1 /* SPDX-License-Identifier: GPL-2.0 */
3 * Copyright (C) 1991,1992 Linus Torvalds
5 * entry_32.S contains the system-call and low-level fault and trap handling routines.
7 * Stack layout while running C code:
8 * ptrace needs to have all registers on the stack.
9 * If the order here is changed, it needs to be
10 * updated in fork.c:copy_process(), signal.c:do_signal(),
11 * ptrace.c and ptrace.h
23 * 28(%esp) - unused -- was %gs on old stackprotector kernels
32 #include <linux/linkage.h>
33 #include <linux/err.h>
34 #include <asm/thread_info.h>
35 #include <asm/irqflags.h>
36 #include <asm/errno.h>
37 #include <asm/segment.h>
39 #include <asm/percpu.h>
40 #include <asm/processor-flags.h>
41 #include <asm/irq_vectors.h>
42 #include <asm/cpufeatures.h>
43 #include <asm/alternative.h>
46 #include <asm/frame.h>
47 #include <asm/trapnr.h>
48 #include <asm/nospec-branch.h>
52 .section .entry.text, "ax"
54 #define PTI_SWITCH_MASK (1 << PAGE_SHIFT)
56 /* Unconditionally switch to user cr3 */
57 .macro SWITCH_TO_USER_CR3 scratch_reg:req
58 ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
60 movl %cr3, \scratch_reg
61 orl $PTI_SWITCH_MASK, \scratch_reg
62 movl \scratch_reg, %cr3
66 .macro BUG_IF_WRONG_CR3 no_user_check=0
67 #ifdef CONFIG_DEBUG_ENTRY
68 ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
69 .if \no_user_check == 0
70 /* coming from usermode? */
71 testl $USER_SEGMENT_RPL_MASK, PT_CS(%esp)
76 testl $PTI_SWITCH_MASK, %eax
78 /* From userspace with kernel cr3 - BUG */
85 * Switch to kernel cr3 if not already loaded and return current cr3 in
88 .macro SWITCH_TO_KERNEL_CR3 scratch_reg:req
89 ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
90 movl %cr3, \scratch_reg
91 /* Test if we are already on kernel CR3 */
92 testl $PTI_SWITCH_MASK, \scratch_reg
94 andl $(~PTI_SWITCH_MASK), \scratch_reg
95 movl \scratch_reg, %cr3
96 /* Return original CR3 in \scratch_reg */
97 orl $PTI_SWITCH_MASK, \scratch_reg
101 #define CS_FROM_ENTRY_STACK (1 << 31)
102 #define CS_FROM_USER_CR3 (1 << 30)
103 #define CS_FROM_KERNEL (1 << 29)
104 #define CS_FROM_ESPFIX (1 << 28)
108 * The high bits of the CS dword (__csh) are used for CS_FROM_*.
109 * Clear them in case hardware didn't do this for us.
111 andl $0x0000ffff, 4*4(%esp)
114 testl $X86_EFLAGS_VM, 5*4(%esp)
115 jnz .Lfrom_usermode_no_fixup_\@
117 testl $USER_SEGMENT_RPL_MASK, 4*4(%esp)
118 jnz .Lfrom_usermode_no_fixup_\@
120 orl $CS_FROM_KERNEL, 4*4(%esp)
123 * When we're here from kernel mode; the (exception) stack looks like:
125 * 6*4(%esp) - <previous context>
129 * 2*4(%esp) - orig_eax
130 * 1*4(%esp) - gs / function
133 * Lets build a 5 entry IRET frame after that, such that struct pt_regs
134 * is complete and in particular regs->sp is correct. This gives us
135 * the original 6 entries as gap:
137 * 14*4(%esp) - <previous context>
138 * 13*4(%esp) - gap / flags
139 * 12*4(%esp) - gap / cs
140 * 11*4(%esp) - gap / ip
141 * 10*4(%esp) - gap / orig_eax
142 * 9*4(%esp) - gap / gs / function
143 * 8*4(%esp) - gap / fs
149 * 2*4(%esp) - orig_eax
150 * 1*4(%esp) - gs / function
155 pushl %esp # sp (points at ss)
156 addl $7*4, (%esp) # point sp back at the previous context
157 pushl 7*4(%esp) # flags
160 pushl 7*4(%esp) # orig_eax
161 pushl 7*4(%esp) # gs / function
163 .Lfrom_usermode_no_fixup_\@:
168 * We're called with %ds, %es, %fs, and %gs from the interrupted
169 * frame, so we shouldn't use them. Also, we may be in ESPFIX
170 * mode and therefore have a nonzero SS base and an offset ESP,
171 * so any attempt to access the stack needs to use SS. (except for
172 * accesses through %esp, which automatically use SS.)
