1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/mem_encrypt.h>
22 #include <linux/smp.h>
23 #include <linux/cpu.h>
25 #include <linux/syscore_ops.h>
26 #include <linux/pgtable.h>
27 #include <linux/stackprotector.h>
28 #include <linux/utsname.h>
30 #include <asm/alternative.h>
31 #include <asm/cmdline.h>
32 #include <asm/perf_event.h>
33 #include <asm/mmu_context.h>
34 #include <asm/doublefault.h>
35 #include <asm/archrandom.h>
36 #include <asm/hypervisor.h>
37 #include <asm/processor.h>
38 #include <asm/tlbflush.h>
39 #include <asm/debugreg.h>
40 #include <asm/sections.h>
41 #include <asm/vsyscall.h>
42 #include <linux/topology.h>
43 #include <linux/cpumask.h>
44 #include <linux/atomic.h>
45 #include <asm/proto.h>
46 #include <asm/setup.h>
49 #include <asm/fpu/api.h>
51 #include <asm/hwcap2.h>
52 #include <linux/numa.h>
59 #include <asm/cacheinfo.h>
60 #include <asm/memtype.h>
61 #include <asm/microcode.h>
62 #include <asm/intel-family.h>
63 #include <asm/cpu_device_id.h>
65 #include <asm/uv/uv.h>
67 #include <asm/set_memory.h>
68 #include <asm/traps.h>
71 #include <asm/posted_intr.h>
75 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86
, cpu_info
);
76 EXPORT_PER_CPU_SYMBOL(cpu_info
);
78 u32 elf_hwcap2 __read_mostly
;
80 /* Number of siblings per CPU package */
81 unsigned int __max_threads_per_core __ro_after_init
= 1;
82 EXPORT_SYMBOL(__max_threads_per_core
);
84 unsigned int __max_dies_per_package __ro_after_init
= 1;
85 EXPORT_SYMBOL(__max_dies_per_package
);
87 unsigned int __max_logical_packages __ro_after_init
= 1;
88 EXPORT_SYMBOL(__max_logical_packages
);
90 unsigned int __num_cores_per_package __ro_after_init
= 1;
91 EXPORT_SYMBOL(__num_cores_per_package
);
93 unsigned int __num_threads_per_package __ro_after_init
= 1;
94 EXPORT_SYMBOL(__num_threads_per_package
);
96 static struct ppin_info
{
101 [X86_VENDOR_INTEL
] = {
102 .feature
= X86_FEATURE_INTEL_PPIN
,
103 .msr_ppin_ctl
= MSR_PPIN_CTL
,
107 .feature
= X86_FEATURE_AMD_PPIN
,
108 .msr_ppin_ctl
= MSR_AMD_PPIN_CTL
,
109 .msr_ppin
= MSR_AMD_PPIN
113 static const struct x86_cpu_id ppin_cpuids
[] = {
114 X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN
, &ppin_info
[X86_VENDOR_AMD
]),
115 X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN
, &ppin_info
[X86_VENDOR_INTEL
]),
117 /* Legacy models without CPUID enumeration */
118 X86_MATCH_VFM(INTEL_IVYBRIDGE_X
, &ppin_info
[X86_VENDOR_INTEL
]),
119 X86_MATCH_VFM(INTEL_HASWELL_X
, &ppin_info
[X86_VENDOR_INTEL
]),
120 X86_MATCH_VFM(INTEL_BROADWELL_D
, &ppin_info
[X86_VENDOR_INTEL
]),
121 X86_MATCH_VFM(INTEL_BROADWELL_X
, &ppin_info
[X86_VENDOR_INTEL
]),
122 X86_MATCH_VFM(INTEL_SKYLAKE_X
, &ppin_info
[X86_VENDOR_INTEL
]),
123 X86_MATCH_VFM(INTEL_ICELAKE_X
, &ppin_info
[X86_VENDOR_INTEL
]),
124 X86_MATCH_VFM(INTEL_ICELAKE_D
, &ppin_info
[X86_VENDOR_INTEL
]),
125 X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X
, &ppin_info
[X86_VENDOR_INTEL
]),
126 X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X
, &ppin_info
[X86_VENDOR_INTEL
]),
127 X86_MATCH_VFM(INTEL_XEON_PHI_KNL
, &ppin_info
[X86_VENDOR_INTEL
]),
128 X86_MATCH_VFM(INTEL_XEON_PHI_KNM
, &ppin_info
[X86_VENDOR_INTEL
]),
133 static void ppin_init(struct cpuinfo_x86
*c
)
135 const struct x86_cpu_id
*id
;
136 unsigned long long val
;
137 struct ppin_info
*info
;
139 id
= x86_match_cpu(ppin_cpuids
);
144 * Testing the presence of the MSR is not enough. Need to check
145 * that the PPIN_CTL allows reading of the PPIN.
147 info
= (struct ppin_info
*)id
->driver_data
;
149 if (rdmsrl_safe(info
->msr_ppin_ctl
, &val
))
152 if ((val
& 3UL) == 1UL) {
153 /* PPIN locked in disabled mode */
157 /* If PPIN is disabled, try to enable */
159 wrmsrl_safe(info
->msr_ppin_ctl
, val
| 2UL);
160 rdmsrl_safe(info
->msr_ppin_ctl
, &val
);
163 /* Is the enable bit set? */
165 c
->ppin
= __rdmsr(info
->msr_ppin
);
166 set_cpu_cap(c
, info
->feature
);
171 clear_cpu_cap(c
, info
->feature
);
174 static void default_init(struct cpuinfo_x86
*c
)
177 cpu_detect_cache_sizes(c
);
179 /* Not much we can do here... */
180 /* Check if at least it has cpuid */
181 if (c
->cpuid_level
== -1) {
182 /* No cpuid. It must be an ancient CPU */
184 strcpy(c
->x86_model_id
, "486");
185 else if (c
->x86
== 3)
186 strcpy(c
->x86_model_id
, "386");
191 static const struct cpu_dev default_cpu
= {
192 .c_init
= default_init
,
193 .c_vendor
= "Unknown",
194 .c_x86_vendor
= X86_VENDOR_UNKNOWN
,
197 static const struct cpu_dev
*this_cpu
= &default_cpu
;
199 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page
, gdt_page
) = { .gdt
= {
202 * We need valid kernel segments for data and code in long mode too
203 * IRET will check the segment types kkeil 2000/10/28
204 * Also sysret mandates a special GDT layout
206 * TLS descriptors are currently at a different place compared to i386.
207 * Hopefully nobody expects them at a fixed place (Wine?)
209 [GDT_ENTRY_KERNEL32_CS
] = GDT_ENTRY_INIT(DESC_CODE32
, 0, 0xfffff),
210 [GDT_ENTRY_KERNEL_CS
] = GDT_ENTRY_INIT(DESC_CODE64
, 0, 0xfffff),
211 [GDT_ENTRY_KERNEL_DS
] = GDT_ENTRY_INIT(DESC_DATA64
, 0, 0xfffff),
212 [GDT_ENTRY_DEFAULT_USER32_CS
] = GDT_ENTRY_INIT(DESC_CODE32
| DESC_USER
, 0, 0xfffff),
213 [GDT_ENTRY_DEFAULT_USER_DS
] = GDT_ENTRY_INIT(DESC_DATA64
| DESC_USER
, 0, 0xfffff),
214 [GDT_ENTRY_DEFAULT_USER_CS
] = GDT_ENTRY_INIT(DESC_CODE64
| DESC_USER
, 0, 0xfffff),
216 [GDT_ENTRY_KERNEL_CS
] = GDT_ENTRY_INIT(DESC_CODE32
, 0, 0xfffff),
217 [GDT_ENTRY_KERNEL_DS
] = GDT_ENTRY_INIT(DESC_DATA32
, 0, 0xfffff),
218 [GDT_ENTRY_DEFAULT_USER_CS
] = GDT_ENTRY_INIT(DESC_CODE32
| DESC_USER
, 0, 0xfffff),
219 [GDT_ENTRY_DEFAULT_USER_DS
] = GDT_ENTRY_INIT(DESC_DATA32
| DESC_USER
, 0, 0xfffff),
221 * Segments used for calling PnP BIOS have byte granularity.
222 * They code segments and data segments have fixed 64k limits,
223 * the transfer segment sizes are set at run time.
225 [GDT_ENTRY_PNPBIOS_CS32
] = GDT_ENTRY_INIT(DESC_CODE32_BIOS
, 0, 0xffff),
226 [GDT_ENTRY_PNPBIOS_CS16
] = GDT_ENTRY_INIT(DESC_CODE16
, 0, 0xffff),
227 [GDT_ENTRY_PNPBIOS_DS
] = GDT_ENTRY_INIT(DESC_DATA16
, 0, 0xffff),
228 [GDT_ENTRY_PNPBIOS_TS1
] = GDT_ENTRY_INIT(DESC_DATA16
, 0, 0),
229 [GDT_ENTRY_PNPBIOS_TS2
] = GDT_ENTRY_INIT(DESC_DATA16
, 0, 0),
231 * The APM segments have byte granularity and their bases
232 * are set at run time. All have 64k limits.
234 [GDT_ENTRY_APMBIOS_BASE
] = GDT_ENTRY_INIT(DESC_CODE32_BIOS
, 0, 0xffff),
235 [GDT_ENTRY_APMBIOS_BASE
+1] = GDT_ENTRY_INIT(DESC_CODE16
, 0, 0xffff),
236 [GDT_ENTRY_APMBIOS_BASE
+2] = GDT_ENTRY_INIT(DESC_DATA32_BIOS
, 0, 0xffff),
238 [GDT_ENTRY_ESPFIX_SS
] = GDT_ENTRY_INIT(DESC_DATA32
, 0, 0xfffff),
239 [GDT_ENTRY_PERCPU
] = GDT_ENTRY_INIT(DESC_DATA32
, 0, 0xfffff),
242 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page
);
245 static int __init
x86_nopcid_setup(char *s
)
247 /* nopcid doesn't accept parameters */
251 /* do not emit a message if the feature is not present */
252 if (!boot_cpu_has(X86_FEATURE_PCID
))
255 setup_clear_cpu_cap(X86_FEATURE_PCID
);
256 pr_info("nopcid: PCID feature disabled\n");
259 early_param("nopcid", x86_nopcid_setup
);
262 static int __init
x86_noinvpcid_setup(char *s
)
264 /* noinvpcid doesn't accept parameters */
268 /* do not emit a message if the feature is not present */
269 if (!boot_cpu_has(X86_FEATURE_INVPCID
))
272 setup_clear_cpu_cap(X86_FEATURE_INVPCID
);
273 pr_info("noinvpcid: INVPCID feature disabled\n");
276 early_param("noinvpcid", x86_noinvpcid_setup
);
279 static int cachesize_override
= -1;
280 static int disable_x86_serial_nr
= 1;
282 static int __init
cachesize_setup(char *str
)
284 get_option(&str
, &cachesize_override
);
287 __setup("cachesize=", cachesize_setup
);
289 /* Standard macro to see if a specific flag is changeable */
290 static inline int flag_is_changeable_p(u32 flag
)
295 * Cyrix and IDT cpus allow disabling of CPUID
296 * so the code below may return different results
297 * when it is executed before and after enabling
298 * the CPUID. Add "volatile" to not allow gcc to
299 * optimize the subsequent calls to this function.
