1 // SPDX-License-Identifier: GPL-2.0-only
3 * User interface for Resource Allocation in Resource Director Technology(RDT)
5 * Copyright (C) 2016 Intel Corporation
7 * Author: Fenghua Yu <fenghua.yu@intel.com>
9 * More information about RDT be found in the Intel (R) x86 Architecture
10 * Software Developer Manual.
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/cpu.h>
16 #include <linux/debugfs.h>
18 #include <linux/fs_parser.h>
19 #include <linux/sysfs.h>
20 #include <linux/kernfs.h>
21 #include <linux/seq_buf.h>
22 #include <linux/seq_file.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/task.h>
25 #include <linux/slab.h>
26 #include <linux/task_work.h>
27 #include <linux/user_namespace.h>
29 #include <uapi/linux/magic.h>
31 #include <asm/resctrl.h>
34 DEFINE_STATIC_KEY_FALSE(rdt_enable_key
);
35 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key
);
36 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key
);
38 /* Mutex to protect rdtgroup access. */
39 DEFINE_MUTEX(rdtgroup_mutex
);
41 static struct kernfs_root
*rdt_root
;
42 struct rdtgroup rdtgroup_default
;
43 LIST_HEAD(rdt_all_groups
);
45 /* list of entries for the schemata file */
46 LIST_HEAD(resctrl_schema_all
);
48 /* The filesystem can only be mounted once. */
51 /* Kernel fs node for "info" directory under root */
52 static struct kernfs_node
*kn_info
;
54 /* Kernel fs node for "mon_groups" directory under root */
55 static struct kernfs_node
*kn_mongrp
;
57 /* Kernel fs node for "mon_data" directory under root */
58 static struct kernfs_node
*kn_mondata
;
60 static struct seq_buf last_cmd_status
;
61 static char last_cmd_status_buf
[512];
63 static int rdtgroup_setup_root(struct rdt_fs_context
*ctx
);
64 static void rdtgroup_destroy_root(void);
66 struct dentry
*debugfs_resctrl
;
68 static bool resctrl_debug
;
70 void rdt_last_cmd_clear(void)
72 lockdep_assert_held(&rdtgroup_mutex
);
73 seq_buf_clear(&last_cmd_status
);
76 void rdt_last_cmd_puts(const char *s
)
78 lockdep_assert_held(&rdtgroup_mutex
);
79 seq_buf_puts(&last_cmd_status
, s
);
82 void rdt_last_cmd_printf(const char *fmt
, ...)
87 lockdep_assert_held(&rdtgroup_mutex
);
88 seq_buf_vprintf(&last_cmd_status
, fmt
, ap
);
92 void rdt_staged_configs_clear(void)
94 struct rdt_ctrl_domain
*dom
;
95 struct rdt_resource
*r
;
97 lockdep_assert_held(&rdtgroup_mutex
);
99 for_each_alloc_capable_rdt_resource(r
) {
100 list_for_each_entry(dom
, &r
->ctrl_domains
, hdr
.list
)
101 memset(dom
->staged_config
, 0, sizeof(dom
->staged_config
));
106 * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
107 * we can keep a bitmap of free CLOSIDs in a single integer.
109 * Using a global CLOSID across all resources has some advantages and
111 * + We can simply set current's closid to assign a task to a resource
113 * + Context switch code can avoid extra memory references deciding which
114 * CLOSID to load into the PQR_ASSOC MSR
115 * - We give up some options in configuring resource groups across multi-socket
117 * - Our choices on how to configure each resource become progressively more
118 * limited as the number of resources grows.
120 static unsigned long closid_free_map
;
121 static int closid_free_map_len
;
123 int closids_supported(void)
125 return closid_free_map_len
;
128 static void closid_init(void)
130 struct resctrl_schema
*s
;
131 u32 rdt_min_closid
= 32;
133 /* Compute rdt_min_closid across all resources */
134 list_for_each_entry(s
, &resctrl_schema_all
, list
)
135 rdt_min_closid
= min(rdt_min_closid
, s
->num_closid
);
137 closid_free_map
= BIT_MASK(rdt_min_closid
) - 1;
139 /* RESCTRL_RESERVED_CLOSID is always reserved for the default group */
140 __clear_bit(RESCTRL_RESERVED_CLOSID
, &closid_free_map
);
141 closid_free_map_len
= rdt_min_closid
;
144 static int closid_alloc(void)
149 lockdep_assert_held(&rdtgroup_mutex
);
151 if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID
)) {
152 cleanest_closid
= resctrl_find_cleanest_closid();
153 if (cleanest_closid
< 0)
154 return cleanest_closid
;
155 closid
= cleanest_closid
;
157 closid
= ffs(closid_free_map
);
162 __clear_bit(closid
, &closid_free_map
);
167 void closid_free(int closid
)
169 lockdep_assert_held(&rdtgroup_mutex
);
171 __set_bit(closid
, &closid_free_map
);
175 * closid_allocated - test if provided closid is in use
176 * @closid: closid to be tested
178 * Return: true if @closid is currently associated with a resource group,
179 * false if @closid is free
181 bool closid_allocated(unsigned int closid
)
183 lockdep_assert_held(&rdtgroup_mutex
);
185 return !test_bit(closid
, &closid_free_map
);
189 * rdtgroup_mode_by_closid - Return mode of resource group with closid
190 * @closid: closid if the resource group
192 * Each resource group is associated with a @closid. Here the mode
193 * of a resource group can be queried by searching for it using its closid.
195 * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
197 enum rdtgrp_mode
rdtgroup_mode_by_closid(int closid
)
199 struct rdtgroup
*rdtgrp
;
201 list_for_each_entry(rdtgrp
, &rdt_all_groups
, rdtgroup_list
) {
202 if (rdtgrp
->closid
== closid
)
206 return RDT_NUM_MODES
;
209 static const char * const rdt_mode_str
[] = {
210 [RDT_MODE_SHAREABLE
] = "shareable",
211 [RDT_MODE_EXCLUSIVE
] = "exclusive",
212 [RDT_MODE_PSEUDO_LOCKSETUP
] = "pseudo-locksetup",
213 [RDT_MODE_PSEUDO_LOCKED
] = "pseudo-locked",
217 * rdtgroup_mode_str - Return the string representation of mode
218 * @mode: the resource group mode as &enum rdtgroup_mode
220 * Return: string representation of valid mode, "unknown" otherwise
222 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode
)
224 if (mode
< RDT_MODE_SHAREABLE
|| mode
>= RDT_NUM_MODES
)
227 return rdt_mode_str
[mode
];
230 /* set uid and gid of rdtgroup dirs and files to that of the creator */
231 static int rdtgroup_kn_set_ugid(struct kernfs_node
*kn
)
233 struct iattr iattr
= { .ia_valid
= ATTR_UID
| ATTR_GID
,
234 .ia_uid
= current_fsuid(),
235 .ia_gid
= current_fsgid(), };
237 if (uid_eq(iattr
.ia_uid
, GLOBAL_ROOT_UID
) &&
238 gid_eq(iattr
.ia_gid
, GLOBAL_ROOT_GID
))
241 return kernfs_setattr(kn
, &iattr
);
244 static int rdtgroup_add_file(struct kernfs_node
*parent_kn
, struct rftype
*rft
)
246 struct kernfs_node
*kn
;
249 kn
= __kernfs_create_file(parent_kn
, rft
->name
, rft
->mode
,
250 GLOBAL_ROOT_UID
, GLOBAL_ROOT_GID
,
251 0, rft
->kf_ops
, rft
, NULL
, NULL
);
255 ret
= rdtgroup_kn_set_ugid(kn
);
264 static int rdtgroup_seqfile_show(struct seq_file
*m
, void *arg
)
266 struct kernfs_open_file
*of
= m
->private;
267 struct rftype
*rft
= of
->kn
->priv
;
270 return rft
->seq_show(of
, m
, arg
);
274 static ssize_t
rdtgroup_file_write(struct kernfs_open_file
*of
, char *buf
,
275 size_t nbytes
, loff_t off
)
277 struct rftype
*rft
= of
->kn
->priv
;
280 return rft
->write(of
, buf
, nbytes
, off
);
285 static const struct kernfs_ops rdtgroup_kf_single_ops
= {
286 .atomic_write_len
= PAGE_SIZE
,
287 .write
= rdtgroup_file_write
,
288 .seq_show
= rdtgroup_seqfile_show
,
291 static const struct kernfs_ops kf_mondata_ops
= {
292 .atomic_write_len
= PAGE_SIZE
,
293 .seq_show
= rdtgroup_mondata_show
,
296 static bool is_cpu_list(struct kernfs_open_file
*of
)
298 struct rftype
*rft
= of
->kn
->priv
;
300 return rft
->flags
& RFTYPE_FLAGS_CPUS_LIST
;
303 static int rdtgroup_cpus_show(struct kernfs_open_file
*of
,
304 struct seq_file
*s
, void *v
)
306 struct rdtgroup
*rdtgrp
;
307 struct cpumask
*mask
;
310 rdtgrp
= rdtgroup_kn_lock_live(of
->kn
);
313 if (rdtgrp
->mode
== RDT_MODE_PSEUDO_LOCKED
) {
314 if (!rdtgrp
->plr
->d
) {
315 rdt_last_cmd_clear();
316 rdt_last_cmd_puts("Cache domain offline\n");
319 mask
= &rdtgrp
->plr
->d
->hdr
.cpu_mask
;
320 seq_printf(s
, is_cpu_list(of
) ?
321 "%*pbl\n" : "%*pb\n",
322 cpumask_pr_args(mask
));
325 seq_printf(s
, is_cpu_list(of
) ? "%*pbl\n" : "%*pb\n",
326 cpumask_pr_args(&rdtgrp
->cpu_mask
));
331 rdtgroup_kn_unlock(of
->kn
);
337 * This is safe against resctrl_sched_in() called from __switch_to()
338 * because __switch_to() is executed with interrupts disabled. A local call
339 * from update_closid_rmid() is protected against __switch_to() because
340 * preemption is disabled.
342 static void update_cpu_closid_rmid(void *info
)
344 struct rdtgroup
*r
= info
;
347 this_cpu_write(pqr_state
.default_closid
, r
->closid
);
348 this_cpu_write(pqr_state
.default_rmid
, r
->mon
.rmid
);
352 * We cannot unconditionally write the MSR because the current
353 * executing task might have its own closid selected. Just reuse
354 * the context switch code.
356 resctrl_sched_in(current
);
360 * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
362 * Per task closids/rmids must have been set up before calling this function.
365 update_closid_rmid(const struct cpumask
*cpu_mask
, struct rdtgroup
*r
)
367 on_each_cpu_mask(cpu_mask
, update_cpu_closid_rmid
, r
, 1);
370 static int cpus_mon_write(struct rdtgroup
*rdtgrp
, cpumask_var_t newmask
,
371 cpumask_var_t tmpmask
)
373 struct rdtgroup
*prgrp
= rdtgrp
->mon
.parent
, *crgrp
;
374 struct list_head
*head
;
376 /* Check whether cpus belong to parent ctrl group */
377 cpumask_andnot(tmpmask
, newmask
, &prgrp
->cpu_mask
);
378 if (!cpumask_empty(tmpmask
)) {
379 rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n");
383 /* Check whether cpus are dropped from this group */
384 cpumask_andnot(tmpmask
, &rdtgrp
->cpu_mask
, newmask
);
385 if (!cpumask_empty(tmpmask
)) {
386 /* Give any dropped cpus to parent rdtgroup */
387 cpumask_or(&prgrp
->cpu_mask
, &prgrp
->cpu_mask
, tmpmask
);
388 update_closid_rmid(tmpmask
, prgrp
);
392 * If we added cpus, remove them from previous group that owned them
393 * and update per-cpu rmid
395 cpumask_andnot(tmpmask
, newmask
, &rdtgrp
->cpu_mask
);
396 if (!cpumask_empty(tmpmask
)) {
397 head
= &prgrp
->mon
.crdtgrp_list
;
398 list_for_each_entry(crgrp
, head
, mon
.crdtgrp_list
) {
401 cpumask_andnot(&crgrp
->cpu_mask
, &crgrp
->cpu_mask
,
404 update_closid_rmid(tmpmask
, rdtgrp
);
407 /* Done pushing/pulling - update this group with new mask */
408 cpumask_copy(&rdtgrp
->cpu_mask
, newmask
);
413 static void cpumask_rdtgrp_clear(struct rdtgroup
*r
, struct cpumask
*m
)
415 struct rdtgroup
*crgrp
;
417 cpumask_andnot(&r
->cpu_mask
, &r
->cpu_mask
, m
);
418 /* update the child mon group masks as well*/
419 list_for_each_entry(crgrp
, &r
->mon
.crdtgrp_list
, mon
.crdtgrp_list
)
420 cpumask_and(&crgrp
->cpu_mask
, &r
->cpu_mask
, &crgrp
->cpu_mask
);
423 static int cpus_ctrl_write(struct rdtgroup
*rdtgrp
, cpumask_var_t newmask
,
424 cpumask_var_t tmpmask
, cpumask_var_t tmpmask1
)
426 struct rdtgroup
*r
, *crgrp
;
427 struct list_head
*head
;
429 /* Check whether cpus are dropped from this group */
430 cpumask_andnot(tmpmask
, &rdtgrp
->cpu_mask
, newmask
);
431 if (!cpumask_empty(tmpmask
)) {
432 /* Can't drop from default group */
433 if (rdtgrp
== &rdtgroup_default
) {
434 rdt_last_cmd_puts("Can't drop CPUs from default group\n");
438 /* Give any dropped cpus to rdtgroup_default */
439 cpumask_or(&rdtgroup_default
.cpu_mask
,
440 &rdtgroup_default
.cpu_mask
, tmpmask
);
441 update_closid_rmid(tmpmask
, &rdtgroup_default
);
445 * If we added cpus, remove them from previous group and
446 * the prev group's child groups that owned them
447 * and update per-cpu closid/rmid.
449 cpumask_andnot(tmpmask
, newmask
, &rdtgrp
->cpu_mask
);
450 if (!cpumask_empty(tmpmask
)) {
451 list_for_each_entry(r
, &rdt_all_groups
, rdtgroup_list
) {
454 cpumask_and(tmpmask1
, &r
->cpu_mask
, tmpmask
);
455 if (!cpumask_empty(tmpmask1
))
456 cpumask_rdtgrp_clear(r
, tmpmask1
);
458 update_closid_rmid(tmpmask
, rdtgrp
);
461 /* Done pushing/pulling - update this group with new mask */
462 cpumask_copy(&rdtgrp
->cpu_mask
, newmask
);
465 * Clear child mon group masks since there is a new parent mask
466 * now and update the rmid for the cpus the child lost.
468 head
= &rdtgrp
->mon
.crdtgrp_list
;
469 list_for_each_entry(crgrp
, head
, mon
.crdtgrp_list
) {
470 cpumask_and(tmpmask
, &rdtgrp
->cpu_mask
, &crgrp
->cpu_mask
);
471 update_closid_rmid(tmpmask
, rdtgrp
);
472 cpumask_clear(&crgrp
->cpu_mask
);
478 static ssize_t
rdtgroup_cpus_write(struct kernfs_open_file
*of
,
479 char *buf
, size_t nbytes
, loff_t off
)
481 cpumask_var_t tmpmask
, newmask
, tmpmask1
;
482 struct rdtgroup
*rdtgrp
;
488 if (!zalloc_cpumask_var(&tmpmask
, GFP_KERNEL
))
490 if (!zalloc_cpumask_var(&newmask
, GFP_KERNEL
)) {
491 free_cpumask_var(tmpmask
);
494 if (!zalloc_cpumask_var(&tmpmask1
, GFP_KERNEL
)) {
495 free_cpumask_var(tmpmask
);
496 free_cpumask_var(newmask
);
500 rdtgrp
= rdtgroup_kn_lock_live(of
->kn
);
506 if (rdtgrp
->mode
== RDT_MODE_PSEUDO_LOCKED
||
507 rdtgrp
->mode
== RDT_MODE_PSEUDO_LOCKSETUP
) {
509 rdt_last_cmd_puts("Pseudo-locking in progress\n");
514 ret
= cpulist_parse(buf
, newmask
);
516 ret
= cpumask_parse(buf
, newmask
);
519 rdt_last_cmd_puts("Bad CPU list/mask\n");
523 /* check that user didn't specify any offline cpus */
524 cpumask_andnot(tmpmask
, newmask
, cpu_online_mask
);
525 if (!cpumask_empty(tmpmask
)) {
527 rdt_last_cmd_puts("Can only assign online CPUs\n");
531 if (rdtgrp
->type
== RDTCTRL_GROUP
)
532 ret
= cpus_ctrl_write(rdtgrp
, newmask
, tmpmask
, tmpmask1
);
533 else if (rdtgrp
->type
== RDTMON_GROUP
)
534 ret
= cpus_mon_write(rdtgrp
, newmask
, tmpmask
);
539 rdtgroup_kn_unlock(of
->kn
);
540 free_cpumask_var(tmpmask
);
541 free_cpumask_var(newmask
);
542 free_cpumask_var(tmpmask1
);
544 return ret
?: nbytes
;
548 * rdtgroup_remove - the helper to remove resource group safely
549 * @rdtgrp: resource group to remove
551 * On resource group creation via a mkdir, an extra kernfs_node reference is
552 * taken to ensure that the rdtgroup structure remains accessible for the
553 * rdtgroup_kn_unlock() calls where it is removed.
