1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 1992 Krishna Balasubramanian and Linus Torvalds
4 * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
5 * Copyright (C) 2002 Andi Kleen
7 * This handles calls from both 32bit and 64bit mode.
15 #include <linux/errno.h>
16 #include <linux/gfp.h>
17 #include <linux/sched.h>
18 #include <linux/string.h>
20 #include <linux/smp.h>
21 #include <linux/syscalls.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/uaccess.h>
29 #include <asm/mmu_context.h>
30 #include <asm/pgtable_areas.h>
34 /* This is a multiple of PAGE_SIZE. */
35 #define LDT_SLOT_STRIDE (LDT_ENTRIES * LDT_ENTRY_SIZE)
37 static inline void *ldt_slot_va(int slot
)
39 return (void *)(LDT_BASE_ADDR
+ LDT_SLOT_STRIDE
* slot
);
42 void load_mm_ldt(struct mm_struct
*mm
)
44 struct ldt_struct
*ldt
;
46 /* READ_ONCE synchronizes with smp_store_release */
47 ldt
= READ_ONCE(mm
->context
.ldt
);
50 * Any change to mm->context.ldt is followed by an IPI to all
51 * CPUs with the mm active. The LDT will not be freed until
52 * after the IPI is handled by all such CPUs. This means that
53 * if the ldt_struct changes before we return, the values we see
54 * will be safe, and the new values will be loaded before we run
57 * NB: don't try to convert this to use RCU without extreme care.
58 * We would still need IRQs off, because we don't want to change
59 * the local LDT after an IPI loaded a newer value than the one
64 if (static_cpu_has(X86_FEATURE_PTI
)) {
65 if (WARN_ON_ONCE((unsigned long)ldt
->slot
> 1)) {
67 * Whoops -- either the new LDT isn't mapped
68 * (if slot == -1) or is mapped into a bogus
76 * If page table isolation is enabled, ldt->entries
77 * will not be mapped in the userspace pagetables.
78 * Tell the CPU to access the LDT through the alias
79 * at ldt_slot_va(ldt->slot).
81 set_ldt(ldt_slot_va(ldt
->slot
), ldt
->nr_entries
);
83 set_ldt(ldt
->entries
, ldt
->nr_entries
);
90 void switch_ldt(struct mm_struct
*prev
, struct mm_struct
*next
)
93 * Load the LDT if either the old or new mm had an LDT.
95 * An mm will never go from having an LDT to not having an LDT. Two
96 * mms never share an LDT, so we don't gain anything by checking to
97 * see whether the LDT changed. There's also no guarantee that
98 * prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL,
99 * then prev->context.ldt will also be non-NULL.
101 * If we really cared, we could optimize the case where prev == next
102 * and we're exiting lazy mode. Most of the time, if this happens,
103 * we don't actually need to reload LDTR, but modify_ldt() is mostly
104 * used by legacy code and emulators where we don't need this level of
107 * This uses | instead of || because it generates better code.
109 if (unlikely((unsigned long)prev
->context
.ldt
|
110 (unsigned long)next
->context
.ldt
))
113 DEBUG_LOCKS_WARN_ON(preemptible());
116 static void refresh_ldt_segments(void)
122 * Make sure that the cached DS and ES descriptors match the updated
125 savesegment(ds
, sel
);
126 if ((sel
& SEGMENT_TI_MASK
) == SEGMENT_LDT
)
127 loadsegment(ds
, sel
);
129 savesegment(es
, sel
);
130 if ((sel
& SEGMENT_TI_MASK
) == SEGMENT_LDT
)
131 loadsegment(es
, sel
);
135 /* context.lock is held by the task which issued the smp function call */
136 static void flush_ldt(void *__mm
)
138 struct mm_struct
*mm
= __mm
;
140 if (this_cpu_read(cpu_tlbstate
.loaded_mm
) != mm
)
145 refresh_ldt_segments();
148 /* The caller must call finalize_ldt_struct on the result. LDT starts zeroed. */
149 static struct ldt_struct
*alloc_ldt_struct(unsigned int num_entries
)
151 struct ldt_struct
*new_ldt
;
152 unsigned int alloc_size
;
154 if (num_entries
> LDT_ENTRIES
)
157 new_ldt
= kmalloc(sizeof(struct ldt_struct
), GFP_KERNEL_ACCOUNT
);
161 BUILD_BUG_ON(LDT_ENTRY_SIZE
!= sizeof(struct desc_struct
));
162 alloc_size
= num_entries
* LDT_ENTRY_SIZE
;
165 * Xen is very picky: it requires a page-aligned LDT that has no
166 * trailing nonzero bytes in any page that contains LDT descriptors.
