299 int this_cpu
= get_cpu();
301 /* This is just to optimize away some function calls
305 flush_dcache_folio_impl(folio
);
307 smp_flush_dcache_folio_impl(folio
, cpu
);
309 clear_dcache_dirty_cpu(folio
, cpu
);
316 /* mm->context.lock must be held */
317 static void __update_mmu_tsb_insert(struct mm_struct
*mm
, unsigned long tsb_index
,
318 unsigned long tsb_hash_shift
, unsigned long address
,
321 struct tsb
*tsb
= mm
->context
.tsb_block
[tsb_index
].tsb
;
327 tsb
+= ((address
>> tsb_hash_shift
) &
328 (mm
->context
.tsb_block
[tsb_index
].tsb_nentries
- 1UL));
329 tag
= (address
>> 22UL);
330 tsb_insert(tsb
, tag
, tte
);
333 #ifdef CONFIG_HUGETLB_PAGE
334 static int __init
hugetlbpage_init(void)
336 hugetlb_add_hstate(HPAGE_64K_SHIFT
- PAGE_SHIFT
);
337 hugetlb_add_hstate(HPAGE_SHIFT
- PAGE_SHIFT
);
338 hugetlb_add_hstate(HPAGE_256MB_SHIFT
- PAGE_SHIFT
);
339 hugetlb_add_hstate(HPAGE_2GB_SHIFT
- PAGE_SHIFT
);
344 arch_initcall(hugetlbpage_init
);
346 static void __init
pud_huge_patch(void)
348 struct pud_huge_patch_entry
*p
;
351 p
= &__pud_huge_patch
;
353 *(unsigned int *)addr
= p
->insn
;
355 __asm__
__volatile__("flush %0" : : "r" (addr
));
358 bool __init
arch_hugetlb_valid_size(unsigned long size
)
360 unsigned int hugepage_shift
= ilog2(size
);
361 unsigned short hv_pgsz_idx
;
362 unsigned int hv_pgsz_mask
;
364 switch (hugepage_shift
) {
365 case HPAGE_16GB_SHIFT
:
366 hv_pgsz_mask
= HV_PGSZ_MASK_16GB
;
367 hv_pgsz_idx
= HV_PGSZ_IDX_16GB
;
370 case HPAGE_2GB_SHIFT
:
371 hv_pgsz_mask
= HV_PGSZ_MASK_2GB
;
372 hv_pgsz_idx
= HV_PGSZ_IDX_2GB
;
374 case HPAGE_256MB_SHIFT
:
375 hv_pgsz_mask
= HV_PGSZ_MASK_256MB
;
376 hv_pgsz_idx
= HV_PGSZ_IDX_256MB
;
379 hv_pgsz_mask
= HV_PGSZ_MASK_4MB
;
380 hv_pgsz_idx
= HV_PGSZ_IDX_4MB
;
382 case HPAGE_64K_SHIFT
:
383 hv_pgsz_mask
= HV_PGSZ_MASK_64K
;
384 hv_pgsz_idx
= HV_PGSZ_IDX_64K
;
390 if ((hv_pgsz_mask
& cpu_pgsz_mask
) == 0U)
395 #endif /* CONFIG_HUGETLB_PAGE */
397 void update_mmu_cache_range(struct vm_fault
*vmf
, struct vm_area_struct
*vma
,
398 unsigned long address
, pte_t
*ptep
, unsigned int nr
)
400 struct mm_struct
*mm
;
406 if (tlb_type
!= hypervisor
) {
407 unsigned long pfn
= pte_pfn(pte
);
415 /* Don't insert a non-valid PTE into the TSB, we'll deadlock. */
416 if (!pte_accessible(mm
, pte
))
419 spin_lock_irqsave(&mm
->context
.lock
, flags
);
422 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
423 if (mm
->context
.hugetlb_pte_count
|| mm
->context
.thp_pte_count
) {
424 unsigned long hugepage_size
= PAGE_SIZE
;
426 if (is_vm_hugetlb_page(vma
))
427 hugepage_size
= huge_page_size(hstate_vma(vma
));
429 if (hugepage_size
>= PUD_SIZE
) {
430 unsigned long mask
= 0x1ffc00000UL
;
432 /* Transfer bits [32:22] from address to resolve
435 pte_val(pte
) &= ~mask
;
436 pte_val(pte
) |= (address
& mask
);
437 } else if (hugepage_size
>= PMD_SIZE
) {
438 /* We are fabricating 8MB pages using 4MB
441 pte_val(pte
) |= (address
& (1UL << REAL_HPAGE_SHIFT
));
444 if (hugepage_size
>= PMD_SIZE
) {
445 __update_mmu_tsb_insert(mm
, MM_TSB_HUGE
,
446 REAL_HPAGE_SHIFT
, address
, pte_val(pte
));
452 for (i
= 0; i
< nr
; i
++) {
453 __update_mmu_tsb_insert(mm
, MM_TSB_BASE
, PAGE_SHIFT
,
454 address
, pte_val(pte
));
455 address
+= PAGE_SIZE
;
456 pte_val(pte
) += PAGE_SIZE
;
460 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
463 void flush_dcache_folio(struct folio
*folio
)
465 unsigned long pfn
= folio_pfn(folio
);
466 struct address_space
*mapping
;
469 if (tlb_type
== hypervisor
)
472 /* Do not bother with the expensive D-cache flush if it
473 * is merely the zero page. The 'bigcore' testcase in GDB
474 * causes this case to run millions of times.
476 if (is_zero_pfn(pfn
))
479 this_cpu
= get_cpu();
481 mapping
= folio_flush_mapping(folio
);
482 if (mapping
&& !mapping_mapped(mapping
)) {
483 bool dirty
= test_bit(PG_dcache_dirty
, &folio
->flags
);
485 int dirty_cpu
= dcache_dirty_cpu(folio
);
487 if (dirty_cpu
== this_cpu
)
489 smp_flush_dcache_folio_impl(folio
, dirty_cpu
);
491 set_dcache_dirty(folio
, this_cpu
);
493 /* We could delay the flush for the !folio_mapping
494 * case too. But that case is for exec env/arg
495 * pages and those are %99 certainly going to get
496 * faulted into the tlb (and thus flushed) anyways.
498 flush_dcache_folio_impl(folio
);
504 EXPORT_SYMBOL(flush_dcache_folio
);
506 void __kprobes
flush_icache_range(unsigned long start
, unsigned long end
)
508 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
509 if (tlb_type
== spitfire
) {
512 /* This code only runs on Spitfire cpus so this is
513 * why we can assume _PAGE_PADDR_4U.
515 for (kaddr
= start
; kaddr
< end
; kaddr
+= PAGE_SIZE
) {
516 unsigned long paddr
, mask
= _PAGE_PADDR_4U
;
518 if (kaddr
>= PAGE_OFFSET
)
519 paddr
= kaddr
& mask
;
521 pte_t
*ptep
= virt_to_kpte(kaddr
);
523 paddr
= pte_val(*ptep
) & mask
;
525 __flush_icache_page(paddr
);
529 EXPORT_SYMBOL(flush_icache_range
);
531 void mmu_info(struct seq_file
*m
)
533 static const char *pgsz_strings
[] = {
534 "8K", "64K", "512K", "4MB", "32MB",
535 "256MB", "2GB", "16GB",
539 if (tlb_type
== cheetah
)
540 seq_printf(m
, "MMU Type\t: Cheetah\n");
541 else if (tlb_type
== cheetah_plus
)
542 seq_printf(m
, "MMU Type\t: Cheetah+\n");
543 else if (tlb_type
== spitfire
)
544 seq_printf(m
, "MMU Type\t: Spitfire\n");
545 else if (tlb_type
== hypervisor
)
546 seq_printf(m
, "MMU Type\t: Hypervisor (sun4v)\n");
548 seq_printf(m
, "MMU Type\t: ???\n");
550 seq_printf(m
, "MMU PGSZs\t: ");
552 for (i
= 0; i
< ARRAY_SIZE(pgsz_strings
); i
++) {
553 if (cpu_pgsz_mask
& (1UL << i
)) {
554 seq_printf(m
, "%s%s",
555 printed
? "," : "", pgsz_strings
[i
]);
561 #ifdef CONFIG_DEBUG_DCFLUSH
562 seq_printf(m
, "DCPageFlushes\t: %d\n",
563 atomic_read(&dcpage_flushes
));
565 seq_printf(m
, "DCPageFlushesXC\t: %d\n",
566 atomic_read(&dcpage_flushes_xcall
));
567 #endif /* CONFIG_SMP */
568 #endif /* CONFIG_DEBUG_DCFLUSH */
571 struct linux_prom_translation prom_trans
[512] __read_mostly
;
572 unsigned int prom_trans_ents __read_mostly
;
574 unsigned long kern_locked_tte_data
;
576 /* The obp translations are saved based on 8k pagesize, since obp can
577 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
578 * HI_OBP_ADDRESS range are handled in ktlb.S.
580 static inline int in_obp_range(unsigned long vaddr
)
582 return (vaddr
>= LOW_OBP_ADDRESS
&&
583 vaddr
< HI_OBP_ADDRESS
);
586 static int cmp_ptrans(const void *a
, const void *b
)
588 const struct linux_prom_translation
*x
= a
, *y
= b
;
590 if (x
->virt
> y
->virt
)
592 if (x
->virt
< y
->virt
)
597 /* Read OBP translations property into 'prom_trans[]'. */
598 static void __init
read_obp_translations(void)
600 int n
, node
, ents
, first
, last
, i
;
602 node
= prom_finddevice("/virtual-memory");
603 n
= prom_getproplen(node
, "translations");
604 if (unlikely(n
== 0 || n
== -1)) {
605 prom_printf("prom_mappings: Couldn't get size.\n");
608 if (unlikely(n
> sizeof(prom_trans
))) {
609 prom_printf("prom_mappings: Size %d is too big.\n", n
);
613 if ((n
= prom_getproperty(node
, "translations",
614 (char *)&prom_trans
[0],
615 sizeof(prom_trans
))) == -1) {
616 prom_printf("prom_mappings: Couldn't get property.\n");
620 n
= n
/ sizeof(struct linux_prom_translation
);
624 sort(prom_trans
, ents
, sizeof(struct linux_prom_translation
),
627 /* Now kick out all the non-OBP entries. */
628 for (i
= 0; i
< ents
; i
++) {
629 if (in_obp_range(prom_trans
[i
].virt
))
633 for (; i
< ents
; i
++) {
634 if (!in_obp_range(prom_trans
[i
].virt
))
639 for (i
= 0; i
< (last
- first
); i
++) {
640 struct linux_prom_translation
*src
= &prom_trans
[i
+ first
];
641 struct linux_prom_translation
*dest
= &prom_trans
[i
];
645 for (; i
< ents
; i
++) {
646 struct linux_prom_translation
*dest
= &prom_trans
[i
];
647 dest
->virt
= dest
->size
= dest
->data
= 0x0UL
;
650 prom_trans_ents
= last
- first
;
652 if (tlb_type
== spitfire
) {
653 /* Clear diag TTE bits. */
654 for (i
= 0; i
< prom_trans_ents
; i
++)
655 prom_trans
[i
].data
&= ~0x0003fe0000000000UL
;
658 /* Force execute bit on. */
659 for (i
= 0; i
< prom_trans_ents
; i
++)
660 prom_trans
[i
].data
|= (tlb_type
== hypervisor
?