555 * Drop the extra reference here, then free the rdtgroup structure.
559 static void rdtgroup_remove(struct rdtgroup
*rdtgrp
)
561 kernfs_put(rdtgrp
->kn
);
565 static void _update_task_closid_rmid(void *task
)
568 * If the task is still current on this CPU, update PQR_ASSOC MSR.
569 * Otherwise, the MSR is updated when the task is scheduled in.
572 resctrl_sched_in(task
);
575 static void update_task_closid_rmid(struct task_struct
*t
)
577 if (IS_ENABLED(CONFIG_SMP
) && task_curr(t
))
578 smp_call_function_single(task_cpu(t
), _update_task_closid_rmid
, t
, 1);
580 _update_task_closid_rmid(t
);
583 static bool task_in_rdtgroup(struct task_struct
*tsk
, struct rdtgroup
*rdtgrp
)
585 u32 closid
, rmid
= rdtgrp
->mon
.rmid
;
587 if (rdtgrp
->type
== RDTCTRL_GROUP
)
588 closid
= rdtgrp
->closid
;
589 else if (rdtgrp
->type
== RDTMON_GROUP
)
590 closid
= rdtgrp
->mon
.parent
->closid
;
594 return resctrl_arch_match_closid(tsk
, closid
) &&
595 resctrl_arch_match_rmid(tsk
, closid
, rmid
);
598 static int __rdtgroup_move_task(struct task_struct
*tsk
,
599 struct rdtgroup
*rdtgrp
)
601 /* If the task is already in rdtgrp, no need to move the task. */
602 if (task_in_rdtgroup(tsk
, rdtgrp
))
606 * Set the task's closid/rmid before the PQR_ASSOC MSR can be
609 * For ctrl_mon groups, move both closid and rmid.
610 * For monitor groups, can move the tasks only from
611 * their parent CTRL group.
613 if (rdtgrp
->type
== RDTMON_GROUP
&&
614 !resctrl_arch_match_closid(tsk
, rdtgrp
->mon
.parent
->closid
)) {
615 rdt_last_cmd_puts("Can't move task to different control group\n");
619 if (rdtgrp
->type
== RDTMON_GROUP
)
620 resctrl_arch_set_closid_rmid(tsk
, rdtgrp
->mon
.parent
->closid
,
623 resctrl_arch_set_closid_rmid(tsk
, rdtgrp
->closid
,
627 * Ensure the task's closid and rmid are written before determining if
628 * the task is current that will decide if it will be interrupted.
629 * This pairs with the full barrier between the rq->curr update and
630 * resctrl_sched_in() during context switch.
635 * By now, the task's closid and rmid are set. If the task is current
636 * on a CPU, the PQR_ASSOC MSR needs to be updated to make the resource
637 * group go into effect. If the task is not current, the MSR will be
638 * updated when the task is scheduled in.
640 update_task_closid_rmid(tsk
);
645 static bool is_closid_match(struct task_struct
*t
, struct rdtgroup
*r
)
647 return (resctrl_arch_alloc_capable() && (r
->type
== RDTCTRL_GROUP
) &&
648 resctrl_arch_match_closid(t
, r
->closid
));
651 static bool is_rmid_match(struct task_struct
*t
, struct rdtgroup
*r
)
653 return (resctrl_arch_mon_capable() && (r
->type
== RDTMON_GROUP
) &&
654 resctrl_arch_match_rmid(t
, r
->mon
.parent
->closid
,
659 * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group
662 * Return: 1 if tasks have been assigned to @r, 0 otherwise
664 int rdtgroup_tasks_assigned(struct rdtgroup
*r
)
666 struct task_struct
*p
, *t
;
669 lockdep_assert_held(&rdtgroup_mutex
);
672 for_each_process_thread(p
, t
) {
673 if (is_closid_match(t
, r
) || is_rmid_match(t
, r
)) {
683 static int rdtgroup_task_write_permission(struct task_struct
*task
,
684 struct kernfs_open_file
*of
)
686 const struct cred
*tcred
= get_task_cred(task
);
687 const struct cred
*cred
= current_cred();
691 * Even if we're attaching all tasks in the thread group, we only
692 * need to check permissions on one of them.
694 if (!uid_eq(cred
->euid
, GLOBAL_ROOT_UID
) &&
695 !uid_eq(cred
->euid
, tcred
->uid
) &&
696 !uid_eq(cred
->euid
, tcred
->suid
)) {
697 rdt_last_cmd_printf("No permission to move task %d\n", task
->pid
);
705 static int rdtgroup_move_task(pid_t pid
, struct rdtgroup
*rdtgrp
,
706 struct kernfs_open_file
*of
)
708 struct task_struct
*tsk
;
713 tsk
= find_task_by_vpid(pid
);
716 rdt_last_cmd_printf("No task %d\n", pid
);
723 get_task_struct(tsk
);
726 ret
= rdtgroup_task_write_permission(tsk
, of
);
728 ret
= __rdtgroup_move_task(tsk
, rdtgrp
);
730 put_task_struct(tsk
);
734 static ssize_t
rdtgroup_tasks_write(struct kernfs_open_file
*of
,
735 char *buf
, size_t nbytes
, loff_t off
)
737 struct rdtgroup
*rdtgrp
;
742 rdtgrp
= rdtgroup_kn_lock_live(of
->kn
);
744 rdtgroup_kn_unlock(of
->kn
);
747 rdt_last_cmd_clear();
749 if (rdtgrp
->mode
== RDT_MODE_PSEUDO_LOCKED
||
750 rdtgrp
->mode
== RDT_MODE_PSEUDO_LOCKSETUP
) {
752 rdt_last_cmd_puts("Pseudo-locking in progress\n");
756 while (buf
&& buf
[0] != '\0' && buf
[0] != '\n') {
757 pid_str
= strim(strsep(&buf
, ","));
759 if (kstrtoint(pid_str
, 0, &pid
)) {
760 rdt_last_cmd_printf("Task list parsing error pid %s\n", pid_str
);
766 rdt_last_cmd_printf("Invalid pid %d\n", pid
);
771 ret
= rdtgroup_move_task(pid
, rdtgrp
, of
);
773 rdt_last_cmd_printf("Error while processing task %d\n", pid
);
779 rdtgroup_kn_unlock(of
->kn
);
781 return ret
?: nbytes
;
784 static void show_rdt_tasks(struct rdtgroup
*r
, struct seq_file
*s
)
786 struct task_struct
*p
, *t
;
790 for_each_process_thread(p
, t
) {
791 if (is_closid_match(t
, r
) || is_rmid_match(t
, r
)) {
792 pid
= task_pid_vnr(t
);
794 seq_printf(s
, "%d\n", pid
);
800 static int rdtgroup_tasks_show(struct kernfs_open_file
*of
,
801 struct seq_file
*s
, void *v
)
803 struct rdtgroup
*rdtgrp
;
806 rdtgrp
= rdtgroup_kn_lock_live(of
->kn
);
808 show_rdt_tasks(rdtgrp
, s
);
811 rdtgroup_kn_unlock(of
->kn
);
816 static int rdtgroup_closid_show(struct kernfs_open_file
*of
,
817 struct seq_file
*s
, void *v
)
819 struct rdtgroup
*rdtgrp
;
822 rdtgrp
= rdtgroup_kn_lock_live(of
->kn
);
824 seq_printf(s
, "%u\n", rdtgrp
->closid
);
827 rdtgroup_kn_unlock(of
->kn
);
832 static int rdtgroup_rmid_show(struct kernfs_open_file
*of
,
833 struct seq_file
*s
, void *v
)
835 struct rdtgroup
*rdtgrp
;
838 rdtgrp
= rdtgroup_kn_lock_live(of
->kn
);
840 seq_printf(s
, "%u\n", rdtgrp
->mon
.rmid
);
843 rdtgroup_kn_unlock(of
->kn
);
848 #ifdef CONFIG_PROC_CPU_RESCTRL
851 * A task can only be part of one resctrl control group and of one monitor
852 * group which is associated to that control group.
857 * resctrl is not available.
862 * Task is part of the root resctrl control group, and it is not associated
863 * to any monitor group.
868 * Task is part of the root resctrl control group and monitor group mon0.
873 * Task is part of resctrl control group group0, and it is not associated
874 * to any monitor group.
879 * Task is part of resctrl control group group0 and monitor group mon1.
881 int proc_resctrl_show(struct seq_file
*s
, struct pid_namespace
*ns
,
882 struct pid
*pid
, struct task_struct
*tsk
)
884 struct rdtgroup
*rdtg
;
887 mutex_lock(&rdtgroup_mutex
);
889 /* Return empty if resctrl has not been mounted. */
890 if (!resctrl_mounted
) {
891 seq_puts(s
, "res:\nmon:\n");
895 list_for_each_entry(rdtg
, &rdt_all_groups
, rdtgroup_list
) {
896 struct rdtgroup
*crg
;
899 * Task information is only relevant for shareable
900 * and exclusive groups.
902 if (rdtg
->mode
!= RDT_MODE_SHAREABLE
&&
903 rdtg
->mode
!= RDT_MODE_EXCLUSIVE
)
906 if (!resctrl_arch_match_closid(tsk
, rdtg
->closid
))
909 seq_printf(s
, "res:%s%s\n", (rdtg
== &rdtgroup_default
) ? "/" : "",
912 list_for_each_entry(crg
, &rdtg
->mon
.crdtgrp_list
,
914 if (!resctrl_arch_match_rmid(tsk
, crg
->mon
.parent
->closid
,
917 seq_printf(s
, "%s", crg
->kn
->name
);
924 * The above search should succeed. Otherwise return
929 mutex_unlock(&rdtgroup_mutex
);
935 static int rdt_last_cmd_status_show(struct kernfs_open_file
*of
,
936 struct seq_file
*seq
, void *v
)
940 mutex_lock(&rdtgroup_mutex
);
941 len
= seq_buf_used(&last_cmd_status
);
943 seq_printf(seq
, "%.*s", len
, last_cmd_status_buf
);
945 seq_puts(seq
, "ok\n");
946 mutex_unlock(&rdtgroup_mutex
);
950 static int rdt_num_closids_show(struct kernfs_open_file
*of
,
951 struct seq_file
*seq
, void *v
)
953 struct resctrl_schema
*s
= of
->kn
->parent
->priv
;
955 seq_printf(seq
, "%u\n", s
->num_closid
);
959 static int rdt_default_ctrl_show(struct kernfs_open_file
*of
,
960 struct seq_file
*seq
, void *v
)
962 struct resctrl_schema
*s
= of
->kn
->parent
->priv
;
963 struct rdt_resource
*r
= s
->res
;
965 seq_printf(seq
, "%x\n", r
->default_ctrl
);
969 static int rdt_min_cbm_bits_show(struct kernfs_open_file
*of
,
970 struct seq_file
*seq
, void *v
)
972 struct resctrl_schema
*s
= of
->kn
->parent
->priv
;
973 struct rdt_resource
*r
= s
->res
;
975 seq_printf(seq
, "%u\n", r
->cache
.min_cbm_bits
);
979 static int rdt_shareable_bits_show(struct kernfs_open_file
*of
,
980 struct seq_file
*seq
, void *v
)
982 struct resctrl_schema
*s
= of
->kn
->parent
->priv
;
983 struct rdt_resource
*r
= s
->res
;
985 seq_printf(seq
, "%x\n", r
->cache
.shareable_bits
);
990 * rdt_bit_usage_show - Display current usage of resources
992 * A domain is a shared resource that can now be allocated differently. Here
993 * we display the current regions of the domain as an annotated bitmask.
994 * For each domain of this resource its allocation bitmask
995 * is annotated as below to indicate the current usage of the corresponding bit:
996 * 0 - currently unused
997 * X - currently available for sharing and used by software and hardware
998 * H - currently used by hardware only but available for software use
999 * S - currently used and shareable by software only
1000 * E - currently used exclusively by one resource group
1001 * P - currently pseudo-locked by one resource group
1003 static int rdt_bit_usage_show(struct kernfs_open_file
*of
,
1004 struct seq_file
*seq
, void *v
)
1006 struct resctrl_schema
*s
= of
->kn
->parent
->priv
;
1008 * Use unsigned long even though only 32 bits are used to ensure
1009 * test_bit() is used safely.
1011 unsigned long sw_shareable
= 0, hw_shareable
= 0;
1012 unsigned long exclusive
= 0, pseudo_locked
= 0;
1013 struct rdt_resource
*r
= s
->res
;
1014 struct rdt_ctrl_domain
*dom
;
1015 int i
, hwb
, swb
, excl
, psl
;
1016 enum rdtgrp_mode mode
;
1021 mutex_lock(&rdtgroup_mutex
);
1022 hw_shareable
= r
->cache
.shareable_bits
;
1023 list_for_each_entry(dom
, &r
->ctrl_domains
, hdr
.list
) {
1028 seq_printf(seq
, "%d=", dom
->hdr
.id
);
1029 for (i
= 0; i
< closids_supported(); i
++) {
1030 if (!closid_allocated(i
))
1032 ctrl_val
= resctrl_arch_get_config(r
, dom
, i
,
1034 mode
= rdtgroup_mode_by_closid(i
);
1036 case RDT_MODE_SHAREABLE
:
1037 sw_shareable
|= ctrl_val
;
1039 case RDT_MODE_EXCLUSIVE
:
1040 exclusive
|= ctrl_val
;
1042 case RDT_MODE_PSEUDO_LOCKSETUP
:
1044 * RDT_MODE_PSEUDO_LOCKSETUP is possible
1045 * here but not included since the CBM
1046 * associated with this CLOSID in this mode
1047 * is not initialized and no task or cpu can be
1048 * assigned this CLOSID.