174 testl $CS_FROM_KERNEL, 1*4(%esp)
175 jz .Lfinished_frame_\@
178 * Reconstruct the 3 entry IRET frame right after the (modified)
179 * regs->sp without lowering %esp in between, such that an NMI in the
180 * middle doesn't scribble our stack.
184 movl 5*4(%esp), %eax # (modified) regs->sp
186 movl 4*4(%esp), %ecx # flags
187 movl %ecx, %ss:-1*4(%eax)
189 movl 3*4(%esp), %ecx # cs
190 andl $0x0000ffff, %ecx
191 movl %ecx, %ss:-2*4(%eax)
193 movl 2*4(%esp), %ecx # ip
194 movl %ecx, %ss:-3*4(%eax)
196 movl 1*4(%esp), %ecx # eax
197 movl %ecx, %ss:-4*4(%eax)
205 .macro SAVE_ALL pt_regs_ax=%eax switch_stacks=0 skip_gs=0 unwind_espfix=0
213 movl $(__KERNEL_PERCPU), %eax
215 .if \unwind_espfix > 0
230 movl $(__USER_DS), %edx
233 /* Switch to kernel stack if necessary */
234 .if \switch_stacks > 0
235 SWITCH_TO_KERNEL_STACK
239 .macro SAVE_ALL_NMI cr3_reg:req unwind_espfix=0
240 SAVE_ALL unwind_espfix=\unwind_espfix
245 * Now switch the CR3 when PTI is enabled.
247 * We can enter with either user or kernel cr3, the code will
248 * store the old cr3 in \cr3_reg and switches to the kernel cr3
251 SWITCH_TO_KERNEL_CR3 scratch_reg=\cr3_reg
256 .macro RESTORE_INT_REGS
266 .macro RESTORE_REGS pop=0
271 4: addl $(4 + \pop), %esp /* pop the unused "gs" slot */
275 * There is no _ASM_EXTABLE_TYPE_REG() for ASM, however since this is
276 * ASM the registers are known and we can trivially hard-code them.
278 _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_POP_ZERO|EX_REG_DS)
279 _ASM_EXTABLE_TYPE(2b, 3b, EX_TYPE_POP_ZERO|EX_REG_ES)
280 _ASM_EXTABLE_TYPE(3b, 4b, EX_TYPE_POP_ZERO|EX_REG_FS)
283 .macro RESTORE_ALL_NMI cr3_reg:req pop=0
285 * Now switch the CR3 when PTI is enabled.
287 * We enter with kernel cr3 and switch the cr3 to the value
288 * stored on \cr3_reg, which is either a user or a kernel cr3.
290 ALTERNATIVE "jmp .Lswitched_\@", "", X86_FEATURE_PTI
292 testl $PTI_SWITCH_MASK, \cr3_reg
295 /* User cr3 in \cr3_reg - write it to hardware cr3 */
302 RESTORE_REGS pop=\pop
305 .macro CHECK_AND_APPLY_ESPFIX
306 #ifdef CONFIG_X86_ESPFIX32
307 #define GDT_ESPFIX_OFFSET (GDT_ENTRY_ESPFIX_SS * 8)
308 #define GDT_ESPFIX_SS PER_CPU_VAR(gdt_page + GDT_ESPFIX_OFFSET)
310 ALTERNATIVE "jmp .Lend_\@", "", X86_BUG_ESPFIX
312 movl PT_EFLAGS(%esp), %eax # mix EFLAGS, SS and CS
314 * Warning: PT_OLDSS(%esp) contains the wrong/random values if we
315 * are returning to the kernel.
316 * See comments in process.c:copy_thread() for details.