661 _PAGE_EXEC_4V
: _PAGE_EXEC_4U
);
664 static void __init
hypervisor_tlb_lock(unsigned long vaddr
,
668 unsigned long ret
= sun4v_mmu_map_perm_addr(vaddr
, 0, pte
, mmu
);
671 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
672 "errors with %lx\n", vaddr
, 0, pte
, mmu
, ret
);
677 static unsigned long kern_large_tte(unsigned long paddr
);
679 static void __init
remap_kernel(void)
681 unsigned long phys_page
, tte_vaddr
, tte_data
;
682 int i
, tlb_ent
= sparc64_highest_locked_tlbent();
684 tte_vaddr
= (unsigned long) KERNBASE
;
685 phys_page
= (prom_boot_mapping_phys_low
>> ILOG2_4MB
) << ILOG2_4MB
;
686 tte_data
= kern_large_tte(phys_page
);
688 kern_locked_tte_data
= tte_data
;
690 /* Now lock us into the TLBs via Hypervisor or OBP. */
691 if (tlb_type
== hypervisor
) {
692 for (i
= 0; i
< num_kernel_image_mappings
; i
++) {
693 hypervisor_tlb_lock(tte_vaddr
, tte_data
, HV_MMU_DMMU
);
694 hypervisor_tlb_lock(tte_vaddr
, tte_data
, HV_MMU_IMMU
);
695 tte_vaddr
+= 0x400000;
696 tte_data
+= 0x400000;
699 for (i
= 0; i
< num_kernel_image_mappings
; i
++) {
700 prom_dtlb_load(tlb_ent
- i
, tte_data
, tte_vaddr
);
701 prom_itlb_load(tlb_ent
- i
, tte_data
, tte_vaddr
);
702 tte_vaddr
+= 0x400000;
703 tte_data
+= 0x400000;
705 sparc64_highest_unlocked_tlb_ent
= tlb_ent
- i
;
707 if (tlb_type
== cheetah_plus
) {
708 sparc64_kern_pri_context
= (CTX_CHEETAH_PLUS_CTX0
|
709 CTX_CHEETAH_PLUS_NUC
);
710 sparc64_kern_pri_nuc_bits
= CTX_CHEETAH_PLUS_NUC
;
711 sparc64_kern_sec_context
= CTX_CHEETAH_PLUS_CTX0
;
716 static void __init
inherit_prom_mappings(void)
718 /* Now fixup OBP's idea about where we really are mapped. */
719 printk("Remapping the kernel... ");
724 void prom_world(int enter
)
727 * No need to change the address space any more, just flush
728 * the register windows
730 __asm__
__volatile__("flushw");
733 void __flush_dcache_range(unsigned long start
, unsigned long end
)
737 if (tlb_type
== spitfire
) {
740 for (va
= start
; va
< end
; va
+= 32) {
741 spitfire_put_dcache_tag(va
& 0x3fe0, 0x0);
745 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
748 for (va
= start
; va
< end
; va
+= 32)
749 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
753 "i" (ASI_DCACHE_INVALIDATE
));
756 EXPORT_SYMBOL(__flush_dcache_range
);
758 /* get_new_mmu_context() uses "cache + 1". */
759 DEFINE_SPINLOCK(ctx_alloc_lock
);
760 unsigned long tlb_context_cache
= CTX_FIRST_VERSION
;
761 #define MAX_CTX_NR (1UL << CTX_NR_BITS)
762 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
763 DECLARE_BITMAP(mmu_context_bmap
, MAX_CTX_NR
);
764 DEFINE_PER_CPU(struct mm_struct
*, per_cpu_secondary_mm
) = {0};
766 static void mmu_context_wrap(void)
768 unsigned long old_ver
= tlb_context_cache
& CTX_VERSION_MASK
;
769 unsigned long new_ver
, new_ctx
, old_ctx
;
770 struct mm_struct
*mm
;
773 bitmap_zero(mmu_context_bmap
, 1 << CTX_NR_BITS
);
775 /* Reserve kernel context */
776 set_bit(0, mmu_context_bmap
);
778 new_ver
= (tlb_context_cache
& CTX_VERSION_MASK
) + CTX_FIRST_VERSION
;
779 if (unlikely(new_ver
== 0))
780 new_ver
= CTX_FIRST_VERSION
;
781 tlb_context_cache
= new_ver
;
784 * Make sure that any new mm that are added into per_cpu_secondary_mm,
785 * are going to go through get_new_mmu_context() path.
790 * Updated versions to current on those CPUs that had valid secondary
793 for_each_online_cpu(cpu
) {
795 * If a new mm is stored after we took this mm from the array,
796 * it will go into get_new_mmu_context() path, because we
797 * already bumped the version in tlb_context_cache.
799 mm
= per_cpu(per_cpu_secondary_mm
, cpu
);
801 if (unlikely(!mm
|| mm
== &init_mm
))
804 old_ctx
= mm
->context
.sparc64_ctx_val
;
805 if (likely((old_ctx
& CTX_VERSION_MASK
) == old_ver
)) {
806 new_ctx
= (old_ctx
& ~CTX_VERSION_MASK
) | new_ver
;
807 set_bit(new_ctx
& CTX_NR_MASK
, mmu_context_bmap
);
808 mm
->context
.sparc64_ctx_val
= new_ctx
;
813 /* Caller does TLB context flushing on local CPU if necessary.
814 * The caller also ensures that CTX_VALID(mm->context) is false.
816 * We must be careful about boundary cases so that we never
817 * let the user have CTX 0 (nucleus) or we ever use a CTX
818 * version of zero (and thus NO_CONTEXT would not be caught
819 * by version mis-match tests in mmu_context.h).
821 * Always invoked with interrupts disabled.
823 void get_new_mmu_context(struct mm_struct
*mm
)
825 unsigned long ctx
, new_ctx
;
826 unsigned long orig_pgsz_bits
;
828 spin_lock(&ctx_alloc_lock
);
830 /* wrap might have happened, test again if our context became valid */
831 if (unlikely(CTX_VALID(mm
->context
)))
833 orig_pgsz_bits
= (mm
->context
.sparc64_ctx_val
& CTX_PGSZ_MASK
);
834 ctx
= (tlb_context_cache
+ 1) & CTX_NR_MASK
;
835 new_ctx
= find_next_zero_bit(mmu_context_bmap
, 1 << CTX_NR_BITS
, ctx
);
836 if (new_ctx
>= (1 << CTX_NR_BITS
)) {
837 new_ctx
= find_next_zero_bit(mmu_context_bmap
, ctx
, 1);
838 if (new_ctx
>= ctx
) {
843 if (mm
->context
.sparc64_ctx_val
)
844 cpumask_clear(mm_cpumask(mm
));
845 mmu_context_bmap
[new_ctx
>>6] |= (1UL << (new_ctx
& 63));
846 new_ctx
|= (tlb_context_cache
& CTX_VERSION_MASK
);
847 tlb_context_cache
= new_ctx
;
848 mm
->context
.sparc64_ctx_val
= new_ctx
| orig_pgsz_bits
;
850 spin_unlock(&ctx_alloc_lock
);
853 static int numa_enabled
= 1;
854 static int numa_debug
;
856 static int __init
early_numa(char *p
)
861 if (strstr(p
, "off"))
864 if (strstr(p
, "debug"))
869 early_param("numa", early_numa
);
871 #define numadbg(f, a...) \
872 do { if (numa_debug) \
873 printk(KERN_INFO f, ## a); \
876 static void __init
find_ramdisk(unsigned long phys_base
)
878 #ifdef CONFIG_BLK_DEV_INITRD
879 if (sparc_ramdisk_image
|| sparc_ramdisk_image64
) {
880 unsigned long ramdisk_image
;
882 /* Older versions of the bootloader only supported a
883 * 32-bit physical address for the ramdisk image
884 * location, stored at sparc_ramdisk_image. Newer
885 * SILO versions set sparc_ramdisk_image to zero and
886 * provide a full 64-bit physical address at
887 * sparc_ramdisk_image64.
889 ramdisk_image
= sparc_ramdisk_image
;
891 ramdisk_image
= sparc_ramdisk_image64
;
893 /* Another bootloader quirk. The bootloader normalizes
894 * the physical address to KERNBASE, so we have to
895 * factor that back out and add in the lowest valid
896 * physical page address to get the true physical address.
898 ramdisk_image
-= KERNBASE
;
899 ramdisk_image
+= phys_base
;
901 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
902 ramdisk_image
, sparc_ramdisk_size
);
904 initrd_start
= ramdisk_image
;
905 initrd_end
= ramdisk_image
+ sparc_ramdisk_size
;
907 memblock_reserve(initrd_start
, sparc_ramdisk_size
);
909 initrd_start
+= PAGE_OFFSET
;
910 initrd_end
+= PAGE_OFFSET
;
915 struct node_mem_mask
{
919 static struct node_mem_mask node_masks
[MAX_NUMNODES
];
920 static int num_node_masks
;
924 struct mdesc_mlgroup
{
931 static struct mdesc_mlgroup
*mlgroups
;
932 static int num_mlgroups
;
934 int numa_cpu_lookup_table
[NR_CPUS
];
935 cpumask_t numa_cpumask_lookup_table
[MAX_NUMNODES
];
937 struct mdesc_mblock
{
940 u64 offset
; /* RA-to-PA */
942 static struct mdesc_mblock
*mblocks
;
943 static int num_mblocks
;
945 static struct mdesc_mblock
* __init
addr_to_mblock(unsigned long addr
)
947 struct mdesc_mblock
*m
= NULL
;
950 for (i
= 0; i
< num_mblocks
; i
++) {
953 if (addr
>= m
->base
&&
954 addr
< (m
->base
+ m
->size
)) {
962 static u64 __init
memblock_nid_range_sun4u(u64 start
, u64 end
, int *nid
)
964 int prev_nid
, new_nid
;
966 prev_nid
= NUMA_NO_NODE
;
967 for ( ; start
< end
; start
+= PAGE_SIZE
) {
968 for (new_nid
= 0; new_nid
< num_node_masks
; new_nid
++) {
969 struct node_mem_mask
*p
= &node_masks
[new_nid
];
971 if ((start
& p
->mask
) == p
->match
) {
972 if (prev_nid
== NUMA_NO_NODE
)
978 if (new_nid
== num_node_masks
) {
980 WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
985 if (prev_nid
!= new_nid
)
990 return start
> end
? end
: start
;
993 static u64 __init
memblock_nid_range(u64 start
, u64 end
, int *nid
)
995 u64 ret_end
, pa_start
, m_mask
, m_match
, m_end
;
996 struct mdesc_mblock
*mblock
;
999 if (tlb_type
!= hypervisor
)
1000 return memblock_nid_range_sun4u(start
, end
, nid
);
1002 mblock
= addr_to_mblock(start
);
1004 WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
1012 pa_start
= start
+ mblock
->offset
;
1016 for (_nid
= 0; _nid
< num_node_masks
; _nid
++) {
1017 struct node_mem_mask
*const m
= &node_masks
[_nid
];
1019 if ((pa_start
& m
->mask
) == m
->match
) {
1026 if (num_node_masks
== _nid
) {
1027 /* We could not find NUMA group, so default to 0, but lets
1028 * search for latency group, so we could calculate the correct
1029 * end address that we return
1033 for (i
= 0; i
< num_mlgroups
; i
++) {
1034 struct mdesc_mlgroup
*const m
= &mlgroups
[i
];
1036 if ((pa_start
& m
->mask
) == m
->match
) {
1043 if (i
== num_mlgroups
) {
1044 WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
1053 * Each latency group has match and mask, and each memory block has an
1054 * offset. An address belongs to a latency group if its address matches
1055 * the following formula: ((addr + offset) & mask) == match
1056 * It is, however, slow to check every single page if it matches a
1057 * particular latency group. As optimization we calculate end value by
1058 * using bit arithmetics.
