1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/export.h>
5 #include <linux/delay.h>
6 #include <linux/hpet.h>
10 #include <asm/irq_remapping.h>
13 #include <asm/mwait.h>
16 #define pr_fmt(fmt) "hpet: " fmt
26 struct clock_event_device evt
;
32 unsigned int boot_cfg
;
37 unsigned int nr_channels
;
38 unsigned int nr_clockevents
;
39 unsigned int boot_cfg
;
40 struct hpet_channel
*channels
;
43 #define HPET_MASK CLOCKSOURCE_MASK(32)
45 #define HPET_MIN_CYCLES 128
46 #define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
49 * HPET address is set in acpi/boot.c, when an ACPI entry exists
51 unsigned long hpet_address
;
52 u8 hpet_blockid
; /* OS timer block num */
53 bool hpet_msi_disable
;
55 #if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_GENERIC_MSI_IRQ)
56 static DEFINE_PER_CPU(struct hpet_channel
*, cpu_hpet_channel
);
57 static struct irq_domain
*hpet_domain
;
60 static void __iomem
*hpet_virt_address
;
62 static struct hpet_base hpet_base
;
64 static bool hpet_legacy_int_enabled
;
65 static unsigned long hpet_freq
;
67 bool boot_hpet_disable
;
69 static bool hpet_verbose
;
72 struct hpet_channel
*clockevent_to_channel(struct clock_event_device
*evt
)
74 return container_of(evt
, struct hpet_channel
, evt
);
77 inline unsigned int hpet_readl(unsigned int a
)
79 return readl(hpet_virt_address
+ a
);
82 static inline void hpet_writel(unsigned int d
, unsigned int a
)
84 writel(d
, hpet_virt_address
+ a
);
87 static inline void hpet_set_mapping(void)
89 hpet_virt_address
= ioremap(hpet_address
, HPET_MMAP_SIZE
);
92 static inline void hpet_clear_mapping(void)
94 iounmap(hpet_virt_address
);
95 hpet_virt_address
= NULL
;
99 * HPET command line enable / disable
101 static int __init
hpet_setup(char *str
)
104 char *next
= strchr(str
, ',');
108 if (!strncmp("disable", str
, 7))
109 boot_hpet_disable
= true;
110 if (!strncmp("force", str
, 5))
111 hpet_force_user
= true;
112 if (!strncmp("verbose", str
, 7))
118 __setup("hpet=", hpet_setup
);
120 static int __init
disable_hpet(char *str
)
122 boot_hpet_disable
= true;
125 __setup("nohpet", disable_hpet
);
127 static inline int is_hpet_capable(void)
129 return !boot_hpet_disable
&& hpet_address
;
133 * is_hpet_enabled - Check whether the legacy HPET timer interrupt is enabled
135 int is_hpet_enabled(void)
137 return is_hpet_capable() && hpet_legacy_int_enabled
;
139 EXPORT_SYMBOL_GPL(is_hpet_enabled
);
141 static void _hpet_print_config(const char *function
, int line
)
143 u32 i
, id
, period
, cfg
, status
, channels
, l
, h
;
145 pr_info("%s(%d):\n", function
, line
);
147 id
= hpet_readl(HPET_ID
);
148 period
= hpet_readl(HPET_PERIOD
);
149 pr_info("ID: 0x%x, PERIOD: 0x%x\n", id
, period
);
151 cfg
= hpet_readl(HPET_CFG
);
152 status
= hpet_readl(HPET_STATUS
);
153 pr_info("CFG: 0x%x, STATUS: 0x%x\n", cfg
, status
);
155 l
= hpet_readl(HPET_COUNTER
);
156 h
= hpet_readl(HPET_COUNTER
+4);
157 pr_info("COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l
, h
);
159 channels
= ((id
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
) + 1;
161 for (i
= 0; i
< channels
; i
++) {
162 l
= hpet_readl(HPET_Tn_CFG(i
));
163 h
= hpet_readl(HPET_Tn_CFG(i
)+4);
164 pr_info("T%d: CFG_l: 0x%x, CFG_h: 0x%x\n", i
, l
, h
);
166 l
= hpet_readl(HPET_Tn_CMP(i
));
167 h
= hpet_readl(HPET_Tn_CMP(i
)+4);
168 pr_info("T%d: CMP_l: 0x%x, CMP_h: 0x%x\n", i
, l
, h
);
170 l
= hpet_readl(HPET_Tn_ROUTE(i
));
171 h
= hpet_readl(HPET_Tn_ROUTE(i
)+4);
172 pr_info("T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n", i
, l
, h
);
176 #define hpet_print_config() \
179 _hpet_print_config(__func__, __LINE__); \
183 * When the HPET driver (/dev/hpet) is enabled, we need to reserve
184 * timer 0 and timer 1 in case of RTC emulation.
188 static void __init
hpet_reserve_platform_timers(void)
193 memset(&hd
, 0, sizeof(hd
));
194 hd
.hd_phys_address
= hpet_address
;
195 hd
.hd_address
= hpet_virt_address
;
196 hd
.hd_nirqs
= hpet_base
.nr_channels
;
199 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
200 * is wrong for i8259!) not the output IRQ. Many BIOS writers
201 * don't bother configuring *any* comparator interrupts.