318 movb PT_OLDSS(%esp), %ah
319 movb PT_CS(%esp), %al
320 andl $(X86_EFLAGS_VM | (SEGMENT_TI_MASK << 8) | SEGMENT_RPL_MASK), %eax
321 cmpl $((SEGMENT_LDT << 8) | USER_RPL), %eax
322 jne .Lend_\@ # returning to user-space with LDT SS
325 * Setup and switch to ESPFIX stack
327 * We're returning to userspace with a 16 bit stack. The CPU will not
328 * restore the high word of ESP for us on executing iret... This is an
329 * "official" bug of all the x86-compatible CPUs, which we can work
330 * around to make dosemu and wine happy. We do this by preloading the
331 * high word of ESP with the high word of the userspace ESP while
332 * compensating for the offset by changing to the ESPFIX segment with
333 * a base address that matches for the difference.
335 mov %esp, %edx /* load kernel esp */
336 mov PT_OLDESP(%esp), %eax /* load userspace esp */
337 mov %dx, %ax /* eax: new kernel esp */
338 sub %eax, %edx /* offset (low word is 0) */
340 mov %dl, GDT_ESPFIX_SS + 4 /* bits 16..23 */
341 mov %dh, GDT_ESPFIX_SS + 7 /* bits 24..31 */
343 pushl %eax /* new kernel esp */
345 * Disable interrupts, but do not irqtrace this section: we
346 * will soon execute iret and the tracer was already set to
347 * the irqstate after the IRET:
350 lss (%esp), %esp /* switch to espfix segment */
352 #endif /* CONFIG_X86_ESPFIX32 */
356 * Called with pt_regs fully populated and kernel segments loaded,
357 * so we can access PER_CPU and use the integer registers.
359 * We need to be very careful here with the %esp switch, because an NMI
360 * can happen everywhere. If the NMI handler finds itself on the
361 * entry-stack, it will overwrite the task-stack and everything we
362 * copied there. So allocate the stack-frame on the task-stack and
363 * switch to it before we do any copying.
366 .macro SWITCH_TO_KERNEL_STACK
370 SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
373 * %eax now contains the entry cr3 and we carry it forward in
374 * that register for the time this macro runs
377 /* Are we on the entry stack? Bail out if not! */
378 movl PER_CPU_VAR(cpu_entry_area), %ecx
379 addl $CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
380 subl %esp, %ecx /* ecx = (end of entry_stack) - esp */
381 cmpl $SIZEOF_entry_stack, %ecx
384 /* Load stack pointer into %esi and %edi */
388 /* Move %edi to the top of the entry stack */
389 andl $(MASK_entry_stack), %edi
390 addl $(SIZEOF_entry_stack), %edi
392 /* Load top of task-stack into %edi */
393 movl TSS_entry2task_stack(%edi), %edi
395 /* Special case - entry from kernel mode via entry stack */
397 movl PT_EFLAGS(%esp), %ecx # mix EFLAGS and CS
398 movb PT_CS(%esp), %cl
399 andl $(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %ecx
401 movl PT_CS(%esp), %ecx
402 andl $SEGMENT_RPL_MASK, %ecx
405 jb .Lentry_from_kernel_\@
408 movl $PTREGS_SIZE, %ecx
411 testl $X86_EFLAGS_VM, PT_EFLAGS(%esi)
415 * Stack-frame contains 4 additional segment registers when
416 * coming from VM86 mode
423 /* Allocate frame on task-stack */
426 /* Switch to task-stack */
430 * We are now on the task-stack and can safely copy over the
439 .Lentry_from_kernel_\@:
442 * This handles the case when we enter the kernel from
443 * kernel-mode and %esp points to the entry-stack. When this
444 * happens we need to switch to the task-stack to run C code,
445 * but switch back to the entry-stack again when we approach
446 * iret and return to the interrupted code-path. This usually
447 * happens when we hit an exception while restoring user-space
448 * segment registers on the way back to user-space or when the
449 * sysenter handler runs with eflags.tf set.
451 * When we switch to the task-stack here, we can't trust the
452 * contents of the entry-stack anymore, as the exception handler
453 * might be scheduled out or moved to another CPU. Therefore we
454 * copy the complete entry-stack to the task-stack and set a
455 * marker in the iret-frame (bit 31 of the CS dword) to detect
456 * what we've done on the iret path.
458 * On the iret path we copy everything back and switch to the
459 * entry-stack, so that the interrupted kernel code-path
460 * continues on the same stack it was interrupted with.
462 * Be aware that an NMI can happen anytime in this code.