1060 m_end
= m_match
+ (1ul << __ffs(m_mask
)) - mblock
->offset
;
1061 m_end
+= pa_start
& ~((1ul << fls64(m_mask
)) - 1);
1062 ret_end
= m_end
> end
? end
: m_end
;
1070 /* This must be invoked after performing all of the necessary
1071 * memblock_set_node() calls for 'nid'. We need to be able to get
1072 * correct data from get_pfn_range_for_nid().
1074 static void __init
allocate_node_data(int nid
)
1076 struct pglist_data
*p
;
1077 unsigned long start_pfn
, end_pfn
;
1080 alloc_node_data(nid
);
1082 NODE_DATA(nid
)->node_id
= nid
;
1087 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
1088 p
->node_start_pfn
= start_pfn
;
1089 p
->node_spanned_pages
= end_pfn
- start_pfn
;
1092 static void init_node_masks_nonnuma(void)
1098 numadbg("Initializing tables for non-numa.\n");
1100 node_masks
[0].mask
= 0;
1101 node_masks
[0].match
= 0;
1105 for (i
= 0; i
< NR_CPUS
; i
++)
1106 numa_cpu_lookup_table
[i
] = 0;
1108 cpumask_setall(&numa_cpumask_lookup_table
[0]);
1114 EXPORT_SYMBOL(numa_cpu_lookup_table
);
1115 EXPORT_SYMBOL(numa_cpumask_lookup_table
);
1117 static int scan_pio_for_cfg_handle(struct mdesc_handle
*md
, u64 pio
,
1122 mdesc_for_each_arc(arc
, md
, pio
, MDESC_ARC_TYPE_FWD
) {
1123 u64 target
= mdesc_arc_target(md
, arc
);
1126 val
= mdesc_get_property(md
, target
,
1127 "cfg-handle", NULL
);
1128 if (val
&& *val
== cfg_handle
)
1134 static int scan_arcs_for_cfg_handle(struct mdesc_handle
*md
, u64 grp
,
1137 u64 arc
, candidate
, best_latency
= ~(u64
)0;
1139 candidate
= MDESC_NODE_NULL
;
1140 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_FWD
) {
1141 u64 target
= mdesc_arc_target(md
, arc
);
1142 const char *name
= mdesc_node_name(md
, target
);
1145 if (strcmp(name
, "pio-latency-group"))
1148 val
= mdesc_get_property(md
, target
, "latency", NULL
);
1152 if (*val
< best_latency
) {
1154 best_latency
= *val
;
1158 if (candidate
== MDESC_NODE_NULL
)
1161 return scan_pio_for_cfg_handle(md
, candidate
, cfg_handle
);
1164 int of_node_to_nid(struct device_node
*dp
)
1166 const struct linux_prom64_registers
*regs
;
1167 struct mdesc_handle
*md
;
1172 /* This is the right thing to do on currently supported
1173 * SUN4U NUMA platforms as well, as the PCI controller does
1174 * not sit behind any particular memory controller.
1179 regs
= of_get_property(dp
, "reg", NULL
);
1183 cfg_handle
= (regs
->phys_addr
>> 32UL) & 0x0fffffff;
1189 mdesc_for_each_node_by_name(md
, grp
, "group") {
1190 if (!scan_arcs_for_cfg_handle(md
, grp
, cfg_handle
)) {
1202 static void __init
add_node_ranges(void)
1204 phys_addr_t start
, end
;
1205 unsigned long prev_max
;
1209 prev_max
= memblock
.memory
.max
;
1211 for_each_mem_range(i
, &start
, &end
) {
1212 while (start
< end
) {
1213 unsigned long this_end
;
1216 this_end
= memblock_nid_range(start
, end
, &nid
);
1218 numadbg("Setting memblock NUMA node nid[%d] "
1219 "start[%llx] end[%lx]\n",
1220 nid
, start
, this_end
);
1222 memblock_set_node(start
, this_end
- start
,
1223 &memblock
.memory
, nid
);
1224 if (memblock
.memory
.max
!= prev_max
)
1225 goto memblock_resized
;
1231 static int __init
grab_mlgroups(struct mdesc_handle
*md
)
1233 unsigned long paddr
;
1237 mdesc_for_each_node_by_name(md
, node
, "memory-latency-group")
1242 paddr
= memblock_phys_alloc(count
* sizeof(struct mdesc_mlgroup
),
1247 mlgroups
= __va(paddr
);
1248 num_mlgroups
= count
;
1251 mdesc_for_each_node_by_name(md
, node
, "memory-latency-group") {
1252 struct mdesc_mlgroup
*m
= &mlgroups
[count
++];
1257 val
= mdesc_get_property(md
, node
, "latency", NULL
);
1259 val
= mdesc_get_property(md
, node
, "address-match", NULL
);
1261 val
= mdesc_get_property(md
, node
, "address-mask", NULL
);
1264 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1265 "match[%llx] mask[%llx]\n",
1266 count
- 1, m
->node
, m
->latency
, m
->match
, m
->mask
);
1272 static int __init
grab_mblocks(struct mdesc_handle
*md
)
1274 unsigned long paddr
;
1278 mdesc_for_each_node_by_name(md
, node
, "mblock")
1283 paddr
= memblock_phys_alloc(count
* sizeof(struct mdesc_mblock
),
1288 mblocks
= __va(paddr
);
1289 num_mblocks
= count
;
1292 mdesc_for_each_node_by_name(md
, node
, "mblock") {
1293 struct mdesc_mblock
*m
= &mblocks
[count
++];
1296 val
= mdesc_get_property(md
, node
, "base", NULL
);
1298 val
= mdesc_get_property(md
, node
, "size", NULL
);
1300 val
= mdesc_get_property(md
, node
,
1301 "address-congruence-offset", NULL
);
1303 /* The address-congruence-offset property is optional.
1304 * Explicity zero it be identifty this.
1311 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1312 count
- 1, m
->base
, m
->size
, m
->offset
);
1318 static void __init
numa_parse_mdesc_group_cpus(struct mdesc_handle
*md
,
1319 u64 grp
, cpumask_t
*mask
)
1323 cpumask_clear(mask
);
1325 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_BACK
) {
1326 u64 target
= mdesc_arc_target(md
, arc
);
1327 const char *name
= mdesc_node_name(md
, target
);
1330 if (strcmp(name
, "cpu"))
1332 id
= mdesc_get_property(md
, target
, "id", NULL
);
1333 if (*id
< nr_cpu_ids
)
1334 cpumask_set_cpu(*id
, mask
);
1338 static struct mdesc_mlgroup
* __init
find_mlgroup(u64 node
)
1342 for (i
= 0; i
< num_mlgroups
; i
++) {
1343 struct mdesc_mlgroup
*m
= &mlgroups
[i
];
1344 if (m
->node
== node
)
1350 int __node_distance(int from
, int to
)
1352 if ((from
>= MAX_NUMNODES
) || (to
>= MAX_NUMNODES
)) {
1353 pr_warn("Returning default NUMA distance value for %d->%d\n",
1355 return (from
== to
) ? LOCAL_DISTANCE
: REMOTE_DISTANCE
;
1357 return numa_latency
[from
][to
];
1359 EXPORT_SYMBOL(__node_distance
);
1361 static int __init
find_best_numa_node_for_mlgroup(struct mdesc_mlgroup
*grp
)
1365 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
1366 struct node_mem_mask
*n
= &node_masks
[i
];
1368 if ((grp
->mask
== n
->mask
) && (grp
->match
== n
->match
))
1374 static void __init
find_numa_latencies_for_group(struct mdesc_handle
*md
,
1379 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_FWD
) {
1381 u64 target
= mdesc_arc_target(md
, arc
);
1382 struct mdesc_mlgroup
*m
= find_mlgroup(target
);
1386 tnode
= find_best_numa_node_for_mlgroup(m
);
1387 if (tnode
== MAX_NUMNODES
)
1389 numa_latency
[index
][tnode
] = m
->latency
;
1393 static int __init
numa_attach_mlgroup(struct mdesc_handle
*md
, u64 grp
,
1396 struct mdesc_mlgroup
*candidate
= NULL
;
1397 u64 arc
, best_latency
= ~(u64
)0;
1398 struct node_mem_mask
*n
;
1400 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_FWD
) {
1401 u64 target
= mdesc_arc_target(md
, arc
);
1402 struct mdesc_mlgroup
*m
= find_mlgroup(target
);
1405 if (m
->latency
< best_latency
) {
1407 best_latency
= m
->latency
;
1413 if (num_node_masks
!= index
) {
1414 printk(KERN_ERR
"Inconsistent NUMA state, "
1415 "index[%d] != num_node_masks[%d]\n",
1416 index
, num_node_masks
);
1420 n
= &node_masks
[num_node_masks
++];
1422 n
->mask
= candidate
->mask
;
1423 n
->match
= candidate
->match
;
1425 numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
1426 index
, n
->mask
, n
->match
, candidate
->latency
);
1431 static int __init
numa_parse_mdesc_group(struct mdesc_handle
*md
, u64 grp
,
1437 numa_parse_mdesc_group_cpus(md
, grp
, &mask
);
1439 for_each_cpu(cpu
, &mask
)
1440 numa_cpu_lookup_table
[cpu
] = index
;
1441 cpumask_copy(&numa_cpumask_lookup_table
[index
], &mask
);
1444 printk(KERN_INFO
"NUMA GROUP[%d]: cpus [ ", index
);
1445 for_each_cpu(cpu
, &mask
)
1450 return numa_attach_mlgroup(md
, grp
, index
);
1453 static int __init
numa_parse_mdesc(void)
1455 struct mdesc_handle
*md
= mdesc_grab();
1456 int i
, j
, err
, count
;
1459 node
= mdesc_node_by_name(md
, MDESC_NODE_NULL
, "latency-groups");
1460 if (node
== MDESC_NODE_NULL
) {
1465 err
= grab_mblocks(md
);
1469 err
= grab_mlgroups(md
);
1474 mdesc_for_each_node_by_name(md
, node
, "group") {
1475 err
= numa_parse_mdesc_group(md
, node
, count
);
1482 mdesc_for_each_node_by_name(md
, node
, "group") {
1483 find_numa_latencies_for_group(md
, node
, count
);
1487 /* Normalize numa latency matrix according to ACPI SLIT spec. */
1488 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
1489 u64 self_latency
= numa_latency
[i
][i
];
1491 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
1492 numa_latency
[i
][j
] =
1493 (numa_latency
[i
][j
] * LOCAL_DISTANCE
) /
1500 for (i
= 0; i
< num_node_masks
; i
++) {
1501 allocate_node_data(i
);
1511 static int __init
numa_parse_jbus(void)
1513 unsigned long cpu
, index
;
1515 /* NUMA node id is encoded in bits 36 and higher, and there is
1516 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1519 for_each_present_cpu(cpu
) {
1520 numa_cpu_lookup_table
[cpu
] = index
;
1521 cpumask_copy(&numa_cpumask_lookup_table
[index
], cpumask_of(cpu
));
1522 node_masks
[index
].mask
= ~((1UL << 36UL) - 1UL);
1523 node_masks
[index
].match
= cpu
<< 36UL;
1527 num_node_masks
= index
;
1531 for (index
= 0; index
< num_node_masks
; index
++) {
1532 allocate_node_data(index
);
1533 node_set_online(index
);
1539 static int __init
numa_parse_sun4u(void)
1541 if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
1544 __asm__ ("rdpr %%ver, %0" : "=r" (ver
));
1545 if ((ver
>> 32UL) == __JALAPENO_ID
||
1546 (ver
>> 32UL) == __SERRANO_ID
)
1547 return numa_parse_jbus();
1552 static int __init
bootmem_init_numa(void)
1557 numadbg("bootmem_init_numa()\n");
1559 /* Some sane defaults for numa latency values */
1560 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
1561 for (j
= 0; j
< MAX_NUMNODES
; j
++)
1562 numa_latency
[i
][j
] = (i
== j
) ?