301 asm volatile ("pushfl \n\t"
312 : "=&r" (f1
), "=&r" (f2
)
315 return ((f1
^f2
) & flag
) != 0;
318 /* Probe for the CPUID instruction */
319 int have_cpuid_p(void)
321 return flag_is_changeable_p(X86_EFLAGS_ID
);
324 static void squash_the_stupid_serial_number(struct cpuinfo_x86
*c
)
326 unsigned long lo
, hi
;
328 if (!cpu_has(c
, X86_FEATURE_PN
) || !disable_x86_serial_nr
)
331 /* Disable processor serial number: */
333 rdmsr(MSR_IA32_BBL_CR_CTL
, lo
, hi
);
335 wrmsr(MSR_IA32_BBL_CR_CTL
, lo
, hi
);
337 pr_notice("CPU serial number disabled.\n");
338 clear_cpu_cap(c
, X86_FEATURE_PN
);
340 /* Disabling the serial number may affect the cpuid level */
341 c
->cpuid_level
= cpuid_eax(0);
344 static int __init
x86_serial_nr_setup(char *s
)
346 disable_x86_serial_nr
= 0;
349 __setup("serialnumber", x86_serial_nr_setup
);
351 static inline int flag_is_changeable_p(u32 flag
)
355 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86
*c
)
360 static __always_inline
void setup_smep(struct cpuinfo_x86
*c
)
362 if (cpu_has(c
, X86_FEATURE_SMEP
))
363 cr4_set_bits(X86_CR4_SMEP
);
366 static __always_inline
void setup_smap(struct cpuinfo_x86
*c
)
368 unsigned long eflags
= native_save_fl();
370 /* This should have been cleared long ago */
371 BUG_ON(eflags
& X86_EFLAGS_AC
);
373 if (cpu_has(c
, X86_FEATURE_SMAP
))
374 cr4_set_bits(X86_CR4_SMAP
);
377 static __always_inline
void setup_umip(struct cpuinfo_x86
*c
)
379 /* Check the boot processor, plus build option for UMIP. */
380 if (!cpu_feature_enabled(X86_FEATURE_UMIP
))
383 /* Check the current processor's cpuid bits. */
384 if (!cpu_has(c
, X86_FEATURE_UMIP
))
387 cr4_set_bits(X86_CR4_UMIP
);
389 pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
395 * Make sure UMIP is disabled in case it was enabled in a
396 * previous boot (e.g., via kexec).
398 cr4_clear_bits(X86_CR4_UMIP
);
401 /* These bits should not change their value after CPU init is finished. */
402 static const unsigned long cr4_pinned_mask
= X86_CR4_SMEP
| X86_CR4_SMAP
| X86_CR4_UMIP
|
403 X86_CR4_FSGSBASE
| X86_CR4_CET
| X86_CR4_FRED
;
404 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning
);
405 static unsigned long cr4_pinned_bits __ro_after_init
;
407 void native_write_cr0(unsigned long val
)
409 unsigned long bits_missing
= 0;
412 asm volatile("mov %0,%%cr0": "+r" (val
) : : "memory");
414 if (static_branch_likely(&cr_pinning
)) {
415 if (unlikely((val
& X86_CR0_WP
) != X86_CR0_WP
)) {
416 bits_missing
= X86_CR0_WP
;
420 /* Warn after we've set the missing bits. */
421 WARN_ONCE(bits_missing
, "CR0 WP bit went missing!?\n");
424 EXPORT_SYMBOL(native_write_cr0
);
426 void __no_profile
native_write_cr4(unsigned long val
)
428 unsigned long bits_changed
= 0;
431 asm volatile("mov %0,%%cr4": "+r" (val
) : : "memory");
433 if (static_branch_likely(&cr_pinning
)) {
434 if (unlikely((val
& cr4_pinned_mask
) != cr4_pinned_bits
)) {
435 bits_changed
= (val
& cr4_pinned_mask
) ^ cr4_pinned_bits
;
436 val
= (val
& ~cr4_pinned_mask
) | cr4_pinned_bits
;
439 /* Warn after we've corrected the changed bits. */
440 WARN_ONCE(bits_changed
, "pinned CR4 bits changed: 0x%lx!?\n",
444 #if IS_MODULE(CONFIG_LKDTM)
445 EXPORT_SYMBOL_GPL(native_write_cr4
);
448 void cr4_update_irqsoff(unsigned long set
, unsigned long clear
)
450 unsigned long newval
, cr4
= this_cpu_read(cpu_tlbstate
.cr4
);
452 lockdep_assert_irqs_disabled();
454 newval
= (cr4
& ~clear
) | set
;
456 this_cpu_write(cpu_tlbstate
.cr4
, newval
);
460 EXPORT_SYMBOL(cr4_update_irqsoff
);
462 /* Read the CR4 shadow. */
463 unsigned long cr4_read_shadow(void)
465 return this_cpu_read(cpu_tlbstate
.cr4
);
467 EXPORT_SYMBOL_GPL(cr4_read_shadow
);
471 unsigned long cr4
= __read_cr4();
473 if (boot_cpu_has(X86_FEATURE_PCID
))
474 cr4
|= X86_CR4_PCIDE
;
475 if (static_branch_likely(&cr_pinning
))
476 cr4
= (cr4
& ~cr4_pinned_mask
) | cr4_pinned_bits
;
480 /* Initialize cr4 shadow for this CPU. */
481 this_cpu_write(cpu_tlbstate
.cr4
, cr4
);
485 * Once CPU feature detection is finished (and boot params have been
486 * parsed), record any of the sensitive CR bits that are set, and
489 static void __init
setup_cr_pinning(void)
491 cr4_pinned_bits
= this_cpu_read(cpu_tlbstate
.cr4
) & cr4_pinned_mask
;
492 static_key_enable(&cr_pinning
.key
);
495 static __init
int x86_nofsgsbase_setup(char *arg
)
497 /* Require an exact match without trailing characters. */
501 /* Do not emit a message if the feature is not present. */
502 if (!boot_cpu_has(X86_FEATURE_FSGSBASE
))
505 setup_clear_cpu_cap(X86_FEATURE_FSGSBASE
);
506 pr_info("FSGSBASE disabled via kernel command line\n");
509 __setup("nofsgsbase", x86_nofsgsbase_setup
);
512 * Protection Keys are not available in 32-bit mode.
514 static bool pku_disabled
;
516 static __always_inline
void setup_pku(struct cpuinfo_x86
*c
)
518 if (c
== &boot_cpu_data
) {
519 if (pku_disabled
|| !cpu_feature_enabled(X86_FEATURE_PKU
))
522 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
523 * bit to be set. Enforce it.
525 setup_force_cpu_cap(X86_FEATURE_OSPKE
);
527 } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE
)) {
531 cr4_set_bits(X86_CR4_PKE
);
532 /* Load the default PKRU value */
533 pkru_write_default();
536 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
537 static __init
int setup_disable_pku(char *arg
)
540 * Do not clear the X86_FEATURE_PKU bit. All of the
541 * runtime checks are against OSPKE so clearing the
544 * This way, we will see "pku" in cpuinfo, but not
545 * "ospke", which is exactly what we want. It shows
546 * that the CPU has PKU, but the OS has not enabled it.
547 * This happens to be exactly how a system would look
548 * if we disabled the config option.
550 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
554 __setup("nopku", setup_disable_pku
);
557 #ifdef CONFIG_X86_KERNEL_IBT
559 __noendbr u64
ibt_save(bool disable
)
563 if (cpu_feature_enabled(X86_FEATURE_IBT
)) {
564 rdmsrl(MSR_IA32_S_CET
, msr
);
566 wrmsrl(MSR_IA32_S_CET
, msr
& ~CET_ENDBR_EN
);
572 __noendbr
void ibt_restore(u64 save
)
576 if (cpu_feature_enabled(X86_FEATURE_IBT
)) {
577 rdmsrl(MSR_IA32_S_CET
, msr
);
578 msr
&= ~CET_ENDBR_EN
;
579 msr
|= (save
& CET_ENDBR_EN
);
580 wrmsrl(MSR_IA32_S_CET
, msr
);
586 static __always_inline
void setup_cet(struct cpuinfo_x86
*c
)
588 bool user_shstk
, kernel_ibt
;
590 if (!IS_ENABLED(CONFIG_X86_CET
))
593 kernel_ibt
= HAS_KERNEL_IBT
&& cpu_feature_enabled(X86_FEATURE_IBT
);
594 user_shstk
= cpu_feature_enabled(X86_FEATURE_SHSTK
) &&
595 IS_ENABLED(CONFIG_X86_USER_SHADOW_STACK
);
597 if (!kernel_ibt
&& !user_shstk
)
601 set_cpu_cap(c
, X86_FEATURE_USER_SHSTK
);
604 wrmsrl(MSR_IA32_S_CET
, CET_ENDBR_EN
);
606 wrmsrl(MSR_IA32_S_CET
, 0);
608 cr4_set_bits(X86_CR4_CET
);
610 if (kernel_ibt
&& ibt_selftest()) {
611 pr_err("IBT selftest: Failed!\n");
612 wrmsrl(MSR_IA32_S_CET
, 0);
613 setup_clear_cpu_cap(X86_FEATURE_IBT
);
617 __noendbr
void cet_disable(void)
619 if (!(cpu_feature_enabled(X86_FEATURE_IBT
) ||
620 cpu_feature_enabled(X86_FEATURE_SHSTK
)))
623 wrmsrl(MSR_IA32_S_CET
, 0);
624 wrmsrl(MSR_IA32_U_CET
, 0);
628 * Some CPU features depend on higher CPUID levels, which may not always
629 * be available due to CPUID level capping or broken virtualization
630 * software. Add those features to this table to auto-disable them.
632 struct cpuid_dependent_feature
{
637 static const struct cpuid_dependent_feature
638 cpuid_dependent_features
[] = {
639 { X86_FEATURE_MWAIT
, 0x00000005 },
640 { X86_FEATURE_DCA
, 0x00000009 },
641 { X86_FEATURE_XSAVE
, 0x0000000d },
645 static void filter_cpuid_features(struct cpuinfo_x86
*c
, bool warn
)
647 const struct cpuid_dependent_feature
*df
;
649 for (df
= cpuid_dependent_features
; df
->feature
; df
++) {
651 if (!cpu_has(c
, df
->feature
))
654 * Note: cpuid_level is set to -1 if unavailable, but
655 * extended_extended_level is set to 0 if unavailable
656 * and the legitimate extended levels are all negative
657 * when signed; hence the weird messing around with
660 if (!((s32
)df
->level
< 0 ?