464 * %esi: Entry-Stack pointer (same as %esp)
465 * %edi: Top of the task stack
466 * %eax: CR3 on kernel entry
469 /* Calculate number of bytes on the entry stack in %ecx */
472 /* %ecx to the top of entry-stack */
473 andl $(MASK_entry_stack), %ecx
474 addl $(SIZEOF_entry_stack), %ecx
476 /* Number of bytes on the entry stack to %ecx */
479 /* Mark stackframe as coming from entry stack */
480 orl $CS_FROM_ENTRY_STACK, PT_CS(%esp)
483 * Test the cr3 used to enter the kernel and add a marker
484 * so that we can switch back to it before iret.
486 testl $PTI_SWITCH_MASK, %eax
488 orl $CS_FROM_USER_CR3, PT_CS(%esp)
491 * %esi and %edi are unchanged, %ecx contains the number of
492 * bytes to copy. The code at .Lcopy_pt_regs_\@ will allocate
493 * the stack-frame on task-stack and copy everything over
495 jmp .Lcopy_pt_regs_\@
501 * Switch back from the kernel stack to the entry stack.
503 * The %esp register must point to pt_regs on the task stack. It will
504 * first calculate the size of the stack-frame to copy, depending on
505 * whether we return to VM86 mode or not. With that it uses 'rep movsl'
506 * to copy the contents of the stack over to the entry stack.
508 * We must be very careful here, as we can't trust the contents of the
509 * task-stack once we switched to the entry-stack. When an NMI happens
510 * while on the entry-stack, the NMI handler will switch back to the top
511 * of the task stack, overwriting our stack-frame we are about to copy.
512 * Therefore we switch the stack only after everything is copied over.
514 .macro SWITCH_TO_ENTRY_STACK
517 movl $PTREGS_SIZE, %ecx
520 testl $(X86_EFLAGS_VM), PT_EFLAGS(%esp)
523 /* Additional 4 registers to copy when returning to VM86 mode */
529 /* Initialize source and destination for movsl */
530 movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
534 /* Save future stack pointer in %ebx */
537 /* Copy over the stack-frame */
543 * Switch to entry-stack - needs to happen after everything is
544 * copied because the NMI handler will overwrite the task-stack
545 * when on entry-stack
553 * This macro handles the case when we return to kernel-mode on the iret
554 * path and have to switch back to the entry stack and/or user-cr3
556 * See the comments below the .Lentry_from_kernel_\@ label in the
557 * SWITCH_TO_KERNEL_STACK macro for more details.
559 .macro PARANOID_EXIT_TO_KERNEL_MODE
562 * Test if we entered the kernel with the entry-stack. Most
563 * likely we did not, because this code only runs on the
564 * return-to-kernel path.
566 testl $CS_FROM_ENTRY_STACK, PT_CS(%esp)
569 /* Unlikely slow-path */
571 /* Clear marker from stack-frame */
572 andl $(~CS_FROM_ENTRY_STACK), PT_CS(%esp)
574 /* Copy the remaining task-stack contents to entry-stack */
576 movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
578 /* Bytes on the task-stack to ecx */
579 movl PER_CPU_VAR(cpu_tss_rw + TSS_sp1), %ecx
582 /* Allocate stack-frame on entry-stack */
586 * Save future stack-pointer, we must not switch until the
587 * copy is done, otherwise the NMI handler could destroy the
588 * contents of the task-stack we are about to copy.
597 /* Safe to switch to entry-stack now */
601 * We came from entry-stack and need to check if we also need to
602 * switch back to user cr3.
604 testl $CS_FROM_USER_CR3, PT_CS(%esp)
607 /* Clear marker from stack-frame */
608 andl $(~CS_FROM_USER_CR3), PT_CS(%esp)
610 SWITCH_TO_USER_CR3 scratch_reg=%eax
616 * idtentry - Macro to generate entry stubs for simple IDT entries
617 * @vector: Vector number
618 * @asmsym: ASM symbol for the entry point
619 * @cfunc: C function to be called
620 * @has_error_code: Hardware pushed error code on stack
622 .macro idtentry vector asmsym cfunc has_error_code:req
623 SYM_CODE_START(\asmsym)
627 .if \has_error_code == 0
628 pushl $0 /* Clear the error code */
631 /* Push the C-function address into the GS slot */
633 /* Invoke the common exception entry */
635 SYM_CODE_END(\asmsym)
638 .macro idtentry_irq vector cfunc
639 .p2align CONFIG_X86_L1_CACHE_SHIFT
640 SYM_CODE_START_LOCAL(asm_\cfunc)
642 SAVE_ALL switch_stacks=1
645 movl PT_ORIG_EAX(%esp), %edx /* get the vector from stack */
646 movl $-1, PT_ORIG_EAX(%esp) /* no syscall to restart */
648 jmp handle_exception_return
649 SYM_CODE_END(asm_\cfunc)
653 * Include the defines which emit the idt entries which are shared
654 * shared between 32 and 64 bit and emit the __irqentry_text_* markers
655 * so the stacktrace boundary checks work.