1563 LOCAL_DISTANCE
: REMOTE_DISTANCE
;
1567 if (tlb_type
== hypervisor
)
1568 err
= numa_parse_mdesc();
1570 err
= numa_parse_sun4u();
1577 static int bootmem_init_numa(void)
1584 static void __init
bootmem_init_nonnuma(void)
1586 unsigned long top_of_ram
= memblock_end_of_DRAM();
1587 unsigned long total_ram
= memblock_phys_mem_size();
1589 numadbg("bootmem_init_nonnuma()\n");
1591 printk(KERN_INFO
"Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1592 top_of_ram
, total_ram
);
1593 printk(KERN_INFO
"Memory hole size: %ldMB\n",
1594 (top_of_ram
- total_ram
) >> 20);
1596 init_node_masks_nonnuma();
1597 memblock_set_node(0, PHYS_ADDR_MAX
, &memblock
.memory
, 0);
1598 allocate_node_data(0);
1602 static unsigned long __init
bootmem_init(unsigned long phys_base
)
1604 unsigned long end_pfn
;
1606 end_pfn
= memblock_end_of_DRAM() >> PAGE_SHIFT
;
1607 max_pfn
= max_low_pfn
= end_pfn
;
1608 min_low_pfn
= (phys_base
>> PAGE_SHIFT
);
1610 if (bootmem_init_numa() < 0)
1611 bootmem_init_nonnuma();
1613 /* Dump memblock with node info. */
1614 memblock_dump_all();
1616 /* XXX cpu notifier XXX */
1623 static struct linux_prom64_registers pall
[MAX_BANKS
] __initdata
;
1624 static int pall_ents __initdata
;
1626 static unsigned long max_phys_bits
= 40;
1628 bool kern_addr_valid(unsigned long addr
)
1636 if ((long)addr
< 0L) {
1637 unsigned long pa
= __pa(addr
);
1639 if ((pa
>> max_phys_bits
) != 0UL)
1642 return pfn_valid(pa
>> PAGE_SHIFT
);
1645 if (addr
>= (unsigned long) KERNBASE
&&
1646 addr
< (unsigned long)&_end
)
1649 pgd
= pgd_offset_k(addr
);
1653 p4d
= p4d_offset(pgd
, addr
);
1657 pud
= pud_offset(p4d
, addr
);
1662 return pfn_valid(pud_pfn(*pud
));
1664 pmd
= pmd_offset(pud
, addr
);
1669 return pfn_valid(pmd_pfn(*pmd
));
1671 pte
= pte_offset_kernel(pmd
, addr
);
1675 return pfn_valid(pte_pfn(*pte
));
1678 static unsigned long __ref
kernel_map_hugepud(unsigned long vstart
,
1682 const unsigned long mask16gb
= (1UL << 34) - 1UL;
1683 u64 pte_val
= vstart
;
1685 /* Each PUD is 8GB */
1686 if ((vstart
& mask16gb
) ||
1687 (vend
- vstart
<= mask16gb
)) {
1688 pte_val
^= kern_linear_pte_xor
[2];
1689 pud_val(*pud
) = pte_val
| _PAGE_PUD_HUGE
;
1691 return vstart
+ PUD_SIZE
;
1694 pte_val
^= kern_linear_pte_xor
[3];
1695 pte_val
|= _PAGE_PUD_HUGE
;
1697 vend
= vstart
+ mask16gb
+ 1UL;
1698 while (vstart
< vend
) {
1699 pud_val(*pud
) = pte_val
;
1701 pte_val
+= PUD_SIZE
;
1708 static bool kernel_can_map_hugepud(unsigned long vstart
, unsigned long vend
,
1711 if (guard
&& !(vstart
& ~PUD_MASK
) && (vend
- vstart
) >= PUD_SIZE
)
1717 static unsigned long __ref
kernel_map_hugepmd(unsigned long vstart
,
1721 const unsigned long mask256mb
= (1UL << 28) - 1UL;
1722 const unsigned long mask2gb
= (1UL << 31) - 1UL;
1723 u64 pte_val
= vstart
;
1725 /* Each PMD is 8MB */
1726 if ((vstart
& mask256mb
) ||
1727 (vend
- vstart
<= mask256mb
)) {
1728 pte_val
^= kern_linear_pte_xor
[0];
1729 pmd_val(*pmd
) = pte_val
| _PAGE_PMD_HUGE
;
1731 return vstart
+ PMD_SIZE
;
1734 if ((vstart
& mask2gb
) ||
1735 (vend
- vstart
<= mask2gb
)) {
1736 pte_val
^= kern_linear_pte_xor
[1];
1737 pte_val
|= _PAGE_PMD_HUGE
;
1738 vend
= vstart
+ mask256mb
+ 1UL;
1740 pte_val
^= kern_linear_pte_xor
[2];
1741 pte_val
|= _PAGE_PMD_HUGE
;
1742 vend
= vstart
+ mask2gb
+ 1UL;
1745 while (vstart
< vend
) {
1746 pmd_val(*pmd
) = pte_val
;
1748 pte_val
+= PMD_SIZE
;
1756 static bool kernel_can_map_hugepmd(unsigned long vstart
, unsigned long vend
,
1759 if (guard
&& !(vstart
& ~PMD_MASK
) && (vend
- vstart
) >= PMD_SIZE
)
1765 static unsigned long __ref
kernel_map_range(unsigned long pstart
,
1766 unsigned long pend
, pgprot_t prot
,
1769 unsigned long vstart
= PAGE_OFFSET
+ pstart
;
1770 unsigned long vend
= PAGE_OFFSET
+ pend
;
1771 unsigned long alloc_bytes
= 0UL;
1773 if ((vstart
& ~PAGE_MASK
) || (vend
& ~PAGE_MASK
)) {
1774 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1779 while (vstart
< vend
) {
1780 unsigned long this_end
, paddr
= __pa(vstart
);
1781 pgd_t
*pgd
= pgd_offset_k(vstart
);
1787 if (pgd_none(*pgd
)) {
1790 new = memblock_alloc_from(PAGE_SIZE
, PAGE_SIZE
,
1794 alloc_bytes
+= PAGE_SIZE
;
1795 pgd_populate(&init_mm
, pgd
, new);
1798 p4d
= p4d_offset(pgd
, vstart
);
1799 if (p4d_none(*p4d
)) {
1802 new = memblock_alloc_from(PAGE_SIZE
, PAGE_SIZE
,
1806 alloc_bytes
+= PAGE_SIZE
;
1807 p4d_populate(&init_mm
, p4d
, new);
1810 pud
= pud_offset(p4d
, vstart
);
1811 if (pud_none(*pud
)) {
1814 if (kernel_can_map_hugepud(vstart
, vend
, use_huge
)) {
1815 vstart
= kernel_map_hugepud(vstart
, vend
, pud
);
1818 new = memblock_alloc_from(PAGE_SIZE
, PAGE_SIZE
,
1822 alloc_bytes
+= PAGE_SIZE
;
1823 pud_populate(&init_mm
, pud
, new);
1826 pmd
= pmd_offset(pud
, vstart
);
1827 if (pmd_none(*pmd
)) {
1830 if (kernel_can_map_hugepmd(vstart
, vend
, use_huge
)) {
1831 vstart
= kernel_map_hugepmd(vstart
, vend
, pmd
);
1834 new = memblock_alloc_from(PAGE_SIZE
, PAGE_SIZE
,
1838 alloc_bytes
+= PAGE_SIZE
;
1839 pmd_populate_kernel(&init_mm
, pmd
, new);
1842 pte
= pte_offset_kernel(pmd
, vstart
);
1843 this_end
= (vstart
+ PMD_SIZE
) & PMD_MASK
;
1844 if (this_end
> vend
)
1847 while (vstart
< this_end
) {
1848 pte_val(*pte
) = (paddr
| pgprot_val(prot
));
1850 vstart
+= PAGE_SIZE
;
1859 panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n",
1860 __func__
, PAGE_SIZE
, PAGE_SIZE
, PAGE_SIZE
);
1864 static void __init
flush_all_kernel_tsbs(void)
1868 for (i
= 0; i
< KERNEL_TSB_NENTRIES
; i
++) {
1869 struct tsb
*ent
= &swapper_tsb
[i
];
1871 ent
->tag
= (1UL << TSB_TAG_INVALID_BIT
);
1873 #ifndef CONFIG_DEBUG_PAGEALLOC
1874 for (i
= 0; i
< KERNEL_TSB4M_NENTRIES
; i
++) {
1875 struct tsb
*ent
= &swapper_4m_tsb
[i
];
1877 ent
->tag
= (1UL << TSB_TAG_INVALID_BIT
);
1882 extern unsigned int kvmap_linear_patch
[1];
1884 static void __init
kernel_physical_mapping_init(void)
1886 unsigned long i
, mem_alloced
= 0UL;
1887 bool use_huge
= true;
1889 #ifdef CONFIG_DEBUG_PAGEALLOC
1892 for (i
= 0; i
< pall_ents
; i
++) {
1893 unsigned long phys_start
, phys_end
;
1895 phys_start
= pall
[i
].phys_addr
;
1896 phys_end
= phys_start
+ pall
[i
].reg_size
;
1898 mem_alloced
+= kernel_map_range(phys_start
, phys_end
,
1899 PAGE_KERNEL
, use_huge
);
1902 printk("Allocated %ld bytes for kernel page tables.\n",
1905 kvmap_linear_patch
[0] = 0x01000000; /* nop */
1906 flushi(&kvmap_linear_patch
[0]);
1908 flush_all_kernel_tsbs();
1913 #ifdef CONFIG_DEBUG_PAGEALLOC
1914 void __kernel_map_pages(struct page
*page
, int numpages
, int enable
)
1916 unsigned long phys_start
= page_to_pfn(page
) << PAGE_SHIFT
;
1917 unsigned long phys_end
= phys_start
+ (numpages
* PAGE_SIZE
);
1919 kernel_map_range(phys_start
, phys_end
,
1920 (enable
? PAGE_KERNEL
: __pgprot(0)), false);
1922 flush_tsb_kernel_range(PAGE_OFFSET
+ phys_start
,
1923 PAGE_OFFSET
+ phys_end
);
1925 /* we should perform an IPI and flush all tlbs,
1926 * but that can deadlock->flush only current cpu.