661 (u32
)df
->level
> (u32
)c
->extended_cpuid_level
:
662 (s32
)df
->level
> (s32
)c
->cpuid_level
))
665 clear_cpu_cap(c
, df
->feature
);
669 pr_warn("CPU: CPU feature " X86_CAP_FMT
" disabled, no CPUID level 0x%x\n",
670 x86_cap_flag(df
->feature
), df
->level
);
675 * Naming convention should be: <Name> [(<Codename>)]
676 * This table only is used unless init_<vendor>() below doesn't set it;
677 * in particular, if CPUID levels 0x80000002..4 are supported, this
681 /* Look up CPU names by table lookup. */
682 static const char *table_lookup_model(struct cpuinfo_x86
*c
)
685 const struct legacy_cpu_model_info
*info
;
687 if (c
->x86_model
>= 16)
688 return NULL
; /* Range check */
693 info
= this_cpu
->legacy_models
;
695 while (info
->family
) {
696 if (info
->family
== c
->x86
)
697 return info
->model_names
[c
->x86_model
];
701 return NULL
; /* Not found */
704 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
705 __u32 cpu_caps_cleared
[NCAPINTS
+ NBUGINTS
] __aligned(sizeof(unsigned long));
706 __u32 cpu_caps_set
[NCAPINTS
+ NBUGINTS
] __aligned(sizeof(unsigned long));
709 /* The 32-bit entry code needs to find cpu_entry_area. */
710 DEFINE_PER_CPU(struct cpu_entry_area
*, cpu_entry_area
);
713 /* Load the original GDT from the per-cpu structure */
714 void load_direct_gdt(int cpu
)
716 struct desc_ptr gdt_descr
;
718 gdt_descr
.address
= (long)get_cpu_gdt_rw(cpu
);
719 gdt_descr
.size
= GDT_SIZE
- 1;
720 load_gdt(&gdt_descr
);
722 EXPORT_SYMBOL_GPL(load_direct_gdt
);
724 /* Load a fixmap remapping of the per-cpu GDT */
725 void load_fixmap_gdt(int cpu
)
727 struct desc_ptr gdt_descr
;
729 gdt_descr
.address
= (long)get_cpu_gdt_ro(cpu
);
730 gdt_descr
.size
= GDT_SIZE
- 1;
731 load_gdt(&gdt_descr
);
733 EXPORT_SYMBOL_GPL(load_fixmap_gdt
);
736 * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base
737 * @cpu: The CPU number for which this is invoked
739 * Invoked during early boot to switch from early GDT and early per CPU to
740 * the direct GDT and the runtime per CPU area. On 32-bit the percpu base
741 * switch is implicit by loading the direct GDT. On 64bit this requires
744 void __init
switch_gdt_and_percpu_base(int cpu
)
746 load_direct_gdt(cpu
);
750 * No need to load %gs. It is already correct.
752 * Writing %gs on 64bit would zero GSBASE which would make any per
753 * CPU operation up to the point of the wrmsrl() fault.
755 * Set GSBASE to the new offset. Until the wrmsrl() happens the
756 * early mapping is still valid. That means the GSBASE update will
757 * lose any prior per CPU data which was not copied over in
758 * setup_per_cpu_areas().
760 * This works even with stackprotector enabled because the
761 * per CPU stack canary is 0 in both per CPU areas.
763 wrmsrl(MSR_GS_BASE
, cpu_kernelmode_gs_base(cpu
));
766 * %fs is already set to __KERNEL_PERCPU, but after switching GDT
767 * it is required to load FS again so that the 'hidden' part is
768 * updated from the new GDT. Up to this point the early per CPU
769 * translation is active. Any content of the early per CPU data
770 * which was not copied over in setup_per_cpu_areas() is lost.
772 loadsegment(fs
, __KERNEL_PERCPU
);
776 static const struct cpu_dev
*cpu_devs
[X86_VENDOR_NUM
] = {};
778 static void get_model_name(struct cpuinfo_x86
*c
)
783 if (c
->extended_cpuid_level
< 0x80000004)
786 v
= (unsigned int *)c
->x86_model_id
;
787 cpuid(0x80000002, &v
[0], &v
[1], &v
[2], &v
[3]);
788 cpuid(0x80000003, &v
[4], &v
[5], &v
[6], &v
[7]);
789 cpuid(0x80000004, &v
[8], &v
[9], &v
[10], &v
[11]);
790 c
->x86_model_id
[48] = 0;
792 /* Trim whitespace */
793 p
= q
= s
= &c
->x86_model_id
[0];
799 /* Note the last non-whitespace index */
809 void cpu_detect_cache_sizes(struct cpuinfo_x86
*c
)
811 unsigned int n
, dummy
, ebx
, ecx
, edx
, l2size
;
813 n
= c
->extended_cpuid_level
;
815 if (n
>= 0x80000005) {
816 cpuid(0x80000005, &dummy
, &ebx
, &ecx
, &edx
);
817 c
->x86_cache_size
= (ecx
>>24) + (edx
>>24);
819 /* On K8 L1 TLB is inclusive, so don't count it */
824 if (n
< 0x80000006) /* Some chips just has a large L1. */
827 cpuid(0x80000006, &dummy
, &ebx
, &ecx
, &edx
);
831 c
->x86_tlbsize
+= ((ebx
>> 16) & 0xfff) + (ebx
& 0xfff);
833 /* do processor-specific cache resizing */
834 if (this_cpu
->legacy_cache_size
)
835 l2size
= this_cpu
->legacy_cache_size(c
, l2size
);
837 /* Allow user to override all this if necessary. */
838 if (cachesize_override
!= -1)
839 l2size
= cachesize_override
;
842 return; /* Again, no L2 cache is possible */
845 c
->x86_cache_size
= l2size
;
848 u16 __read_mostly tlb_lli_4k
[NR_INFO
];
849 u16 __read_mostly tlb_lli_2m
[NR_INFO
];
850 u16 __read_mostly tlb_lli_4m
[NR_INFO
];
851 u16 __read_mostly tlb_lld_4k
[NR_INFO
];
852 u16 __read_mostly tlb_lld_2m
[NR_INFO
];
853 u16 __read_mostly tlb_lld_4m
[NR_INFO
];
854 u16 __read_mostly tlb_lld_1g
[NR_INFO
];
856 static void cpu_detect_tlb(struct cpuinfo_x86
*c
)
858 if (this_cpu
->c_detect_tlb
)
859 this_cpu
->c_detect_tlb(c
);
861 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
862 tlb_lli_4k
[ENTRIES
], tlb_lli_2m
[ENTRIES
],
863 tlb_lli_4m
[ENTRIES
]);
865 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
866 tlb_lld_4k
[ENTRIES
], tlb_lld_2m
[ENTRIES
],
867 tlb_lld_4m
[ENTRIES
], tlb_lld_1g
[ENTRIES
]);
870 static void get_cpu_vendor(struct cpuinfo_x86
*c
)
872 char *v
= c
->x86_vendor_id
;
875 for (i
= 0; i
< X86_VENDOR_NUM
; i
++) {
879 if (!strcmp(v
, cpu_devs
[i
]->c_ident
[0]) ||
880 (cpu_devs
[i
]->c_ident
[1] &&
881 !strcmp(v
, cpu_devs
[i
]->c_ident
[1]))) {
883 this_cpu
= cpu_devs
[i
];
884 c
->x86_vendor
= this_cpu
->c_x86_vendor
;
889 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
890 "CPU: Your system may be unstable.\n", v
);
892 c
->x86_vendor
= X86_VENDOR_UNKNOWN
;
893 this_cpu
= &default_cpu
;
896 void cpu_detect(struct cpuinfo_x86
*c
)
898 /* Get vendor name */
899 cpuid(0x00000000, (unsigned int *)&c
->cpuid_level
,
900 (unsigned int *)&c
->x86_vendor_id
[0],
901 (unsigned int *)&c
->x86_vendor_id
[8],
902 (unsigned int *)&c
->x86_vendor_id
[4]);
905 /* Intel-defined flags: level 0x00000001 */
906 if (c
->cpuid_level
>= 0x00000001) {
907 u32 junk
, tfms
, cap0
, misc
;
909 cpuid(0x00000001, &tfms
, &misc
, &junk
, &cap0
);
910 c
->x86
= x86_family(tfms
);
911 c
->x86_model
= x86_model(tfms
);
912 c
->x86_stepping
= x86_stepping(tfms
);
914 if (cap0
& (1<<19)) {
915 c
->x86_clflush_size
= ((misc
>> 8) & 0xff) * 8;
916 c
->x86_cache_alignment
= c
->x86_clflush_size
;
921 static void apply_forced_caps(struct cpuinfo_x86
*c
)
925 for (i
= 0; i
< NCAPINTS
+ NBUGINTS
; i
++) {
926 c
->x86_capability
[i
] &= ~cpu_caps_cleared
[i
];
927 c
->x86_capability
[i
] |= cpu_caps_set
[i
];
931 static void init_speculation_control(struct cpuinfo_x86
*c
)
934 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
935 * and they also have a different bit for STIBP support. Also,
936 * a hypervisor might have set the individual AMD bits even on
937 * Intel CPUs, for finer-grained selection of what's available.
939 if (cpu_has(c
, X86_FEATURE_SPEC_CTRL
)) {
940 set_cpu_cap(c
, X86_FEATURE_IBRS
);
941 set_cpu_cap(c
, X86_FEATURE_IBPB
);
942 set_cpu_cap(c
, X86_FEATURE_MSR_SPEC_CTRL
);
945 if (cpu_has(c
, X86_FEATURE_INTEL_STIBP
))
946 set_cpu_cap(c
, X86_FEATURE_STIBP
);
948 if (cpu_has(c
, X86_FEATURE_SPEC_CTRL_SSBD
) ||
949 cpu_has(c
, X86_FEATURE_VIRT_SSBD
))
950 set_cpu_cap(c
, X86_FEATURE_SSBD
);
952 if (cpu_has(c
, X86_FEATURE_AMD_IBRS
)) {
953 set_cpu_cap(c
, X86_FEATURE_IBRS
);
954 set_cpu_cap(c
, X86_FEATURE_MSR_SPEC_CTRL
);
957 if (cpu_has(c
, X86_FEATURE_AMD_IBPB
))
958 set_cpu_cap(c
, X86_FEATURE_IBPB
);
960 if (cpu_has(c
, X86_FEATURE_AMD_STIBP
)) {
961 set_cpu_cap(c
, X86_FEATURE_STIBP
);
962 set_cpu_cap(c
, X86_FEATURE_MSR_SPEC_CTRL
);
965 if (cpu_has(c
, X86_FEATURE_AMD_SSBD
)) {
966 set_cpu_cap(c
, X86_FEATURE_SSBD
);
967 set_cpu_cap(c
, X86_FEATURE_MSR_SPEC_CTRL
);
968 clear_cpu_cap(c
, X86_FEATURE_VIRT_SSBD
);
972 void get_cpu_cap(struct cpuinfo_x86
*c
)
974 u32 eax
, ebx
, ecx
, edx
;
976 /* Intel-defined flags: level 0x00000001 */
977 if (c
->cpuid_level
>= 0x00000001) {
978 cpuid(0x00000001, &eax
, &ebx
, &ecx
, &edx
);
980 c
->x86_capability
[CPUID_1_ECX
] = ecx
;
981 c
->x86_capability
[CPUID_1_EDX
] = edx
;
984 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
985 if (c
->cpuid_level
>= 0x00000006)
986 c
->x86_capability
[CPUID_6_EAX
] = cpuid_eax(0x00000006);
988 /* Additional Intel-defined flags: level 0x00000007 */
989 if (c
->cpuid_level
>= 0x00000007) {
990 cpuid_count(0x00000007, 0, &eax
, &ebx
, &ecx
, &edx
);
991 c
->x86_capability
[CPUID_7_0_EBX
] = ebx
;
992 c
->x86_capability
[CPUID_7_ECX
] = ecx
;
993 c
->x86_capability
[CPUID_7_EDX
] = edx
;
995 /* Check valid sub-leaf index before accessing it */
997 cpuid_count(0x00000007, 1, &eax
, &ebx
, &ecx
, &edx
);
998 c
->x86_capability
[CPUID_7_1_EAX
] = eax
;
1002 /* Extended state features: level 0x0000000d */
1003 if (c
->cpuid_level
>= 0x0000000d) {
1004 cpuid_count(0x0000000d, 1, &eax
, &ebx
, &ecx
, &edx
);
1006 c
->x86_capability
[CPUID_D_1_EAX
] = eax
;
1009 /* AMD-defined flags: level 0x80000001 */
1010 eax
= cpuid_eax(0x80000000);
1011 c
->extended_cpuid_level
= eax
;
1013 if ((eax
& 0xffff0000) == 0x80000000) {
1014 if (eax
>= 0x80000001) {
1015 cpuid(0x80000001, &eax
, &ebx
, &ecx
, &edx
);
1017 c
->x86_capability
[CPUID_8000_0001_ECX
] = ecx
;
1018 c
->x86_capability
[CPUID_8000_0001_EDX
] = edx
;
1022 if (c
->extended_cpuid_level
>= 0x80000007) {
1023 cpuid(0x80000007, &eax
, &ebx
, &ecx
, &edx
);
1025 c
->x86_capability
[CPUID_8000_0007_EBX
] = ebx
;
1029 if (c
->extended_cpuid_level
>= 0x80000008) {
1030 cpuid(0x80000008, &eax
, &ebx
, &ecx
, &edx
);
1031 c
->x86_capability
[CPUID_8000_0008_EBX
] = ebx
;
1034 if (c
->extended_cpuid_level
>= 0x8000000a)
1035 c
->x86_capability
[CPUID_8000_000A_EDX
] = cpuid_edx(0x8000000a);
1037 if (c
->extended_cpuid_level
>= 0x8000001f)
1038 c
->x86_capability
[CPUID_8000_001F_EAX
] = cpuid_eax(0x8000001f);
1040 if (c
->extended_cpuid_level
>= 0x80000021)
1041 c
->x86_capability
[CPUID_8000_0021_EAX
] = cpuid_eax(0x80000021);
1043 init_scattered_cpuid_features(c
);
1044 init_speculation_control(c
);
1047 * Clear/Set all flags overridden by options, after probe.