203 hd
.hd_irq
[0] = HPET_LEGACY_8254
;
204 hd
.hd_irq
[1] = HPET_LEGACY_RTC
;
206 for (i
= 0; i
< hpet_base
.nr_channels
; i
++) {
207 struct hpet_channel
*hc
= hpet_base
.channels
+ i
;
210 hd
.hd_irq
[i
] = hc
->irq
;
213 case HPET_MODE_UNUSED
:
214 case HPET_MODE_DEVICE
:
215 hc
->mode
= HPET_MODE_DEVICE
;
217 case HPET_MODE_CLOCKEVT
:
218 case HPET_MODE_LEGACY
:
219 hpet_reserve_timer(&hd
, hc
->num
);
227 static void __init
hpet_select_device_channel(void)
231 for (i
= 0; i
< hpet_base
.nr_channels
; i
++) {
232 struct hpet_channel
*hc
= hpet_base
.channels
+ i
;
234 /* Associate the first unused channel to /dev/hpet */
235 if (hc
->mode
== HPET_MODE_UNUSED
) {
236 hc
->mode
= HPET_MODE_DEVICE
;
243 static inline void hpet_reserve_platform_timers(void) { }
244 static inline void hpet_select_device_channel(void) {}
247 /* Common HPET functions */
248 static void hpet_stop_counter(void)
250 u32 cfg
= hpet_readl(HPET_CFG
);
252 cfg
&= ~HPET_CFG_ENABLE
;
253 hpet_writel(cfg
, HPET_CFG
);
256 static void hpet_reset_counter(void)
258 hpet_writel(0, HPET_COUNTER
);
259 hpet_writel(0, HPET_COUNTER
+ 4);
262 static void hpet_start_counter(void)
264 unsigned int cfg
= hpet_readl(HPET_CFG
);
266 cfg
|= HPET_CFG_ENABLE
;
267 hpet_writel(cfg
, HPET_CFG
);
270 static void hpet_restart_counter(void)
273 hpet_reset_counter();
274 hpet_start_counter();
277 static void hpet_resume_device(void)
282 static void hpet_resume_counter(struct clocksource
*cs
)
284 hpet_resume_device();
285 hpet_restart_counter();
288 static void hpet_enable_legacy_int(void)
290 unsigned int cfg
= hpet_readl(HPET_CFG
);
292 cfg
|= HPET_CFG_LEGACY
;
293 hpet_writel(cfg
, HPET_CFG
);
294 hpet_legacy_int_enabled
= true;
297 static int hpet_clkevt_set_state_periodic(struct clock_event_device
*evt
)
299 unsigned int channel
= clockevent_to_channel(evt
)->num
;
300 unsigned int cfg
, cmp
, now
;
304 delta
= ((uint64_t)(NSEC_PER_SEC
/ HZ
)) * evt
->mult
;
305 delta
>>= evt
->shift
;
306 now
= hpet_readl(HPET_COUNTER
);
307 cmp
= now
+ (unsigned int)delta
;
308 cfg
= hpet_readl(HPET_Tn_CFG(channel
));
309 cfg
|= HPET_TN_ENABLE
| HPET_TN_PERIODIC
| HPET_TN_SETVAL
|
311 hpet_writel(cfg
, HPET_Tn_CFG(channel
));
312 hpet_writel(cmp
, HPET_Tn_CMP(channel
));
315 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
316 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
317 * bit is automatically cleared after the first write.
318 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
319 * Publication # 24674)
321 hpet_writel((unsigned int)delta
, HPET_Tn_CMP(channel
));
322 hpet_start_counter();
328 static int hpet_clkevt_set_state_oneshot(struct clock_event_device
*evt
)
330 unsigned int channel
= clockevent_to_channel(evt
)->num
;
333 cfg
= hpet_readl(HPET_Tn_CFG(channel
));
334 cfg
&= ~HPET_TN_PERIODIC
;
335 cfg
|= HPET_TN_ENABLE
| HPET_TN_32BIT
;
336 hpet_writel(cfg
, HPET_Tn_CFG(channel
));
341 static int hpet_clkevt_set_state_shutdown(struct clock_event_device
*evt
)
343 unsigned int channel
= clockevent_to_channel(evt
)->num
;
346 cfg
= hpet_readl(HPET_Tn_CFG(channel
));
347 cfg
&= ~HPET_TN_ENABLE
;
348 hpet_writel(cfg
, HPET_Tn_CFG(channel
));
353 static int hpet_clkevt_legacy_resume(struct clock_event_device
*evt
)
355 hpet_enable_legacy_int();
361 hpet_clkevt_set_next_event(unsigned long delta
, struct clock_event_device
*evt
)
363 unsigned int channel
= clockevent_to_channel(evt
)->num
;
367 cnt
= hpet_readl(HPET_COUNTER
);
369 hpet_writel(cnt
, HPET_Tn_CMP(channel
));
372 * HPETs are a complete disaster. The compare register is
373 * based on a equal comparison and neither provides a less
374 * than or equal functionality (which would require to take
375 * the wraparound into account) nor a simple count down event
376 * mode. Further the write to the comparator register is
377 * delayed internally up to two HPET clock cycles in certain
378 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
379 * longer delays. We worked around that by reading back the
380 * compare register, but that required another workaround for
381 * ICH9,10 chips where the first readout after write can
382 * return the old stale value. We already had a minimum
383 * programming delta of 5us enforced, but a NMI or SMI hitting
384 * between the counter readout and the comparator write can
385 * move us behind that point easily. Now instead of reading
386 * the compare register back several times, we make the ETIME
387 * decision based on the following: Return ETIME if the
388 * counter value after the write is less than HPET_MIN_CYCLES
389 * away from the event or if the counter is already ahead of
390 * the event. The minimum programming delta for the generic
391 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
393 res
= (s32
)(cnt
- hpet_readl(HPET_COUNTER
));
395 return res
< HPET_MIN_CYCLES
? -ETIME
: 0;
398 static void hpet_init_clockevent(struct hpet_channel
*hc
, unsigned int rating
)
400 struct clock_event_device
*evt
= &hc
->evt
;
402 evt
->rating
= rating
;
404 evt
->name
= hc
->name
;
405 evt
->cpumask
= cpumask_of(hc
->cpu
);
406 evt
->set_state_oneshot
= hpet_clkevt_set_state_oneshot
;
407 evt
->set_next_event
= hpet_clkevt_set_next_event
;
408 evt
->set_state_shutdown
= hpet_clkevt_set_state_shutdown
;
410 evt
->features
= CLOCK_EVT_FEAT_ONESHOT
;
411 if (hc
->boot_cfg
& HPET_TN_PERIODIC
) {
412 evt
->features
|= CLOCK_EVT_FEAT_PERIODIC
;
413 evt
->set_state_periodic
= hpet_clkevt_set_state_periodic
;
417 static void __init
hpet_legacy_clockevent_register(struct hpet_channel
*hc
)
420 * Start HPET with the boot CPU's cpumask and make it global after
421 * the IO_APIC has been initialized.