1928 __flush_tlb_kernel_range(PAGE_OFFSET
+ phys_start
,
1929 PAGE_OFFSET
+ phys_end
);
1933 unsigned long __init
find_ecache_flush_span(unsigned long size
)
1937 for (i
= 0; i
< pavail_ents
; i
++) {
1938 if (pavail
[i
].reg_size
>= size
)
1939 return pavail
[i
].phys_addr
;
1945 unsigned long PAGE_OFFSET
;
1946 EXPORT_SYMBOL(PAGE_OFFSET
);
1948 unsigned long VMALLOC_END
= 0x0000010000000000UL
;
1949 EXPORT_SYMBOL(VMALLOC_END
);
1951 unsigned long sparc64_va_hole_top
= 0xfffff80000000000UL
;
1952 unsigned long sparc64_va_hole_bottom
= 0x0000080000000000UL
;
1954 static void __init
setup_page_offset(void)
1956 if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
1957 /* Cheetah/Panther support a full 64-bit virtual
1958 * address, so we can use all that our page tables
1961 sparc64_va_hole_top
= 0xfff0000000000000UL
;
1962 sparc64_va_hole_bottom
= 0x0010000000000000UL
;
1965 } else if (tlb_type
== hypervisor
) {
1966 switch (sun4v_chip_type
) {
1967 case SUN4V_CHIP_NIAGARA1
:
1968 case SUN4V_CHIP_NIAGARA2
:
1969 /* T1 and T2 support 48-bit virtual addresses. */
1970 sparc64_va_hole_top
= 0xffff800000000000UL
;
1971 sparc64_va_hole_bottom
= 0x0000800000000000UL
;
1975 case SUN4V_CHIP_NIAGARA3
:
1976 /* T3 supports 48-bit virtual addresses. */
1977 sparc64_va_hole_top
= 0xffff800000000000UL
;
1978 sparc64_va_hole_bottom
= 0x0000800000000000UL
;
1982 case SUN4V_CHIP_NIAGARA4
:
1983 case SUN4V_CHIP_NIAGARA5
:
1984 case SUN4V_CHIP_SPARC64X
:
1985 case SUN4V_CHIP_SPARC_M6
:
1986 /* T4 and later support 52-bit virtual addresses. */
1987 sparc64_va_hole_top
= 0xfff8000000000000UL
;
1988 sparc64_va_hole_bottom
= 0x0008000000000000UL
;
1991 case SUN4V_CHIP_SPARC_M7
:
1992 case SUN4V_CHIP_SPARC_SN
:
1993 /* M7 and later support 52-bit virtual addresses. */
1994 sparc64_va_hole_top
= 0xfff8000000000000UL
;
1995 sparc64_va_hole_bottom
= 0x0008000000000000UL
;
1998 case SUN4V_CHIP_SPARC_M8
:
2000 /* M8 and later support 54-bit virtual addresses.
2001 * However, restricting M8 and above VA bits to 53
2002 * as 4-level page table cannot support more than
2005 sparc64_va_hole_top
= 0xfff0000000000000UL
;
2006 sparc64_va_hole_bottom
= 0x0010000000000000UL
;
2012 if (max_phys_bits
> MAX_PHYS_ADDRESS_BITS
) {
2013 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
2018 PAGE_OFFSET
= sparc64_va_hole_top
;
2019 VMALLOC_END
= ((sparc64_va_hole_bottom
>> 1) +
2020 (sparc64_va_hole_bottom
>> 2));
2022 pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
2023 PAGE_OFFSET
, max_phys_bits
);
2024 pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
2025 VMALLOC_START
, VMALLOC_END
);
2026 pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
2027 VMEMMAP_BASE
, VMEMMAP_BASE
<< 1);
2030 static void __init
tsb_phys_patch(void)
2032 struct tsb_ldquad_phys_patch_entry
*pquad
;
2033 struct tsb_phys_patch_entry
*p
;
2035 pquad
= &__tsb_ldquad_phys_patch
;
2036 while (pquad
< &__tsb_ldquad_phys_patch_end
) {
2037 unsigned long addr
= pquad
->addr
;
2039 if (tlb_type
== hypervisor
)
2040 *(unsigned int *) addr
= pquad
->sun4v_insn
;
2042 *(unsigned int *) addr
= pquad
->sun4u_insn
;
2044 __asm__
__volatile__("flush %0"
2051 p
= &__tsb_phys_patch
;
2052 while (p
< &__tsb_phys_patch_end
) {
2053 unsigned long addr
= p
->addr
;
2055 *(unsigned int *) addr
= p
->insn
;
2057 __asm__
__volatile__("flush %0"
2065 /* Don't mark as init, we give this to the Hypervisor. */
2066 #ifndef CONFIG_DEBUG_PAGEALLOC
2067 #define NUM_KTSB_DESCR 2
2069 #define NUM_KTSB_DESCR 1
2071 static struct hv_tsb_descr ktsb_descr
[NUM_KTSB_DESCR
];
2073 /* The swapper TSBs are loaded with a base sequence of:
2075 * sethi %uhi(SYMBOL), REG1
2076 * sethi %hi(SYMBOL), REG2
2077 * or REG1, %ulo(SYMBOL), REG1
2078 * or REG2, %lo(SYMBOL), REG2
2079 * sllx REG1, 32, REG1
2080 * or REG1, REG2, REG1
2082 * When we use physical addressing for the TSB accesses, we patch the
2083 * first four instructions in the above sequence.
2086 static void patch_one_ktsb_phys(unsigned int *start
, unsigned int *end
, unsigned long pa
)
2088 unsigned long high_bits
, low_bits
;
2090 high_bits
= (pa
>> 32) & 0xffffffff;
2091 low_bits
= (pa
>> 0) & 0xffffffff;
2093 while (start
< end
) {
2094 unsigned int *ia
= (unsigned int *)(unsigned long)*start
;
2096 ia
[0] = (ia
[0] & ~0x3fffff) | (high_bits
>> 10);
2097 __asm__
__volatile__("flush %0" : : "r" (ia
));
2099 ia
[1] = (ia
[1] & ~0x3fffff) | (low_bits
>> 10);
2100 __asm__
__volatile__("flush %0" : : "r" (ia
+ 1));
2102 ia
[2] = (ia
[2] & ~0x1fff) | (high_bits
& 0x3ff);
2103 __asm__
__volatile__("flush %0" : : "r" (ia
+ 2));
2105 ia
[3] = (ia
[3] & ~0x1fff) | (low_bits
& 0x3ff);
2106 __asm__
__volatile__("flush %0" : : "r" (ia
+ 3));
2112 static void ktsb_phys_patch(void)
2114 extern unsigned int __swapper_tsb_phys_patch
;
2115 extern unsigned int __swapper_tsb_phys_patch_end
;
2116 unsigned long ktsb_pa
;
2118 ktsb_pa
= kern_base
+ ((unsigned long)&swapper_tsb
[0] - KERNBASE
);
2119 patch_one_ktsb_phys(&__swapper_tsb_phys_patch
,
2120 &__swapper_tsb_phys_patch_end
, ktsb_pa
);
2121 #ifndef CONFIG_DEBUG_PAGEALLOC
2123 extern unsigned int __swapper_4m_tsb_phys_patch
;
2124 extern unsigned int __swapper_4m_tsb_phys_patch_end
;
2125 ktsb_pa
= (kern_base
+
2126 ((unsigned long)&swapper_4m_tsb
[0] - KERNBASE
));
2127 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch
,
2128 &__swapper_4m_tsb_phys_patch_end
, ktsb_pa
);
2133 static void __init
sun4v_ktsb_init(void)
2135 unsigned long ktsb_pa
;
2137 /* First KTSB for PAGE_SIZE mappings. */
2138 ktsb_pa
= kern_base
+ ((unsigned long)&swapper_tsb
[0] - KERNBASE
);
2140 switch (PAGE_SIZE
) {
2143 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_8K
;
2144 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_8K
;
2148 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_64K
;
2149 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_64K
;
2153 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_512K
;
2154 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_512K
;
2157 case 4 * 1024 * 1024:
2158 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_4MB
;
2159 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_4MB
;
2163 ktsb_descr
[0].assoc
= 1;
2164 ktsb_descr
[0].num_ttes
= KERNEL_TSB_NENTRIES
;
2165 ktsb_descr
[0].ctx_idx
= 0;
2166 ktsb_descr
[0].tsb_base
= ktsb_pa
;
2167 ktsb_descr
[0].resv
= 0;
2169 #ifndef CONFIG_DEBUG_PAGEALLOC
2170 /* Second KTSB for 4MB/256MB/2GB/16GB mappings. */
2171 ktsb_pa
= (kern_base
+
2172 ((unsigned long)&swapper_4m_tsb
[0] - KERNBASE
));
2174 ktsb_descr
[1].pgsz_idx
= HV_PGSZ_IDX_4MB
;
2175 ktsb_descr
[1].pgsz_mask
= ((HV_PGSZ_MASK_4MB
|
2176 HV_PGSZ_MASK_256MB
|
2178 HV_PGSZ_MASK_16GB
) &
2180 ktsb_descr
[1].assoc
= 1;
2181 ktsb_descr
[1].num_ttes
= KERNEL_TSB4M_NENTRIES
;
2182 ktsb_descr
[1].ctx_idx
= 0;
2183 ktsb_descr
[1].tsb_base
= ktsb_pa
;
2184 ktsb_descr
[1].resv
= 0;
2188 void sun4v_ktsb_register(void)
2190 unsigned long pa
, ret
;
2192 pa
= kern_base
+ ((unsigned long)&ktsb_descr
[0] - KERNBASE
);
2194 ret
= sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR
, pa
);
2196 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2197 "errors with %lx\n", pa
, ret
);
2202 static void __init
sun4u_linear_pte_xor_finalize(void)
2204 #ifndef CONFIG_DEBUG_PAGEALLOC
2205 /* This is where we would add Panther support for
2206 * 32MB and 256MB pages.
2211 static void __init
sun4v_linear_pte_xor_finalize(void)
2213 unsigned long pagecv_flag
;
2215 /* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2216 * enables MCD error. Do not set bit 9 on M7 processor.
2218 switch (sun4v_chip_type
) {
2219 case SUN4V_CHIP_SPARC_M7
:
2220 case SUN4V_CHIP_SPARC_M8
:
2221 case SUN4V_CHIP_SPARC_SN
:
2225 pagecv_flag
= _PAGE_CV_4V
;
2228 #ifndef CONFIG_DEBUG_PAGEALLOC
2229 if (cpu_pgsz_mask
& HV_PGSZ_MASK_256MB
) {
2230 kern_linear_pte_xor
[1] = (_PAGE_VALID
| _PAGE_SZ256MB_4V
) ^
2232 kern_linear_pte_xor
[1] |= (_PAGE_CP_4V
| pagecv_flag
|
2233 _PAGE_P_4V
| _PAGE_W_4V
);
2235 kern_linear_pte_xor
[1] = kern_linear_pte_xor
[0];
2238 if (cpu_pgsz_mask
& HV_PGSZ_MASK_2GB
) {
2239 kern_linear_pte_xor
[2] = (_PAGE_VALID
| _PAGE_SZ2GB_4V
) ^
2241 kern_linear_pte_xor
[2] |= (_PAGE_CP_4V
| pagecv_flag
|
2242 _PAGE_P_4V
| _PAGE_W_4V
);
2244 kern_linear_pte_xor
[2] = kern_linear_pte_xor
[1];
2247 if (cpu_pgsz_mask
& HV_PGSZ_MASK_16GB
) {
2248 kern_linear_pte_xor
[3] = (_PAGE_VALID
| _PAGE_SZ16GB_4V
) ^
2250 kern_linear_pte_xor
[3] |= (_PAGE_CP_4V
| pagecv_flag
|
2251 _PAGE_P_4V
| _PAGE_W_4V
);
2253 kern_linear_pte_xor
[3] = kern_linear_pte_xor
[2];
2258 /* paging_init() sets up the page tables */
2260 static unsigned long last_valid_pfn
;
2262 static void sun4u_pgprot_init(void);
2263 static void sun4v_pgprot_init(void);
2265 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2266 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2267 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2268 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2269 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2270 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2272 /* We need to exclude reserved regions. This exclusion will include
2273 * vmlinux and initrd. To be more precise the initrd size could be used to
2274 * compute a new lower limit because it is freed later during initialization.