658 .globl __irqentry_text_start
659 __irqentry_text_start:
661 #include <asm/idtentry.h>
664 .globl __irqentry_text_end
671 .pushsection .text, "ax"
672 SYM_CODE_START(__switch_to_asm)
674 * Save callee-saved registers
675 * This must match the order in struct inactive_task_frame
682 * Flags are saved to prevent AC leakage. This could go
683 * away if objtool would have 32bit support to verify
684 * the STAC/CLAC correctness.
689 movl %esp, TASK_threadsp(%eax)
690 movl TASK_threadsp(%edx), %esp
692 #ifdef CONFIG_STACKPROTECTOR
693 movl TASK_stack_canary(%edx), %ebx
694 movl %ebx, PER_CPU_VAR(__stack_chk_guard)
698 * When switching from a shallower to a deeper call stack
699 * the RSB may either underflow or use entries populated
700 * with userspace addresses. On CPUs where those concerns
701 * exist, overwrite the RSB with entries which capture
702 * speculative execution to prevent attack.
704 FILL_RETURN_BUFFER %ebx, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
706 /* Restore flags or the incoming task to restore AC state. */
708 /* restore callee-saved registers */
715 SYM_CODE_END(__switch_to_asm)
719 * A newly forked process directly context switches into this address.
721 * eax: prev task we switched from
722 * ebx: kernel thread func (NULL for user thread)
723 * edi: kernel thread arg
725 .pushsection .text, "ax"
726 SYM_CODE_START(ret_from_fork_asm)
727 movl %esp, %edx /* regs */
729 /* return address for the stack unwinder */
730 pushl $.Lsyscall_32_done
733 /* prev already in EAX */
734 movl %ebx, %ecx /* fn */
735 pushl %edi /* fn_arg */
741 SYM_CODE_END(ret_from_fork_asm)
744 SYM_ENTRY(__begin_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE)
746 * All code from here through __end_SYSENTER_singlestep_region is subject
747 * to being single-stepped if a user program sets TF and executes SYSENTER.
748 * There is absolutely nothing that we can do to prevent this from happening
749 * (thanks Intel!). To keep our handling of this situation as simple as
750 * possible, we handle TF just like AC and NT, except that our #DB handler
751 * will ignore all of the single-step traps generated in this range.
755 * 32-bit SYSENTER entry.
757 * 32-bit system calls through the vDSO's __kernel_vsyscall enter here
758 * if X86_FEATURE_SEP is available. This is the preferred system call
759 * entry on 32-bit systems.
761 * The SYSENTER instruction, in principle, should *only* occur in the
762 * vDSO. In practice, a small number of Android devices were shipped
763 * with a copy of Bionic that inlined a SYSENTER instruction. This
764 * never happened in any of Google's Bionic versions -- it only happened
765 * in a narrow range of Intel-provided versions.
767 * SYSENTER loads SS, ESP, CS, and EIP from previously programmed MSRs.
768 * IF and VM in RFLAGS are cleared (IOW: interrupts are off).
769 * SYSENTER does not save anything on the stack,
770 * and does not save old EIP (!!!), ESP, or EFLAGS.
772 * To avoid losing track of EFLAGS.VM (and thus potentially corrupting
773 * user and/or vm86 state), we explicitly disable the SYSENTER
774 * instruction in vm86 mode by reprogramming the MSRs.