167 * Keep it simple: zero the whole allocation and never allocate less
170 if (alloc_size
> PAGE_SIZE
)
171 new_ldt
->entries
= __vmalloc(alloc_size
, GFP_KERNEL_ACCOUNT
| __GFP_ZERO
);
173 new_ldt
->entries
= (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT
);
175 if (!new_ldt
->entries
) {
180 /* The new LDT isn't aliased for PTI yet. */
183 new_ldt
->nr_entries
= num_entries
;
187 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
189 static void do_sanity_check(struct mm_struct
*mm
,
190 bool had_kernel_mapping
,
191 bool had_user_mapping
)
193 if (mm
->context
.ldt
) {
195 * We already had an LDT. The top-level entry should already
196 * have been allocated and synchronized with the usermode
199 WARN_ON(!had_kernel_mapping
);
200 if (boot_cpu_has(X86_FEATURE_PTI
))
201 WARN_ON(!had_user_mapping
);
204 * This is the first time we're mapping an LDT for this process.
205 * Sync the pgd to the usermode tables.
207 WARN_ON(had_kernel_mapping
);
208 if (boot_cpu_has(X86_FEATURE_PTI
))
209 WARN_ON(had_user_mapping
);
213 #ifdef CONFIG_X86_PAE
215 static pmd_t
*pgd_to_pmd_walk(pgd_t
*pgd
, unsigned long va
)
223 p4d
= p4d_offset(pgd
, va
);
227 pud
= pud_offset(p4d
, va
);
231 return pmd_offset(pud
, va
);
234 static void map_ldt_struct_to_user(struct mm_struct
*mm
)
236 pgd_t
*k_pgd
= pgd_offset(mm
, LDT_BASE_ADDR
);
237 pgd_t
*u_pgd
= kernel_to_user_pgdp(k_pgd
);
238 pmd_t
*k_pmd
, *u_pmd
;
240 k_pmd
= pgd_to_pmd_walk(k_pgd
, LDT_BASE_ADDR
);
241 u_pmd
= pgd_to_pmd_walk(u_pgd
, LDT_BASE_ADDR
);
243 if (boot_cpu_has(X86_FEATURE_PTI
) && !mm
->context
.ldt
)
244 set_pmd(u_pmd
, *k_pmd
);
247 static void sanity_check_ldt_mapping(struct mm_struct
*mm
)
249 pgd_t
*k_pgd
= pgd_offset(mm
, LDT_BASE_ADDR
);
250 pgd_t
*u_pgd
= kernel_to_user_pgdp(k_pgd
);
251 bool had_kernel
, had_user
;
252 pmd_t
*k_pmd
, *u_pmd
;
254 k_pmd
= pgd_to_pmd_walk(k_pgd
, LDT_BASE_ADDR
);
255 u_pmd
= pgd_to_pmd_walk(u_pgd
, LDT_BASE_ADDR
);
256 had_kernel
= (k_pmd
->pmd
!= 0);
257 had_user
= (u_pmd
->pmd
!= 0);
259 do_sanity_check(mm
, had_kernel
, had_user
);
262 #else /* !CONFIG_X86_PAE */
264 static void map_ldt_struct_to_user(struct mm_struct
*mm
)
266 pgd_t
*pgd
= pgd_offset(mm
, LDT_BASE_ADDR
);
268 if (boot_cpu_has(X86_FEATURE_PTI
) && !mm
->context
.ldt
)
269 set_pgd(kernel_to_user_pgdp(pgd
), *pgd
);
272 static void sanity_check_ldt_mapping(struct mm_struct
*mm
)
274 pgd_t
*pgd
= pgd_offset(mm
, LDT_BASE_ADDR
);
275 bool had_kernel
= (pgd
->pgd
!= 0);
276 bool had_user
= (kernel_to_user_pgdp(pgd
)->pgd
!= 0);
278 do_sanity_check(mm
, had_kernel
, had_user
);
281 #endif /* CONFIG_X86_PAE */
284 * If PTI is enabled, this maps the LDT into the kernelmode and
285 * usermode tables for the given mm.