1048 * This needs to happen each time we re-probe, which may happen
1049 * several times during CPU initialization.
1051 apply_forced_caps(c
);
1054 void get_cpu_address_sizes(struct cpuinfo_x86
*c
)
1056 u32 eax
, ebx
, ecx
, edx
;
1058 if (!cpu_has(c
, X86_FEATURE_CPUID
) ||
1059 (c
->extended_cpuid_level
< 0x80000008)) {
1060 if (IS_ENABLED(CONFIG_X86_64
)) {
1061 c
->x86_clflush_size
= 64;
1062 c
->x86_phys_bits
= 36;
1063 c
->x86_virt_bits
= 48;
1065 c
->x86_clflush_size
= 32;
1066 c
->x86_virt_bits
= 32;
1067 c
->x86_phys_bits
= 32;
1069 if (cpu_has(c
, X86_FEATURE_PAE
) ||
1070 cpu_has(c
, X86_FEATURE_PSE36
))
1071 c
->x86_phys_bits
= 36;
1074 cpuid(0x80000008, &eax
, &ebx
, &ecx
, &edx
);
1076 c
->x86_virt_bits
= (eax
>> 8) & 0xff;
1077 c
->x86_phys_bits
= eax
& 0xff;
1079 /* Provide a sane default if not enumerated: */
1080 if (!c
->x86_clflush_size
)
1081 c
->x86_clflush_size
= 32;
1084 c
->x86_cache_bits
= c
->x86_phys_bits
;
1085 c
->x86_cache_alignment
= c
->x86_clflush_size
;
1088 static void identify_cpu_without_cpuid(struct cpuinfo_x86
*c
)
1090 #ifdef CONFIG_X86_32
1094 * First of all, decide if this is a 486 or higher
1095 * It's a 486 if we can modify the AC flag
1097 if (flag_is_changeable_p(X86_EFLAGS_AC
))
1102 for (i
= 0; i
< X86_VENDOR_NUM
; i
++)
1103 if (cpu_devs
[i
] && cpu_devs
[i
]->c_identify
) {
1104 c
->x86_vendor_id
[0] = 0;
1105 cpu_devs
[i
]->c_identify(c
);
1106 if (c
->x86_vendor_id
[0]) {
1114 #define NO_SPECULATION BIT(0)
1115 #define NO_MELTDOWN BIT(1)
1116 #define NO_SSB BIT(2)
1117 #define NO_L1TF BIT(3)
1118 #define NO_MDS BIT(4)
1119 #define MSBDS_ONLY BIT(5)
1120 #define NO_SWAPGS BIT(6)
1121 #define NO_ITLB_MULTIHIT BIT(7)
1122 #define NO_SPECTRE_V2 BIT(8)
1123 #define NO_MMIO BIT(9)
1124 #define NO_EIBRS_PBRSB BIT(10)
1125 #define NO_BHI BIT(11)
1127 #define VULNWL(vendor, family, model, whitelist) \
1128 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1130 #define VULNWL_INTEL(vfm, whitelist) \
1131 X86_MATCH_VFM(vfm, whitelist)
1133 #define VULNWL_AMD(family, whitelist) \
1134 VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1136 #define VULNWL_HYGON(family, whitelist) \
1137 VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1139 static const __initconst
struct x86_cpu_id cpu_vuln_whitelist
[] = {
1140 VULNWL(ANY
, 4, X86_MODEL_ANY
, NO_SPECULATION
),
1141 VULNWL(CENTAUR
, 5, X86_MODEL_ANY
, NO_SPECULATION
),
1142 VULNWL(INTEL
, 5, X86_MODEL_ANY
, NO_SPECULATION
),
1143 VULNWL(NSC
, 5, X86_MODEL_ANY
, NO_SPECULATION
),
1144 VULNWL(VORTEX
, 5, X86_MODEL_ANY
, NO_SPECULATION
),
1145 VULNWL(VORTEX
, 6, X86_MODEL_ANY
, NO_SPECULATION
),
1147 /* Intel Family 6 */
1148 VULNWL_INTEL(INTEL_TIGERLAKE
, NO_MMIO
),
1149 VULNWL_INTEL(INTEL_TIGERLAKE_L
, NO_MMIO
),
1150 VULNWL_INTEL(INTEL_ALDERLAKE
, NO_MMIO
),
1151 VULNWL_INTEL(INTEL_ALDERLAKE_L
, NO_MMIO
),
1153 VULNWL_INTEL(INTEL_ATOM_SALTWELL
, NO_SPECULATION
| NO_ITLB_MULTIHIT
),
1154 VULNWL_INTEL(INTEL_ATOM_SALTWELL_TABLET
, NO_SPECULATION
| NO_ITLB_MULTIHIT
),
1155 VULNWL_INTEL(INTEL_ATOM_SALTWELL_MID
, NO_SPECULATION
| NO_ITLB_MULTIHIT
),
1156 VULNWL_INTEL(INTEL_ATOM_BONNELL
, NO_SPECULATION
| NO_ITLB_MULTIHIT
),
1157 VULNWL_INTEL(INTEL_ATOM_BONNELL_MID
, NO_SPECULATION
| NO_ITLB_MULTIHIT
),
1159 VULNWL_INTEL(INTEL_ATOM_SILVERMONT
, NO_SSB
| NO_L1TF
| MSBDS_ONLY
| NO_SWAPGS
| NO_ITLB_MULTIHIT
),
1160 VULNWL_INTEL(INTEL_ATOM_SILVERMONT_D
, NO_SSB
| NO_L1TF
| MSBDS_ONLY
| NO_SWAPGS
| NO_ITLB_MULTIHIT
),
1161 VULNWL_INTEL(INTEL_ATOM_SILVERMONT_MID
, NO_SSB
| NO_L1TF
| MSBDS_ONLY
| NO_SWAPGS
| NO_ITLB_MULTIHIT
),
1162 VULNWL_INTEL(INTEL_ATOM_AIRMONT
, NO_SSB
| NO_L1TF
| MSBDS_ONLY
| NO_SWAPGS
| NO_ITLB_MULTIHIT
),
1163 VULNWL_INTEL(INTEL_XEON_PHI_KNL
, NO_SSB
| NO_L1TF
| MSBDS_ONLY
| NO_SWAPGS
| NO_ITLB_MULTIHIT
),
1164 VULNWL_INTEL(INTEL_XEON_PHI_KNM
, NO_SSB
| NO_L1TF
| MSBDS_ONLY
| NO_SWAPGS
| NO_ITLB_MULTIHIT
),
1166 VULNWL_INTEL(INTEL_CORE_YONAH
, NO_SSB
),
1168 VULNWL_INTEL(INTEL_ATOM_AIRMONT_MID
, NO_SSB
| NO_L1TF
| NO_SWAPGS
| NO_ITLB_MULTIHIT
| MSBDS_ONLY
),
1169 VULNWL_INTEL(INTEL_ATOM_AIRMONT_NP
, NO_SSB
| NO_L1TF
| NO_SWAPGS
| NO_ITLB_MULTIHIT
),
1171 VULNWL_INTEL(INTEL_ATOM_GOLDMONT
, NO_MDS
| NO_L1TF
| NO_SWAPGS
| NO_ITLB_MULTIHIT
| NO_MMIO
),
1172 VULNWL_INTEL(INTEL_ATOM_GOLDMONT_D
, NO_MDS
| NO_L1TF
| NO_SWAPGS
| NO_ITLB_MULTIHIT
| NO_MMIO
),
1173 VULNWL_INTEL(INTEL_ATOM_GOLDMONT_PLUS
, NO_MDS
| NO_L1TF
| NO_SWAPGS
| NO_ITLB_MULTIHIT
| NO_MMIO
| NO_EIBRS_PBRSB
),
1176 * Technically, swapgs isn't serializing on AMD (despite it previously
1177 * being documented as such in the APM). But according to AMD, %gs is
1178 * updated non-speculatively, and the issuing of %gs-relative memory
1179 * operands will be blocked until the %gs update completes, which is
1180 * good enough for our purposes.