423 hc
->cpu
= boot_cpu_data
.cpu_index
;
424 strscpy(hc
->name
, "hpet", sizeof(hc
->name
));
425 hpet_init_clockevent(hc
, 50);
427 hc
->evt
.tick_resume
= hpet_clkevt_legacy_resume
;
430 * Legacy horrors and sins from the past. HPET used periodic mode
431 * unconditionally forever on the legacy channel 0. Removing the
432 * below hack and using the conditional in hpet_init_clockevent()
433 * makes at least Qemu and one hardware machine fail to boot.
434 * There are two issues which cause the boot failure:
436 * #1 After the timer delivery test in IOAPIC and the IOAPIC setup
437 * the next interrupt is not delivered despite the HPET channel
438 * being programmed correctly. Reprogramming the HPET after
439 * switching to IOAPIC makes it work again. After fixing this,
440 * the next issue surfaces:
442 * #2 Due to the unconditional periodic mode availability the Local
443 * APIC timer calibration can hijack the global clockevents
444 * event handler without causing damage. Using oneshot at this
445 * stage makes if hang because the HPET does not get
446 * reprogrammed due to the handler hijacking. Duh, stupid me!
448 * Both issues require major surgery and especially the kick HPET
449 * again after enabling IOAPIC results in really nasty hackery.
450 * This 'assume periodic works' magic has survived since HPET
451 * support got added, so it's questionable whether this should be
452 * fixed. Both Qemu and the failing hardware machine support
453 * periodic mode despite the fact that both don't advertise it in
454 * the configuration register and both need that extra kick after
455 * switching to IOAPIC. Seems to be a feature...
457 hc
->evt
.features
|= CLOCK_EVT_FEAT_PERIODIC
;
458 hc
->evt
.set_state_periodic
= hpet_clkevt_set_state_periodic
;
460 /* Start HPET legacy interrupts */
461 hpet_enable_legacy_int();
463 clockevents_config_and_register(&hc
->evt
, hpet_freq
,
464 HPET_MIN_PROG_DELTA
, 0x7FFFFFFF);
465 global_clock_event
= &hc
->evt
;
466 pr_debug("Clockevent registered\n");
472 #if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_GENERIC_MSI_IRQ)
473 static void hpet_msi_unmask(struct irq_data
*data
)
475 struct hpet_channel
*hc
= irq_data_get_irq_handler_data(data
);
478 cfg
= hpet_readl(HPET_Tn_CFG(hc
->num
));
479 cfg
|= HPET_TN_ENABLE
| HPET_TN_FSB
;
480 hpet_writel(cfg
, HPET_Tn_CFG(hc
->num
));
483 static void hpet_msi_mask(struct irq_data
*data
)
485 struct hpet_channel
*hc
= irq_data_get_irq_handler_data(data
);
488 cfg
= hpet_readl(HPET_Tn_CFG(hc
->num
));
489 cfg
&= ~(HPET_TN_ENABLE
| HPET_TN_FSB
);
490 hpet_writel(cfg
, HPET_Tn_CFG(hc
->num
));
493 static void hpet_msi_write(struct hpet_channel
*hc
, struct msi_msg
*msg
)
495 hpet_writel(msg
->data
, HPET_Tn_ROUTE(hc
->num
));
496 hpet_writel(msg
->address_lo
, HPET_Tn_ROUTE(hc
->num
) + 4);
499 static void hpet_msi_write_msg(struct irq_data
*data
, struct msi_msg
*msg
)
501 hpet_msi_write(irq_data_get_irq_handler_data(data
), msg
);
504 static struct irq_chip hpet_msi_controller __ro_after_init
= {
506 .irq_unmask
= hpet_msi_unmask
,
507 .irq_mask
= hpet_msi_mask
,
508 .irq_ack
= irq_chip_ack_parent
,
509 .irq_set_affinity
= msi_domain_set_affinity
,
510 .irq_retrigger
= irq_chip_retrigger_hierarchy
,
511 .irq_write_msi_msg
= hpet_msi_write_msg
,
512 .flags
= IRQCHIP_SKIP_SET_WAKE
| IRQCHIP_AFFINITY_PRE_STARTUP
,
515 static int hpet_msi_init(struct irq_domain
*domain
,
516 struct msi_domain_info
*info
, unsigned int virq
,
517 irq_hw_number_t hwirq
, msi_alloc_info_t
*arg
)
519 irq_set_status_flags(virq
, IRQ_MOVE_PCNTXT
);
520 irq_domain_set_info(domain
, virq
, arg
->hwirq
, info
->chip
, NULL
,
521 handle_edge_irq
, arg
->data
, "edge");
526 static void hpet_msi_free(struct irq_domain
*domain
,
527 struct msi_domain_info
*info
, unsigned int virq
)
529 irq_clear_status_flags(virq
, IRQ_MOVE_PCNTXT
);
532 static struct msi_domain_ops hpet_msi_domain_ops
= {
533 .msi_init
= hpet_msi_init
,
534 .msi_free
= hpet_msi_free
,
537 static struct msi_domain_info hpet_msi_domain_info
= {
538 .ops
= &hpet_msi_domain_ops
,
539 .chip
= &hpet_msi_controller
,
540 .flags
= MSI_FLAG_USE_DEF_DOM_OPS
,
543 static struct irq_domain
*hpet_create_irq_domain(int hpet_id
)
545 struct msi_domain_info
*domain_info
;
546 struct irq_domain
*parent
, *d
;
547 struct fwnode_handle
*fn
;
548 struct irq_fwspec fwspec
;
550 if (x86_vector_domain
== NULL
)
553 domain_info
= kzalloc(sizeof(*domain_info
), GFP_KERNEL
);
557 *domain_info