288 map_ldt_struct(struct mm_struct
*mm
, struct ldt_struct
*ldt
, int slot
)
295 if (!boot_cpu_has(X86_FEATURE_PTI
))
299 * Any given ldt_struct should have map_ldt_struct() called at most
302 WARN_ON(ldt
->slot
!= -1);
304 /* Check if the current mappings are sane */
305 sanity_check_ldt_mapping(mm
);
307 is_vmalloc
= is_vmalloc_addr(ldt
->entries
);
309 nr_pages
= DIV_ROUND_UP(ldt
->nr_entries
* LDT_ENTRY_SIZE
, PAGE_SIZE
);
311 for (i
= 0; i
< nr_pages
; i
++) {
312 unsigned long offset
= i
<< PAGE_SHIFT
;
313 const void *src
= (char *)ldt
->entries
+ offset
;
318 va
= (unsigned long)ldt_slot_va(slot
) + offset
;
319 pfn
= is_vmalloc
? vmalloc_to_pfn(src
) :
320 page_to_pfn(virt_to_page(src
));
322 * Treat the PTI LDT range as a *userspace* range.
323 * get_locked_pte() will allocate all needed pagetables
324 * and account for them in this mm.
326 ptep
= get_locked_pte(mm
, va
, &ptl
);
330 * Map it RO so the easy to find address is not a primary
331 * target via some kernel interface which misses a
334 pte_prot
= __pgprot(__PAGE_KERNEL_RO
& ~_PAGE_GLOBAL
);
335 /* Filter out unsuppored __PAGE_KERNEL* bits: */
336 pgprot_val(pte_prot
) &= __supported_pte_mask
;
337 pte
= pfn_pte(pfn
, pte_prot
);
338 set_pte_at(mm
, va
, ptep
, pte
);
339 pte_unmap_unlock(ptep
, ptl
);
342 /* Propagate LDT mapping to the user page-table */
343 map_ldt_struct_to_user(mm
);
349 static void unmap_ldt_struct(struct mm_struct
*mm
, struct ldt_struct
*ldt
)
357 /* LDT map/unmap is only required for PTI */
358 if (!boot_cpu_has(X86_FEATURE_PTI
))
361 nr_pages
= DIV_ROUND_UP(ldt
->nr_entries
* LDT_ENTRY_SIZE
, PAGE_SIZE
);
363 for (i
= 0; i
< nr_pages
; i
++) {
364 unsigned long offset
= i
<< PAGE_SHIFT
;
368 va
= (unsigned long)ldt_slot_va(ldt
->slot
) + offset
;
369 ptep
= get_locked_pte(mm
, va
, &ptl
);
370 if (!WARN_ON_ONCE(!ptep
)) {
371 pte_clear(mm
, va
, ptep
);
372 pte_unmap_unlock(ptep
, ptl
);
376 va
= (unsigned long)ldt_slot_va(ldt
->slot
);
377 flush_tlb_mm_range(mm
, va
, va
+ nr_pages
* PAGE_SIZE
, PAGE_SHIFT
, false);
380 #else /* !CONFIG_MITIGATION_PAGE_TABLE_ISOLATION */
383 map_ldt_struct(struct mm_struct
*mm
, struct ldt_struct
*ldt
, int slot
)
388 static void unmap_ldt_struct(struct mm_struct
*mm
, struct ldt_struct
*ldt
)
391 #endif /* CONFIG_MITIGATION_PAGE_TABLE_ISOLATION */
393 static void free_ldt_pgtables(struct mm_struct
*mm
)
395 #ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
396 struct mmu_gather tlb
;
397 unsigned long start
= LDT_BASE_ADDR
;
398 unsigned long end
= LDT_END_ADDR
;
400 if (!boot_cpu_has(X86_FEATURE_PTI
))
404 * Although free_pgd_range() is intended for freeing user
405 * page-tables, it also works out for kernel mappings on x86.