2276 static void __init
reduce_memory(phys_addr_t limit_ram
)
2278 limit_ram
+= memblock_reserved_size();
2279 memblock_enforce_memory_limit(limit_ram
);
2282 void __init
paging_init(void)
2284 unsigned long end_pfn
, shift
, phys_base
;
2285 unsigned long real_end
, i
;
2287 setup_page_offset();
2289 /* These build time checkes make sure that the dcache_dirty_cpu()
2290 * folio->flags usage will work.
2292 * When a page gets marked as dcache-dirty, we store the
2293 * cpu number starting at bit 32 in the folio->flags. Also,
2294 * functions like clear_dcache_dirty_cpu use the cpu mask
2295 * in 13-bit signed-immediate instruction fields.
2299 * Page flags must not reach into upper 32 bits that are used
2300 * for the cpu number
2302 BUILD_BUG_ON(NR_PAGEFLAGS
> 32);
2305 * The bit fields placed in the high range must not reach below
2306 * the 32 bit boundary. Otherwise we cannot place the cpu field
2307 * at the 32 bit boundary.
2309 BUILD_BUG_ON(SECTIONS_WIDTH
+ NODES_WIDTH
+ ZONES_WIDTH
+
2310 ilog2(roundup_pow_of_two(NR_CPUS
)) > 32);
2312 BUILD_BUG_ON(NR_CPUS
> 4096);
2314 kern_base
= (prom_boot_mapping_phys_low
>> ILOG2_4MB
) << ILOG2_4MB
;
2315 kern_size
= (unsigned long)&_end
- (unsigned long)KERNBASE
;
2317 /* Invalidate both kernel TSBs. */
2318 memset(swapper_tsb
, 0x40, sizeof(swapper_tsb
));
2319 #ifndef CONFIG_DEBUG_PAGEALLOC
2320 memset(swapper_4m_tsb
, 0x40, sizeof(swapper_4m_tsb
));
2323 /* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2324 * bit on M7 processor. This is a conflicting usage of the same
2325 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2326 * Detection error on all pages and this will lead to problems
2327 * later. Kernel does not run with MCD enabled and hence rest
2328 * of the required steps to fully configure memory corruption
2329 * detection are not taken. We need to ensure TTE.mcde is not
2330 * set on M7 processor. Compute the value of cacheability
2331 * flag for use later taking this into consideration.
2333 switch (sun4v_chip_type
) {
2334 case SUN4V_CHIP_SPARC_M7
:
2335 case SUN4V_CHIP_SPARC_M8
:
2336 case SUN4V_CHIP_SPARC_SN
:
2337 page_cache4v_flag
= _PAGE_CP_4V
;
2340 page_cache4v_flag
= _PAGE_CACHE_4V
;
2344 if (tlb_type
== hypervisor
)
2345 sun4v_pgprot_init();
2347 sun4u_pgprot_init();
2349 if (tlb_type
== cheetah_plus
||
2350 tlb_type
== hypervisor
) {
2355 if (tlb_type
== hypervisor
)
2356 sun4v_patch_tlb_handlers();
2358 /* Find available physical memory...
2360 * Read it twice in order to work around a bug in openfirmware.
2361 * The call to grab this table itself can cause openfirmware to
2362 * allocate memory, which in turn can take away some space from
2363 * the list of available memory. Reading it twice makes sure
2364 * we really do get the final value.
2366 read_obp_translations();
2367 read_obp_memory("reg", &pall
[0], &pall_ents
);
2368 read_obp_memory("available", &pavail
[0], &pavail_ents
);
2369 read_obp_memory("available", &pavail
[0], &pavail_ents
);
2371 phys_base
= 0xffffffffffffffffUL
;
2372 for (i
= 0; i
< pavail_ents
; i
++) {
2373 phys_base
= min(phys_base
, pavail
[i
].phys_addr
);
2374 memblock_add(pavail
[i
].phys_addr
, pavail
[i
].reg_size
);
2377 memblock_reserve(kern_base
, kern_size
);
2379 find_ramdisk(phys_base
);
2381 if (cmdline_memory_size
)
2382 reduce_memory(cmdline_memory_size
);
2384 memblock_allow_resize();
2385 memblock_dump_all();
2387 set_bit(0, mmu_context_bmap
);
2389 shift
= kern_base
+ PAGE_OFFSET
- ((unsigned long)KERNBASE
);
2391 real_end
= (unsigned long)_end
;
2392 num_kernel_image_mappings
= DIV_ROUND_UP(real_end
- KERNBASE
, 1 << ILOG2_4MB
);
2393 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2394 num_kernel_image_mappings
);
2396 /* Set kernel pgd to upper alias so physical page computations
2399 init_mm
.pgd
+= ((shift
) / (sizeof(pgd_t
)));
2401 memset(swapper_pg_dir
, 0, sizeof(swapper_pg_dir
));
2403 inherit_prom_mappings();
2405 /* Ok, we can use our TLB miss and window trap handlers safely. */
2410 prom_build_devicetree();
2411 of_populate_present_mask();
2413 of_fill_in_cpu_data();
2416 if (tlb_type
== hypervisor
) {
2418 mdesc_populate_present_mask(cpu_all_mask
);
2420 mdesc_fill_in_cpu_data(cpu_all_mask
);
2422 mdesc_get_page_sizes(cpu_all_mask
, &cpu_pgsz_mask
);
2424 sun4v_linear_pte_xor_finalize();
2427 sun4v_ktsb_register();
2429 unsigned long impl
, ver
;
2431 cpu_pgsz_mask
= (HV_PGSZ_MASK_8K
| HV_PGSZ_MASK_64K
|
2432 HV_PGSZ_MASK_512K
| HV_PGSZ_MASK_4MB
);
2434 __asm__
__volatile__("rdpr %%ver, %0" : "=r" (ver
));
2435 impl
= ((ver
>> 32) & 0xffff);
2436 if (impl
== PANTHER_IMPL
)
2437 cpu_pgsz_mask
|= (HV_PGSZ_MASK_32MB
|
2438 HV_PGSZ_MASK_256MB
);
2440 sun4u_linear_pte_xor_finalize();
2443 /* Flush the TLBs and the 4M TSB so that the updated linear
2444 * pte XOR settings are realized for all mappings.
2447 #ifndef CONFIG_DEBUG_PAGEALLOC
2448 memset(swapper_4m_tsb
, 0x40, sizeof(swapper_4m_tsb
));
2452 /* Setup bootmem... */
2453 last_valid_pfn
= end_pfn
= bootmem_init(phys_base
);
2455 kernel_physical_mapping_init();
2458 unsigned long max_zone_pfns
[MAX_NR_ZONES
];
2460 memset(max_zone_pfns
, 0, sizeof(max_zone_pfns
));
2462 max_zone_pfns
[ZONE_NORMAL
] = end_pfn
;
2464 free_area_init(max_zone_pfns
);
2467 printk("Booting Linux...\n");
2470 int page_in_phys_avail(unsigned long paddr
)
2476 for (i
= 0; i
< pavail_ents
; i
++) {
2477 unsigned long start
, end
;
2479 start
= pavail
[i
].phys_addr
;
2480 end
= start
+ pavail
[i
].reg_size
;
2482 if (paddr
>= start
&& paddr
< end
)
2485 if (paddr
>= kern_base
&& paddr
< (kern_base
+ kern_size
))
2487 #ifdef CONFIG_BLK_DEV_INITRD
2488 if (paddr
>= __pa(initrd_start
) &&
2489 paddr
< __pa(PAGE_ALIGN(initrd_end
)))
2496 static void __init
register_page_bootmem_info(void)
2501 for_each_online_node(i
)
2502 if (NODE_DATA(i
)->node_spanned_pages
)
2503 register_page_bootmem_info_node(NODE_DATA(i
));
2506 void __init
mem_init(void)
2508 high_memory
= __va(last_valid_pfn
<< PAGE_SHIFT
);
2510 memblock_free_all();
2513 * Must be done after boot memory is put on freelist, because here we
2514 * might set fields in deferred struct pages that have not yet been
2515 * initialized, and memblock_free_all() initializes all the reserved
2516 * deferred pages for us.
2518 register_page_bootmem_info();
2521 * Set up the zero page, mark it reserved, so that page count
2522 * is not manipulated when freeing the page from user ptes.
2524 mem_map_zero
= alloc_pages(GFP_KERNEL
|__GFP_ZERO
, 0);
2525 if (mem_map_zero
== NULL
) {
2526 prom_printf("paging_init: Cannot alloc zero page.\n");
2529 mark_page_reserved(mem_map_zero
);
2532 if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
)
2533 cheetah_ecache_flush_init();
2536 void free_initmem(void)
2538 unsigned long addr
, initend
;
2541 /* If the physical memory maps were trimmed by kernel command
2542 * line options, don't even try freeing this initmem stuff up.
2543 * The kernel image could have been in the trimmed out region
2544 * and if so the freeing below will free invalid page structs.