= hpet_msi_domain_info
;
558 domain_info
->data
= (void *)(long)hpet_id
;
560 fn
= irq_domain_alloc_named_id_fwnode(hpet_msi_controller
.name
,
568 fwspec
.param_count
= 1;
569 fwspec
.param
[0] = hpet_id
;
571 parent
= irq_find_matching_fwspec(&fwspec
, DOMAIN_BUS_GENERIC_MSI
);
573 irq_domain_free_fwnode(fn
);
577 if (parent
!= x86_vector_domain
)
578 hpet_msi_controller
.name
= "IR-HPET-MSI";
580 d
= msi_create_irq_domain(fn
, domain_info
, parent
);
582 irq_domain_free_fwnode(fn
);
588 static inline int hpet_dev_id(struct irq_domain
*domain
)
590 struct msi_domain_info
*info
= msi_get_domain_info(domain
);
592 return (int)(long)info
->data
;
595 static int hpet_assign_irq(struct irq_domain
*domain
, struct hpet_channel
*hc
,
598 struct irq_alloc_info info
;
600 init_irq_alloc_info(&info
, NULL
);
601 info
.type
= X86_IRQ_ALLOC_TYPE_HPET
;
603 info
.devid
= hpet_dev_id(domain
);
604 info
.hwirq
= dev_num
;
606 return irq_domain_alloc_irqs(domain
, 1, NUMA_NO_NODE
, &info
);
609 static int hpet_clkevt_msi_resume(struct clock_event_device
*evt
)
611 struct hpet_channel
*hc
= clockevent_to_channel(evt
);
612 struct irq_data
*data
= irq_get_irq_data(hc
->irq
);
615 /* Restore the MSI msg and unmask the interrupt */
616 irq_chip_compose_msi_msg(data
, &msg
);
617 hpet_msi_write(hc
, &msg
);
618 hpet_msi_unmask(data
);
622 static irqreturn_t
hpet_msi_interrupt_handler(int irq
, void *data
)
624 struct hpet_channel
*hc
= data
;
625 struct clock_event_device
*evt
= &hc
->evt
;
627 if (!evt
->event_handler
) {
628 pr_info("Spurious interrupt HPET channel %d\n", hc
->num
);
632 evt
->event_handler(evt
);
636 static int hpet_setup_msi_irq(struct hpet_channel
*hc
)
638 if (request_irq(hc
->irq
, hpet_msi_interrupt_handler
,
639 IRQF_TIMER
| IRQF_NOBALANCING
,
643 disable_irq(hc
->irq
);
644 irq_set_affinity(hc
->irq
, cpumask_of(hc
->cpu
));
647 pr_debug("%s irq %u for MSI\n", hc
->name
, hc
->irq
);
652 /* Invoked from the hotplug callback on @cpu */
653 static void init_one_hpet_msi_clockevent(struct hpet_channel
*hc
, int cpu
)
655 struct clock_event_device
*evt
= &hc
->evt
;
658 per_cpu(cpu_hpet_channel
, cpu
) = hc
;
659 hpet_setup_msi_irq(hc
);
661 hpet_init_clockevent(hc
, 110);
662 evt
->tick_resume
= hpet_clkevt_msi_resume
;
664 clockevents_config_and_register(evt
, hpet_freq
, HPET_MIN_PROG_DELTA
,
668 static struct hpet_channel
*hpet_get_unused_clockevent(void)
672 for (i
= 0; i
< hpet_base
.nr_channels
; i
++) {
673 struct hpet_channel
*hc
= hpet_base
.channels
+ i
;
675 if (hc
->mode
!= HPET_MODE_CLOCKEVT
|| hc
->in_use
)
683 static int hpet_cpuhp_online(unsigned int cpu
)
685 struct hpet_channel
*hc
= hpet_get_unused_clockevent();
688 init_one_hpet_msi_clockevent(hc
, cpu
);
692 static int hpet_cpuhp_dead(unsigned int cpu
)
694 struct hpet_channel
*hc
= per_cpu(cpu_hpet_channel
, cpu
);
698 free_irq(hc
->irq
, hc
);
700 per_cpu(cpu_hpet_channel
, cpu
) = NULL
;
704 static void __init
hpet_select_clockevents(void)
708 hpet_base
.nr_clockevents
= 0;
710 /* No point if MSI is disabled or CPU has an Always Running APIC Timer */
711 if (hpet_msi_disable
|| boot_cpu_has(X86_FEATURE_ARAT
))
716 hpet_domain
= hpet_create_irq_domain(hpet_blockid
);
720 for (i
= 0; i
< hpet_base
.nr_channels
; i
++) {
721 struct hpet_channel
*hc
= hpet_base
.channels
+ i
;
724 if (hc
->mode
!= HPET_MODE_UNUSED
)
727 /* Only consider HPET channel with MSI support */
728 if (!(hc
->boot_cfg
& HPET_TN_FSB_CAP
))
731 sprintf(hc
->name
, "hpet%d", i
);
733 irq
= hpet_assign_irq(hpet_domain
, hc
, hc
->num
);
738 hc
->mode
= HPET_MODE_CLOCKEVT
;
740 if (++hpet_base
.nr_clockevents
== num_possible_cpus())
744 pr_info("%d channels of %d reserved for per-cpu timers\n",
745 hpet_base
.nr_channels
, hpet_base
.nr_clockevents
);
750 static inline void hpet_select_clockevents(void) { }
752 #define hpet_cpuhp_online NULL
753 #define hpet_cpuhp_dead NULL
758 * Clock source related code
760 #if defined(CONFIG_SMP) && defined(CONFIG_64BIT)
762 * Reading the HPET counter is a very slow operation. If a large number of
763 * CPUs are trying to access the HPET counter simultaneously, it can cause
764 * massive delays and slow down system performance dramatically. This may
765 * happen when HPET is the default clock source instead of TSC. For a
766 * really large system with hundreds of CPUs, the slowdown may be so
767 * severe, that it can actually crash the system because of a NMI watchdog
768 * soft lockup, for example.