1183 VULNWL_INTEL(INTEL_ATOM_TREMONT
, NO_EIBRS_PBRSB
),
1184 VULNWL_INTEL(INTEL_ATOM_TREMONT_L
, NO_EIBRS_PBRSB
),
1185 VULNWL_INTEL(INTEL_ATOM_TREMONT_D
, NO_ITLB_MULTIHIT
| NO_EIBRS_PBRSB
),
1187 /* AMD Family 0xf - 0x12 */
1188 VULNWL_AMD(0x0f, NO_MELTDOWN
| NO_SSB
| NO_L1TF
| NO_MDS
| NO_SWAPGS
| NO_ITLB_MULTIHIT
| NO_MMIO
| NO_BHI
),
1189 VULNWL_AMD(0x10, NO_MELTDOWN
| NO_SSB
| NO_L1TF
| NO_MDS
| NO_SWAPGS
| NO_ITLB_MULTIHIT
| NO_MMIO
| NO_BHI
),
1190 VULNWL_AMD(0x11, NO_MELTDOWN
| NO_SSB
| NO_L1TF
| NO_MDS
| NO_SWAPGS
| NO_ITLB_MULTIHIT
| NO_MMIO
| NO_BHI
),
1191 VULNWL_AMD(0x12, NO_MELTDOWN
| NO_SSB
| NO_L1TF
| NO_MDS
| NO_SWAPGS
| NO_ITLB_MULTIHIT
| NO_MMIO
| NO_BHI
),
1193 /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1194 VULNWL_AMD(X86_FAMILY_ANY
, NO_MELTDOWN
| NO_L1TF
| NO_MDS
| NO_SWAPGS
| NO_ITLB_MULTIHIT
| NO_MMIO
| NO_EIBRS_PBRSB
| NO_BHI
),
1195 VULNWL_HYGON(X86_FAMILY_ANY
, NO_MELTDOWN
| NO_L1TF
| NO_MDS
| NO_SWAPGS
| NO_ITLB_MULTIHIT
| NO_MMIO
| NO_EIBRS_PBRSB
| NO_BHI
),
1197 /* Zhaoxin Family 7 */
1198 VULNWL(CENTAUR
, 7, X86_MODEL_ANY
, NO_SPECTRE_V2
| NO_SWAPGS
| NO_MMIO
| NO_BHI
),
1199 VULNWL(ZHAOXIN
, 7, X86_MODEL_ANY
, NO_SPECTRE_V2
| NO_SWAPGS
| NO_MMIO
| NO_BHI
),
1203 #define VULNBL(vendor, family, model, blacklist) \
1204 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1206 #define VULNBL_INTEL_STEPPINGS(vfm, steppings, issues) \
1207 X86_MATCH_VFM_STEPPINGS(vfm, steppings, issues)
1209 #define VULNBL_AMD(family, blacklist) \
1210 VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1212 #define VULNBL_HYGON(family, blacklist) \
1213 VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
1215 #define SRBDS BIT(0)
1216 /* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1218 /* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1219 #define MMIO_SBDS BIT(2)
1220 /* CPU is affected by RETbleed, speculating where you would not expect it */
1221 #define RETBLEED BIT(3)
1222 /* CPU is affected by SMT (cross-thread) return predictions */
1223 #define SMT_RSB BIT(4)
1224 /* CPU is affected by SRSO */
1226 /* CPU is affected by GDS */
1228 /* CPU is affected by Register File Data Sampling */
1231 static const struct x86_cpu_id cpu_vuln_blacklist
[] __initconst
= {
1232 VULNBL_INTEL_STEPPINGS(INTEL_IVYBRIDGE
, X86_STEPPING_ANY
, SRBDS
),
1233 VULNBL_INTEL_STEPPINGS(INTEL_HASWELL
, X86_STEPPING_ANY
, SRBDS
),
1234 VULNBL_INTEL_STEPPINGS(INTEL_HASWELL_L
, X86_STEPPING_ANY
, SRBDS
),
1235 VULNBL_INTEL_STEPPINGS(INTEL_HASWELL_G
, X86_STEPPING_ANY
, SRBDS
),
1236 VULNBL_INTEL_STEPPINGS(INTEL_HASWELL_X
, X86_STEPPING_ANY
, MMIO
),
1237 VULNBL_INTEL_STEPPINGS(INTEL_BROADWELL_D
, X86_STEPPING_ANY
, MMIO
),
1238 VULNBL_INTEL_STEPPINGS(INTEL_BROADWELL_G
, X86_STEPPING_ANY
, SRBDS
),
1239 VULNBL_INTEL_STEPPINGS(INTEL_BROADWELL_X
, X86_STEPPING_ANY
, MMIO
),
1240 VULNBL_INTEL_STEPPINGS(INTEL_BROADWELL
, X86_STEPPING_ANY
, SRBDS
),
1241 VULNBL_INTEL_STEPPINGS(INTEL_SKYLAKE_X
, X86_STEPPING_ANY
, MMIO
| RETBLEED
| GDS
),
1242 VULNBL_INTEL_STEPPINGS(INTEL_SKYLAKE_L
, X86_STEPPING_ANY
, MMIO
| RETBLEED
| GDS
| SRBDS
),
1243 VULNBL_INTEL_STEPPINGS(INTEL_SKYLAKE
, X86_STEPPING_ANY
, MMIO
| RETBLEED
| GDS
| SRBDS
),
1244 VULNBL_INTEL_STEPPINGS(INTEL_KABYLAKE_L
, X86_STEPPING_ANY
, MMIO
| RETBLEED
| GDS
| SRBDS
),
1245 VULNBL_INTEL_STEPPINGS(INTEL_KABYLAKE
, X86_STEPPING_ANY
, MMIO
| RETBLEED
| GDS
| SRBDS
),
1246 VULNBL_INTEL_STEPPINGS(INTEL_CANNONLAKE_L
, X86_STEPPING_ANY
, RETBLEED
),
1247 VULNBL_INTEL_STEPPINGS(INTEL_ICELAKE_L
, X86_STEPPING_ANY
, MMIO
| MMIO_SBDS
| RETBLEED
| GDS
),
1248 VULNBL_INTEL_STEPPINGS(INTEL_ICELAKE_D
, X86_STEPPING_ANY
, MMIO
| GDS
),
1249 VULNBL_INTEL_STEPPINGS(INTEL_ICELAKE_X
, X86_STEPPING_ANY
, MMIO
| GDS
),
1250 VULNBL_INTEL_STEPPINGS(INTEL_COMETLAKE
, X86_STEPPING_ANY
, MMIO
| MMIO_SBDS
| RETBLEED
| GDS
),
1251 VULNBL_INTEL_STEPPINGS(INTEL_COMETLAKE_L
, X86_STEPPINGS(0x0, 0x0), MMIO
| RETBLEED
),
1252 VULNBL_INTEL_STEPPINGS(INTEL_COMETLAKE_L
, X86_STEPPING_ANY
, MMIO
| MMIO_SBDS
| RETBLEED
| GDS
),
1253 VULNBL_INTEL_STEPPINGS(INTEL_TIGERLAKE_L
, X86_STEPPING_ANY
, GDS
),
1254 VULNBL_INTEL_STEPPINGS(INTEL_TIGERLAKE
, X86_STEPPING_ANY
, GDS
),
1255 VULNBL_INTEL_STEPPINGS(INTEL_LAKEFIELD
, X86_STEPPING_ANY
, MMIO
| MMIO_SBDS
| RETBLEED
),
1256 VULNBL_INTEL_STEPPINGS(INTEL_ROCKETLAKE
, X86_STEPPING_ANY
, MMIO
| RETBLEED
| GDS
),
1257 VULNBL_INTEL_STEPPINGS(INTEL_ALDERLAKE
, X86_STEPPING_ANY
, RFDS
),
1258 VULNBL_INTEL_STEPPINGS(INTEL_ALDERLAKE_L
, X86_STEPPING_ANY
, RFDS
),
1259 VULNBL_INTEL_STEPPINGS(INTEL_RAPTORLAKE
, X86_STEPPING_ANY
, RFDS
),
1260 VULNBL_INTEL_STEPPINGS(INTEL_RAPTORLAKE_P
, X86_STEPPING_ANY
, RFDS
),
1261 VULNBL_INTEL_STEPPINGS(INTEL_RAPTORLAKE_S
, X86_STEPPING_ANY
, RFDS
),
1262 VULNBL_INTEL_STEPPINGS(INTEL_ATOM_GRACEMONT
, X86_STEPPING_ANY
, RFDS
),
1263 VULNBL_INTEL_STEPPINGS(INTEL_ATOM_TREMONT
, X86_STEPPING_ANY
, MMIO
| MMIO_SBDS
| RFDS
),
1264 VULNBL_INTEL_STEPPINGS(INTEL_ATOM_TREMONT_D
, X86_STEPPING_ANY
, MMIO
| RFDS
),
1265 VULNBL_INTEL_STEPPINGS(INTEL_ATOM_TREMONT_L
, X86_STEPPING_ANY
, MMIO
| MMIO_SBDS
| RFDS
),
1266 VULNBL_INTEL_STEPPINGS(INTEL_ATOM_GOLDMONT
, X86_STEPPING_ANY
, RFDS
),
1267 VULNBL_INTEL_STEPPINGS(INTEL_ATOM_GOLDMONT_D
, X86_STEPPING_ANY
, RFDS
),
1268 VULNBL_INTEL_STEPPINGS(INTEL_ATOM_GOLDMONT_PLUS
, X86_STEPPING_ANY
, RFDS
),
1270 VULNBL_AMD(0x15, RETBLEED
),
1271 VULNBL_AMD(0x16, RETBLEED
),
1272 VULNBL_AMD(0x17, RETBLEED
| SMT_RSB
| SRSO
),
1273 VULNBL_HYGON(0x18, RETBLEED
| SMT_RSB
| SRSO
),
1274 VULNBL_AMD(0x19, SRSO
),
1278 static bool __init
cpu_matches(const struct x86_cpu_id
*table
, unsigned long which
)
1280 const struct x86_cpu_id
*m
= x86_match_cpu(table
);
1282 return m
&& !!(m
->driver_data
& which
);
1285 u64
x86_read_arch_cap_msr(void)
1287 u64 x86_arch_cap_msr
= 0;
1289 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES
))
1290 rdmsrl(MSR_IA32_ARCH_CAPABILITIES
, x86_arch_cap_msr
);
1292 return x86_arch_cap_msr
;
1295 static bool arch_cap_mmio_immune(u64 x86_arch_cap_msr
)
1297 return (x86_arch_cap_msr
& ARCH_CAP_FBSDP_NO
&&
1298 x86_arch_cap_msr
& ARCH_CAP_PSDP_NO
&&
1299 x86_arch_cap_msr
& ARCH_CAP_SBDR_SSDP_NO
);
1302 static bool __init
vulnerable_to_rfds(u64 x86_arch_cap_msr
)
1304 /* The "immunity" bit trumps everything else: */
1305 if (x86_arch_cap_msr
& ARCH_CAP_RFDS_NO
)
1309 * VMMs set ARCH_CAP_RFDS_CLEAR for processors not in the blacklist to
1310 * indicate that mitigation is needed because guest is running on a
1311 * vulnerable hardware or may migrate to such hardware:
1313 if (x86_arch_cap_msr
& ARCH_CAP_RFDS_CLEAR
)
1316 /* Only consult the blacklist when there is no enumeration: */
1317 return cpu_matches(cpu_vuln_blacklist
, RFDS
);
1320 static void __init
cpu_set_bug_bits(struct cpuinfo_x86
*c
)
1322 u64 x86_arch_cap_msr
= x86_read_arch_cap_msr();
1324 /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1325 if (!cpu_matches(cpu_vuln_whitelist
, NO_ITLB_MULTIHIT
) &&
1326 !(x86_arch_cap_msr
& ARCH_CAP_PSCHANGE_MC_NO
))
1327 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT
);
1329 if (cpu_matches(cpu_vuln_whitelist
, NO_SPECULATION
))
1332 setup_force_cpu_bug(X86_BUG_SPECTRE_V1
);
1334 if (!cpu_matches(cpu_vuln_whitelist
, NO_SPECTRE_V2
))
1335 setup_force_cpu_bug(X86_BUG_SPECTRE_V2
);
1337 if (!cpu_matches(cpu_vuln_whitelist
, NO_SSB
) &&
1338 !(x86_arch_cap_msr
& ARCH_CAP_SSB_NO
) &&
1339 !cpu_has(c
, X86_FEATURE_AMD_SSB_NO
))
1340 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS
);
1343 * AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature
1344 * flag and protect from vendor-specific bugs via the whitelist.
1346 * Don't use AutoIBRS when SNP is enabled because it degrades host
1347 * userspace indirect branch performance.
1349 if ((x86_arch_cap_msr
& ARCH_CAP_IBRS_ALL
) ||
1350 (cpu_has(c
, X86_FEATURE_AUTOIBRS
) &&
1351 !cpu_feature_enabled(X86_FEATURE_SEV_SNP
))) {
1352 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED
);
1353 if (!cpu_matches(cpu_vuln_whitelist
, NO_EIBRS_PBRSB
) &&
1354 !(x86_arch_cap_msr
& ARCH_CAP_PBRSB_NO
))
1355 setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB
);
1358 if (!cpu_matches(cpu_vuln_whitelist
, NO_MDS
) &&
1359 !(x86_arch_cap_msr
& ARCH_CAP_MDS_NO
)) {
1360 setup_force_cpu_bug(X86_BUG_MDS
);
1361 if (cpu_matches(cpu_vuln_whitelist
, MSBDS_ONLY
))
1362 setup_force_cpu_bug(X86_BUG_MSBDS_ONLY
);
1365 if (!cpu_matches(cpu_vuln_whitelist
, NO_SWAPGS
))
1366 setup_force_cpu_bug(X86_BUG_SWAPGS
);
1369 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1370 * - TSX is supported or
1371 * - TSX_CTRL is present
1373 * TSX_CTRL check is needed for cases when TSX could be disabled before
1374 * the kernel boot e.g. kexec.