1051 case RDT_MODE_PSEUDO_LOCKED
:
1054 "invalid mode for closid %d\n", i
);
1058 for (i
= r
->cache
.cbm_len
- 1; i
>= 0; i
--) {
1059 pseudo_locked
= dom
->plr
? dom
->plr
->cbm
: 0;
1060 hwb
= test_bit(i
, &hw_shareable
);
1061 swb
= test_bit(i
, &sw_shareable
);
1062 excl
= test_bit(i
, &exclusive
);
1063 psl
= test_bit(i
, &pseudo_locked
);
1066 else if (hwb
&& !swb
)
1068 else if (!hwb
&& swb
)
1074 else /* Unused bits remain */
1079 seq_putc(seq
, '\n');
1080 mutex_unlock(&rdtgroup_mutex
);
1085 static int rdt_min_bw_show(struct kernfs_open_file
*of
,
1086 struct seq_file
*seq
, void *v
)
1088 struct resctrl_schema
*s
= of
->kn
->parent
->priv
;
1089 struct rdt_resource
*r
= s
->res
;
1091 seq_printf(seq
, "%u\n", r
->membw
.min_bw
);
1095 static int rdt_num_rmids_show(struct kernfs_open_file
*of
,
1096 struct seq_file
*seq
, void *v
)
1098 struct rdt_resource
*r
= of
->kn
->parent
->priv
;
1100 seq_printf(seq
, "%d\n", r
->num_rmid
);
1105 static int rdt_mon_features_show(struct kernfs_open_file
*of
,
1106 struct seq_file
*seq
, void *v
)
1108 struct rdt_resource
*r
= of
->kn
->parent
->priv
;
1109 struct mon_evt
*mevt
;
1111 list_for_each_entry(mevt
, &r
->evt_list
, list
) {
1112 seq_printf(seq
, "%s\n", mevt
->name
);
1113 if (mevt
->configurable
)
1114 seq_printf(seq
, "%s_config\n", mevt
->name
);
1120 static int rdt_bw_gran_show(struct kernfs_open_file
*of
,
1121 struct seq_file
*seq
, void *v
)
1123 struct resctrl_schema
*s
= of
->kn
->parent
->priv
;
1124 struct rdt_resource
*r
= s
->res
;
1126 seq_printf(seq
, "%u\n", r
->membw
.bw_gran
);
1130 static int rdt_delay_linear_show(struct kernfs_open_file
*of
,
1131 struct seq_file
*seq
, void *v
)
1133 struct resctrl_schema
*s
= of
->kn
->parent
->priv
;
1134 struct rdt_resource
*r
= s
->res
;
1136 seq_printf(seq
, "%u\n", r
->membw
.delay_linear
);
1140 static int max_threshold_occ_show(struct kernfs_open_file
*of
,
1141 struct seq_file
*seq
, void *v
)
1143 seq_printf(seq
, "%u\n", resctrl_rmid_realloc_threshold
);
1148 static int rdt_thread_throttle_mode_show(struct kernfs_open_file
*of
,
1149 struct seq_file
*seq
, void *v
)
1151 struct resctrl_schema
*s
= of
->kn
->parent
->priv
;
1152 struct rdt_resource
*r
= s
->res
;
1154 if (r
->membw
.throttle_mode
== THREAD_THROTTLE_PER_THREAD
)
1155 seq_puts(seq
, "per-thread\n");
1157 seq_puts(seq
, "max\n");
1162 static ssize_t
max_threshold_occ_write(struct kernfs_open_file
*of
,
1163 char *buf
, size_t nbytes
, loff_t off
)
1168 ret
= kstrtouint(buf
, 0, &bytes
);
1172 if (bytes
> resctrl_rmid_realloc_limit
)
1175 resctrl_rmid_realloc_threshold
= resctrl_arch_round_mon_val(bytes
);
1181 * rdtgroup_mode_show - Display mode of this resource group
1183 static int rdtgroup_mode_show(struct kernfs_open_file
*of
,
1184 struct seq_file
*s
, void *v
)
1186 struct rdtgroup
*rdtgrp
;
1188 rdtgrp
= rdtgroup_kn_lock_live(of
->kn
);
1190 rdtgroup_kn_unlock(of
->kn
);
1194 seq_printf(s
, "%s\n", rdtgroup_mode_str(rdtgrp
->mode
));
1196 rdtgroup_kn_unlock(of
->kn
);
1200 static enum resctrl_conf_type
resctrl_peer_type(enum resctrl_conf_type my_type
)
1213 static int rdt_has_sparse_bitmasks_show(struct kernfs_open_file
*of
,
1214 struct seq_file
*seq
, void *v
)
1216 struct resctrl_schema
*s
= of
->kn
->parent
->priv
;
1217 struct rdt_resource
*r
= s
->res
;
1219 seq_printf(seq
, "%u\n", r
->cache
.arch_has_sparse_bitmasks
);
1225 * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
1226 * @r: Resource to which domain instance @d belongs.
1227 * @d: The domain instance for which @closid is being tested.
1228 * @cbm: Capacity bitmask being tested.
1229 * @closid: Intended closid for @cbm.
1230 * @type: CDP type of @r.
1231 * @exclusive: Only check if overlaps with exclusive resource groups
1233 * Checks if provided @cbm intended to be used for @closid on domain
1234 * @d overlaps with any other closids or other hardware usage associated
1235 * with this domain. If @exclusive is true then only overlaps with
1236 * resource groups in exclusive mode will be considered. If @exclusive
1237 * is false then overlaps with any resource group or hardware entities
1238 * will be considered.
1240 * @cbm is unsigned long, even if only 32 bits are used, to make the
1241 * bitmap functions work correctly.
1243 * Return: false if CBM does not overlap, true if it does.
1245 static bool __rdtgroup_cbm_overlaps(struct rdt_resource
*r
, struct rdt_ctrl_domain
*d
,
1246 unsigned long cbm
, int closid
,
1247 enum resctrl_conf_type type
, bool exclusive
)
1249 enum rdtgrp_mode mode
;
1250 unsigned long ctrl_b
;
1253 /* Check for any overlap with regions used by hardware directly */
1255 ctrl_b
= r
->cache
.shareable_bits
;
1256 if (bitmap_intersects(&cbm
, &ctrl_b
, r
->cache
.cbm_len
))
1260 /* Check for overlap with other resource groups */
1261 for (i
= 0; i
< closids_supported(); i
++) {
1262 ctrl_b
= resctrl_arch_get_config(r
, d
, i
, type
);
1263 mode
= rdtgroup_mode_by_closid(i
);
1264 if (closid_allocated(i
) && i
!= closid
&&
1265 mode
!= RDT_MODE_PSEUDO_LOCKSETUP
) {
1266 if (bitmap_intersects(&cbm
, &ctrl_b
, r
->cache
.cbm_len
)) {
1268 if (mode
== RDT_MODE_EXCLUSIVE
)
1281 * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware
1282 * @s: Schema for the resource to which domain instance @d belongs.
1283 * @d: The domain instance for which @closid is being tested.
1284 * @cbm: Capacity bitmask being tested.
1285 * @closid: Intended closid for @cbm.
1286 * @exclusive: Only check if overlaps with exclusive resource groups
1288 * Resources that can be allocated using a CBM can use the CBM to control
1289 * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test
1290 * for overlap. Overlap test is not limited to the specific resource for
1291 * which the CBM is intended though - when dealing with CDP resources that
1292 * share the underlying hardware the overlap check should be performed on
1293 * the CDP resource sharing the hardware also.
1295 * Refer to description of __rdtgroup_cbm_overlaps() for the details of the
1298 * Return: true if CBM overlap detected, false if there is no overlap
1300 bool rdtgroup_cbm_overlaps(struct resctrl_schema
*s
, struct rdt_ctrl_domain
*d
,
1301 unsigned long cbm
, int closid
, bool exclusive
)
1303 enum resctrl_conf_type peer_type
= resctrl_peer_type(s
->conf_type
);
1304 struct rdt_resource
*r
= s
->res
;
1306 if (__rdtgroup_cbm_overlaps(r
, d
, cbm
, closid
, s
->conf_type
,
1310 if (!resctrl_arch_get_cdp_enabled(r
->rid
))
1312 return __rdtgroup_cbm_overlaps(r
, d
, cbm
, closid
, peer_type
, exclusive
);
1316 * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
1317 * @rdtgrp: Resource group identified through its closid.
1319 * An exclusive resource group implies that there should be no sharing of
1320 * its allocated resources. At the time this group is considered to be
1321 * exclusive this test can determine if its current schemata supports this
1322 * setting by testing for overlap with all other resource groups.
1324 * Return: true if resource group can be exclusive, false if there is overlap
1325 * with allocations of other resource groups and thus this resource group
1326 * cannot be exclusive.
1328 static bool rdtgroup_mode_test_exclusive(struct rdtgroup
*rdtgrp
)
1330 int closid
= rdtgrp
->closid
;
1331 struct rdt_ctrl_domain
*d
;
1332 struct resctrl_schema
*s
;
1333 struct rdt_resource
*r
;
1334 bool has_cache
= false;
1337 /* Walking r->domains, ensure it can't race with cpuhp */
1338 lockdep_assert_cpus_held();
1340 list_for_each_entry(s
, &resctrl_schema_all
, list
) {
1342 if (r
->rid
== RDT_RESOURCE_MBA
|| r
->rid
== RDT_RESOURCE_SMBA
)
1345 list_for_each_entry(d
, &r
->ctrl_domains
, hdr
.list
) {
1346 ctrl
= resctrl_arch_get_config(r
, d
, closid
,
1348 if (rdtgroup_cbm_overlaps(s
, d
, ctrl
, closid
, false)) {
1349 rdt_last_cmd_puts("Schemata overlaps\n");
1356 rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n");
1364 * rdtgroup_mode_write - Modify the resource group's mode
1366 static ssize_t
rdtgroup_mode_write(struct kernfs_open_file
*of
,
1367 char *buf
, size_t nbytes
, loff_t off
)
1369 struct rdtgroup
*rdtgrp
;
1370 enum rdtgrp_mode mode
;
1373 /* Valid input requires a trailing newline */
1374 if (nbytes
== 0 || buf
[nbytes
- 1] != '\n')
1376 buf
[nbytes
- 1] = '\0';
1378 rdtgrp
= rdtgroup_kn_lock_live(of
->kn
);
1380 rdtgroup_kn_unlock(of
->kn
);
1384 rdt_last_cmd_clear();
1386 mode
= rdtgrp
->mode
;
1388 if ((!strcmp(buf
, "shareable") && mode
== RDT_MODE_SHAREABLE
) ||
1389 (!strcmp(buf
, "exclusive") && mode
== RDT_MODE_EXCLUSIVE
) ||
1390 (!strcmp(buf
, "pseudo-locksetup") &&
1391 mode
== RDT_MODE_PSEUDO_LOCKSETUP
) ||
1392 (!strcmp(buf
, "pseudo-locked") && mode
== RDT_MODE_PSEUDO_LOCKED
))
1395 if (mode
== RDT_MODE_PSEUDO_LOCKED
) {
1396 rdt_last_cmd_puts("Cannot change pseudo-locked group\n");
1401 if (!strcmp(buf
, "shareable")) {
1402 if (rdtgrp
->mode
== RDT_MODE_PSEUDO_LOCKSETUP
) {
1403 ret
= rdtgroup_locksetup_exit(rdtgrp
);
1407 rdtgrp
->mode
= RDT_MODE_SHAREABLE
;
1408 } else if (!strcmp(buf
, "exclusive")) {
1409 if (!rdtgroup_mode_test_exclusive(rdtgrp
)) {
1413 if (rdtgrp
->mode
== RDT_MODE_PSEUDO_LOCKSETUP
) {
1414 ret
= rdtgroup_locksetup_exit(rdtgrp
);
1418 rdtgrp
->mode
= RDT_MODE_EXCLUSIVE
;
1419 } else if (!strcmp(buf
, "pseudo-locksetup")) {
1420 ret
= rdtgroup_locksetup_enter(rdtgrp
);
1423 rdtgrp
->mode
= RDT_MODE_PSEUDO_LOCKSETUP
;
1425 rdt_last_cmd_puts("Unknown or unsupported mode\n");
1430 rdtgroup_kn_unlock(of
->kn
);
1431 return ret
?: nbytes
;
1435 * rdtgroup_cbm_to_size - Translate CBM to size in bytes
1436 * @r: RDT resource to which @d belongs.
1437 * @d: RDT domain instance.
1438 * @cbm: bitmask for which the size should be computed.
1440 * The bitmask provided associated with the RDT domain instance @d will be
1441 * translated into how many bytes it represents. The size in bytes is
1442 * computed by first dividing the total cache size by the CBM length to
1443 * determine how many bytes each bit in the bitmask represents. The result
1444 * is multiplied with the number of bits set in the bitmask.
1446 * @cbm is unsigned long, even if only 32 bits are used to make the
1447 * bitmap functions work correctly.
1449 unsigned int rdtgroup_cbm_to_size(struct rdt_resource
*r
,
1450 struct rdt_ctrl_domain
*d
, unsigned long cbm
)
1452 unsigned int size
= 0;
1453 struct cacheinfo
*ci
;
1456 if (WARN_ON_ONCE(r
->ctrl_scope
!= RESCTRL_L2_CACHE
&& r
->ctrl_scope
!= RESCTRL_L3_CACHE
))
1459 num_b
= bitmap_weight(&cbm
, r
->cache
.cbm_len
);
1460 ci
= get_cpu_cacheinfo_level(cpumask_any(&d
->hdr
.cpu_mask
), r
->ctrl_scope
);
1462 size
= ci
->size
/ r
->cache
.cbm_len
* num_b
;
1468 * rdtgroup_size_show - Display size in bytes of allocated regions
1470 * The "size" file mirrors the layout of the "schemata" file, printing the
1471 * size in bytes of each region instead of the capacity bitmask.
1473 static int rdtgroup_size_show(struct kernfs_open_file
*of
,
1474 struct seq_file
*s
, void *v
)
1476 struct resctrl_schema
*schema
;
1477 enum resctrl_conf_type type
;
1478 struct rdt_ctrl_domain
*d
;
1479 struct rdtgroup
*rdtgrp
;
1480 struct rdt_resource
*r
;
1487 rdtgrp
= rdtgroup_kn_lock_live(of
->kn
);
1489 rdtgroup_kn_unlock(of
->kn
);
1493 if (rdtgrp
->mode
== RDT_MODE_PSEUDO_LOCKED
) {
1494 if (!rdtgrp
->plr
->d
) {
1495 rdt_last_cmd_clear();
1496 rdt_last_cmd_puts("Cache domain offline\n");
1499 seq_printf(s
, "%*s:", max_name_width
,
1500 rdtgrp
->plr
->s
->name
);
1501 size
= rdtgroup_cbm_to_size(rdtgrp
->plr
->s
->res
,
1504 seq_printf(s
, "%d=%u\n", rdtgrp
->plr
->d
->hdr
.id
, size
);
1509 closid
= rdtgrp
->closid
;
1511 list_for_each_entry(schema
, &resctrl_schema_all
, list
) {
1513 type
= schema
->conf_type
;
1515 seq_printf(s
, "%*s:", max_name_width
, schema
->name
);
1516 list_for_each_entry(d
, &r
->ctrl_domains
, hdr
.list
) {
1519 if (rdtgrp
->mode
== RDT_MODE_PSEUDO_LOCKSETUP
) {
1523 ctrl
= d
->mbps_val
[closid
];
1525 ctrl
= resctrl_arch_get_config(r
, d
,
1528 if (r
->rid
== RDT_RESOURCE_MBA
||
1529 r
->rid
== RDT_RESOURCE_SMBA
)
1532 size
= rdtgroup_cbm_to_size(r
, d
, ctrl
);
1534 seq_printf(s
, "%d=%u", d
->hdr
.id
, size
);
1541 rdtgroup_kn_unlock(of
->kn
);
1546 struct mon_config_info
{
1551 #define INVALID_CONFIG_INDEX UINT_MAX
1554 * mon_event_config_index_get - get the hardware index for the
1555 * configurable event
1558 * Return: 0 for evtid == QOS_L3_MBM_TOTAL_EVENT_ID
1559 * 1 for evtid == QOS_L3_MBM_LOCAL_EVENT_ID
1560 * INVALID_CONFIG_INDEX for invalid evtid
1562 static inline unsigned int mon_event_config_index_get(u32 evtid
)
1565 case QOS_L3_MBM_TOTAL_EVENT_ID
:
1567 case QOS_L3_MBM_LOCAL_EVENT_ID
:
1570 /* Should never reach here */
1571 return INVALID_CONFIG_INDEX
;
1575 static void mon_event_config_read(void *info
)
1577 struct mon_config_info
*mon_info
= info
;
1581 index
= mon_event_config_index_get(mon_info
->evtid
);
1582 if (index
== INVALID_CONFIG_INDEX
) {
1583 pr_warn_once("Invalid event id %d\n", mon_info
->evtid
);
1586 rdmsrl(MSR_IA32_EVT_CFG_BASE
+ index
, msrval
);
1588 /* Report only the valid event configuration bits */
1589 mon_info
->mon_config
= msrval
& MAX_EVT_CONFIG_BITS
;
1592 static void mondata_config_read(struct rdt_mon_domain
*d
, struct mon_config_info
*mon_info
)
1594 smp_call_function_any(&d
->hdr
.cpu_mask
, mon_event_config_read
, mon_info
, 1);
1597 static int mbm_config_show(struct seq_file
*s
, struct rdt_resource
*r
, u32 evtid
)
1599 struct mon_config_info mon_info
= {0};
1600 struct rdt_mon_domain
*dom
;
1604 mutex_lock(&rdtgroup_mutex
);
1606 list_for_each_entry(dom
, &r
->mon_domains
, hdr
.list
) {
1610 memset(&mon_info
, 0, sizeof(struct mon_config_info
));
1611 mon_info
.evtid
= evtid
;
1612 mondata_config_read(dom
, &mon_info
);
1614 seq_printf(s
, "%d=0x%02x", dom
->hdr
.id
, mon_info
.mon_config
);
1619 mutex_unlock(&rdtgroup_mutex
);
1625 static int mbm_total_bytes_config_show(struct kernfs_open_file
*of
,
1626 struct seq_file
*seq
, void *v
)
1628 struct rdt_resource
*r
= of
->kn
->parent
->priv
;
1630 mbm_config_show(seq
, r
, QOS_L3_MBM_TOTAL_EVENT_ID
);
1635 static int mbm_local_bytes_config_show(struct kernfs_open_file
*of
,
1636 struct seq_file
*seq
, void *v
)
1638 struct rdt_resource
*r
= of
->kn
->parent
->priv
;
1640 mbm_config_show(seq
, r
, QOS_L3_MBM_LOCAL_EVENT_ID
);
1645 static void mon_event_config_write(void *info
)
1647 struct mon_config_info
*mon_info
= info
;
1650 index
= mon_event_config_index_get(mon_info
->evtid
);
1651 if (index
== INVALID_CONFIG_INDEX
) {
1652 pr_warn_once("Invalid event id %d\n", mon_info
->evtid
);
1655 wrmsr(MSR_IA32_EVT_CFG_BASE
+ index
, mon_info
->mon_config
, 0);
1658 static void mbm_config_write_domain(struct rdt_resource
*r
,
1659 struct rdt_mon_domain
*d
, u32 evtid
, u32 val
)
1661 struct mon_config_info mon_info
= {0};
1664 * Read the current config value first. If both are the same then
1665 * no need to write it again.