770 * If multiple CPUs are trying to access the HPET counter at the same time,
771 * we don't actually need to read the counter multiple times. Instead, the
772 * other CPUs can use the counter value read by the first CPU in the group.
774 * This special feature is only enabled on x86-64 systems. It is unlikely
775 * that 32-bit x86 systems will have enough CPUs to require this feature
776 * with its associated locking overhead. We also need 64-bit atomic read.
778 * The lock and the HPET value are stored together and can be read in a
779 * single atomic 64-bit read. It is explicitly assumed that arch_spinlock_t
780 * is 32 bits in size.
784 arch_spinlock_t lock
;
790 static union hpet_lock hpet __cacheline_aligned
= {
791 { .lock
= __ARCH_SPIN_LOCK_UNLOCKED
, },
794 static u64
read_hpet(struct clocksource
*cs
)
797 union hpet_lock old
, new;
799 BUILD_BUG_ON(sizeof(union hpet_lock
) != 8);
802 * Read HPET directly if in NMI.
805 return (u64
)hpet_readl(HPET_COUNTER
);
808 * Read the current state of the lock and HPET value atomically.
810 old
.lockval
= READ_ONCE(hpet
.lockval
);
812 if (arch_spin_is_locked(&old
.lock
))
815 local_irq_save(flags
);
816 if (arch_spin_trylock(&hpet
.lock
)) {
817 new.value
= hpet_readl(HPET_COUNTER
);
819 * Use WRITE_ONCE() to prevent store tearing.
821 WRITE_ONCE(hpet
.value
, new.value
);
822 arch_spin_unlock(&hpet
.lock
);
823 local_irq_restore(flags
);
824 return (u64
)new.value
;
826 local_irq_restore(flags
);
832 * Wait until the HPET value change or the lock is free to indicate
833 * its value is up-to-date.
835 * It is possible that old.value has already contained the latest
836 * HPET value while the lock holder was in the process of releasing
837 * the lock. Checking for lock state change will enable us to return
838 * the value immediately instead of waiting for the next HPET reader
843 new.lockval
= READ_ONCE(hpet
.lockval
);
844 } while ((new.value
== old
.value
) && arch_spin_is_locked(&new.lock
));
846 return (u64
)new.value
;
852 static u64
read_hpet(struct clocksource
*cs
)
854 return (u64
)hpet_readl(HPET_COUNTER
);
858 static struct clocksource clocksource_hpet
= {
863 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
864 .resume
= hpet_resume_counter
,
868 * AMD SB700 based systems with spread spectrum enabled use a SMM based
869 * HPET emulation to provide proper frequency setting.
871 * On such systems the SMM code is initialized with the first HPET register
872 * access and takes some time to complete. During this time the config
873 * register reads 0xffffffff. We check for max 1000 loops whether the
874 * config register reads a non-0xffffffff value to make sure that the
875 * HPET is up and running before we proceed any further.
877 * A counting loop is safe, as the HPET access takes thousands of CPU cycles.
879 * On non-SB700 based machines this check is only done once and has no
882 static bool __init
hpet_cfg_working(void)
886 for (i
= 0; i
< 1000; i
++) {
887 if (hpet_readl(HPET_CFG
) != 0xFFFFFFFF)
891 pr_warn("Config register invalid. Disabling HPET\n");
895 static bool __init
hpet_counting(void)
899 hpet_restart_counter();
901 t1
= hpet_readl(HPET_COUNTER
);
905 * We don't know the TSC frequency yet, but waiting for
906 * 200000 TSC cycles is safe:
911 if (t1
!= hpet_readl(HPET_COUNTER
))
914 } while ((now
- start
) < 200000UL);
916 pr_warn("Counter not counting. HPET disabled\n");
920 static bool __init
mwait_pc10_supported(void)
922 unsigned int eax
, ebx
, ecx
, mwait_substates
;
924 if (boot_cpu_data
.x86_vendor
!= X86_VENDOR_INTEL
)
927 if (!cpu_feature_enabled(X86_FEATURE_MWAIT
))
930 if (boot_cpu_data
.cpuid_level
< CPUID_MWAIT_LEAF
)
933 cpuid(CPUID_MWAIT_LEAF
, &eax
, &ebx
, &ecx
, &mwait_substates
);
935 return (ecx
& CPUID5_ECX_EXTENSIONS_SUPPORTED
) &&
936 (ecx
& CPUID5_ECX_INTERRUPT_BREAK
) &&
937 (mwait_substates
& (0xF << 28));
941 * Check whether the system supports PC10. If so force disable HPET as that
942 * stops counting in PC10. This check is overbroad as it does not take any
943 * of the following into account:
946 * - Enablement of intel_idle
947 * - Command line arguments which limit intel_idle C-state support
949 * That's perfectly fine. HPET is a piece of hardware designed by committee
950 * and the only reasons why it is still in use on modern systems is the
951 * fact that it is impossible to reliably query TSC and CPU frequency via
954 * If HPET is functional it is useful for calibrating TSC, but this can be
955 * done via PMTIMER as well which seems to be the last remaining timer on
956 * X86/INTEL platforms that has not been completely wreckaged by feature
959 * In theory HPET support should be removed altogether, but there are older
960 * systems out there which depend on it because TSC and APIC timer are
961 * dysfunctional in deeper C-states.