1375 * TSX_CTRL check alone is not sufficient for cases when the microcode
1376 * update is not present or running as guest that don't get TSX_CTRL.
1378 if (!(x86_arch_cap_msr
& ARCH_CAP_TAA_NO
) &&
1379 (cpu_has(c
, X86_FEATURE_RTM
) ||
1380 (x86_arch_cap_msr
& ARCH_CAP_TSX_CTRL_MSR
)))
1381 setup_force_cpu_bug(X86_BUG_TAA
);
1384 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1385 * in the vulnerability blacklist.
1387 * Some of the implications and mitigation of Shared Buffers Data
1388 * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1391 if ((cpu_has(c
, X86_FEATURE_RDRAND
) ||
1392 cpu_has(c
, X86_FEATURE_RDSEED
)) &&
1393 cpu_matches(cpu_vuln_blacklist
, SRBDS
| MMIO_SBDS
))
1394 setup_force_cpu_bug(X86_BUG_SRBDS
);
1397 * Processor MMIO Stale Data bug enumeration
1399 * Affected CPU list is generally enough to enumerate the vulnerability,
1400 * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1401 * not want the guest to enumerate the bug.
1403 * Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist,
1404 * nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits.
1406 if (!arch_cap_mmio_immune(x86_arch_cap_msr
)) {
1407 if (cpu_matches(cpu_vuln_blacklist
, MMIO
))
1408 setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA
);
1409 else if (!cpu_matches(cpu_vuln_whitelist
, NO_MMIO
))
1410 setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN
);
1413 if (!cpu_has(c
, X86_FEATURE_BTC_NO
)) {
1414 if (cpu_matches(cpu_vuln_blacklist
, RETBLEED
) || (x86_arch_cap_msr
& ARCH_CAP_RSBA
))
1415 setup_force_cpu_bug(X86_BUG_RETBLEED
);
1418 if (cpu_matches(cpu_vuln_blacklist
, SMT_RSB
))
1419 setup_force_cpu_bug(X86_BUG_SMT_RSB
);
1421 if (!cpu_has(c
, X86_FEATURE_SRSO_NO
)) {
1422 if (cpu_matches(cpu_vuln_blacklist
, SRSO
))
1423 setup_force_cpu_bug(X86_BUG_SRSO
);
1427 * Check if CPU is vulnerable to GDS. If running in a virtual machine on
1428 * an affected processor, the VMM may have disabled the use of GATHER by
1429 * disabling AVX2. The only way to do this in HW is to clear XCR0[2],
1430 * which means that AVX will be disabled.
1432 if (cpu_matches(cpu_vuln_blacklist
, GDS
) && !(x86_arch_cap_msr
& ARCH_CAP_GDS_NO
) &&
1433 boot_cpu_has(X86_FEATURE_AVX
))
1434 setup_force_cpu_bug(X86_BUG_GDS
);
1436 if (vulnerable_to_rfds(x86_arch_cap_msr
))
1437 setup_force_cpu_bug(X86_BUG_RFDS
);
1439 /* When virtualized, eIBRS could be hidden, assume vulnerable */
1440 if (!(x86_arch_cap_msr
& ARCH_CAP_BHI_NO
) &&
1441 !cpu_matches(cpu_vuln_whitelist
, NO_BHI
) &&
1442 (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED
) ||
1443 boot_cpu_has(X86_FEATURE_HYPERVISOR
)))
1444 setup_force_cpu_bug(X86_BUG_BHI
);
1446 if (cpu_matches(cpu_vuln_whitelist
, NO_MELTDOWN
))
1449 /* Rogue Data Cache Load? No! */
1450 if (x86_arch_cap_msr
& ARCH_CAP_RDCL_NO
)
1453 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN
);
1455 if (cpu_matches(cpu_vuln_whitelist
, NO_L1TF
))
1458 setup_force_cpu_bug(X86_BUG_L1TF
);
1462 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1463 * unfortunately, that's not true in practice because of early VIA
1464 * chips and (more importantly) broken virtualizers that are not easy
1465 * to detect. In the latter case it doesn't even *fail* reliably, so
1466 * probing for it doesn't even work. Disable it completely on 32-bit
1467 * unless we can find a reliable way to detect all the broken cases.
1468 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1470 static void detect_nopl(void)
1472 #ifdef CONFIG_X86_32
1473 setup_clear_cpu_cap(X86_FEATURE_NOPL
);
1475 setup_force_cpu_cap(X86_FEATURE_NOPL
);
1480 * We parse cpu parameters early because fpu__init_system() is executed
1481 * before parse_early_param().
1483 static void __init
cpu_parse_early_param(void)
1486 char *argptr
= arg
, *opt
;
1487 int arglen
, taint
= 0;
1489 #ifdef CONFIG_X86_32
1490 if (cmdline_find_option_bool(boot_command_line
, "no387"))
1491 #ifdef CONFIG_MATH_EMULATION
1492 setup_clear_cpu_cap(X86_FEATURE_FPU
);
1494 pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1497 if (cmdline_find_option_bool(boot_command_line
, "nofxsr"))
1498 setup_clear_cpu_cap(X86_FEATURE_FXSR
);
1501 if (cmdline_find_option_bool(boot_command_line
, "noxsave"))
1502 setup_clear_cpu_cap(X86_FEATURE_XSAVE
);
1504 if (cmdline_find_option_bool(boot_command_line
, "noxsaveopt"))
1505 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT
);
1507 if (cmdline_find_option_bool(boot_command_line
, "noxsaves"))
1508 setup_clear_cpu_cap(X86_FEATURE_XSAVES
);
1510 if (cmdline_find_option_bool(boot_command_line
, "nousershstk"))
1511 setup_clear_cpu_cap(X86_FEATURE_USER_SHSTK
);
1513 /* Minimize the gap between FRED is available and available but disabled. */
1514 arglen
= cmdline_find_option(boot_command_line
, "fred", arg
, sizeof(arg
));
1515 if (arglen
!= 2 || strncmp(arg
, "on", 2))
1516 setup_clear_cpu_cap(X86_FEATURE_FRED
);
1518 arglen
= cmdline_find_option(boot_command_line
, "clearcpuid", arg
, sizeof(arg
));
1522 pr_info("Clearing CPUID bits:");
1525 bool found __maybe_unused
= false;
1528 opt
= strsep(&argptr
, ",");
1531 * Handle naked numbers first for feature flags which don't
1534 if (!kstrtouint(opt
, 10, &bit
)) {
1535 if (bit
< NCAPINTS
* 32) {
1537 /* empty-string, i.e., ""-defined feature flags */
1538 if (!x86_cap_flags
[bit
])
1539 pr_cont(" " X86_CAP_FMT_NUM
, x86_cap_flag_num(bit
));
1541 pr_cont(" " X86_CAP_FMT
, x86_cap_flag(bit
));
1543 setup_clear_cpu_cap(bit
);
1547 * The assumption is that there are no feature names with only
1548 * numbers in the name thus go to the next argument.
1553 for (bit
= 0; bit
< 32 * NCAPINTS
; bit
++) {
1554 if (!x86_cap_flag(bit
))
1557 if (strcmp(x86_cap_flag(bit
), opt
))
1560 pr_cont(" %s", opt
);
1561 setup_clear_cpu_cap(bit
);
1568 pr_cont(" (unknown: %s)", opt
);
1573 add_taint(TAINT_CPU_OUT_OF_SPEC
, LOCKDEP_STILL_OK
);
1577 * Do minimum CPU detection early.
1578 * Fields really needed: vendor, cpuid_level, family, model, mask,
1580 * The others are not touched to avoid unwanted side effects.
1582 * WARNING: this function is only called on the boot CPU. Don't add code
1583 * here that is supposed to run on all CPUs.
1585 static void __init
early_identify_cpu(struct cpuinfo_x86
*c
)
1587 memset(&c
->x86_capability
, 0, sizeof(c
->x86_capability
));
1588 c
->extended_cpuid_level
= 0;
1590 if (!have_cpuid_p())
1591 identify_cpu_without_cpuid(c
);
1593 /* cyrix could have cpuid enabled via c_identify()*/
1594 if (have_cpuid_p()) {
1597 intel_unlock_cpuid_leafs(c
);
1599 setup_force_cpu_cap(X86_FEATURE_CPUID
);
1600 get_cpu_address_sizes(c
);
1601 cpu_parse_early_param();
1603 cpu_init_topology(c
);
1605 if (this_cpu
->c_early_init
)
1606 this_cpu
->c_early_init(c
);
1609 filter_cpuid_features(c
, false);
1611 if (this_cpu
->c_bsp_init
)
1612 this_cpu
->c_bsp_init(c
);
1614 setup_clear_cpu_cap(X86_FEATURE_CPUID
);
1615 get_cpu_address_sizes(c
);
1616 cpu_init_topology(c
);
1619 setup_force_cpu_cap(X86_FEATURE_ALWAYS
);
1621 cpu_set_bug_bits(c
);
1625 #ifdef CONFIG_X86_32
1627 * Regardless of whether PCID is enumerated, the SDM says
1628 * that it can't be enabled in 32-bit mode.
1630 setup_clear_cpu_cap(X86_FEATURE_PCID
);
1634 * Later in the boot process pgtable_l5_enabled() relies on
1635 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1636 * enabled by this point we need to clear the feature bit to avoid
1637 * false-positives at the later stage.
1639 * pgtable_l5_enabled() can be false here for several reasons:
1640 * - 5-level paging is disabled compile-time;
1641 * - it's 32-bit kernel;
1642 * - machine doesn't support 5-level paging;
1643 * - user specified 'no5lvl' in kernel command line.
1645 if (!pgtable_l5_enabled())
1646 setup_clear_cpu_cap(X86_FEATURE_LA57
);
1651 void __init
early_cpu_init(void)
1653 const struct cpu_dev
*const *cdev
;
1656 #ifdef CONFIG_PROCESSOR_SELECT
1657 pr_info("KERNEL supported cpus:\n");
1660 for (cdev
= __x86_cpu_dev_start
; cdev
< __x86_cpu_dev_end
; cdev
++) {
1661 const struct cpu_dev
*cpudev
= *cdev
;
1663 if (count
>= X86_VENDOR_NUM
)
1665 cpu_devs
[count
] = cpudev
;
1668 #ifdef CONFIG_PROCESSOR_SELECT
1672 for (j
= 0; j
< 2; j
++) {
1673 if (!cpudev
->c_ident
[j
])
1675 pr_info(" %s %s\n", cpudev
->c_vendor
,
1676 cpudev
->c_ident
[j
]);
1681 early_identify_cpu(&boot_cpu_data
);
1684 static bool detect_null_seg_behavior(void)
1687 * Empirically, writing zero to a segment selector on AMD does
1688 * not clear the base, whereas writing zero to a segment
1689 * selector on Intel does clear the base. Intel's behavior
1690 * allows slightly faster context switches in the common case
1691 * where GS is unused by the prev and next threads.
1693 * Since neither vendor documents this anywhere that I can see,
1694 * detect it directly instead of hard-coding the choice by
1697 * I've designated AMD's behavior as the "bug" because it's
1698 * counterintuitive and less friendly.