777 * eax system call number
786 SYM_FUNC_START(entry_SYSENTER_32)
788 * On entry-stack with all userspace-regs live - save and
789 * restore eflags and %eax to use it as scratch-reg for the cr3
794 BUG_IF_WRONG_CR3 no_user_check=1
795 SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
799 /* Stack empty again, switch to task stack */
800 movl TSS_entry2task_stack(%esp), %esp
803 pushl $__USER_DS /* pt_regs->ss */
804 pushl $0 /* pt_regs->sp (placeholder) */
805 pushfl /* pt_regs->flags (except IF = 0) */
806 pushl $__USER_CS /* pt_regs->cs */
807 pushl $0 /* pt_regs->ip = 0 (placeholder) */
808 pushl %eax /* pt_regs->orig_ax */
809 SAVE_ALL pt_regs_ax=$-ENOSYS /* save rest, stack already switched */
812 * SYSENTER doesn't filter flags, so we need to clear NT, AC
813 * and TF ourselves. To save a few cycles, we can check whether
814 * either was set instead of doing an unconditional popfq.
815 * This needs to happen before enabling interrupts so that
816 * we don't get preempted with NT set.
818 * If TF is set, we will single-step all the way to here -- do_debug
819 * will ignore all the traps. (Yes, this is slow, but so is
820 * single-stepping in general. This allows us to avoid having
821 * a more complicated code to handle the case where a user program
822 * forces us to single-step through the SYSENTER entry code.)
824 * NB.: .Lsysenter_fix_flags is a label with the code under it moved
825 * out-of-line as an optimization: NT is unlikely to be set in the
826 * majority of the cases and instead of polluting the I$ unnecessarily,
827 * we're keeping that code behind a branch which will predict as
828 * not-taken and therefore its instructions won't be fetched.
830 testl $X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, PT_EFLAGS(%esp)
831 jnz .Lsysenter_fix_flags
832 .Lsysenter_flags_fixed:
841 /* Opportunistic SYSEXIT */
844 * Setup entry stack - we keep the pointer in %eax and do the
845 * switch after almost all user-state is restored.
848 /* Load entry stack pointer and allocate frame for eflags/eax */
849 movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %eax
852 /* Copy eflags and eax to entry stack */
853 movl PT_EFLAGS(%esp), %edi
854 movl PT_EAX(%esp), %esi
858 /* Restore user registers and segments */
859 movl PT_EIP(%esp), %edx /* pt_regs->ip */
860 movl PT_OLDESP(%esp), %ecx /* pt_regs->sp */
861 1: mov PT_FS(%esp), %fs
863 popl %ebx /* pt_regs->bx */
864 addl $2*4, %esp /* skip pt_regs->cx and pt_regs->dx */
865 popl %esi /* pt_regs->si */
866 popl %edi /* pt_regs->di */
867 popl %ebp /* pt_regs->bp */
869 /* Switch to entry stack */
872 /* Now ready to switch the cr3 */
873 SWITCH_TO_USER_CR3 scratch_reg=%eax
876 * Restore all flags except IF. (We restore IF separately because
877 * STI gives a one-instruction window in which we won't be interrupted,
878 * whereas POPF does not.)
880 btrl $X86_EFLAGS_IF_BIT, (%esp)
881 BUG_IF_WRONG_CR3 no_user_check=1
887 * Return back to the vDSO, which will pop ecx and edx.
888 * Don't bother with DS and ES (they already contain __USER_DS).
893 2: movl $0, PT_FS(%esp)
897 .Lsysenter_fix_flags:
898 pushl $X86_EFLAGS_FIXED
900 jmp .Lsysenter_flags_fixed
901 SYM_ENTRY(__end_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE)
902 SYM_FUNC_END(entry_SYSENTER_32)
905 * 32-bit legacy system call entry.
907 * 32-bit x86 Linux system calls traditionally used the INT $0x80
908 * instruction. INT $0x80 lands here.
910 * This entry point can be used by any 32-bit perform system calls.
911 * Instances of INT $0x80 can be found inline in various programs and
912 * libraries. It is also used by the vDSO's __kernel_vsyscall
913 * fallback for hardware that doesn't support a faster entry method.
914 * Restarted 32-bit system calls also fall back to INT $0x80
915 * regardless of what instruction was originally used to do the system
916 * call. (64-bit programs can use INT $0x80 as well, but they can
917 * only run on 64-bit kernels and therefore land in
918 * entry_INT80_compat.)
920 * This is considered a slow path. It is not used by most libc
921 * implementations on modern hardware except during process startup.