963 * It's only 20 years now that hardware people have been asked to provide
964 * reliable and discoverable facilities which can be used for timekeeping
965 * and per CPU timer interrupts.
967 * The probability that this problem is going to be solved in the
968 * foreseeable future is close to zero, so the kernel has to be cluttered
969 * with heuristics to keep up with the ever growing amount of hardware and
970 * firmware trainwrecks. Hopefully some day hardware people will understand
971 * that the approach of "This can be fixed in software" is not sustainable.
974 static bool __init
hpet_is_pc10_damaged(void)
976 unsigned long long pcfg
;
978 /* Check whether PC10 substates are supported */
979 if (!mwait_pc10_supported())
982 /* Check whether PC10 is enabled in PKG C-state limit */
983 rdmsrl(MSR_PKG_CST_CONFIG_CONTROL
, pcfg
);
984 if ((pcfg
& 0xF) < 8)
987 if (hpet_force_user
) {
988 pr_warn("HPET force enabled via command line, but dysfunctional in PC10.\n");
992 pr_info("HPET dysfunctional in PC10. Force disabled.\n");
993 boot_hpet_disable
= true;
998 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
1000 int __init
hpet_enable(void)
1002 u32 hpet_period
, cfg
, id
, irq
;
1003 unsigned int i
, channels
;
1004 struct hpet_channel
*hc
;
1007 if (!is_hpet_capable())
1010 if (hpet_is_pc10_damaged())
1014 if (!hpet_virt_address
)
1017 /* Validate that the config register is working */
1018 if (!hpet_cfg_working())
1022 * Read the period and check for a sane value:
1024 hpet_period
= hpet_readl(HPET_PERIOD
);
1025 if (hpet_period
< HPET_MIN_PERIOD
|| hpet_period
> HPET_MAX_PERIOD
)
1028 /* The period is a femtoseconds value. Convert it to a frequency. */
1029 freq
= FSEC_PER_SEC
;
1030 do_div(freq
, hpet_period
);
1034 * Read the HPET ID register to retrieve the IRQ routing
1035 * information and the number of channels
1037 id
= hpet_readl(HPET_ID
);
1038 hpet_print_config();
1040 /* This is the HPET channel number which is zero based */
1041 channels
= ((id
& HPET_ID_NUMBER
) >> HPET_ID_NUMBER_SHIFT
) + 1;
1044 * The legacy routing mode needs at least two channels, tick timer
1045 * and the rtc emulation channel.
1047 if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC
) && channels
< 2)
1050 hc
= kcalloc(channels
, sizeof(*hc
), GFP_KERNEL
);
1052 pr_warn("Disabling HPET.\n");
1055 hpet_base
.channels
= hc
;
1056 hpet_base
.nr_channels
= channels
;
1058 /* Read, store and sanitize the global configuration */
1059 cfg
= hpet_readl(HPET_CFG
);
1060 hpet_base
.boot_cfg
= cfg
;
1061 cfg
&= ~(HPET_CFG_ENABLE
| HPET_CFG_LEGACY
);
1062 hpet_writel(cfg
, HPET_CFG
);
1064 pr_warn("Global config: Unknown bits %#x\n", cfg
);
1066 /* Read, store and sanitize the per channel configuration */
1067 for (i
= 0; i
< channels
; i
++, hc
++) {
1070 cfg
= hpet_readl(HPET_Tn_CFG(i
));
1072 irq
= (cfg
& Tn_INT_ROUTE_CNF_MASK
) >> Tn_INT_ROUTE_CNF_SHIFT
;
1075 cfg
&= ~(HPET_TN_ENABLE
| HPET_TN_LEVEL
| HPET_TN_FSB
);
1076 hpet_writel(cfg
, HPET_Tn_CFG(i
));
1078 cfg
&= ~(HPET_TN_PERIODIC
| HPET_TN_PERIODIC_CAP
1079 | HPET_TN_64BIT_CAP
| HPET_TN_32BIT
| HPET_TN_ROUTE
1080 | HPET_TN_FSB
| HPET_TN_FSB_CAP
);
1082 pr_warn("Channel #%u config: Unknown bits %#x\n", i
, cfg
);
1084 hpet_print_config();
1087 * Validate that the counter is counting. This needs to be done
1088 * after sanitizing the config registers to properly deal with
1089 * force enabled HPETs.