1701 unsigned long old_base
, tmp
;
1702 rdmsrl(MSR_FS_BASE
, old_base
);
1703 wrmsrl(MSR_FS_BASE
, 1);
1705 rdmsrl(MSR_FS_BASE
, tmp
);
1706 wrmsrl(MSR_FS_BASE
, old_base
);
1710 void check_null_seg_clears_base(struct cpuinfo_x86
*c
)
1712 /* BUG_NULL_SEG is only relevant with 64bit userspace */
1713 if (!IS_ENABLED(CONFIG_X86_64
))
1716 if (cpu_has(c
, X86_FEATURE_NULL_SEL_CLR_BASE
))
1720 * CPUID bit above wasn't set. If this kernel is still running
1721 * as a HV guest, then the HV has decided not to advertize
1722 * that CPUID bit for whatever reason. For example, one
1723 * member of the migration pool might be vulnerable. Which
1724 * means, the bug is present: set the BUG flag and return.
1726 if (cpu_has(c
, X86_FEATURE_HYPERVISOR
)) {
1727 set_cpu_bug(c
, X86_BUG_NULL_SEG
);
1732 * Zen2 CPUs also have this behaviour, but no CPUID bit.
1733 * 0x18 is the respective family for Hygon.
1735 if ((c
->x86
== 0x17 || c
->x86
== 0x18) &&
1736 detect_null_seg_behavior())
1739 /* All the remaining ones are affected */
1740 set_cpu_bug(c
, X86_BUG_NULL_SEG
);
1743 static void generic_identify(struct cpuinfo_x86
*c
)
1745 c
->extended_cpuid_level
= 0;
1747 if (!have_cpuid_p())
1748 identify_cpu_without_cpuid(c
);
1750 /* cyrix could have cpuid enabled via c_identify()*/
1751 if (!have_cpuid_p())
1757 intel_unlock_cpuid_leafs(c
);
1760 get_cpu_address_sizes(c
);
1762 get_model_name(c
); /* Default name */
1765 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1766 * systems that run Linux at CPL > 0 may or may not have the
1767 * issue, but, even if they have the issue, there's absolutely
1768 * nothing we can do about it because we can't use the real IRET
1771 * NB: For the time being, only 32-bit kernels support
1772 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1773 * whether to apply espfix using paravirt hooks. If any
1774 * non-paravirt system ever shows up that does *not* have the
1775 * ESPFIX issue, we can change this.
1777 #ifdef CONFIG_X86_32
1778 set_cpu_bug(c
, X86_BUG_ESPFIX
);
1783 * This does the hard work of actually picking apart the CPU stuff...
1785 static void identify_cpu(struct cpuinfo_x86
*c
)
1789 c
->loops_per_jiffy
= loops_per_jiffy
;
1790 c
->x86_cache_size
= 0;
1791 c
->x86_vendor
= X86_VENDOR_UNKNOWN
;
1792 c
->x86_model
= c
->x86_stepping
= 0; /* So far unknown... */
1793 c
->x86_vendor_id
[0] = '\0'; /* Unset */
1794 c
->x86_model_id
[0] = '\0'; /* Unset */
1795 #ifdef CONFIG_X86_64
1796 c
->x86_clflush_size
= 64;
1797 c
->x86_phys_bits
= 36;
1798 c
->x86_virt_bits
= 48;
1800 c
->cpuid_level
= -1; /* CPUID not detected */
1801 c
->x86_clflush_size
= 32;
1802 c
->x86_phys_bits
= 32;
1803 c
->x86_virt_bits
= 32;
1805 c
->x86_cache_alignment
= c
->x86_clflush_size
;
1806 memset(&c
->x86_capability
, 0, sizeof(c
->x86_capability
));
1807 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1808 memset(&c
->vmx_capability
, 0, sizeof(c
->vmx_capability
));
1811 generic_identify(c
);
1813 cpu_parse_topology(c
);
1815 if (this_cpu
->c_identify
)
1816 this_cpu
->c_identify(c
);
1818 /* Clear/Set all flags overridden by options, after probe */
1819 apply_forced_caps(c
);
1822 * Set default APIC and TSC_DEADLINE MSR fencing flag. AMD and
1823 * Hygon will clear it in ->c_init() below.
1825 set_cpu_cap(c
, X86_FEATURE_APIC_MSRS_FENCE
);
1828 * Vendor-specific initialization. In this section we
1829 * canonicalize the feature flags, meaning if there are
1830 * features a certain CPU supports which CPUID doesn't
1831 * tell us, CPUID claiming incorrect flags, or other bugs,
1832 * we handle them here.
1834 * At the end of this section, c->x86_capability better
1835 * indicate the features this CPU genuinely supports!
1837 if (this_cpu
->c_init
)
1838 this_cpu
->c_init(c
);
1840 /* Disable the PN if appropriate */
1841 squash_the_stupid_serial_number(c
);
1843 /* Set up SMEP/SMAP/UMIP */
1848 /* Enable FSGSBASE instructions if available. */
1849 if (cpu_has(c
, X86_FEATURE_FSGSBASE
)) {
1850 cr4_set_bits(X86_CR4_FSGSBASE
);
1851 elf_hwcap2
|= HWCAP2_FSGSBASE
;
1855 * The vendor-specific functions might have changed features.
1856 * Now we do "generic changes."
1859 /* Filter out anything that depends on CPUID levels we don't have */
1860 filter_cpuid_features(c
, true);
1862 /* If the model name is still unset, do table lookup. */
1863 if (!c
->x86_model_id
[0]) {
1865 p
= table_lookup_model(c
);
1867 strcpy(c
->x86_model_id
, p
);
1869 /* Last resort... */
1870 sprintf(c
->x86_model_id
, "%02x/%02x",
1871 c
->x86
, c
->x86_model
);
1879 * Clear/Set all flags overridden by options, need do it
1880 * before following smp all cpus cap AND.
1882 apply_forced_caps(c
);
1885 * On SMP, boot_cpu_data holds the common feature set between
1886 * all CPUs; so make sure that we indicate which features are
1887 * common between the CPUs. The first time this routine gets
1888 * executed, c == &boot_cpu_data.
1890 if (c
!= &boot_cpu_data
) {
1891 /* AND the already accumulated flags with these */
1892 for (i
= 0; i
< NCAPINTS
; i
++)
1893 boot_cpu_data
.x86_capability
[i
] &= c
->x86_capability
[i
];
1895 /* OR, i.e. replicate the bug flags */
1896 for (i
= NCAPINTS
; i
< NCAPINTS
+ NBUGINTS
; i
++)
1897 c
->x86_capability
[i
] |= boot_cpu_data
.x86_capability
[i
];
1902 /* Init Machine Check Exception if available. */
1906 numa_add_cpu(smp_processor_id());
1911 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1912 * on 32-bit kernels:
1914 #ifdef CONFIG_X86_32
1915 void enable_sep_cpu(void)
1917 struct tss_struct
*tss
;
1920 if (!boot_cpu_has(X86_FEATURE_SEP
))
1924 tss
= &per_cpu(cpu_tss_rw
, cpu
);
1927 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1928 * see the big comment in struct x86_hw_tss's definition.
1931 tss
->x86_tss
.ss1
= __KERNEL_CS
;
1932 wrmsr(MSR_IA32_SYSENTER_CS
, tss
->x86_tss
.ss1
, 0);
1933 wrmsr(MSR_IA32_SYSENTER_ESP
, (unsigned long)(cpu_entry_stack(cpu
) + 1), 0);
1934 wrmsr(MSR_IA32_SYSENTER_EIP
, (unsigned long)entry_SYSENTER_32
, 0);
1940 static __init
void identify_boot_cpu(void)
1942 identify_cpu(&boot_cpu_data
);
1943 if (HAS_KERNEL_IBT
&& cpu_feature_enabled(X86_FEATURE_IBT
))
1944 pr_info("CET detected: Indirect Branch Tracking enabled\n");
1945 #ifdef CONFIG_X86_32
1948 cpu_detect_tlb(&boot_cpu_data
);
1956 void identify_secondary_cpu(struct cpuinfo_x86
*c
)
1958 BUG_ON(c
== &boot_cpu_data
);
1960 #ifdef CONFIG_X86_32
1963 x86_spec_ctrl_setup_ap();
1965 if (boot_cpu_has_bug(X86_BUG_GDS
))
1971 void print_cpu_info(struct cpuinfo_x86
*c
)
1973 const char *vendor
= NULL
;
1975 if (c
->x86_vendor
< X86_VENDOR_NUM
) {
1976 vendor
= this_cpu
->c_vendor
;
1978 if (c
->cpuid_level
>= 0)
1979 vendor
= c
->x86_vendor_id
;
1982 if (vendor
&& !strstr(c
->x86_model_id
, vendor
))
1983 pr_cont("%s ", vendor
);
1985 if (c
->x86_model_id
[0])
1986 pr_cont("%s", c
->x86_model_id
);
1988 pr_cont("%d86", c
->x86
);
1990 pr_cont(" (family: 0x%x, model: 0x%x", c
->x86
, c
->x86_model
);
1992 if (c
->x86_stepping
|| c
->cpuid_level
>= 0)
1993 pr_cont(", stepping: 0x%x)\n", c
->x86_stepping
);
1999 * clearcpuid= was already parsed in cpu_parse_early_param(). This dummy
2000 * function prevents it from becoming an environment variable for init.
2002 static __init
int setup_clearcpuid(char *arg
)
2006 __setup("clearcpuid=", setup_clearcpuid
);
2008 DEFINE_PER_CPU_ALIGNED(struct pcpu_hot
, pcpu_hot
) = {
2009 .current_task
= &init_task
,
2010 .preempt_count
= INIT_PREEMPT_COUNT
,
2011 .top_of_stack
= TOP_OF_INIT_STACK
,
2013 EXPORT_PER_CPU_SYMBOL(pcpu_hot
);
2014 EXPORT_PER_CPU_SYMBOL(const_pcpu_hot
);
2016 #ifdef CONFIG_X86_64
2017 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data
,
2018 fixed_percpu_data
) __aligned(PAGE_SIZE
) __visible
;
2019 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data
);
2021 static void wrmsrl_cstar(unsigned long val
)
2024 * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
2025 * is so far ignored by the CPU, but raises a #VE trap in a TDX
2026 * guest. Avoid the pointless write on all Intel CPUs.
2028 if (boot_cpu_data
.x86_vendor
!= X86_VENDOR_INTEL
)
2029 wrmsrl(MSR_CSTAR
, val
);
2032 static inline void idt_syscall_init(void)
2034 wrmsrl(MSR_LSTAR
, (unsigned long)entry_SYSCALL_64
);
2036 if (ia32_enabled()) {
2037 wrmsrl_cstar((unsigned long)entry_SYSCALL_compat
);
2039 * This only works on Intel CPUs.
2040 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
2041 * This does not cause SYSENTER to jump to the wrong location, because
2042 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
2044 wrmsrl_safe(MSR_IA32_SYSENTER_CS
, (u64
)__KERNEL_CS
);
2045 wrmsrl_safe(MSR_IA32_SYSENTER_ESP
,
2046 (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
2047 wrmsrl_safe(MSR_IA32_SYSENTER_EIP
, (u64
)entry_SYSENTER_compat
);
2049 wrmsrl_cstar((unsigned long)entry_SYSCALL32_ignore
);
2050 wrmsrl_safe(MSR_IA32_SYSENTER_CS
, (u64
)GDT_ENTRY_INVALID_SEG
);
2051 wrmsrl_safe(MSR_IA32_SYSENTER_ESP
, 0ULL);
2052 wrmsrl_safe(MSR_IA32_SYSENTER_EIP
, 0ULL);
2056 * Flags to clear on syscall; clear as much as possible
2057 * to minimize user space-kernel interference.