2546 if (cmdline_memory_size
)
2550 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2552 addr
= PAGE_ALIGN((unsigned long)(__init_begin
));
2553 initend
= (unsigned long)(__init_end
) & PAGE_MASK
;
2554 for (; addr
< initend
; addr
+= PAGE_SIZE
) {
2558 ((unsigned long) __va(kern_base
)) -
2559 ((unsigned long) KERNBASE
));
2560 memset((void *)addr
, POISON_FREE_INITMEM
, PAGE_SIZE
);
2563 free_reserved_page(virt_to_page(page
));
2567 pgprot_t PAGE_KERNEL __read_mostly
;
2568 EXPORT_SYMBOL(PAGE_KERNEL
);
2570 pgprot_t PAGE_KERNEL_LOCKED __read_mostly
;
2571 pgprot_t PAGE_COPY __read_mostly
;
2573 pgprot_t PAGE_SHARED __read_mostly
;
2574 EXPORT_SYMBOL(PAGE_SHARED
);
2576 unsigned long pg_iobits __read_mostly
;
2578 unsigned long _PAGE_IE __read_mostly
;
2579 EXPORT_SYMBOL(_PAGE_IE
);
2581 unsigned long _PAGE_E __read_mostly
;
2582 EXPORT_SYMBOL(_PAGE_E
);
2584 unsigned long _PAGE_CACHE __read_mostly
;
2585 EXPORT_SYMBOL(_PAGE_CACHE
);
2587 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2588 int __meminit
vmemmap_populate(unsigned long vstart
, unsigned long vend
,
2589 int node
, struct vmem_altmap
*altmap
)
2591 unsigned long pte_base
;
2593 pte_base
= (_PAGE_VALID
| _PAGE_SZ4MB_4U
|
2594 _PAGE_CP_4U
| _PAGE_CV_4U
|
2595 _PAGE_P_4U
| _PAGE_W_4U
);
2596 if (tlb_type
== hypervisor
)
2597 pte_base
= (_PAGE_VALID
| _PAGE_SZ4MB_4V
|
2598 page_cache4v_flag
| _PAGE_P_4V
| _PAGE_W_4V
);
2600 pte_base
|= _PAGE_PMD_HUGE
;
2602 vstart
= vstart
& PMD_MASK
;
2603 vend
= ALIGN(vend
, PMD_SIZE
);
2604 for (; vstart
< vend
; vstart
+= PMD_SIZE
) {
2605 pgd_t
*pgd
= vmemmap_pgd_populate(vstart
, node
);
2614 p4d
= vmemmap_p4d_populate(pgd
, vstart
, node
);
2618 pud
= vmemmap_pud_populate(p4d
, vstart
, node
);
2622 pmd
= pmd_offset(pud
, vstart
);
2623 pte
= pmd_val(*pmd
);
2624 if (!(pte
& _PAGE_VALID
)) {
2625 void *block
= vmemmap_alloc_block(PMD_SIZE
, node
);
2630 pmd_val(*pmd
) = pte_base
| __pa(block
);
2636 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2638 /* These are actually filled in at boot time by sun4{u,v}_pgprot_init() */
2639 static pgprot_t protection_map
[16] __ro_after_init
;
2641 static void prot_init_common(unsigned long page_none
,
2642 unsigned long page_shared
,
2643 unsigned long page_copy
,
2644 unsigned long page_readonly
,
2645 unsigned long page_exec_bit
)
2647 PAGE_COPY
= __pgprot(page_copy
);
2648 PAGE_SHARED
= __pgprot(page_shared
);
2650 protection_map
[0x0] = __pgprot(page_none
);
2651 protection_map
[0x1] = __pgprot(page_readonly
& ~page_exec_bit
);
2652 protection_map
[0x2] = __pgprot(page_copy
& ~page_exec_bit
);
2653 protection_map
[0x3] = __pgprot(page_copy
& ~page_exec_bit
);
2654 protection_map
[0x4] = __pgprot(page_readonly
);
2655 protection_map
[0x5] = __pgprot(page_readonly
);
2656 protection_map
[0x6] = __pgprot(page_copy
);
2657 protection_map
[0x7] = __pgprot(page_copy
);
2658 protection_map
[0x8] = __pgprot(page_none
);
2659 protection_map
[0x9] = __pgprot(page_readonly
& ~page_exec_bit
);
2660 protection_map
[0xa] = __pgprot(page_shared
& ~page_exec_bit
);
2661 protection_map
[0xb] = __pgprot(page_shared
& ~page_exec_bit
);
2662 protection_map
[0xc] = __pgprot(page_readonly
);
2663 protection_map
[0xd] = __pgprot(page_readonly
);
2664 protection_map
[0xe] = __pgprot(page_shared
);
2665 protection_map
[0xf] = __pgprot(page_shared
);
2668 static void __init
sun4u_pgprot_init(void)
2670 unsigned long page_none
, page_shared
, page_copy
, page_readonly
;
2671 unsigned long page_exec_bit
;
2674 PAGE_KERNEL
= __pgprot (_PAGE_PRESENT_4U
| _PAGE_VALID
|
2675 _PAGE_CACHE_4U
| _PAGE_P_4U
|
2676 __ACCESS_BITS_4U
| __DIRTY_BITS_4U
|
2678 PAGE_KERNEL_LOCKED
= __pgprot (_PAGE_PRESENT_4U
| _PAGE_VALID
|
2679 _PAGE_CACHE_4U
| _PAGE_P_4U
|
2680 __ACCESS_BITS_4U
| __DIRTY_BITS_4U
|
2681 _PAGE_EXEC_4U
| _PAGE_L_4U
);
2683 _PAGE_IE
= _PAGE_IE_4U
;
2684 _PAGE_E
= _PAGE_E_4U
;
2685 _PAGE_CACHE
= _PAGE_CACHE_4U
;
2687 pg_iobits
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| __DIRTY_BITS_4U
|
2688 __ACCESS_BITS_4U
| _PAGE_E_4U
);
2690 #ifdef CONFIG_DEBUG_PAGEALLOC
2691 kern_linear_pte_xor
[0] = _PAGE_VALID
^ PAGE_OFFSET
;
2693 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZ4MB_4U
) ^
2696 kern_linear_pte_xor
[0] |= (_PAGE_CP_4U
| _PAGE_CV_4U
|
2697 _PAGE_P_4U
| _PAGE_W_4U
);
2699 for (i
= 1; i
< 4; i
++)
2700 kern_linear_pte_xor
[i
] = kern_linear_pte_xor
[0];
2702 _PAGE_ALL_SZ_BITS
= (_PAGE_SZ4MB_4U
| _PAGE_SZ512K_4U
|
2703 _PAGE_SZ64K_4U
| _PAGE_SZ8K_4U
|
2704 _PAGE_SZ32MB_4U
| _PAGE_SZ256MB_4U
);
2707 page_none
= _PAGE_PRESENT_4U
| _PAGE_ACCESSED_4U
| _PAGE_CACHE_4U
;
2708 page_shared
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
2709 __ACCESS_BITS_4U
| _PAGE_WRITE_4U
| _PAGE_EXEC_4U
);
2710 page_copy
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
2711 __ACCESS_BITS_4U
| _PAGE_EXEC_4U
);
2712 page_readonly
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
2713 __ACCESS_BITS_4U
| _PAGE_EXEC_4U
);
2715 page_exec_bit
= _PAGE_EXEC_4U
;
2717 prot_init_common(page_none
, page_shared
, page_copy
, page_readonly
,
2721 static void __init
sun4v_pgprot_init(void)
2723 unsigned long page_none
, page_shared
, page_copy
, page_readonly
;
2724 unsigned long page_exec_bit
;
2727 PAGE_KERNEL
= __pgprot (_PAGE_PRESENT_4V
| _PAGE_VALID
|
2728 page_cache4v_flag
| _PAGE_P_4V
|
2729 __ACCESS_BITS_4V
| __DIRTY_BITS_4V
|
2731 PAGE_KERNEL_LOCKED
= PAGE_KERNEL
;
2733 _PAGE_IE
= _PAGE_IE_4V
;
2734 _PAGE_E
= _PAGE_E_4V
;
2735 _PAGE_CACHE
= page_cache4v_flag
;
2737 #ifdef CONFIG_DEBUG_PAGEALLOC
2738 kern_linear_pte_xor
[0] = _PAGE_VALID
^ PAGE_OFFSET
;
2740 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZ4MB_4V
) ^
2743 kern_linear_pte_xor
[0] |= (page_cache4v_flag
| _PAGE_P_4V
|
2746 for (i
= 1; i
< 4; i
++)
2747 kern_linear_pte_xor
[i
] = kern_linear_pte_xor
[0];
2749 pg_iobits
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| __DIRTY_BITS_4V
|
2750 __ACCESS_BITS_4V
| _PAGE_E_4V
);
2752 _PAGE_ALL_SZ_BITS
= (_PAGE_SZ16GB_4V
| _PAGE_SZ2GB_4V
|
2753 _PAGE_SZ256MB_4V
| _PAGE_SZ32MB_4V
|
2754 _PAGE_SZ4MB_4V
| _PAGE_SZ512K_4V
|
2755 _PAGE_SZ64K_4V
| _PAGE_SZ8K_4V
);
2757 page_none
= _PAGE_PRESENT_4V
| _PAGE_ACCESSED_4V
| page_cache4v_flag
;
2758 page_shared
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| page_cache4v_flag
|
2759 __ACCESS_BITS_4V
| _PAGE_WRITE_4V
| _PAGE_EXEC_4V
);
2760 page_copy
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| page_cache4v_flag
|
2761 __ACCESS_BITS_4V
| _PAGE_EXEC_4V
);
2762 page_readonly
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| page_cache4v_flag
|
2763 __ACCESS_BITS_4V
| _PAGE_EXEC_4V
);
2765 page_exec_bit
= _PAGE_EXEC_4V
;
2767 prot_init_common(page_none
, page_shared
, page_copy
, page_readonly
,
2771 unsigned long pte_sz_bits(unsigned long sz
)
2773 if (tlb_type
== hypervisor
) {
2777 return _PAGE_SZ8K_4V
;
2779 return _PAGE_SZ64K_4V
;
2781 return _PAGE_SZ512K_4V
;
2782 case 4 * 1024 * 1024:
2783 return _PAGE_SZ4MB_4V
;
2789 return _PAGE_SZ8K_4U
;
2791 return _PAGE_SZ64K_4U
;
2793 return _PAGE_SZ512K_4U
;
2794 case 4 * 1024 * 1024:
2795 return _PAGE_SZ4MB_4U
;
2800 pte_t
mk_pte_io(unsigned long page
, pgprot_t prot
, int space
, unsigned long page_size
)
2804 pte_val(pte
) = page
| pgprot_val(pgprot_noncached(prot
));
2805 pte_val(pte
) |= (((unsigned long)space
) << 32);
2806 pte_val(pte
) |= pte_sz_bits(page_size
);
2811 static unsigned long kern_large_tte(unsigned long paddr
)
2815 val
= (_PAGE_VALID
| _PAGE_SZ4MB_4U
|
2816 _PAGE_CP_4U
| _PAGE_CV_4U
| _PAGE_P_4U
|
2817 _PAGE_EXEC_4U
| _PAGE_L_4U
| _PAGE_W_4U
);
2818 if (tlb_type
== hypervisor
)
2819 val
= (_PAGE_VALID
| _PAGE_SZ4MB_4V
|
2820 page_cache4v_flag
| _PAGE_P_4V
|
2821 _PAGE_EXEC_4V
| _PAGE_W_4V
);
2826 /* If not locked, zap it. */
2827 void __flush_tlb_all(void)
2829 unsigned long pstate
;
2832 __asm__
__volatile__("flushw\n\t"
2833 "rdpr %%pstate, %0\n\t"
2834 "wrpr %0, %1, %%pstate"
2837 if (tlb_type
== hypervisor
) {
2838 sun4v_mmu_demap_all();
2839 } else if (tlb_type
== spitfire
) {
2840 for (i
= 0; i
< 64; i
++) {
2841 /* Spitfire Errata #32 workaround */
2842 /* NOTE: Always runs on spitfire, so no
2843 * cheetah+ page size encodings.
2845 __asm__
__volatile__("stxa %0, [%1] %2\n\t"
2849 "r" (PRIMARY_CONTEXT
), "i" (ASI_DMMU
));
2851 if (!(spitfire_get_dtlb_data(i
) & _PAGE_L_4U
)) {
2852 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
2855 : "r" (TLB_TAG_ACCESS
), "i" (ASI_DMMU
));
2856 spitfire_put_dtlb_data(i
, 0x0UL
);
2859 /* Spitfire Errata #32 workaround */
2860 /* NOTE: Always runs on spitfire, so no
2861 * cheetah+ page size encodings.