924 * eax system call number
932 SYM_FUNC_START(entry_INT80_32)
934 pushl %eax /* pt_regs->orig_ax */
936 SAVE_ALL pt_regs_ax=$-ENOSYS switch_stacks=1 /* save rest */
939 call do_int80_syscall_32
943 restore_all_switch_stack:
944 SWITCH_TO_ENTRY_STACK
945 CHECK_AND_APPLY_ESPFIX
947 /* Switch back to user CR3 */
948 SWITCH_TO_USER_CR3 scratch_reg=%eax
952 /* Restore user state */
953 RESTORE_REGS pop=4 # skip orig_eax/error_code
957 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
958 * when returning from IPI handler and when returning from
959 * scheduler to user-space.
964 pushl $0 # no error code
967 #ifdef CONFIG_DEBUG_ENTRY
969 * The stack-frame here is the one that iret faulted on, so its a
970 * return-to-user frame. We are on kernel-cr3 because we come here from
971 * the fixup code. This confuses the CR3 checker, so switch to user-cr3
972 * as the checker expects it.
975 SWITCH_TO_USER_CR3 scratch_reg=%eax
981 _ASM_EXTABLE(.Lirq_return, .Lasm_iret_error)
982 SYM_FUNC_END(entry_INT80_32)
984 .macro FIXUP_ESPFIX_STACK
986 * Switch back for ESPFIX stack to the normal zerobased stack
988 * We can't call C functions using the ESPFIX stack. This code reads
989 * the high word of the segment base from the GDT and swiches to the
990 * normal stack and adjusts ESP with the matching offset.
992 * We might be on user CR3 here, so percpu data is not mapped and we can't
993 * access the GDT through the percpu segment. Instead, use SGDT to find
994 * the cpu_entry_area alias of the GDT.
996 #ifdef CONFIG_X86_ESPFIX32
997 /* fixup the stack */
1001 movl 2(%esp), %ecx /* GDT address */
1003 * Careful: ECX is a linear pointer, so we need to force base
1004 * zero. %cs is the only known-linear segment we have right now.
1006 mov %cs:GDT_ESPFIX_OFFSET + 4(%ecx), %al /* bits 16..23 */
1007 mov %cs:GDT_ESPFIX_OFFSET + 7(%ecx), %ah /* bits 24..31 */
1011 addl %esp, %eax /* the adjusted stack pointer */
1014 lss (%esp), %esp /* switch to the normal stack segment */
1018 .macro UNWIND_ESPFIX_STACK
1019 /* It's safe to clobber %eax, all other regs need to be preserved */
1020 #ifdef CONFIG_X86_ESPFIX32
1022 /* see if on espfix stack */
1023 cmpw $__ESPFIX_SS, %ax
1025 /* switch to normal stack */
1031 SYM_CODE_START_LOCAL_NOALIGN(handle_exception)
1032 /* the function address is in %gs's slot on the stack */
1033 SAVE_ALL switch_stacks=1 skip_gs=1 unwind_espfix=1
1034 ENCODE_FRAME_POINTER
1036 movl PT_GS(%esp), %edi # get the function address
1038 /* fixup orig %eax */
1039 movl PT_ORIG_EAX(%esp), %edx # get the error code
1040 movl $-1, PT_ORIG_EAX(%esp) # no syscall to restart
1042 movl %esp, %eax # pt_regs pointer
1045 handle_exception_return:
1047 movl PT_EFLAGS(%esp), %eax # mix EFLAGS and CS
1048 movb PT_CS(%esp), %al
1049 andl $(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax
1052 * We can be coming here from child spawned by kernel_thread().
1054 movl PT_CS(%esp), %eax
1055 andl $SEGMENT_RPL_MASK, %eax
1057 cmpl $USER_RPL, %eax # returning to v8086 or userspace ?
1060 PARANOID_EXIT_TO_KERNEL_MODE
1067 jmp restore_all_switch_stack
1068 SYM_CODE_END(handle_exception)
1070 SYM_CODE_START(asm_exc_double_fault)
1073 * This is a task gate handler, not an interrupt gate handler.
1074 * The error code is on the stack, but the stack is otherwise
1075 * empty. Interrupts are off. Our state is sane with the following
1078 * - CR0.TS is set. "TS" literally means "task switched".
1079 * - EFLAGS.NT is set because we're a "nested task".
1080 * - The doublefault TSS has back_link set and has been marked busy.
1081 * - TR points to the doublefault TSS and the normal TSS is busy.