2059 wrmsrl(MSR_SYSCALL_MASK
,
2060 X86_EFLAGS_CF
|X86_EFLAGS_PF
|X86_EFLAGS_AF
|
2061 X86_EFLAGS_ZF
|X86_EFLAGS_SF
|X86_EFLAGS_TF
|
2062 X86_EFLAGS_IF
|X86_EFLAGS_DF
|X86_EFLAGS_OF
|
2063 X86_EFLAGS_IOPL
|X86_EFLAGS_NT
|X86_EFLAGS_RF
|
2064 X86_EFLAGS_AC
|X86_EFLAGS_ID
);
2067 /* May not be marked __init: used by software suspend */
2068 void syscall_init(void)
2070 /* The default user and kernel segments */
2071 wrmsr(MSR_STAR
, 0, (__USER32_CS
<< 16) | __KERNEL_CS
);
2074 * Except the IA32_STAR MSR, there is NO need to setup SYSCALL and
2075 * SYSENTER MSRs for FRED, because FRED uses the ring 3 FRED
2076 * entrypoint for SYSCALL and SYSENTER, and ERETU is the only legit
2077 * instruction to return to ring 3 (both sysexit and sysret cause
2078 * #UD when FRED is enabled).
2080 if (!cpu_feature_enabled(X86_FEATURE_FRED
))
2084 #else /* CONFIG_X86_64 */
2086 #ifdef CONFIG_STACKPROTECTOR
2087 DEFINE_PER_CPU(unsigned long, __stack_chk_guard
);
2088 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard
);
2091 #endif /* CONFIG_X86_64 */
2094 * Clear all 6 debug registers:
2096 static void clear_all_debug_regs(void)
2100 for (i
= 0; i
< 8; i
++) {
2101 /* Ignore db4, db5 */
2102 if ((i
== 4) || (i
== 5))
2111 * Restore debug regs if using kgdbwait and you have a kernel debugger
2112 * connection established.
2114 static void dbg_restore_debug_regs(void)
2116 if (unlikely(kgdb_connected
&& arch_kgdb_ops
.correct_hw_break
))
2117 arch_kgdb_ops
.correct_hw_break();
2119 #else /* ! CONFIG_KGDB */
2120 #define dbg_restore_debug_regs()
2121 #endif /* ! CONFIG_KGDB */
2123 static inline void setup_getcpu(int cpu
)
2125 unsigned long cpudata
= vdso_encode_cpunode(cpu
, early_cpu_to_node(cpu
));
2126 struct desc_struct d
= { };
2128 if (boot_cpu_has(X86_FEATURE_RDTSCP
) || boot_cpu_has(X86_FEATURE_RDPID
))
2129 wrmsr(MSR_TSC_AUX
, cpudata
, 0);
2131 /* Store CPU and node number in limit. */
2133 d
.limit1
= cpudata
>> 16;
2135 d
.type
= 5; /* RO data, expand down, accessed */
2136 d
.dpl
= 3; /* Visible to user code */
2137 d
.s
= 1; /* Not a system segment */
2138 d
.p
= 1; /* Present */
2139 d
.d
= 1; /* 32-bit */
2141 write_gdt_entry(get_cpu_gdt_rw(cpu
), GDT_ENTRY_CPUNODE
, &d
, DESCTYPE_S
);
2144 #ifdef CONFIG_X86_64
2145 static inline void tss_setup_ist(struct tss_struct
*tss
)
2147 /* Set up the per-CPU TSS IST stacks */
2148 tss
->x86_tss
.ist
[IST_INDEX_DF
] = __this_cpu_ist_top_va(DF
);
2149 tss
->x86_tss
.ist
[IST_INDEX_NMI
] = __this_cpu_ist_top_va(NMI
);
2150 tss
->x86_tss
.ist
[IST_INDEX_DB
] = __this_cpu_ist_top_va(DB
);
2151 tss
->x86_tss
.ist
[IST_INDEX_MCE
] = __this_cpu_ist_top_va(MCE
);
2152 /* Only mapped when SEV-ES is active */
2153 tss
->x86_tss
.ist
[IST_INDEX_VC
] = __this_cpu_ist_top_va(VC
);
2155 #else /* CONFIG_X86_64 */
2156 static inline void tss_setup_ist(struct tss_struct
*tss
) { }
2157 #endif /* !CONFIG_X86_64 */
2159 static inline void tss_setup_io_bitmap(struct tss_struct
*tss
)
2161 tss
->x86_tss
.io_bitmap_base
= IO_BITMAP_OFFSET_INVALID
;
2163 #ifdef CONFIG_X86_IOPL_IOPERM
2164 tss
->io_bitmap
.prev_max
= 0;
2165 tss
->io_bitmap
.prev_sequence
= 0;
2166 memset(tss
->io_bitmap
.bitmap
, 0xff, sizeof(tss
->io_bitmap
.bitmap
));
2168 * Invalidate the extra array entry past the end of the all
2169 * permission bitmap as required by the hardware.
2171 tss
->io_bitmap
.mapall
[IO_BITMAP_LONGS
] = ~0UL;
2176 * Setup everything needed to handle exceptions from the IDT, including the IST
2177 * exceptions which use paranoid_entry().
2179 void cpu_init_exception_handling(bool boot_cpu
)
2181 struct tss_struct
*tss
= this_cpu_ptr(&cpu_tss_rw
);
2182 int cpu
= raw_smp_processor_id();
2184 /* paranoid_entry() gets the CPU number from the GDT */
2187 /* For IDT mode, IST vectors need to be set in TSS. */
2188 if (!cpu_feature_enabled(X86_FEATURE_FRED
))
2190 tss_setup_io_bitmap(tss
);
2191 set_tss_desc(cpu
, &get_cpu_entry_area(cpu
)->tss
.x86_tss
);
2195 /* GHCB needs to be setup to handle #VC. */
2198 if (cpu_feature_enabled(X86_FEATURE_FRED
)) {
2199 /* The boot CPU has enabled FRED during early boot */
2201 cpu_init_fred_exceptions();
2203 cpu_init_fred_rsps();
2209 void __init
cpu_init_replace_early_idt(void)
2211 if (cpu_feature_enabled(X86_FEATURE_FRED
))
2212 cpu_init_fred_exceptions();
2214 idt_setup_early_pf();
2218 * cpu_init() initializes state that is per-CPU. Some data is already
2219 * initialized (naturally) in the bootstrap process, such as the GDT. We
2220 * reload it nevertheless, this function acts as a 'CPU state barrier',
2221 * nothing should get across.
2225 struct task_struct
*cur
= current
;
2226 int cpu
= raw_smp_processor_id();
2229 if (this_cpu_read(numa_node
) == 0 &&
2230 early_cpu_to_node(cpu
) != NUMA_NO_NODE
)
2231 set_numa_node(early_cpu_to_node(cpu
));
2233 pr_debug("Initializing CPU#%d\n", cpu
);
2235 if (IS_ENABLED(CONFIG_X86_64
) || cpu_feature_enabled(X86_FEATURE_VME
) ||
2236 boot_cpu_has(X86_FEATURE_TSC
) || boot_cpu_has(X86_FEATURE_DE
))
2237 cr4_clear_bits(X86_CR4_VME
|X86_CR4_PVI
|X86_CR4_TSD
|X86_CR4_DE
);
2239 if (IS_ENABLED(CONFIG_X86_64
)) {
2241 memset(cur
->thread
.tls_array
, 0, GDT_ENTRY_TLS_ENTRIES
* 8);
2244 wrmsrl(MSR_FS_BASE
, 0);
2245 wrmsrl(MSR_KERNEL_GS_BASE
, 0);
2250 intel_posted_msi_init();
2254 cur
->active_mm
= &init_mm
;
2256 initialize_tlbstate_and_flush();
2257 enter_lazy_tlb(&init_mm
, cur
);
2260 * sp0 points to the entry trampoline stack regardless of what task
2263 load_sp0((unsigned long)(cpu_entry_stack(cpu
) + 1));
2265 load_mm_ldt(&init_mm
);
2267 clear_all_debug_regs();
2268 dbg_restore_debug_regs();
2270 doublefault_init_cpu_tss();
2275 load_fixmap_gdt(cpu
);
2278 #ifdef CONFIG_MICROCODE_LATE_LOADING
2280 * store_cpu_caps() - Store a snapshot of CPU capabilities
2281 * @curr_info: Pointer where to store it
2285 void store_cpu_caps(struct cpuinfo_x86
*curr_info
)
2287 /* Reload CPUID max function as it might've changed. */
2288 curr_info
->cpuid_level
= cpuid_eax(0);
2290 /* Copy all capability leafs and pick up the synthetic ones. */
2291 memcpy(&curr_info
->x86_capability
, &boot_cpu_data
.x86_capability
,
2292 sizeof(curr_info
->x86_capability
));
2294 /* Get the hardware CPUID leafs */
2295 get_cpu_cap(curr_info
);
2299 * microcode_check() - Check if any CPU capabilities changed after an update.
2300 * @prev_info: CPU capabilities stored before an update.
2302 * The microcode loader calls this upon late microcode load to recheck features,
2303 * only when microcode has been updated. Caller holds and CPU hotplug lock.
2307 void microcode_check(struct cpuinfo_x86
*prev_info
)
2309 struct cpuinfo_x86 curr_info
;
2311 perf_check_microcode();
2313 amd_check_microcode();
2315 store_cpu_caps(&curr_info
);
2317 if (!memcmp(&prev_info
->x86_capability
, &curr_info
.x86_capability
,
2318 sizeof(prev_info
->x86_capability
)))
2321 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2322 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2327 * Invoked from core CPU hotplug code after hotplug operations
2329 void arch_smt_update(void)
2331 /* Handle the speculative execution misfeatures */
2332 cpu_bugs_smt_update();
2333 /* Check whether IPI broadcasting can be enabled */
2337 void __init
arch_cpu_finalize_init(void)
2339 struct cpuinfo_x86
*c
= this_cpu_ptr(&cpu_info
);
2341 identify_boot_cpu();
2343 select_idle_routine();
2346 * identify_boot_cpu() initialized SMT support information, let the
2349 cpu_smt_set_num_threads(__max_threads_per_core
, __max_threads_per_core
);
2351 if (!IS_ENABLED(CONFIG_SMP
)) {
2353 print_cpu_info(&boot_cpu_data
);
2356 cpu_select_mitigations();
2360 if (IS_ENABLED(CONFIG_X86_32
)) {
2362 * Check whether this is a real i386 which is not longer
2363 * supported and fixup the utsname.
2365 if (boot_cpu_data
.x86
< 4)
2366 panic("Kernel requires i486+ for 'invlpg' and other features");
2368 init_utsname()->machine
[1] =
2369 '0' + (boot_cpu_data
.x86
> 6 ? 6 : boot_cpu_data
.x86
);
2373 * Must be before alternatives because it might set or clear
2380 * Ensure that access to the per CPU representation has the initial
2381 * boot CPU configuration.
2384 c
->initialized
= true;
2386 alternative_instructions();
2388 if (IS_ENABLED(CONFIG_X86_64
)) {
2390 * Make sure the first 2MB area is not mapped by huge pages
2391 * There are typically fixed size MTRRs in there and overlapping
2392 * MTRRs into large pages causes slow downs.
2394 * Right now we don't do that with gbpages because there seems
2395 * very little benefit for that case.
2397 if (!direct_gbpages
)
2398 set_memory_4k((unsigned long)__va(0), 1);
2400 fpu__init_check_bugs();
2404 * This needs to be called before any devices perform DMA
2405 * operations that might use the SWIOTLB bounce buffers. It will
2406 * mark the bounce buffers as decrypted so that their usage will
2407 * not cause "plain-text" data to be decrypted when accessed. It
2408 * must be called after late_time_init() so that Hyper-V x86/x64
2409 * hypercalls work when the SWIOTLB bounce buffers are decrypted.