1091 if (!hpet_counting())
1094 if (tsc_clocksource_watchdog_disabled())
1095 clocksource_hpet
.flags
|= CLOCK_SOURCE_MUST_VERIFY
;
1096 clocksource_register_hz(&clocksource_hpet
, (u32
)hpet_freq
);
1098 if (id
& HPET_ID_LEGSUP
) {
1099 hpet_legacy_clockevent_register(&hpet_base
.channels
[0]);
1100 hpet_base
.channels
[0].mode
= HPET_MODE_LEGACY
;
1101 if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC
))
1102 hpet_base
.channels
[1].mode
= HPET_MODE_LEGACY
;
1108 kfree(hpet_base
.channels
);
1109 hpet_base
.channels
= NULL
;
1110 hpet_base
.nr_channels
= 0;
1111 hpet_clear_mapping();
1117 * The late initialization runs after the PCI quirks have been invoked
1118 * which might have detected a system on which the HPET can be enforced.
1120 * Also, the MSI machinery is not working yet when the HPET is initialized
1123 * If the HPET is enabled, then:
1125 * 1) Reserve one channel for /dev/hpet if CONFIG_HPET=y
1126 * 2) Reserve up to num_possible_cpus() channels as per CPU clockevents
1127 * 3) Setup /dev/hpet if CONFIG_HPET=y
1128 * 4) Register hotplug callbacks when clockevents are available
1130 static __init
int hpet_late_init(void)
1134 if (!hpet_address
) {
1135 if (!force_hpet_address
)
1138 hpet_address
= force_hpet_address
;
1142 if (!hpet_virt_address
)
1145 hpet_select_device_channel();
1146 hpet_select_clockevents();
1147 hpet_reserve_platform_timers();
1148 hpet_print_config();
1150 if (!hpet_base
.nr_clockevents
)
1153 ret
= cpuhp_setup_state(CPUHP_AP_X86_HPET_ONLINE
, "x86/hpet:online",
1154 hpet_cpuhp_online
, NULL
);
1157 ret
= cpuhp_setup_state(CPUHP_X86_HPET_DEAD
, "x86/hpet:dead", NULL
,
1164 cpuhp_remove_state(CPUHP_AP_X86_HPET_ONLINE
);
1167 fs_initcall(hpet_late_init
);
1169 void hpet_disable(void)
1174 if (!is_hpet_capable() || !hpet_virt_address
)
1177 /* Restore boot configuration with the enable bit cleared */
1178 cfg
= hpet_base
.boot_cfg
;
1179 cfg
&= ~HPET_CFG_ENABLE
;
1180 hpet_writel(cfg
, HPET_CFG
);
1182 /* Restore the channel boot configuration */
1183 for (i
= 0; i
< hpet_base
.nr_channels
; i
++)
1184 hpet_writel(hpet_base
.channels
[i
].boot_cfg
, HPET_Tn_CFG(i
));
1186 /* If the HPET was enabled at boot time, reenable it */
1187 if (hpet_base
.boot_cfg
& HPET_CFG_ENABLE
)
1188 hpet_writel(hpet_base
.boot_cfg
, HPET_CFG
);
1191 #ifdef CONFIG_HPET_EMULATE_RTC
1194 * HPET in LegacyReplacement mode eats up the RTC interrupt line. When HPET
1195 * is enabled, we support RTC interrupt functionality in software.
1197 * RTC has 3 kinds of interrupts:
1199 * 1) Update Interrupt - generate an interrupt, every second, when the
1200 * RTC clock is updated
1201 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1202 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1203 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all frequencies in powers of 2)
1205 * (1) and (2) above are implemented using polling at a frequency of 64 Hz:
1206 * DEFAULT_RTC_INT_FREQ.
1208 * The exact frequency is a tradeoff between accuracy and interrupt overhead.
1210 * For (3), we use interrupts at 64 Hz, or the user specified periodic frequency,
1213 #include <linux/mc146818rtc.h>
1214 #include <linux/rtc.h>
1216 #define DEFAULT_RTC_INT_FREQ 64
1217 #define DEFAULT_RTC_SHIFT 6
1218 #define RTC_NUM_INTS 1
1220 static unsigned long hpet_rtc_flags
;
1221 static int hpet_prev_update_sec
;
1222 static struct rtc_time hpet_alarm_time
;
1223 static unsigned long hpet_pie_count
;
1224 static u32 hpet_t1_cmp
;
1225 static u32 hpet_default_delta
;
1226 static u32 hpet_pie_delta
;
1227 static unsigned long hpet_pie_limit
;
1229 static rtc_irq_handler irq_handler
;
1232 * Check that the HPET counter c1 is ahead of c2
1234 static inline int hpet_cnt_ahead(u32 c1
, u32 c2
)
1236 return (s32
)(c2
- c1
) < 0;
1240 * Registers a IRQ handler.
1242 int hpet_register_irq_handler(rtc_irq_handler handler
)
1244 if (!is_hpet_enabled())
1249 irq_handler
= handler
;
1253 EXPORT_SYMBOL_GPL(hpet_register_irq_handler
);
1256 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1259 void hpet_unregister_irq_handler(rtc_irq_handler handler
)
1261 if (!is_hpet_enabled())
1267 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler
);
1270 * Channel 1 for RTC emulation. We use one shot mode, as periodic mode
1271 * is not supported by all HPET implementations for channel 1.
1273 * hpet_rtc_timer_init() is called when the rtc is initialized.