1082 * - CR3 is the normal kernel PGD. This would be delightful, except
1083 * that the CPU didn't bother to save the old CR3 anywhere. This
1084 * would make it very awkward to return back to the context we came
1087 * The rest of EFLAGS is sanitized for us, so we don't need to
1088 * worry about AC or DF.
1090 * Don't even bother popping the error code. It's always zero,
1091 * and ignoring it makes us a bit more robust against buggy
1092 * hypervisor task gate implementations.
1094 * We will manually undo the task switch instead of doing a
1095 * task-switching IRET.
1098 clts /* clear CR0.TS */
1099 pushl $X86_EFLAGS_FIXED
1100 popfl /* clear EFLAGS.NT */
1102 call doublefault_shim
1104 /* We don't support returning, so we have no IRET here. */
1108 SYM_CODE_END(asm_exc_double_fault)
1111 * NMI is doubly nasty. It can happen on the first instruction of
1112 * entry_SYSENTER_32 (just like #DB), but it can also interrupt the beginning
1113 * of the #DB handler even if that #DB in turn hit before entry_SYSENTER_32
1114 * switched stacks. We handle both conditions by simply checking whether we
1115 * interrupted kernel code running on the SYSENTER stack.
1117 SYM_CODE_START(asm_exc_nmi)
1120 #ifdef CONFIG_X86_ESPFIX32
1122 * ESPFIX_SS is only ever set on the return to user path
1123 * after we've switched to the entry stack.
1127 cmpw $__ESPFIX_SS, %ax
1129 je .Lnmi_espfix_stack
1132 pushl %eax # pt_regs->orig_ax
1133 SAVE_ALL_NMI cr3_reg=%edi
1134 ENCODE_FRAME_POINTER
1135 xorl %edx, %edx # zero error code
1136 movl %esp, %eax # pt_regs pointer
1138 /* Are we currently on the SYSENTER stack? */
1139 movl PER_CPU_VAR(cpu_entry_area), %ecx
1140 addl $CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
1141 subl %eax, %ecx /* ecx = (end of entry_stack) - esp */
1142 cmpl $SIZEOF_entry_stack, %ecx
1143 jb .Lnmi_from_sysenter_stack
1145 /* Not on SYSENTER stack. */
1150 .Lnmi_from_sysenter_stack:
1152 * We're on the SYSENTER stack. Switch off. No one (not even debug)
1153 * is using the thread stack right now, so it's safe for us to use it.
1156 movl PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %esp
1161 #ifdef CONFIG_X86_ESPFIX32
1162 testl $CS_FROM_ESPFIX, PT_CS(%esp)
1163 jnz .Lnmi_from_espfix
1166 CHECK_AND_APPLY_ESPFIX
1167 RESTORE_ALL_NMI cr3_reg=%edi pop=4
1170 #ifdef CONFIG_X86_ESPFIX32
1173 * Create the pointer to LSS back
1179 /* Copy the (short) IRET frame */
1180 pushl 4*4(%esp) # flags
1181 pushl 4*4(%esp) # cs
1182 pushl 4*4(%esp) # ip
1184 pushl %eax # orig_ax
1186 SAVE_ALL_NMI cr3_reg=%edi unwind_espfix=1
1187 ENCODE_FRAME_POINTER
1189 /* clear CS_FROM_KERNEL, set CS_FROM_ESPFIX */
1190 xorl $(CS_FROM_ESPFIX | CS_FROM_KERNEL), PT_CS(%esp)
1192 xorl %edx, %edx # zero error code
1193 movl %esp, %eax # pt_regs pointer
1194 jmp .Lnmi_from_sysenter_stack
1197 RESTORE_ALL_NMI cr3_reg=%edi
1199 * Because we cleared CS_FROM_KERNEL, IRET_FRAME 'forgot' to
1200 * fix up the gap and long frame:
1202 * 3 - original frame (exception)
1203 * 2 - ESPFIX block (above)
1204 * 6 - gap (FIXUP_FRAME)
1205 * 5 - long frame (FIXUP_FRAME)
1208 lss (1+5+6)*4(%esp), %esp # back to espfix stack
1211 SYM_CODE_END(asm_exc_nmi)
1213 .pushsection .text, "ax"
1214 SYM_CODE_START(rewind_stack_and_make_dead)
1215 /* Prevent any naive code from trying to unwind to our caller. */
1218 movl PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %esi
1219 leal -TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%esi), %esp
1223 SYM_CODE_END(rewind_stack_and_make_dead)