1667 mon_info
.evtid
= evtid
;
1668 mondata_config_read(d
, &mon_info
);
1669 if (mon_info
.mon_config
== val
)
1672 mon_info
.mon_config
= val
;
1675 * Update MSR_IA32_EVT_CFG_BASE MSR on one of the CPUs in the
1676 * domain. The MSRs offset from MSR MSR_IA32_EVT_CFG_BASE
1677 * are scoped at the domain level. Writing any of these MSRs
1678 * on one CPU is observed by all the CPUs in the domain.
1680 smp_call_function_any(&d
->hdr
.cpu_mask
, mon_event_config_write
,
1684 * When an Event Configuration is changed, the bandwidth counters
1685 * for all RMIDs and Events will be cleared by the hardware. The
1686 * hardware also sets MSR_IA32_QM_CTR.Unavailable (bit 62) for
1687 * every RMID on the next read to any event for every RMID.
1688 * Subsequent reads will have MSR_IA32_QM_CTR.Unavailable (bit 62)
1689 * cleared while it is tracked by the hardware. Clear the
1690 * mbm_local and mbm_total counts for all the RMIDs.
1692 resctrl_arch_reset_rmid_all(r
, d
);
1695 static int mon_config_write(struct rdt_resource
*r
, char *tok
, u32 evtid
)
1697 struct rdt_hw_resource
*hw_res
= resctrl_to_arch_res(r
);
1698 char *dom_str
= NULL
, *id_str
;
1699 unsigned long dom_id
, val
;
1700 struct rdt_mon_domain
*d
;
1702 /* Walking r->domains, ensure it can't race with cpuhp */
1703 lockdep_assert_cpus_held();
1706 if (!tok
|| tok
[0] == '\0')
1709 /* Start processing the strings for each domain */
1710 dom_str
= strim(strsep(&tok
, ";"));
1711 id_str
= strsep(&dom_str
, "=");
1713 if (!id_str
|| kstrtoul(id_str
, 10, &dom_id
)) {
1714 rdt_last_cmd_puts("Missing '=' or non-numeric domain id\n");
1718 if (!dom_str
|| kstrtoul(dom_str
, 16, &val
)) {
1719 rdt_last_cmd_puts("Non-numeric event configuration value\n");
1723 /* Value from user cannot be more than the supported set of events */
1724 if ((val
& hw_res
->mbm_cfg_mask
) != val
) {
1725 rdt_last_cmd_printf("Invalid event configuration: max valid mask is 0x%02x\n",
1726 hw_res
->mbm_cfg_mask
);
1730 list_for_each_entry(d
, &r
->mon_domains
, hdr
.list
) {
1731 if (d
->hdr
.id
== dom_id
) {
1732 mbm_config_write_domain(r
, d
, evtid
, val
);
1740 static ssize_t
mbm_total_bytes_config_write(struct kernfs_open_file
*of
,
1741 char *buf
, size_t nbytes
,
1744 struct rdt_resource
*r
= of
->kn
->parent
->priv
;
1747 /* Valid input requires a trailing newline */
1748 if (nbytes
== 0 || buf
[nbytes
- 1] != '\n')
1752 mutex_lock(&rdtgroup_mutex
);
1754 rdt_last_cmd_clear();
1756 buf
[nbytes
- 1] = '\0';
1758 ret
= mon_config_write(r
, buf
, QOS_L3_MBM_TOTAL_EVENT_ID
);
1760 mutex_unlock(&rdtgroup_mutex
);
1763 return ret
?: nbytes
;
1766 static ssize_t
mbm_local_bytes_config_write(struct kernfs_open_file
*of
,
1767 char *buf
, size_t nbytes
,
1770 struct rdt_resource
*r
= of
->kn
->parent
->priv
;
1773 /* Valid input requires a trailing newline */
1774 if (nbytes
== 0 || buf
[nbytes
- 1] != '\n')
1778 mutex_lock(&rdtgroup_mutex
);
1780 rdt_last_cmd_clear();
1782 buf
[nbytes
- 1] = '\0';
1784 ret
= mon_config_write(r
, buf
, QOS_L3_MBM_LOCAL_EVENT_ID
);
1786 mutex_unlock(&rdtgroup_mutex
);
1789 return ret
?: nbytes
;
1792 /* rdtgroup information files for one cache resource. */
1793 static struct rftype res_common_files
[] = {
1795 .name
= "last_cmd_status",
1797 .kf_ops
= &rdtgroup_kf_single_ops
,
1798 .seq_show
= rdt_last_cmd_status_show
,
1799 .fflags
= RFTYPE_TOP_INFO
,
1802 .name
= "num_closids",
1804 .kf_ops
= &rdtgroup_kf_single_ops
,
1805 .seq_show
= rdt_num_closids_show
,
1806 .fflags
= RFTYPE_CTRL_INFO
,
1809 .name
= "mon_features",
1811 .kf_ops
= &rdtgroup_kf_single_ops
,
1812 .seq_show
= rdt_mon_features_show
,
1813 .fflags
= RFTYPE_MON_INFO
,
1816 .name
= "num_rmids",
1818 .kf_ops
= &rdtgroup_kf_single_ops
,
1819 .seq_show
= rdt_num_rmids_show
,
1820 .fflags
= RFTYPE_MON_INFO
,
1825 .kf_ops
= &rdtgroup_kf_single_ops
,
1826 .seq_show
= rdt_default_ctrl_show
,
1827 .fflags
= RFTYPE_CTRL_INFO
| RFTYPE_RES_CACHE
,
1830 .name
= "min_cbm_bits",
1832 .kf_ops
= &rdtgroup_kf_single_ops
,
1833 .seq_show
= rdt_min_cbm_bits_show
,
1834 .fflags
= RFTYPE_CTRL_INFO
| RFTYPE_RES_CACHE
,
1837 .name
= "shareable_bits",
1839 .kf_ops
= &rdtgroup_kf_single_ops
,
1840 .seq_show
= rdt_shareable_bits_show
,
1841 .fflags
= RFTYPE_CTRL_INFO
| RFTYPE_RES_CACHE
,
1844 .name
= "bit_usage",
1846 .kf_ops
= &rdtgroup_kf_single_ops
,
1847 .seq_show
= rdt_bit_usage_show
,
1848 .fflags
= RFTYPE_CTRL_INFO
| RFTYPE_RES_CACHE
,
1851 .name
= "min_bandwidth",
1853 .kf_ops
= &rdtgroup_kf_single_ops
,
1854 .seq_show
= rdt_min_bw_show
,
1855 .fflags
= RFTYPE_CTRL_INFO
| RFTYPE_RES_MB
,
1858 .name
= "bandwidth_gran",
1860 .kf_ops
= &rdtgroup_kf_single_ops
,
1861 .seq_show
= rdt_bw_gran_show
,
1862 .fflags
= RFTYPE_CTRL_INFO
| RFTYPE_RES_MB
,
1865 .name
= "delay_linear",
1867 .kf_ops
= &rdtgroup_kf_single_ops
,
1868 .seq_show
= rdt_delay_linear_show
,
1869 .fflags
= RFTYPE_CTRL_INFO
| RFTYPE_RES_MB
,
1872 * Platform specific which (if any) capabilities are provided by
1873 * thread_throttle_mode. Defer "fflags" initialization to platform
1877 .name
= "thread_throttle_mode",
1879 .kf_ops
= &rdtgroup_kf_single_ops
,
1880 .seq_show
= rdt_thread_throttle_mode_show
,
1883 .name
= "max_threshold_occupancy",
1885 .kf_ops
= &rdtgroup_kf_single_ops
,
1886 .write
= max_threshold_occ_write
,
1887 .seq_show
= max_threshold_occ_show
,
1888 .fflags
= RFTYPE_MON_INFO
| RFTYPE_RES_CACHE
,
1891 .name
= "mbm_total_bytes_config",
1893 .kf_ops
= &rdtgroup_kf_single_ops
,
1894 .seq_show
= mbm_total_bytes_config_show
,
1895 .write
= mbm_total_bytes_config_write
,
1898 .name
= "mbm_local_bytes_config",
1900 .kf_ops
= &rdtgroup_kf_single_ops
,
1901 .seq_show
= mbm_local_bytes_config_show
,
1902 .write
= mbm_local_bytes_config_write
,
1907 .kf_ops
= &rdtgroup_kf_single_ops
,
1908 .write
= rdtgroup_cpus_write
,
1909 .seq_show
= rdtgroup_cpus_show
,
1910 .fflags
= RFTYPE_BASE
,
1913 .name
= "cpus_list",
1915 .kf_ops
= &rdtgroup_kf_single_ops
,
1916 .write
= rdtgroup_cpus_write
,
1917 .seq_show
= rdtgroup_cpus_show
,
1918 .flags
= RFTYPE_FLAGS_CPUS_LIST
,
1919 .fflags
= RFTYPE_BASE
,
1924 .kf_ops
= &rdtgroup_kf_single_ops
,
1925 .write
= rdtgroup_tasks_write
,
1926 .seq_show
= rdtgroup_tasks_show
,
1927 .fflags
= RFTYPE_BASE
,
1930 .name
= "mon_hw_id",
1932 .kf_ops
= &rdtgroup_kf_single_ops
,
1933 .seq_show
= rdtgroup_rmid_show
,
1934 .fflags
= RFTYPE_MON_BASE
| RFTYPE_DEBUG
,
1939 .kf_ops
= &rdtgroup_kf_single_ops
,
1940 .write
= rdtgroup_schemata_write
,
1941 .seq_show
= rdtgroup_schemata_show
,
1942 .fflags
= RFTYPE_CTRL_BASE
,
1947 .kf_ops
= &rdtgroup_kf_single_ops
,
1948 .write
= rdtgroup_mode_write
,
1949 .seq_show
= rdtgroup_mode_show
,
1950 .fflags
= RFTYPE_CTRL_BASE
,
1955 .kf_ops
= &rdtgroup_kf_single_ops
,
1956 .seq_show
= rdtgroup_size_show
,
1957 .fflags
= RFTYPE_CTRL_BASE
,
1960 .name
= "sparse_masks",
1962 .kf_ops
= &rdtgroup_kf_single_ops
,
1963 .seq_show
= rdt_has_sparse_bitmasks_show
,
1964 .fflags
= RFTYPE_CTRL_INFO
| RFTYPE_RES_CACHE
,
1967 .name
= "ctrl_hw_id",
1969 .kf_ops
= &rdtgroup_kf_single_ops
,
1970 .seq_show
= rdtgroup_closid_show
,
1971 .fflags
= RFTYPE_CTRL_BASE
| RFTYPE_DEBUG
,
1976 static int rdtgroup_add_files(struct kernfs_node
*kn
, unsigned long fflags
)
1978 struct rftype
*rfts
, *rft
;
1981 rfts
= res_common_files
;
1982 len
= ARRAY_SIZE(res_common_files
);
1984 lockdep_assert_held(&rdtgroup_mutex
);
1987 fflags
|= RFTYPE_DEBUG
;
1989 for (rft
= rfts
; rft
< rfts
+ len
; rft
++) {
1990 if (rft
->fflags
&& ((fflags
& rft
->fflags
) == rft
->fflags
)) {
1991 ret
= rdtgroup_add_file(kn
, rft
);
1999 pr_warn("Failed to add %s, err=%d\n", rft
->name
, ret
);
2000 while (--rft
>= rfts
) {
2001 if ((fflags
& rft
->fflags
) == rft
->fflags
)
2002 kernfs_remove_by_name(kn
, rft
->name
);
2007 static struct rftype
*rdtgroup_get_rftype_by_name(const char *name
)
2009 struct rftype
*rfts
, *rft
;
2012 rfts
= res_common_files
;
2013 len
= ARRAY_SIZE(res_common_files
);
2015 for (rft
= rfts
; rft
< rfts
+ len
; rft
++) {
2016 if (!strcmp(rft
->name
, name
))
2023 void __init
thread_throttle_mode_init(void)
2027 rft
= rdtgroup_get_rftype_by_name("thread_throttle_mode");
2031 rft
->fflags
= RFTYPE_CTRL_INFO
| RFTYPE_RES_MB
;
2034 void __init
mbm_config_rftype_init(const char *config
)
2038 rft
= rdtgroup_get_rftype_by_name(config
);
2040 rft
->fflags
= RFTYPE_MON_INFO
| RFTYPE_RES_CACHE
;
2044 * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file
2045 * @r: The resource group with which the file is associated.
2046 * @name: Name of the file
2048 * The permissions of named resctrl file, directory, or link are modified
2049 * to not allow read, write, or execute by any user.
2051 * WARNING: This function is intended to communicate to the user that the
2052 * resctrl file has been locked down - that it is not relevant to the
2053 * particular state the system finds itself in. It should not be relied
2054 * on to protect from user access because after the file's permissions
2055 * are restricted the user can still change the permissions using chmod
2056 * from the command line.
2058 * Return: 0 on success, <0 on failure.
2060 int rdtgroup_kn_mode_restrict(struct rdtgroup
*r
, const char *name
)
2062 struct iattr iattr
= {.ia_valid
= ATTR_MODE
,};
2063 struct kernfs_node
*kn
;
2066 kn
= kernfs_find_and_get_ns(r
->kn
, name
, NULL
);
2070 switch (kernfs_type(kn
)) {
2072 iattr
.ia_mode
= S_IFDIR
;
2075 iattr
.ia_mode
= S_IFREG
;
2078 iattr
.ia_mode
= S_IFLNK
;
2082 ret
= kernfs_setattr(kn
, &iattr
);
2088 * rdtgroup_kn_mode_restore - Restore user access to named resctrl file
2089 * @r: The resource group with which the file is associated.
2090 * @name: Name of the file
2091 * @mask: Mask of permissions that should be restored
2093 * Restore the permissions of the named file. If @name is a directory the
2094 * permissions of its parent will be used.
2096 * Return: 0 on success, <0 on failure.