2863 __asm__
__volatile__("stxa %0, [%1] %2\n\t"
2867 "r" (PRIMARY_CONTEXT
), "i" (ASI_DMMU
));
2869 if (!(spitfire_get_itlb_data(i
) & _PAGE_L_4U
)) {
2870 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
2873 : "r" (TLB_TAG_ACCESS
), "i" (ASI_IMMU
));
2874 spitfire_put_itlb_data(i
, 0x0UL
);
2877 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
2878 cheetah_flush_dtlb_all();
2879 cheetah_flush_itlb_all();
2881 __asm__
__volatile__("wrpr %0, 0, %%pstate"
2885 pte_t
*pte_alloc_one_kernel(struct mm_struct
*mm
)
2887 struct page
*page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
2891 pte
= (pte_t
*) page_address(page
);
2896 pgtable_t
pte_alloc_one(struct mm_struct
*mm
)
2898 struct ptdesc
*ptdesc
= pagetable_alloc(GFP_KERNEL
| __GFP_ZERO
, 0);
2902 if (!pagetable_pte_ctor(ptdesc
)) {
2903 pagetable_free(ptdesc
);
2906 return ptdesc_address(ptdesc
);
2909 void pte_free_kernel(struct mm_struct
*mm
, pte_t
*pte
)
2911 free_page((unsigned long)pte
);
2914 static void __pte_free(pgtable_t pte
)
2916 struct ptdesc
*ptdesc
= virt_to_ptdesc(pte
);
2918 pagetable_pte_dtor(ptdesc
);
2919 pagetable_free(ptdesc
);
2922 void pte_free(struct mm_struct
*mm
, pgtable_t pte
)
2927 void pgtable_free(void *table
, bool is_page
)
2932 kmem_cache_free(pgtable_cache
, table
);
2935 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2936 static void pte_free_now(struct rcu_head
*head
)
2940 page
= container_of(head
, struct page
, rcu_head
);
2941 __pte_free((pgtable_t
)page_address(page
));
2944 void pte_free_defer(struct mm_struct
*mm
, pgtable_t pgtable
)
2948 page
= virt_to_page(pgtable
);
2949 call_rcu(&page
->rcu_head
, pte_free_now
);
2952 void update_mmu_cache_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
2955 unsigned long pte
, flags
;
2956 struct mm_struct
*mm
;
2959 if (!pmd_leaf(entry
) || !pmd_young(entry
))
2962 pte
= pmd_val(entry
);
2964 /* Don't insert a non-valid PMD into the TSB, we'll deadlock. */
2965 if (!(pte
& _PAGE_VALID
))
2968 /* We are fabricating 8MB pages using 4MB real hw pages. */
2969 pte
|= (addr
& (1UL << REAL_HPAGE_SHIFT
));
2973 spin_lock_irqsave(&mm
->context
.lock
, flags
);
2975 if (mm
->context
.tsb_block
[MM_TSB_HUGE
].tsb
!= NULL
)
2976 __update_mmu_tsb_insert(mm
, MM_TSB_HUGE
, REAL_HPAGE_SHIFT
,
2979 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
2981 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2983 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2984 static void context_reload(void *__data
)
2986 struct mm_struct
*mm
= __data
;
2988 if (mm
== current
->mm
)
2989 load_secondary_context(mm
);
2992 void hugetlb_setup(struct pt_regs
*regs
)
2994 struct mm_struct
*mm
= current
->mm
;
2995 struct tsb_config
*tp
;
2997 if (faulthandler_disabled() || !mm
) {
2998 const struct exception_table_entry
*entry
;
3000 entry
= search_exception_tables(regs
->tpc
);
3002 regs
->tpc
= entry
->fixup
;
3003 regs
->tnpc
= regs
->tpc
+ 4;
3006 pr_alert("Unexpected HugeTLB setup in atomic context.\n");
3007 die_if_kernel("HugeTSB in atomic", regs
);
3010 tp
= &mm
->context
.tsb_block
[MM_TSB_HUGE
];
3011 if (likely(tp
->tsb
== NULL
))
3012 tsb_grow(mm
, MM_TSB_HUGE
, 0);
3014 tsb_context_switch(mm
);
3017 /* On UltraSPARC-III+ and later, configure the second half of
3018 * the Data-TLB for huge pages.
3020 if (tlb_type
== cheetah_plus
) {
3021 bool need_context_reload
= false;
3024 spin_lock_irq(&ctx_alloc_lock
);
3025 ctx
= mm
->context
.sparc64_ctx_val
;
3026 ctx
&= ~CTX_PGSZ_MASK
;
3027 ctx
|= CTX_PGSZ_BASE
<< CTX_PGSZ0_SHIFT
;
3028 ctx
|= CTX_PGSZ_HUGE
<< CTX_PGSZ1_SHIFT
;
3030 if (ctx
!= mm
->context
.sparc64_ctx_val
) {
3031 /* When changing the page size fields, we
3032 * must perform a context flush so that no
3033 * stale entries match. This flush must
3034 * occur with the original context register
3037 do_flush_tlb_mm(mm
);
3039 /* Reload the context register of all processors
3040 * also executing in this address space.
3042 mm
->context
.sparc64_ctx_val
= ctx
;
3043 need_context_reload
= true;
3045 spin_unlock_irq(&ctx_alloc_lock
);
3047 if (need_context_reload
)
3048 on_each_cpu(context_reload
, mm
, 0);
3053 static struct resource code_resource
= {
3054 .name
= "Kernel code",
3055 .flags
= IORESOURCE_BUSY
| IORESOURCE_SYSTEM_RAM
3058 static struct resource data_resource
= {
3059 .name
= "Kernel data",
3060 .flags
= IORESOURCE_BUSY
| IORESOURCE_SYSTEM_RAM
3063 static struct resource bss_resource
= {
3064 .name
= "Kernel bss",
3065 .flags
= IORESOURCE_BUSY
| IORESOURCE_SYSTEM_RAM
3068 static inline resource_size_t
compute_kern_paddr(void *addr
)
3070 return (resource_size_t
) (addr
- KERNBASE
+ kern_base
);
3073 static void __init
kernel_lds_init(void)
3075 code_resource
.start
= compute_kern_paddr(_text
);
3076 code_resource
.end
= compute_kern_paddr(_etext
- 1);
3077 data_resource
.start
= compute_kern_paddr(_etext
);
3078 data_resource
.end
= compute_kern_paddr(_edata
- 1);
3079 bss_resource
.start
= compute_kern_paddr(__bss_start
);
3080 bss_resource
.end
= compute_kern_paddr(_end
- 1);
3083 static int __init
report_memory(void)
3086 struct resource
*res
;
3090 for (i
= 0; i
< pavail_ents
; i
++) {
3091 res
= kzalloc(sizeof(struct resource
), GFP_KERNEL
);
3094 pr_warn("Failed to allocate source.\n");
3098 res
->name
= "System RAM";
3099 res
->start
= pavail
[i
].phys_addr
;
3100 res
->end
= pavail
[i
].phys_addr
+ pavail
[i
].reg_size
- 1;
3101 res
->flags
= IORESOURCE_BUSY
| IORESOURCE_SYSTEM_RAM
;
3103 if (insert_resource(&iomem_resource
, res
) < 0) {
3104 pr_warn("Resource insertion failed.\n");
3108 insert_resource(res
, &code_resource
);
3109 insert_resource(res
, &data_resource
);
3110 insert_resource(res
, &bss_resource
);
3115 arch_initcall(report_memory
);
3118 #define do_flush_tlb_kernel_range smp_flush_tlb_kernel_range
3120 #define do_flush_tlb_kernel_range __flush_tlb_kernel_range
3123 void flush_tlb_kernel_range(unsigned long start
, unsigned long end
)
3125 if (start
< HI_OBP_ADDRESS
&& end
> LOW_OBP_ADDRESS
) {
3126 if (start
< LOW_OBP_ADDRESS
) {
3127 flush_tsb_kernel_range(start
, LOW_OBP_ADDRESS
);
3128 do_flush_tlb_kernel_range(start
, LOW_OBP_ADDRESS
);
3130 if (end
> HI_OBP_ADDRESS
) {
3131 flush_tsb_kernel_range(HI_OBP_ADDRESS
, end
);
3132 do_flush_tlb_kernel_range(HI_OBP_ADDRESS
, end
);
3135 flush_tsb_kernel_range(start
, end
);
3136 do_flush_tlb_kernel_range(start
, end
);
3140 void copy_user_highpage(struct page
*to
, struct page
*from
,
3141 unsigned long vaddr
, struct vm_area_struct
*vma
)
3145 vfrom
= kmap_atomic(from
);
3146 vto
= kmap_atomic(to
);
3147 copy_user_page(vto
, vfrom
, vaddr
, to
);
3149 kunmap_atomic(vfrom
);
3151 /* If this page has ADI enabled, copy over any ADI tags
3154 if (vma
->vm_flags
& VM_SPARC_ADI
) {
3155 unsigned long pfrom
, pto
, i
, adi_tag
;
3157 pfrom
= page_to_phys(from
);
3158 pto
= page_to_phys(to
);
3160 for (i
= pfrom
; i
< (pfrom
+ PAGE_SIZE
); i
+= adi_blksize()) {
3161 asm volatile("ldxa [%1] %2, %0\n\t"
3163 : "r" (i
), "i" (ASI_MCD_REAL
));
3164 asm volatile("stxa %0, [%1] %2\n\t"
3166 : "r" (adi_tag
), "r" (pto
),
3167 "i" (ASI_MCD_REAL
));
3168 pto
+= adi_blksize();
3170 asm volatile("membar #Sync\n\t");
3173 EXPORT_SYMBOL(copy_user_highpage
);
3175 void copy_highpage(struct page
*to
, struct page
*from
)
3179 vfrom
= kmap_atomic(from
);
3180 vto
= kmap_atomic(to
);
3181 copy_page(vto
, vfrom
);
3183 kunmap_atomic(vfrom
);
3185 /* If this platform is ADI enabled, copy any ADI tags
3188 if (adi_capable()) {
3189 unsigned long pfrom
, pto
, i
, adi_tag
;
3191 pfrom
= page_to_phys(from
);
3192 pto
= page_to_phys(to
);
3194 for (i
= pfrom
; i
< (pfrom
+ PAGE_SIZE
); i
+= adi_blksize()) {
3195 asm volatile("ldxa [%1] %2, %0\n\t"
3197 : "r" (i
), "i" (ASI_MCD_REAL
));
3198 asm volatile("stxa %0, [%1] %2\n\t"
3200 : "r" (adi_tag
), "r" (pto
),
3201 "i" (ASI_MCD_REAL
));
3202 pto
+= adi_blksize();
3204 asm volatile("membar #Sync\n\t");
3207 EXPORT_SYMBOL(copy_highpage
);
3209 pgprot_t
vm_get_page_prot(unsigned long vm_flags
)
3211 unsigned long prot
= pgprot_val(protection_map
[vm_flags
&
3212 (VM_READ
|VM_WRITE
|VM_EXEC
|VM_SHARED
)]);
3214 if (vm_flags
& VM_SPARC_ADI
)
3215 prot
|= _PAGE_MCD_4V
;
3217 return __pgprot(prot
);
3219 EXPORT_SYMBOL(vm_get_page_prot
);