1275 int hpet_rtc_timer_init(void)
1277 unsigned int cfg
, cnt
, delta
;
1278 unsigned long flags
;
1280 if (!is_hpet_enabled())
1283 if (!hpet_default_delta
) {
1284 struct clock_event_device
*evt
= &hpet_base
.channels
[0].evt
;
1287 clc
= (uint64_t) evt
->mult
* NSEC_PER_SEC
;
1288 clc
>>= evt
->shift
+ DEFAULT_RTC_SHIFT
;
1289 hpet_default_delta
= clc
;
1292 if (!(hpet_rtc_flags
& RTC_PIE
) || hpet_pie_limit
)
1293 delta
= hpet_default_delta
;
1295 delta
= hpet_pie_delta
;
1297 local_irq_save(flags
);
1299 cnt
= delta
+ hpet_readl(HPET_COUNTER
);
1300 hpet_writel(cnt
, HPET_T1_CMP
);
1303 cfg
= hpet_readl(HPET_T1_CFG
);
1304 cfg
&= ~HPET_TN_PERIODIC
;
1305 cfg
|= HPET_TN_ENABLE
| HPET_TN_32BIT
;
1306 hpet_writel(cfg
, HPET_T1_CFG
);
1308 local_irq_restore(flags
);
1312 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init
);
1314 static void hpet_disable_rtc_channel(void)
1316 u32 cfg
= hpet_readl(HPET_T1_CFG
);
1318 cfg
&= ~HPET_TN_ENABLE
;
1319 hpet_writel(cfg
, HPET_T1_CFG
);
1323 * The functions below are called from rtc driver.
1324 * Return 0 if HPET is not being used.
1325 * Otherwise do the necessary changes and return 1.
1327 int hpet_mask_rtc_irq_bit(unsigned long bit_mask
)
1329 if (!is_hpet_enabled())
1332 hpet_rtc_flags
&= ~bit_mask
;
1333 if (unlikely(!hpet_rtc_flags
))
1334 hpet_disable_rtc_channel();
1338 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit
);
1340 int hpet_set_rtc_irq_bit(unsigned long bit_mask
)
1342 unsigned long oldbits
= hpet_rtc_flags
;
1344 if (!is_hpet_enabled())
1347 hpet_rtc_flags
|= bit_mask
;
1349 if ((bit_mask
& RTC_UIE
) && !(oldbits
& RTC_UIE
))
1350 hpet_prev_update_sec
= -1;
1353 hpet_rtc_timer_init();
1357 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit
);
1359 int hpet_set_alarm_time(unsigned char hrs
, unsigned char min
, unsigned char sec
)
1361 if (!is_hpet_enabled())
1364 hpet_alarm_time
.tm_hour
= hrs
;
1365 hpet_alarm_time
.tm_min
= min
;
1366 hpet_alarm_time
.tm_sec
= sec
;
1370 EXPORT_SYMBOL_GPL(hpet_set_alarm_time
);
1372 int hpet_set_periodic_freq(unsigned long freq
)
1376 if (!is_hpet_enabled())
1379 if (freq
<= DEFAULT_RTC_INT_FREQ
) {
1380 hpet_pie_limit
= DEFAULT_RTC_INT_FREQ
/ freq
;
1382 struct clock_event_device
*evt
= &hpet_base
.channels
[0].evt
;
1384 clc
= (uint64_t) evt
->mult
* NSEC_PER_SEC
;
1387 hpet_pie_delta
= clc
;
1393 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq
);
1395 int hpet_rtc_dropped_irq(void)
1397 return is_hpet_enabled();
1399 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq
);
1401 static void hpet_rtc_timer_reinit(void)
1406 if (unlikely(!hpet_rtc_flags
))
1407 hpet_disable_rtc_channel();
1409 if (!(hpet_rtc_flags
& RTC_PIE
) || hpet_pie_limit
)
1410 delta
= hpet_default_delta
;
1412 delta
= hpet_pie_delta
;
1415 * Increment the comparator value until we are ahead of the
1419 hpet_t1_cmp
+= delta
;
1420 hpet_writel(hpet_t1_cmp
, HPET_T1_CMP
);
1422 } while (!hpet_cnt_ahead(hpet_t1_cmp
, hpet_readl(HPET_COUNTER
)));
1425 if (hpet_rtc_flags
& RTC_PIE
)
1426 hpet_pie_count
+= lost_ints
;
1427 if (printk_ratelimit())
1428 pr_warn("Lost %d RTC interrupts\n", lost_ints
);
1432 irqreturn_t
hpet_rtc_interrupt(int irq
, void *dev_id
)
1434 struct rtc_time curr_time
;
1435 unsigned long rtc_int_flag
= 0;
1437 hpet_rtc_timer_reinit();
1438 memset(&curr_time
, 0, sizeof(struct rtc_time
));
1440 if (hpet_rtc_flags
& (RTC_UIE
| RTC_AIE
)) {
1441 if (unlikely(mc146818_get_time(&curr_time
, 10) < 0)) {
1442 pr_err_ratelimited("unable to read current time from RTC\n");
1447 if (hpet_rtc_flags
& RTC_UIE
&&
1448 curr_time
.tm_sec
!= hpet_prev_update_sec
) {
1449 if (hpet_prev_update_sec
>= 0)
1450 rtc_int_flag
= RTC_UF
;
1451 hpet_prev_update_sec
= curr_time
.tm_sec
;
1454 if (hpet_rtc_flags
& RTC_PIE
&& ++hpet_pie_count
>= hpet_pie_limit
) {
1455 rtc_int_flag
|= RTC_PF
;
1459 if (hpet_rtc_flags
& RTC_AIE
&&
1460 (curr_time
.tm_sec
== hpet_alarm_time
.tm_sec
) &&
1461 (curr_time
.tm_min
== hpet_alarm_time
.tm_min
) &&
1462 (curr_time
.tm_hour
== hpet_alarm_time
.tm_hour
))
1463 rtc_int_flag
|= RTC_AF
;
1466 rtc_int_flag
|= (RTC_IRQF
| (RTC_NUM_INTS
<< 8));
1468 irq_handler(rtc_int_flag
, dev_id
);
1472 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt
);