2098 int rdtgroup_kn_mode_restore(struct rdtgroup
*r
, const char *name
,
2101 struct iattr iattr
= {.ia_valid
= ATTR_MODE
,};
2102 struct kernfs_node
*kn
, *parent
;
2103 struct rftype
*rfts
, *rft
;
2106 rfts
= res_common_files
;
2107 len
= ARRAY_SIZE(res_common_files
);
2109 for (rft
= rfts
; rft
< rfts
+ len
; rft
++) {
2110 if (!strcmp(rft
->name
, name
))
2111 iattr
.ia_mode
= rft
->mode
& mask
;
2114 kn
= kernfs_find_and_get_ns(r
->kn
, name
, NULL
);
2118 switch (kernfs_type(kn
)) {
2120 parent
= kernfs_get_parent(kn
);
2122 iattr
.ia_mode
|= parent
->mode
;
2125 iattr
.ia_mode
|= S_IFDIR
;
2128 iattr
.ia_mode
|= S_IFREG
;
2131 iattr
.ia_mode
|= S_IFLNK
;
2135 ret
= kernfs_setattr(kn
, &iattr
);
2140 static int rdtgroup_mkdir_info_resdir(void *priv
, char *name
,
2141 unsigned long fflags
)
2143 struct kernfs_node
*kn_subdir
;
2146 kn_subdir
= kernfs_create_dir(kn_info
, name
,
2147 kn_info
->mode
, priv
);
2148 if (IS_ERR(kn_subdir
))
2149 return PTR_ERR(kn_subdir
);
2151 ret
= rdtgroup_kn_set_ugid(kn_subdir
);
2155 ret
= rdtgroup_add_files(kn_subdir
, fflags
);
2157 kernfs_activate(kn_subdir
);
2162 static int rdtgroup_create_info_dir(struct kernfs_node
*parent_kn
)
2164 struct resctrl_schema
*s
;
2165 struct rdt_resource
*r
;
2166 unsigned long fflags
;
2170 /* create the directory */
2171 kn_info
= kernfs_create_dir(parent_kn
, "info", parent_kn
->mode
, NULL
);
2172 if (IS_ERR(kn_info
))
2173 return PTR_ERR(kn_info
);
2175 ret
= rdtgroup_add_files(kn_info
, RFTYPE_TOP_INFO
);
2179 /* loop over enabled controls, these are all alloc_capable */
2180 list_for_each_entry(s
, &resctrl_schema_all
, list
) {
2182 fflags
= r
->fflags
| RFTYPE_CTRL_INFO
;
2183 ret
= rdtgroup_mkdir_info_resdir(s
, s
->name
, fflags
);
2188 for_each_mon_capable_rdt_resource(r
) {
2189 fflags
= r
->fflags
| RFTYPE_MON_INFO
;
2190 sprintf(name
, "%s_MON", r
->name
);
2191 ret
= rdtgroup_mkdir_info_resdir(r
, name
, fflags
);
2196 ret
= rdtgroup_kn_set_ugid(kn_info
);
2200 kernfs_activate(kn_info
);
2205 kernfs_remove(kn_info
);
2210 mongroup_create_dir(struct kernfs_node
*parent_kn
, struct rdtgroup
*prgrp
,
2211 char *name
, struct kernfs_node
**dest_kn
)
2213 struct kernfs_node
*kn
;
2216 /* create the directory */
2217 kn
= kernfs_create_dir(parent_kn
, name
, parent_kn
->mode
, prgrp
);
2224 ret
= rdtgroup_kn_set_ugid(kn
);
2228 kernfs_activate(kn
);
2237 static void l3_qos_cfg_update(void *arg
)
2241 wrmsrl(MSR_IA32_L3_QOS_CFG
, *enable
? L3_QOS_CDP_ENABLE
: 0ULL);
2244 static void l2_qos_cfg_update(void *arg
)
2248 wrmsrl(MSR_IA32_L2_QOS_CFG
, *enable
? L2_QOS_CDP_ENABLE
: 0ULL);
2251 static inline bool is_mba_linear(void)
2253 return rdt_resources_all
[RDT_RESOURCE_MBA
].r_resctrl
.membw
.delay_linear
;
2256 static int set_cache_qos_cfg(int level
, bool enable
)
2258 void (*update
)(void *arg
);
2259 struct rdt_ctrl_domain
*d
;
2260 struct rdt_resource
*r_l
;
2261 cpumask_var_t cpu_mask
;
2264 /* Walking r->domains, ensure it can't race with cpuhp */
2265 lockdep_assert_cpus_held();
2267 if (level
== RDT_RESOURCE_L3
)
2268 update
= l3_qos_cfg_update
;
2269 else if (level
== RDT_RESOURCE_L2
)
2270 update
= l2_qos_cfg_update
;
2274 if (!zalloc_cpumask_var(&cpu_mask
, GFP_KERNEL
))
2277 r_l
= &rdt_resources_all
[level
].r_resctrl
;
2278 list_for_each_entry(d
, &r_l
->ctrl_domains
, hdr
.list
) {
2279 if (r_l
->cache
.arch_has_per_cpu_cfg
)
2280 /* Pick all the CPUs in the domain instance */
2281 for_each_cpu(cpu
, &d
->hdr
.cpu_mask
)
2282 cpumask_set_cpu(cpu
, cpu_mask
);
2284 /* Pick one CPU from each domain instance to update MSR */
2285 cpumask_set_cpu(cpumask_any(&d
->hdr
.cpu_mask
), cpu_mask
);
2288 /* Update QOS_CFG MSR on all the CPUs in cpu_mask */
2289 on_each_cpu_mask(cpu_mask
, update
, &enable
, 1);
2291 free_cpumask_var(cpu_mask
);
2296 /* Restore the qos cfg state when a domain comes online */
2297 void rdt_domain_reconfigure_cdp(struct rdt_resource
*r
)
2299 struct rdt_hw_resource
*hw_res
= resctrl_to_arch_res(r
);
2301 if (!r
->cdp_capable
)
2304 if (r
->rid
== RDT_RESOURCE_L2
)
2305 l2_qos_cfg_update(&hw_res
->cdp_enabled
);
2307 if (r
->rid
== RDT_RESOURCE_L3
)
2308 l3_qos_cfg_update(&hw_res
->cdp_enabled
);
2311 static int mba_sc_domain_allocate(struct rdt_resource
*r
, struct rdt_ctrl_domain
*d
)
2313 u32 num_closid
= resctrl_arch_get_num_closid(r
);
2314 int cpu
= cpumask_any(&d
->hdr
.cpu_mask
);
2317 d
->mbps_val
= kcalloc_node(num_closid
, sizeof(*d
->mbps_val
),
2318 GFP_KERNEL
, cpu_to_node(cpu
));
2322 for (i
= 0; i
< num_closid
; i
++)
2323 d
->mbps_val
[i
] = MBA_MAX_MBPS
;
2328 static void mba_sc_domain_destroy(struct rdt_resource
*r
,
2329 struct rdt_ctrl_domain
*d
)
2336 * MBA software controller is supported only if
2337 * MBM is supported and MBA is in linear scale,
2338 * and the MBM monitor scope is the same as MBA
2341 static bool supports_mba_mbps(void)
2343 struct rdt_resource
*rmbm
= &rdt_resources_all
[RDT_RESOURCE_L3
].r_resctrl
;
2344 struct rdt_resource
*r
= &rdt_resources_all
[RDT_RESOURCE_MBA
].r_resctrl
;
2346 return (is_mbm_local_enabled() &&
2347 r
->alloc_capable
&& is_mba_linear() &&
2348 r
->ctrl_scope
== rmbm
->mon_scope
);
2352 * Enable or disable the MBA software controller
2353 * which helps user specify bandwidth in MBps.
2355 static int set_mba_sc(bool mba_sc
)
2357 struct rdt_resource
*r
= &rdt_resources_all
[RDT_RESOURCE_MBA
].r_resctrl
;
2358 u32 num_closid
= resctrl_arch_get_num_closid(r
);
2359 struct rdt_ctrl_domain
*d
;
2362 if (!supports_mba_mbps() || mba_sc
== is_mba_sc(r
))
2365 r
->membw
.mba_sc
= mba_sc
;
2367 list_for_each_entry(d
, &r
->ctrl_domains
, hdr
.list
) {
2368 for (i
= 0; i
< num_closid
; i
++)
2369 d
->mbps_val
[i
] = MBA_MAX_MBPS
;
2375 static int cdp_enable(int level
)
2377 struct rdt_resource
*r_l
= &rdt_resources_all
[level
].r_resctrl
;
2380 if (!r_l
->alloc_capable
)
2383 ret
= set_cache_qos_cfg(level
, true);
2385 rdt_resources_all
[level
].cdp_enabled
= true;
2390 static void cdp_disable(int level
)
2392 struct rdt_hw_resource
*r_hw
= &rdt_resources_all
[level
];
2394 if (r_hw
->cdp_enabled
) {
2395 set_cache_qos_cfg(level
, false);
2396 r_hw
->cdp_enabled
= false;
2400 int resctrl_arch_set_cdp_enabled(enum resctrl_res_level l
, bool enable
)
2402 struct rdt_hw_resource
*hw_res
= &rdt_resources_all
[l
];
2404 if (!hw_res
->r_resctrl
.cdp_capable
)
2408 return cdp_enable(l
);
2416 * We don't allow rdtgroup directories to be created anywhere
2417 * except the root directory. Thus when looking for the rdtgroup
2418 * structure for a kernfs node we are either looking at a directory,
2419 * in which case the rdtgroup structure is pointed at by the "priv"
2420 * field, otherwise we have a file, and need only look to the parent
2421 * to find the rdtgroup.
2423 static struct rdtgroup
*kernfs_to_rdtgroup(struct kernfs_node
*kn
)
2425 if (kernfs_type(kn
) == KERNFS_DIR
) {
2427 * All the resource directories use "kn->priv"
2428 * to point to the "struct rdtgroup" for the
2429 * resource. "info" and its subdirectories don't
2430 * have rdtgroup structures, so return NULL here.
2432 if (kn
== kn_info
|| kn
->parent
== kn_info
)
2437 return kn
->parent
->priv
;
2441 static void rdtgroup_kn_get(struct rdtgroup
*rdtgrp
, struct kernfs_node
*kn
)
2443 atomic_inc(&rdtgrp
->waitcount
);
2444 kernfs_break_active_protection(kn
);
2447 static void rdtgroup_kn_put(struct rdtgroup
*rdtgrp
, struct kernfs_node
*kn
)
2449 if (atomic_dec_and_test(&rdtgrp
->waitcount
) &&
2450 (rdtgrp
->flags
& RDT_DELETED
)) {
2451 if (rdtgrp
->mode
== RDT_MODE_PSEUDO_LOCKSETUP
||
2452 rdtgrp
->mode
== RDT_MODE_PSEUDO_LOCKED
)
2453 rdtgroup_pseudo_lock_remove(rdtgrp
);
2454 kernfs_unbreak_active_protection(kn
);
2455 rdtgroup_remove(rdtgrp
);
2457 kernfs_unbreak_active_protection(kn
);
2461 struct rdtgroup
*rdtgroup_kn_lock_live(struct kernfs_node
*kn
)
2463 struct rdtgroup
*rdtgrp
= kernfs_to_rdtgroup(kn
);
2468 rdtgroup_kn_get(rdtgrp
, kn
);
2471 mutex_lock(&rdtgroup_mutex
);
2473 /* Was this group deleted while we waited? */
2474 if (rdtgrp
->flags
& RDT_DELETED
)
2480 void rdtgroup_kn_unlock(struct kernfs_node
*kn
)
2482 struct rdtgroup
*rdtgrp
= kernfs_to_rdtgroup(kn
);
2487 mutex_unlock(&rdtgroup_mutex
);
2490 rdtgroup_kn_put(rdtgrp
, kn
);
2493 static int mkdir_mondata_all(struct kernfs_node
*parent_kn
,
2494 struct rdtgroup
*prgrp
,
2495 struct kernfs_node
**mon_data_kn
);
2497 static void rdt_disable_ctx(void)
2499 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3
, false);
2500 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2
, false);
2503 resctrl_debug
= false;
2506 static int rdt_enable_ctx(struct rdt_fs_context
*ctx
)
2510 if (ctx
->enable_cdpl2
) {
2511 ret
= resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2
, true);
2516 if (ctx
->enable_cdpl3
) {
2517 ret
= resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3
, true);
2522 if (ctx
->enable_mba_mbps
) {
2523 ret
= set_mba_sc(true);
2528 if (ctx
->enable_debug
)
2529 resctrl_debug
= true;
2534 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3
, false);
2536 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2
, false);
2541 static int schemata_list_add(struct rdt_resource
*r
, enum resctrl_conf_type type
)
2543 struct resctrl_schema
*s
;
2544 const char *suffix
= "";
2547 s
= kzalloc(sizeof(*s
), GFP_KERNEL
);
2552 s
->num_closid
= resctrl_arch_get_num_closid(r
);
2553 if (resctrl_arch_get_cdp_enabled(r
->rid
))
2556 s
->conf_type
= type
;
2569 ret
= snprintf(s
->name
, sizeof(s
->name
), "%s%s", r
->name
, suffix
);
2570 if (ret
>= sizeof(s
->name
)) {
2575 cl
= strlen(s
->name
);
2578 * If CDP is supported by this resource, but not enabled,
2579 * include the suffix. This ensures the tabular format of the
2580 * schemata file does not change between mounts of the filesystem.
2582 if (r
->cdp_capable
&& !resctrl_arch_get_cdp_enabled(r
->rid
))
2585 if (cl
> max_name_width
)
2586 max_name_width
= cl
;
2588 INIT_LIST_HEAD(&s
->list
);
2589 list_add(&s
->list
, &resctrl_schema_all
);
2594 static int schemata_list_create(void)
2596 struct rdt_resource
*r
;
2599 for_each_alloc_capable_rdt_resource(r
) {
2600 if (resctrl_arch_get_cdp_enabled(r
->rid
)) {
2601 ret
= schemata_list_add(r
, CDP_CODE
);
2605 ret
= schemata_list_add(r
, CDP_DATA
);
2607 ret
= schemata_list_add(r
, CDP_NONE
);
2617 static void schemata_list_destroy(void)
2619 struct resctrl_schema
*s
, *tmp
;
2621 list_for_each_entry_safe(s
, tmp
, &resctrl_schema_all
, list
) {
2627 static int rdt_get_tree(struct fs_context
*fc
)
2629 struct rdt_fs_context
*ctx
= rdt_fc2context(fc
);
2630 unsigned long flags
= RFTYPE_CTRL_BASE
;
2631 struct rdt_mon_domain
*dom
;
2632 struct rdt_resource
*r
;
2636 mutex_lock(&rdtgroup_mutex
);
2638 * resctrl file system can only be mounted once.
2640 if (resctrl_mounted
) {
2645 ret
= rdtgroup_setup_root(ctx
);
2649 ret
= rdt_enable_ctx(ctx
);
2653 ret
= schemata_list_create();
2655 schemata_list_destroy();
2661 if (resctrl_arch_mon_capable())
2662 flags
|= RFTYPE_MON
;
2664 ret
= rdtgroup_add_files(rdtgroup_default
.kn
, flags
);
2666 goto out_schemata_free
;
2668 kernfs_activate(rdtgroup_default
.kn
);
2670 ret
= rdtgroup_create_info_dir(rdtgroup_default
.kn
);
2672 goto out_schemata_free
;
2674 if (resctrl_arch_mon_capable()) {
2675 ret
= mongroup_create_dir(rdtgroup_default
.kn
,
2676 &rdtgroup_default
, "mon_groups",
2681 ret
= mkdir_mondata_all(rdtgroup_default
.kn
,
2682 &rdtgroup_default
, &kn_mondata
);
2685 rdtgroup_default
.mon
.mon_data_kn
= kn_mondata
;
2688 ret
= rdt_pseudo_lock_init();
2692 ret
= kernfs_get_tree(fc
);
2696 if (resctrl_arch_alloc_capable())
2697 resctrl_arch_enable_alloc();
2698 if (resctrl_arch_mon_capable())
2699 resctrl_arch_enable_mon();
2701 if (resctrl_arch_alloc_capable() || resctrl_arch_mon_capable())
2702 resctrl_mounted
= true;
2704 if (is_mbm_enabled()) {
2705 r
= &rdt_resources_all
[RDT_RESOURCE_L3
].r_resctrl
;
2706 list_for_each_entry(dom
, &r
->mon_domains
, hdr
.list
)
2707 mbm_setup_overflow_handler(dom
, MBM_OVERFLOW_INTERVAL
,
2708 RESCTRL_PICK_ANY_CPU
);
2714 rdt_pseudo_lock_release();
2716 if (resctrl_arch_mon_capable())
2717 kernfs_remove(kn_mondata
);
2719 if (resctrl_arch_mon_capable())
2720 kernfs_remove(kn_mongrp
);
2722 kernfs_remove(kn_info
);
2724 schemata_list_destroy();
2728 rdtgroup_destroy_root();
2730 rdt_last_cmd_clear();
2731 mutex_unlock(&rdtgroup_mutex
);
2744 static const struct fs_parameter_spec rdt_fs_parameters
[] = {
2745 fsparam_flag("cdp", Opt_cdp
),
2746 fsparam_flag("cdpl2", Opt_cdpl2
),
2747 fsparam_flag("mba_MBps", Opt_mba_mbps
),
2748 fsparam_flag("debug", Opt_debug
),
2752 static int rdt_parse_param(struct fs_context
*fc
, struct fs_parameter
*param
)
2754 struct rdt_fs_context
*ctx
= rdt_fc2context(fc
);
2755 struct fs_parse_result result
;
2759 opt
= fs_parse(fc
, rdt_fs_parameters
, param
, &result
);
2765 ctx
->enable_cdpl3
= true;
2768 ctx
->enable_cdpl2
= true;
2771 msg
= "mba_MBps requires local MBM and linear scale MBA at L3 scope";
2772 if (!supports_mba_mbps())
2773 return invalfc(fc
, msg
);
2774 ctx
->enable_mba_mbps
= true;
2777 ctx
->enable_debug
= true;
2784 static void rdt_fs_context_free(struct fs_context
*fc
)
2786 struct rdt_fs_context
*ctx
= rdt_fc2context(fc
);
2788 kernfs_free_fs_context(fc
);
2792 static const struct fs_context_operations rdt_fs_context_ops
= {
2793 .free
= rdt_fs_context_free
,
2794 .parse_param
= rdt_parse_param
,
2795 .get_tree
= rdt_get_tree
,
2798 static int rdt_init_fs_context(struct fs_context
*fc
)
2800 struct rdt_fs_context
*ctx
;
2802 ctx
= kzalloc(sizeof(struct rdt_fs_context
), GFP_KERNEL
);
2806 ctx
->kfc
.magic
= RDTGROUP_SUPER_MAGIC
;
2807 fc
->fs_private
= &ctx
->kfc
;
2808 fc
->ops
= &rdt_fs_context_ops
;
2809 put_user_ns(fc
->user_ns
);
2810 fc
->user_ns
= get_user_ns(&init_user_ns
);
2815 static int reset_all_ctrls(struct rdt_resource
*r
)
2817 struct rdt_hw_resource
*hw_res
= resctrl_to_arch_res(r
);
2818 struct rdt_hw_ctrl_domain
*hw_dom
;
2819 struct msr_param msr_param
;
2820 struct rdt_ctrl_domain
*d
;
2823 /* Walking r->domains, ensure it can't race with cpuhp */
2824 lockdep_assert_cpus_held();
2828 msr_param
.high
= hw_res
->num_closid
;
2831 * Disable resource control for this resource by setting all
2832 * CBMs in all ctrl_domains to the maximum mask value. Pick one CPU
2833 * from each domain to update the MSRs below.
2835 list_for_each_entry(d
, &r
->ctrl_domains
, hdr
.list
) {
2836 hw_dom
= resctrl_to_arch_ctrl_dom(d
);
2838 for (i
= 0; i
< hw_res
->num_closid
; i
++)
2839 hw_dom
->ctrl_val
[i
] = r
->default_ctrl
;
2841 smp_call_function_any(&d
->hdr
.cpu_mask
, rdt_ctrl_update
, &msr_param
, 1);
2848 * Move tasks from one to the other group. If @from is NULL, then all tasks
2849 * in the systems are moved unconditionally (used for teardown).
2851 * If @mask is not NULL the cpus on which moved tasks are running are set
2852 * in that mask so the update smp function call is restricted to affected
2855 static void rdt_move_group_tasks(struct rdtgroup
*from
, struct rdtgroup
*to
,
2856 struct cpumask
*mask
)
2858 struct task_struct
*p
, *t
;
2860 read_lock(&tasklist_lock
);
2861 for_each_process_thread(p
, t
) {
2862 if (!from
|| is_closid_match(t
, from
) ||
2863 is_rmid_match(t
, from
)) {
2864 resctrl_arch_set_closid_rmid(t
, to
->closid
,
2868 * Order the closid/rmid stores above before the loads
2869 * in task_curr(). This pairs with the full barrier
2870 * between the rq->curr update and resctrl_sched_in()
2871 * during context switch.
2876 * If the task is on a CPU, set the CPU in the mask.
2877 * The detection is inaccurate as tasks might move or
2878 * schedule before the smp function call takes place.
2879 * In such a case the function call is pointless, but
2880 * there is no other side effect.
2882 if (IS_ENABLED(CONFIG_SMP
) && mask
&& task_curr(t
))
2883 cpumask_set_cpu(task_cpu(t
), mask
);
2886 read_unlock(&tasklist_lock
);
2889 static void free_all_child_rdtgrp(struct rdtgroup
*rdtgrp
)
2891 struct rdtgroup
*sentry
, *stmp
;
2892 struct list_head
*head
;
2894 head
= &rdtgrp
->mon
.crdtgrp_list
;
2895 list_for_each_entry_safe(sentry
, stmp
, head
, mon
.crdtgrp_list
) {
2896 free_rmid(sentry
->closid
, sentry
->mon
.rmid
);
2897 list_del(&sentry
->mon
.crdtgrp_list
);
2899 if (atomic_read(&sentry
->waitcount
) != 0)
2900 sentry
->flags
= RDT_DELETED
;
2902 rdtgroup_remove(sentry
);
2907 * Forcibly remove all of subdirectories under root.
2909 static void rmdir_all_sub(void)
2911 struct rdtgroup
*rdtgrp
, *tmp
;
2913 /* Move all tasks to the default resource group */
2914 rdt_move_group_tasks(NULL
, &rdtgroup_default
, NULL
);
2916 list_for_each_entry_safe(rdtgrp
, tmp
, &rdt_all_groups
, rdtgroup_list
) {
2917 /* Free any child rmids */
2918 free_all_child_rdtgrp(rdtgrp
);
2920 /* Remove each rdtgroup other than root */
2921 if (rdtgrp
== &rdtgroup_default
)
2924 if (rdtgrp
->mode
== RDT_MODE_PSEUDO_LOCKSETUP
||
2925 rdtgrp
->mode
== RDT_MODE_PSEUDO_LOCKED
)
2926 rdtgroup_pseudo_lock_remove(rdtgrp
);
2929 * Give any CPUs back to the default group. We cannot copy
2930 * cpu_online_mask because a CPU might have executed the
2931 * offline callback already, but is still marked online.
2933 cpumask_or(&rdtgroup_default
.cpu_mask
,
2934 &rdtgroup_default
.cpu_mask
, &rdtgrp
->cpu_mask
);
2936 free_rmid(rdtgrp
->closid
, rdtgrp
->mon
.rmid
);
2938 kernfs_remove(rdtgrp
->kn
);
2939 list_del(&rdtgrp
->rdtgroup_list
);
2941 if (atomic_read(&rdtgrp
->waitcount
) != 0)
2942 rdtgrp
->flags
= RDT_DELETED
;
2944 rdtgroup_remove(rdtgrp
);
2946 /* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
2947 update_closid_rmid(cpu_online_mask
, &rdtgroup_default
);
2949 kernfs_remove(kn_info
);
2950 kernfs_remove(kn_mongrp
);
2951 kernfs_remove(kn_mondata
);
2954 static void rdt_kill_sb(struct super_block
*sb
)
2956 struct rdt_resource
*r
;
2959 mutex_lock(&rdtgroup_mutex
);
2963 /*Put everything back to default values. */
2964 for_each_alloc_capable_rdt_resource(r
)
2967 rdt_pseudo_lock_release();
2968 rdtgroup_default
.mode
= RDT_MODE_SHAREABLE
;
2969 schemata_list_destroy();
2970 rdtgroup_destroy_root();
2971 if (resctrl_arch_alloc_capable())
2972 resctrl_arch_disable_alloc();
2973 if (resctrl_arch_mon_capable())
2974 resctrl_arch_disable_mon();
2975 resctrl_mounted
= false;
2977 mutex_unlock(&rdtgroup_mutex
);
2981 static struct file_system_type rdt_fs_type
= {
2983 .init_fs_context
= rdt_init_fs_context
,
2984 .parameters
= rdt_fs_parameters
,
2985 .kill_sb
= rdt_kill_sb
,
2988 static int mon_addfile(struct kernfs_node
*parent_kn
, const char *name
,
2991 struct kernfs_node
*kn
;
2994 kn
= __kernfs_create_file(parent_kn
, name
, 0444,
2995 GLOBAL_ROOT_UID
, GLOBAL_ROOT_GID
, 0,
2996 &kf_mondata_ops
, priv
, NULL
, NULL
);
3000 ret
= rdtgroup_kn_set_ugid(kn
);
3009 static void mon_rmdir_one_subdir(struct kernfs_node
*pkn
, char *name
, char *subname
)
3011 struct kernfs_node
*kn
;
3013 kn
= kernfs_find_and_get(pkn
, name
);
3018 if (kn
->dir
.subdirs
<= 1)
3021 kernfs_remove_by_name(kn
, subname
);
3025 * Remove all subdirectories of mon_data of ctrl_mon groups
3026 * and monitor groups for the given domain.
3027 * Remove files and directories containing "sum" of domain data
3028 * when last domain being summed is removed.
3030 static void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource
*r
,
3031 struct rdt_mon_domain
*d
)
3033 struct rdtgroup
*prgrp
, *crgrp
;
3038 snc_mode
= r
->mon_scope
== RESCTRL_L3_NODE
;
3039 sprintf(name
, "mon_%s_%02d", r
->name
, snc_mode
? d
->ci
->id
: d
->hdr
.id
);
3041 sprintf(subname
, "mon_sub_%s_%02d", r
->name
, d
->hdr
.id
);
3043 list_for_each_entry(prgrp
, &rdt_all_groups
, rdtgroup_list
) {
3044 mon_rmdir_one_subdir(prgrp
->mon
.mon_data_kn
, name
, subname
);
3046 list_for_each_entry(crgrp
, &prgrp
->mon
.crdtgrp_list
, mon
.crdtgrp_list
)
3047 mon_rmdir_one_subdir(crgrp
->mon
.mon_data_kn
, name
, subname
);
3051 static int mon_add_all_files(struct kernfs_node
*kn
, struct rdt_mon_domain
*d
,
3052 struct rdt_resource
*r
, struct rdtgroup
*prgrp
,
3055 struct rmid_read rr
= {0};
3056 union mon_data_bits priv
;
3057 struct mon_evt
*mevt
;
3060 if (WARN_ON(list_empty(&r
->evt_list
)))
3063 priv
.u
.rid
= r
->rid
;
3064 priv
.u
.domid
= do_sum
? d
->ci
->id
: d
->hdr
.id
;
3065 priv
.u
.sum
= do_sum
;
3066 list_for_each_entry(mevt
, &r
->evt_list
, list
) {
3067 priv
.u
.evtid
= mevt
->evtid
;
3068 ret
= mon_addfile(kn
, mevt
->name
, priv
.priv
);
3072 if (!do_sum
&& is_mbm_event(mevt
->evtid
))
3073 mon_event_read(&rr
, r
, d
, prgrp
, &d
->hdr
.cpu_mask
, mevt
->evtid
, true);
3079 static int mkdir_mondata_subdir(struct kernfs_node
*parent_kn
,
3080 struct rdt_mon_domain
*d
,
3081 struct rdt_resource
*r
, struct rdtgroup
*prgrp
)
3083 struct kernfs_node
*kn
, *ckn
;
3088 lockdep_assert_held(&rdtgroup_mutex
);
3090 snc_mode
= r
->mon_scope
== RESCTRL_L3_NODE
;
3091 sprintf(name
, "mon_%s_%02d", r
->name
, snc_mode
? d
->ci
->id
: d
->hdr
.id
);
3092 kn
= kernfs_find_and_get(parent_kn
, name
);
3095 * rdtgroup_mutex will prevent this directory from being
3096 * removed. No need to keep this hold.
3100 kn
= kernfs_create_dir(parent_kn
, name
, parent_kn
->mode
, prgrp
);
3104 ret
= rdtgroup_kn_set_ugid(kn
);
3107 ret
= mon_add_all_files(kn
, d
, r
, prgrp
, snc_mode
);
3113 sprintf(name
, "mon_sub_%s_%02d", r
->name
, d
->hdr
.id
);
3114 ckn
= kernfs_create_dir(kn
, name
, parent_kn
->mode
, prgrp
);
3120 ret
= rdtgroup_kn_set_ugid(ckn
);
3124 ret
= mon_add_all_files(ckn
, d
, r
, prgrp
, false);
3129 kernfs_activate(kn
);
3138 * Add all subdirectories of mon_data for "ctrl_mon" groups
3139 * and "monitor" groups with given domain id.
3141 static void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource
*r
,
3142 struct rdt_mon_domain
*d
)
3144 struct kernfs_node
*parent_kn
;
3145 struct rdtgroup
*prgrp
, *crgrp
;
3146 struct list_head
*head
;
3148 list_for_each_entry(prgrp
, &rdt_all_groups
, rdtgroup_list
) {
3149 parent_kn
= prgrp
->mon
.mon_data_kn
;
3150 mkdir_mondata_subdir(parent_kn
, d
, r
, prgrp
);
3152 head
= &prgrp
->mon
.crdtgrp_list
;
3153 list_for_each_entry(crgrp
, head
, mon
.crdtgrp_list
) {
3154 parent_kn
= crgrp
->mon
.mon_data_kn
;
3155 mkdir_mondata_subdir(parent_kn
, d
, r
, crgrp
);
3160 static int mkdir_mondata_subdir_alldom(struct kernfs_node
*parent_kn
,
3161 struct rdt_resource
*r
,
3162 struct rdtgroup
*prgrp
)
3164 struct rdt_mon_domain
*dom
;
3167 /* Walking r->domains, ensure it can't race with cpuhp */
3168 lockdep_assert_cpus_held();
3170 list_for_each_entry(dom
, &r
->mon_domains
, hdr
.list
) {
3171 ret
= mkdir_mondata_subdir(parent_kn
, dom
, r
, prgrp
);
3180 * This creates a directory mon_data which contains the monitored data.
3182 * mon_data has one directory for each domain which are named
3183 * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
3184 * with L3 domain looks as below:
3191 * Each domain directory has one file per event:
3196 static int mkdir_mondata_all(struct kernfs_node
*parent_kn
,
3197 struct rdtgroup
*prgrp
,
3198 struct kernfs_node
**dest_kn
)
3200 struct rdt_resource
*r
;
3201 struct kernfs_node
*kn
;
3205 * Create the mon_data directory first.
3207 ret
= mongroup_create_dir(parent_kn
, prgrp
, "mon_data", &kn
);
3215 * Create the subdirectories for each domain. Note that all events
3216 * in a domain like L3 are grouped into a resource whose domain is L3
3218 for_each_mon_capable_rdt_resource(r
) {
3219 ret
= mkdir_mondata_subdir_alldom(kn
, r
, prgrp
);
3232 * cbm_ensure_valid - Enforce validity on provided CBM
3233 * @_val: Candidate CBM
3234 * @r: RDT resource to which the CBM belongs
3236 * The provided CBM represents all cache portions available for use. This
3237 * may be represented by a bitmap that does not consist of contiguous ones
3238 * and thus be an invalid CBM.
3239 * Here the provided CBM is forced to be a valid CBM by only considering
3240 * the first set of contiguous bits as valid and clearing all bits.
3241 * The intention here is to provide a valid default CBM with which a new
3242 * resource group is initialized. The user can follow this with a
3243 * modification to the CBM if the default does not satisfy the
3246 static u32
cbm_ensure_valid(u32 _val
, struct rdt_resource
*r
)
3248 unsigned int cbm_len
= r
->cache
.cbm_len
;
3249 unsigned long first_bit
, zero_bit
;
3250 unsigned long val
= _val
;
3255 first_bit
= find_first_bit(&val
, cbm_len
);
3256 zero_bit
= find_next_zero_bit(&val
, cbm_len
, first_bit
);
3258 /* Clear any remaining bits to ensure contiguous region */
3259 bitmap_clear(&val
, zero_bit
, cbm_len
- zero_bit
);
3264 * Initialize cache resources per RDT domain
3266 * Set the RDT domain up to start off with all usable allocations. That is,
3267 * all shareable and unused bits. All-zero CBM is invalid.
3269 static int __init_one_rdt_domain(struct rdt_ctrl_domain
*d
, struct resctrl_schema
*s
,
3272 enum resctrl_conf_type peer_type
= resctrl_peer_type(s
->conf_type
);
3273 enum resctrl_conf_type t
= s
->conf_type
;
3274 struct resctrl_staged_config
*cfg
;
3275 struct rdt_resource
*r
= s
->res
;
3276 u32 used_b
= 0, unused_b
= 0;
3277 unsigned long tmp_cbm
;
3278 enum rdtgrp_mode mode
;
3279 u32 peer_ctl
, ctrl_val
;
3282 cfg
= &d
->staged_config
[t
];
3283 cfg
->have_new_ctrl
= false;
3284 cfg
->new_ctrl
= r
->cache
.shareable_bits
;
3285 used_b
= r
->cache
.shareable_bits
;
3286 for (i
= 0; i
< closids_supported(); i
++) {
3287 if (closid_allocated(i
) && i
!= closid
) {
3288 mode
= rdtgroup_mode_by_closid(i
);
3289 if (mode
== RDT_MODE_PSEUDO_LOCKSETUP
)
3291 * ctrl values for locksetup aren't relevant
3292 * until the schemata is written, and the mode
3293 * becomes RDT_MODE_PSEUDO_LOCKED.
3297 * If CDP is active include peer domain's
3298 * usage to ensure there is no overlap
3299 * with an exclusive group.
3301 if (resctrl_arch_get_cdp_enabled(r
->rid
))
3302 peer_ctl
= resctrl_arch_get_config(r
, d
, i
,
3306 ctrl_val
= resctrl_arch_get_config(r
, d
, i
,
3308 used_b
|= ctrl_val
| peer_ctl
;
3309 if (mode
== RDT_MODE_SHAREABLE
)
3310 cfg
->new_ctrl
|= ctrl_val
| peer_ctl
;
3313 if (d
->plr
&& d
->plr
->cbm
> 0)
3314 used_b
|= d
->plr
->cbm
;
3315 unused_b
= used_b
^ (BIT_MASK(r
->cache
.cbm_len
) - 1);
3316 unused_b
&= BIT_MASK(r
->cache
.cbm_len
) - 1;
3317 cfg
->new_ctrl
|= unused_b
;
3319 * Force the initial CBM to be valid, user can
3320 * modify the CBM based on system availability.
3322 cfg
->new_ctrl
= cbm_ensure_valid(cfg
->new_ctrl
, r
);
3324 * Assign the u32 CBM to an unsigned long to ensure that
3325 * bitmap_weight() does not access out-of-bound memory.
3327 tmp_cbm
= cfg
->new_ctrl
;
3328 if (bitmap_weight(&tmp_cbm
, r
->cache
.cbm_len
) < r
->cache
.min_cbm_bits
) {
3329 rdt_last_cmd_printf("No space on %s:%d\n", s
->name
, d
->hdr
.id
);
3332 cfg
->have_new_ctrl
= true;
3338 * Initialize cache resources with default values.
3340 * A new RDT group is being created on an allocation capable (CAT)
3341 * supporting system. Set this group up to start off with all usable
3344 * If there are no more shareable bits available on any domain then
3345 * the entire allocation will fail.
3347 static int rdtgroup_init_cat(struct resctrl_schema
*s
, u32 closid
)
3349 struct rdt_ctrl_domain
*d
;
3352 list_for_each_entry(d
, &s
->res
->ctrl_domains
, hdr
.list
) {
3353 ret
= __init_one_rdt_domain(d
, s
, closid
);
3361 /* Initialize MBA resource with default values. */
3362 static void rdtgroup_init_mba(struct rdt_resource
*r
, u32 closid
)
3364 struct resctrl_staged_config
*cfg
;
3365 struct rdt_ctrl_domain
*d
;
3367 list_for_each_entry(d
, &r
->ctrl_domains
, hdr
.list
) {
3369 d
->mbps_val
[closid
] = MBA_MAX_MBPS
;
3373 cfg
= &d
->staged_config
[CDP_NONE
];
3374 cfg
->new_ctrl
= r
->default_ctrl
;
3375 cfg
->have_new_ctrl
= true;
3379 /* Initialize the RDT group's allocations. */
3380 static int rdtgroup_init_alloc(struct rdtgroup
*rdtgrp
)
3382 struct resctrl_schema
*s
;
3383 struct rdt_resource
*r
;
3386 rdt_staged_configs_clear();
3388 list_for_each_entry(s
, &resctrl_schema_all
, list
) {
3390 if (r
->rid
== RDT_RESOURCE_MBA
||
3391 r
->rid
== RDT_RESOURCE_SMBA
) {
3392 rdtgroup_init_mba(r
, rdtgrp
->closid
);
3396 ret
= rdtgroup_init_cat(s
, rdtgrp
->closid
);
3401 ret
= resctrl_arch_update_domains(r
, rdtgrp
->closid
);
3403 rdt_last_cmd_puts("Failed to initialize allocations\n");
3409 rdtgrp
->mode
= RDT_MODE_SHAREABLE
;
3412 rdt_staged_configs_clear();
3416 static int mkdir_rdt_prepare_rmid_alloc(struct rdtgroup
*rdtgrp
)
3420 if (!resctrl_arch_mon_capable())
3423 ret
= alloc_rmid(rdtgrp
->closid
);
3425 rdt_last_cmd_puts("Out of RMIDs\n");
3428 rdtgrp
->mon
.rmid
= ret
;
3430 ret
= mkdir_mondata_all(rdtgrp
->kn
, rdtgrp
, &rdtgrp
->mon
.mon_data_kn
);
3432 rdt_last_cmd_puts("kernfs subdir error\n");
3433 free_rmid(rdtgrp
->closid
, rdtgrp
->mon
.rmid
);
3440 static void mkdir_rdt_prepare_rmid_free(struct rdtgroup
*rgrp
)
3442 if (resctrl_arch_mon_capable())
3443 free_rmid(rgrp
->closid
, rgrp
->mon
.rmid
);
3446 static int mkdir_rdt_prepare(struct kernfs_node
*parent_kn
,
3447 const char *name
, umode_t mode
,
3448 enum rdt_group_type rtype
, struct rdtgroup
**r
)
3450 struct rdtgroup
*prdtgrp
, *rdtgrp
;
3451 unsigned long files
= 0;
3452 struct kernfs_node
*kn
;
3455 prdtgrp
= rdtgroup_kn_lock_live(parent_kn
);
3461 if (rtype
== RDTMON_GROUP
&&
3462 (prdtgrp
->mode
== RDT_MODE_PSEUDO_LOCKSETUP
||
3463 prdtgrp
->mode
== RDT_MODE_PSEUDO_LOCKED
)) {
3465 rdt_last_cmd_puts("Pseudo-locking in progress\n");
3469 /* allocate the rdtgroup. */
3470 rdtgrp
= kzalloc(sizeof(*rdtgrp
), GFP_KERNEL
);
3473 rdt_last_cmd_puts("Kernel out of memory\n");
3477 rdtgrp
->mon
.parent
= prdtgrp
;
3478 rdtgrp
->type
= rtype
;
3479 INIT_LIST_HEAD(&rdtgrp
->mon
.crdtgrp_list
);
3481 /* kernfs creates the directory for rdtgrp */
3482 kn
= kernfs_create_dir(parent_kn
, name
, mode
, rdtgrp
);
3485 rdt_last_cmd_puts("kernfs create error\n");
3491 * kernfs_remove() will drop the reference count on "kn" which
3492 * will free it. But we still need it to stick around for the
3493 * rdtgroup_kn_unlock(kn) call. Take one extra reference here,
3494 * which will be dropped by kernfs_put() in rdtgroup_remove().
3498 ret
= rdtgroup_kn_set_ugid(kn
);
3500 rdt_last_cmd_puts("kernfs perm error\n");
3504 if (rtype
== RDTCTRL_GROUP
) {
3505 files
= RFTYPE_BASE
| RFTYPE_CTRL
;
3506 if (resctrl_arch_mon_capable())
3507 files
|= RFTYPE_MON
;
3509 files
= RFTYPE_BASE
| RFTYPE_MON
;
3512 ret
= rdtgroup_add_files(kn
, files
);
3514 rdt_last_cmd_puts("kernfs fill error\n");
3519 * The caller unlocks the parent_kn upon success.
3524 kernfs_put(rdtgrp
->kn
);
3525 kernfs_remove(rdtgrp
->kn
);
3529 rdtgroup_kn_unlock(parent_kn
);
3533 static void mkdir_rdt_prepare_clean(struct rdtgroup
*rgrp
)
3535 kernfs_remove(rgrp
->kn
);
3536 rdtgroup_remove(rgrp
);
3540 * Create a monitor group under "mon_groups" directory of a control
3541 * and monitor group(ctrl_mon). This is a resource group
3542 * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
3544 static int rdtgroup_mkdir_mon(struct kernfs_node
*parent_kn
,
3545 const char *name
, umode_t mode
)
3547 struct rdtgroup
*rdtgrp
, *prgrp
;
3550 ret
= mkdir_rdt_prepare(parent_kn
, name
, mode
, RDTMON_GROUP
, &rdtgrp
);
3554 prgrp
= rdtgrp
->mon
.parent
;
3555 rdtgrp
->closid
= prgrp
->closid
;
3557 ret
= mkdir_rdt_prepare_rmid_alloc(rdtgrp
);
3559 mkdir_rdt_prepare_clean(rdtgrp
);
3563 kernfs_activate(rdtgrp
->kn
);
3566 * Add the rdtgrp to the list of rdtgrps the parent
3567 * ctrl_mon group has to track.
3569 list_add_tail(&rdtgrp
->mon
.crdtgrp_list
, &prgrp
->mon
.crdtgrp_list
);
3572 rdtgroup_kn_unlock(parent_kn
);
3577 * These are rdtgroups created under the root directory. Can be used
3578 * to allocate and monitor resources.
3580 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node
*parent_kn
,
3581 const char *name
, umode_t mode
)
3583 struct rdtgroup
*rdtgrp
;
3584 struct kernfs_node
*kn
;
3588 ret
= mkdir_rdt_prepare(parent_kn
, name
, mode
, RDTCTRL_GROUP
, &rdtgrp
);
3593 ret
= closid_alloc();
3595 rdt_last_cmd_puts("Out of CLOSIDs\n");
3596 goto out_common_fail
;
3601 rdtgrp
->closid
= closid
;
3603 ret
= mkdir_rdt_prepare_rmid_alloc(rdtgrp
);
3605 goto out_closid_free
;
3607 kernfs_activate(rdtgrp
->kn
);
3609 ret
= rdtgroup_init_alloc(rdtgrp
);
3613 list_add(&rdtgrp
->rdtgroup_list
, &rdt_all_groups
);
3615 if (resctrl_arch_mon_capable()) {
3617 * Create an empty mon_groups directory to hold the subset
3618 * of tasks and cpus to monitor.
3620 ret
= mongroup_create_dir(kn
, rdtgrp
, "mon_groups", NULL
);
3622 rdt_last_cmd_puts("kernfs subdir error\n");
3630 list_del(&rdtgrp
->rdtgroup_list
);
3632 mkdir_rdt_prepare_rmid_free(rdtgrp
);
3634 closid_free(closid
);
3636 mkdir_rdt_prepare_clean(rdtgrp
);
3638 rdtgroup_kn_unlock(parent_kn
);
3643 * We allow creating mon groups only with in a directory called "mon_groups"
3644 * which is present in every ctrl_mon group. Check if this is a valid
3645 * "mon_groups" directory.
3647 * 1. The directory should be named "mon_groups".
3648 * 2. The mon group itself should "not" be named "mon_groups".
3649 * This makes sure "mon_groups" directory always has a ctrl_mon group
3652 static bool is_mon_groups(struct kernfs_node
*kn
, const char *name
)
3654 return (!strcmp(kn
->name
, "mon_groups") &&
3655 strcmp(name
, "mon_groups"));
3658 static int rdtgroup_mkdir(struct kernfs_node
*parent_kn
, const char *name
,
3661 /* Do not accept '\n' to avoid unparsable situation. */
3662 if (strchr(name
, '\n'))
3666 * If the parent directory is the root directory and RDT
3667 * allocation is supported, add a control and monitoring
3670 if (resctrl_arch_alloc_capable() && parent_kn
== rdtgroup_default
.kn
)
3671 return rdtgroup_mkdir_ctrl_mon(parent_kn
, name
, mode
);
3674 * If RDT monitoring is supported and the parent directory is a valid
3675 * "mon_groups" directory, add a monitoring subdirectory.
3677 if (resctrl_arch_mon_capable() && is_mon_groups(parent_kn
, name
))
3678 return rdtgroup_mkdir_mon(parent_kn
, name
, mode
);
3683 static int rdtgroup_rmdir_mon(struct rdtgroup
*rdtgrp
, cpumask_var_t tmpmask
)
3685 struct rdtgroup
*prdtgrp
= rdtgrp
->mon
.parent
;
3688 /* Give any tasks back to the parent group */
3689 rdt_move_group_tasks(rdtgrp
, prdtgrp
, tmpmask
);
3691 /* Update per cpu rmid of the moved CPUs first */
3692 for_each_cpu(cpu
, &rdtgrp
->cpu_mask
)
3693 per_cpu(pqr_state
.default_rmid
, cpu
) = prdtgrp
->mon
.rmid
;
3695 * Update the MSR on moved CPUs and CPUs which have moved
3696 * task running on them.
3698 cpumask_or(tmpmask
, tmpmask
, &rdtgrp
->cpu_mask
);
3699 update_closid_rmid(tmpmask
, NULL
);
3701 rdtgrp
->flags
= RDT_DELETED
;
3702 free_rmid(rdtgrp
->closid
, rdtgrp
->mon
.rmid
);
3705 * Remove the rdtgrp from the parent ctrl_mon group's list
3707 WARN_ON(list_empty(&prdtgrp
->mon
.crdtgrp_list
));
3708 list_del(&rdtgrp
->mon
.crdtgrp_list
);
3710 kernfs_remove(rdtgrp
->kn
);
3715 static int rdtgroup_ctrl_remove(struct rdtgroup
*rdtgrp
)
3717 rdtgrp
->flags
= RDT_DELETED
;
3718 list_del(&rdtgrp
->rdtgroup_list
);
3720 kernfs_remove(rdtgrp
->kn
);
3724 static int rdtgroup_rmdir_ctrl(struct rdtgroup
*rdtgrp
, cpumask_var_t tmpmask
)
3728 /* Give any tasks back to the default group */
3729 rdt_move_group_tasks(rdtgrp
, &rdtgroup_default
, tmpmask
);
3731 /* Give any CPUs back to the default group */
3732 cpumask_or(&rdtgroup_default
.cpu_mask
,
3733 &rdtgroup_default
.cpu_mask
, &rdtgrp
->cpu_mask
);
3735 /* Update per cpu closid and rmid of the moved CPUs first */
3736 for_each_cpu(cpu
, &rdtgrp
->cpu_mask
) {
3737 per_cpu(pqr_state
.default_closid
, cpu
) = rdtgroup_default
.closid
;
3738 per_cpu(pqr_state
.default_rmid
, cpu
) = rdtgroup_default
.mon
.rmid
;
3742 * Update the MSR on moved CPUs and CPUs which have moved
3743 * task running on them.
3745 cpumask_or(tmpmask
, tmpmask
, &rdtgrp
->cpu_mask
);
3746 update_closid_rmid(tmpmask
, NULL
);
3748 free_rmid(rdtgrp
->closid
, rdtgrp
->mon
.rmid
);
3749 closid_free(rdtgrp
->closid
);
3751 rdtgroup_ctrl_remove(rdtgrp
);
3754 * Free all the child monitor group rmids.
3756 free_all_child_rdtgrp(rdtgrp
);
3761 static int rdtgroup_rmdir(struct kernfs_node
*kn
)
3763 struct kernfs_node
*parent_kn
= kn
->parent
;
3764 struct rdtgroup
*rdtgrp
;
3765 cpumask_var_t tmpmask
;
3768 if (!zalloc_cpumask_var(&tmpmask
, GFP_KERNEL
))
3771 rdtgrp
= rdtgroup_kn_lock_live(kn
);
3778 * If the rdtgroup is a ctrl_mon group and parent directory
3779 * is the root directory, remove the ctrl_mon group.
3781 * If the rdtgroup is a mon group and parent directory
3782 * is a valid "mon_groups" directory, remove the mon group.
3784 if (rdtgrp
->type
== RDTCTRL_GROUP
&& parent_kn
== rdtgroup_default
.kn
&&
3785 rdtgrp
!= &rdtgroup_default
) {
3786 if (rdtgrp
->mode
== RDT_MODE_PSEUDO_LOCKSETUP
||
3787 rdtgrp
->mode
== RDT_MODE_PSEUDO_LOCKED
) {
3788 ret
= rdtgroup_ctrl_remove(rdtgrp
);
3790 ret
= rdtgroup_rmdir_ctrl(rdtgrp
, tmpmask
);
3792 } else if (rdtgrp
->type
== RDTMON_GROUP
&&
3793 is_mon_groups(parent_kn
, kn
->name
)) {
3794 ret
= rdtgroup_rmdir_mon(rdtgrp
, tmpmask
);
3800 rdtgroup_kn_unlock(kn
);
3801 free_cpumask_var(tmpmask
);
3806 * mongrp_reparent() - replace parent CTRL_MON group of a MON group
3807 * @rdtgrp: the MON group whose parent should be replaced
3808 * @new_prdtgrp: replacement parent CTRL_MON group for @rdtgrp
3809 * @cpus: cpumask provided by the caller for use during this call
3811 * Replaces the parent CTRL_MON group for a MON group, resulting in all member
3812 * tasks' CLOSID immediately changing to that of the new parent group.
3813 * Monitoring data for the group is unaffected by this operation.
3815 static void mongrp_reparent(struct rdtgroup
*rdtgrp
,
3816 struct rdtgroup
*new_prdtgrp
,
3819 struct rdtgroup
*prdtgrp
= rdtgrp
->mon
.parent
;
3821 WARN_ON(rdtgrp
->type
!= RDTMON_GROUP
);
3822 WARN_ON(new_prdtgrp
->type
!= RDTCTRL_GROUP
);
3824 /* Nothing to do when simply renaming a MON group. */
3825 if (prdtgrp
== new_prdtgrp
)
3828 WARN_ON(list_empty(&prdtgrp
->mon
.crdtgrp_list
));
3829 list_move_tail(&rdtgrp
->mon
.crdtgrp_list
,
3830 &new_prdtgrp
->mon
.crdtgrp_list
);
3832 rdtgrp
->mon
.parent
= new_prdtgrp
;
3833 rdtgrp
->closid
= new_prdtgrp
->closid
;
3835 /* Propagate updated closid to all tasks in this group. */
3836 rdt_move_group_tasks(rdtgrp
, rdtgrp
, cpus
);
3838 update_closid_rmid(cpus
, NULL
);
3841 static int rdtgroup_rename(struct kernfs_node
*kn
,
3842 struct kernfs_node
*new_parent
, const char *new_name
)
3844 struct rdtgroup
*new_prdtgrp
;
3845 struct rdtgroup
*rdtgrp
;
3846 cpumask_var_t tmpmask
;
3849 rdtgrp
= kernfs_to_rdtgroup(kn
);
3850 new_prdtgrp
= kernfs_to_rdtgroup(new_parent
);
3851 if (!rdtgrp
|| !new_prdtgrp
)
3854 /* Release both kernfs active_refs before obtaining rdtgroup mutex. */
3855 rdtgroup_kn_get(rdtgrp
, kn
);
3856 rdtgroup_kn_get(new_prdtgrp
, new_parent
);
3858 mutex_lock(&rdtgroup_mutex
);
3860 rdt_last_cmd_clear();
3863 * Don't allow kernfs_to_rdtgroup() to return a parent rdtgroup if
3864 * either kernfs_node is a file.
3866 if (kernfs_type(kn
) != KERNFS_DIR
||
3867 kernfs_type(new_parent
) != KERNFS_DIR
) {
3868 rdt_last_cmd_puts("Source and destination must be directories");
3873 if ((rdtgrp
->flags
& RDT_DELETED
) || (new_prdtgrp
->flags
& RDT_DELETED
)) {
3878 if (rdtgrp
->type
!= RDTMON_GROUP
|| !kn
->parent
||
3879 !is_mon_groups(kn
->parent
, kn
->name
)) {
3880 rdt_last_cmd_puts("Source must be a MON group\n");
3885 if (!is_mon_groups(new_parent
, new_name
)) {
3886 rdt_last_cmd_puts("Destination must be a mon_groups subdirectory\n");
3892 * If the MON group is monitoring CPUs, the CPUs must be assigned to the
3893 * current parent CTRL_MON group and therefore cannot be assigned to
3894 * the new parent, making the move illegal.
3896 if (!cpumask_empty(&rdtgrp
->cpu_mask
) &&
3897 rdtgrp
->mon
.parent
!= new_prdtgrp
) {
3898 rdt_last_cmd_puts("Cannot move a MON group that monitors CPUs\n");
3904 * Allocate the cpumask for use in mongrp_reparent() to avoid the
3905 * possibility of failing to allocate it after kernfs_rename() has
3908 if (!zalloc_cpumask_var(&tmpmask
, GFP_KERNEL
)) {
3914 * Perform all input validation and allocations needed to ensure
3915 * mongrp_reparent() will succeed before calling kernfs_rename(),
3916 * otherwise it would be necessary to revert this call if
3917 * mongrp_reparent() failed.
3919 ret
= kernfs_rename(kn
, new_parent
, new_name
);
3921 mongrp_reparent(rdtgrp
, new_prdtgrp
, tmpmask
);
3923 free_cpumask_var(tmpmask
);
3926 mutex_unlock(&rdtgroup_mutex
);
3927 rdtgroup_kn_put(rdtgrp
, kn
);
3928 rdtgroup_kn_put(new_prdtgrp
, new_parent
);
3932 static int rdtgroup_show_options(struct seq_file
*seq
, struct kernfs_root
*kf
)
3934 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3
))
3935 seq_puts(seq
, ",cdp");
3937 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2
))
3938 seq_puts(seq
, ",cdpl2");
3940 if (is_mba_sc(&rdt_resources_all
[RDT_RESOURCE_MBA
].r_resctrl
))
3941 seq_puts(seq
, ",mba_MBps");
3944 seq_puts(seq
, ",debug");
3949 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops
= {
3950 .mkdir
= rdtgroup_mkdir
,
3951 .rmdir
= rdtgroup_rmdir
,
3952 .rename
= rdtgroup_rename
,
3953 .show_options
= rdtgroup_show_options
,
3956 static int rdtgroup_setup_root(struct rdt_fs_context
*ctx
)
3958 rdt_root
= kernfs_create_root(&rdtgroup_kf_syscall_ops
,
3959 KERNFS_ROOT_CREATE_DEACTIVATED
|
3960 KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK
,
3962 if (IS_ERR(rdt_root
))
3963 return PTR_ERR(rdt_root
);
3965 ctx
->kfc
.root
= rdt_root
;
3966 rdtgroup_default
.kn
= kernfs_root_to_node(rdt_root
);
3971 static void rdtgroup_destroy_root(void)
3973 kernfs_destroy_root(rdt_root
);
3974 rdtgroup_default
.kn
= NULL
;
3977 static void __init
rdtgroup_setup_default(void)
3979 mutex_lock(&rdtgroup_mutex
);
3981 rdtgroup_default
.closid
= RESCTRL_RESERVED_CLOSID
;
3982 rdtgroup_default
.mon
.rmid
= RESCTRL_RESERVED_RMID
;
3983 rdtgroup_default
.type
= RDTCTRL_GROUP
;
3984 INIT_LIST_HEAD(&rdtgroup_default
.mon
.crdtgrp_list
);
3986 list_add(&rdtgroup_default
.rdtgroup_list
, &rdt_all_groups
);
3988 mutex_unlock(&rdtgroup_mutex
);
3991 static void domain_destroy_mon_state(struct rdt_mon_domain
*d
)
3993 bitmap_free(d
->rmid_busy_llc
);
3994 kfree(d
->mbm_total
);
3995 kfree(d
->mbm_local
);
3998 void resctrl_offline_ctrl_domain(struct rdt_resource
*r
, struct rdt_ctrl_domain
*d
)
4000 mutex_lock(&rdtgroup_mutex
);
4002 if (supports_mba_mbps() && r
->rid
== RDT_RESOURCE_MBA
)
4003 mba_sc_domain_destroy(r
, d
);
4005 mutex_unlock(&rdtgroup_mutex
);
4008 void resctrl_offline_mon_domain(struct rdt_resource
*r
, struct rdt_mon_domain
*d
)
4010 mutex_lock(&rdtgroup_mutex
);
4013 * If resctrl is mounted, remove all the
4014 * per domain monitor data directories.
4016 if (resctrl_mounted
&& resctrl_arch_mon_capable())
4017 rmdir_mondata_subdir_allrdtgrp(r
, d
);
4019 if (is_mbm_enabled())
4020 cancel_delayed_work(&d
->mbm_over
);
4021 if (is_llc_occupancy_enabled() && has_busy_rmid(d
)) {
4023 * When a package is going down, forcefully
4024 * decrement rmid->ebusy. There is no way to know
4025 * that the L3 was flushed and hence may lead to
4026 * incorrect counts in rare scenarios, but leaving
4027 * the RMID as busy creates RMID leaks if the
4028 * package never comes back.
4030 __check_limbo(d
, true);
4031 cancel_delayed_work(&d
->cqm_limbo
);
4034 domain_destroy_mon_state(d
);
4036 mutex_unlock(&rdtgroup_mutex
);
4039 static int domain_setup_mon_state(struct rdt_resource
*r
, struct rdt_mon_domain
*d
)
4041 u32 idx_limit
= resctrl_arch_system_num_rmid_idx();
4044 if (is_llc_occupancy_enabled()) {
4045 d
->rmid_busy_llc
= bitmap_zalloc(idx_limit
, GFP_KERNEL
);
4046 if (!d
->rmid_busy_llc
)
4049 if (is_mbm_total_enabled()) {
4050 tsize
= sizeof(*d
->mbm_total
);
4051 d
->mbm_total
= kcalloc(idx_limit
, tsize
, GFP_KERNEL
);
4052 if (!d
->mbm_total
) {
4053 bitmap_free(d
->rmid_busy_llc
);
4057 if (is_mbm_local_enabled()) {
4058 tsize
= sizeof(*d
->mbm_local
);
4059 d
->mbm_local
= kcalloc(idx_limit
, tsize
, GFP_KERNEL
);
4060 if (!d
->mbm_local
) {
4061 bitmap_free(d
->rmid_busy_llc
);
4062 kfree(d
->mbm_total
);
4070 int resctrl_online_ctrl_domain(struct rdt_resource
*r
, struct rdt_ctrl_domain
*d
)
4074 mutex_lock(&rdtgroup_mutex
);
4076 if (supports_mba_mbps() && r
->rid
== RDT_RESOURCE_MBA
) {
4077 /* RDT_RESOURCE_MBA is never mon_capable */
4078 err
= mba_sc_domain_allocate(r
, d
);
4081 mutex_unlock(&rdtgroup_mutex
);
4086 int resctrl_online_mon_domain(struct rdt_resource
*r
, struct rdt_mon_domain
*d
)
4090 mutex_lock(&rdtgroup_mutex
);
4092 err
= domain_setup_mon_state(r
, d
);
4096 if (is_mbm_enabled()) {
4097 INIT_DELAYED_WORK(&d
->mbm_over
, mbm_handle_overflow
);
4098 mbm_setup_overflow_handler(d
, MBM_OVERFLOW_INTERVAL
,
4099 RESCTRL_PICK_ANY_CPU
);
4102 if (is_llc_occupancy_enabled())
4103 INIT_DELAYED_WORK(&d
->cqm_limbo
, cqm_handle_limbo
);
4106 * If the filesystem is not mounted then only the default resource group
4107 * exists. Creation of its directories is deferred until mount time
4108 * by rdt_get_tree() calling mkdir_mondata_all().
4109 * If resctrl is mounted, add per domain monitor data directories.
4111 if (resctrl_mounted
&& resctrl_arch_mon_capable())
4112 mkdir_mondata_subdir_allrdtgrp(r
, d
);
4115 mutex_unlock(&rdtgroup_mutex
);
4120 void resctrl_online_cpu(unsigned int cpu
)
4122 mutex_lock(&rdtgroup_mutex
);
4123 /* The CPU is set in default rdtgroup after online. */
4124 cpumask_set_cpu(cpu
, &rdtgroup_default
.cpu_mask
);
4125 mutex_unlock(&rdtgroup_mutex
);
4128 static void clear_childcpus(struct rdtgroup
*r
, unsigned int cpu
)
4130 struct rdtgroup
*cr
;
4132 list_for_each_entry(cr
, &r
->mon
.crdtgrp_list
, mon
.crdtgrp_list
) {
4133 if (cpumask_test_and_clear_cpu(cpu
, &cr
->cpu_mask
))
4138 void resctrl_offline_cpu(unsigned int cpu
)
4140 struct rdt_resource
*l3
= &rdt_resources_all
[RDT_RESOURCE_L3
].r_resctrl
;
4141 struct rdt_mon_domain
*d
;
4142 struct rdtgroup
*rdtgrp
;
4144 mutex_lock(&rdtgroup_mutex
);
4145 list_for_each_entry(rdtgrp
, &rdt_all_groups
, rdtgroup_list
) {
4146 if (cpumask_test_and_clear_cpu(cpu
, &rdtgrp
->cpu_mask
)) {
4147 clear_childcpus(rdtgrp
, cpu
);
4152 if (!l3
->mon_capable
)
4155 d
= get_mon_domain_from_cpu(cpu
, l3
);
4157 if (is_mbm_enabled() && cpu
== d
->mbm_work_cpu
) {
4158 cancel_delayed_work(&d
->mbm_over
);
4159 mbm_setup_overflow_handler(d
, 0, cpu
);
4161 if (is_llc_occupancy_enabled() && cpu
== d
->cqm_work_cpu
&&
4163 cancel_delayed_work(&d
->cqm_limbo
);
4164 cqm_setup_limbo_handler(d
, 0, cpu
);
4169 mutex_unlock(&rdtgroup_mutex
);
4173 * rdtgroup_init - rdtgroup initialization
4175 * Setup resctrl file system including set up root, create mount point,
4176 * register rdtgroup filesystem, and initialize files under root directory.
4178 * Return: 0 on success or -errno
4180 int __init
rdtgroup_init(void)
4184 seq_buf_init(&last_cmd_status
, last_cmd_status_buf
,
4185 sizeof(last_cmd_status_buf
));
4187 rdtgroup_setup_default();
4189 ret
= sysfs_create_mount_point(fs_kobj
, "resctrl");
4193 ret
= register_filesystem(&rdt_fs_type
);
4195 goto cleanup_mountpoint
;
4198 * Adding the resctrl debugfs directory here may not be ideal since
4199 * it would let the resctrl debugfs directory appear on the debugfs
4200 * filesystem before the resctrl filesystem is mounted.
4201 * It may also be ok since that would enable debugging of RDT before
4202 * resctrl is mounted.
4203 * The reason why the debugfs directory is created here and not in
4204 * rdt_get_tree() is because rdt_get_tree() takes rdtgroup_mutex and
4205 * during the debugfs directory creation also &sb->s_type->i_mutex_key
4206 * (the lockdep class of inode->i_rwsem). Other filesystem
4207 * interactions (eg. SyS_getdents) have the lock ordering:
4208 * &sb->s_type->i_mutex_key --> &mm->mmap_lock
4209 * During mmap(), called with &mm->mmap_lock, the rdtgroup_mutex
4210 * is taken, thus creating dependency:
4211 * &mm->mmap_lock --> rdtgroup_mutex for the latter that can cause
4212 * issues considering the other two lock dependencies.
4213 * By creating the debugfs directory here we avoid a dependency
4214 * that may cause deadlock (even though file operations cannot
4215 * occur until the filesystem is mounted, but I do not know how to
4216 * tell lockdep that).
4218 debugfs_resctrl
= debugfs_create_dir("resctrl", NULL
);
4223 sysfs_remove_mount_point(fs_kobj
, "resctrl");
4228 void __exit
rdtgroup_exit(void)
4230 debugfs_remove_recursive(debugfs_resctrl
);
4231 unregister_filesystem(&rdt_fs_type
);
4232 sysfs_remove_mount_point(fs_kobj
, "resctrl");