406 * We use tlb_gather_mmu_fullmm() to avoid confusing the
407 * range-tracking logic in __tlb_adjust_range().
409 tlb_gather_mmu_fullmm(&tlb
, mm
);
410 free_pgd_range(&tlb
, start
, end
, start
, end
);
411 tlb_finish_mmu(&tlb
);
415 /* After calling this, the LDT is immutable. */
416 static void finalize_ldt_struct(struct ldt_struct
*ldt
)
418 paravirt_alloc_ldt(ldt
->entries
, ldt
->nr_entries
);
421 static void install_ldt(struct mm_struct
*mm
, struct ldt_struct
*ldt
)
423 mutex_lock(&mm
->context
.lock
);
425 /* Synchronizes with READ_ONCE in load_mm_ldt. */
426 smp_store_release(&mm
->context
.ldt
, ldt
);
428 /* Activate the LDT for all CPUs using currents mm. */
429 on_each_cpu_mask(mm_cpumask(mm
), flush_ldt
, mm
, true);
431 mutex_unlock(&mm
->context
.lock
);
434 static void free_ldt_struct(struct ldt_struct
*ldt
)
439 paravirt_free_ldt(ldt
->entries
, ldt
->nr_entries
);
440 if (ldt
->nr_entries
* LDT_ENTRY_SIZE
> PAGE_SIZE
)
441 vfree_atomic(ldt
->entries
);
443 free_page((unsigned long)ldt
->entries
);
448 * Called on fork from arch_dup_mmap(). Just copy the current LDT state,
449 * the new task is not running, so nothing can be installed.
451 int ldt_dup_context(struct mm_struct
*old_mm
, struct mm_struct
*mm
)
453 struct ldt_struct
*new_ldt
;
459 mutex_lock(&old_mm
->context
.lock
);
460 if (!old_mm
->context
.ldt
)
463 new_ldt
= alloc_ldt_struct(old_mm
->context
.ldt
->nr_entries
);
469 memcpy(new_ldt
->entries
, old_mm
->context
.ldt
->entries
,
470 new_ldt
->nr_entries
* LDT_ENTRY_SIZE
);
471 finalize_ldt_struct(new_ldt
);
473 retval
= map_ldt_struct(mm
, new_ldt
, 0);
475 free_ldt_pgtables(mm
);
476 free_ldt_struct(new_ldt
);
479 mm
->context
.ldt
= new_ldt
;
482 mutex_unlock(&old_mm
->context
.lock
);
487 * No need to lock the MM as we are the last user
489 * 64bit: Don't touch the LDT register - we're already in the next thread.
491 void destroy_context_ldt(struct mm_struct
*mm
)
493 free_ldt_struct(mm
->context
.ldt
);
494 mm
->context
.ldt
= NULL
;
497 void ldt_arch_exit_mmap(struct mm_struct
*mm
)
499 free_ldt_pgtables(mm
);
502 static int read_ldt(void __user
*ptr
, unsigned long bytecount
)
504 struct mm_struct
*mm
= current
->mm
;
505 unsigned long entries_size
;
508 down_read(&mm
->context
.ldt_usr_sem
);
510 if (!mm
->context
.ldt
) {
515 if (bytecount
> LDT_ENTRY_SIZE
* LDT_ENTRIES
)
516 bytecount
= LDT_ENTRY_SIZE
* LDT_ENTRIES
;
518 entries_size
= mm
->context
.ldt
->nr_entries
* LDT_ENTRY_SIZE
;
519 if (entries_size
> bytecount
)
520 entries_size
= bytecount
;
522 if (copy_to_user(ptr
, mm
->context
.ldt
->entries
, entries_size
)) {
527 if (entries_size
!= bytecount
) {
528 /* Zero-fill the rest and pretend we read bytecount bytes. */
529 if (clear_user(ptr
+ entries_size
, bytecount
- entries_size
)) {
537 up_read(&mm
->context
.ldt_usr_sem
);
541 static int read_default_ldt(void __user
*ptr
, unsigned long bytecount
)
543 /* CHECKME: Can we use _one_ random number ? */
545 unsigned long size
= 5 * sizeof(struct desc_struct
);
547 unsigned long size
= 128;
549 if (bytecount
> size
)
551 if (clear_user(ptr
, bytecount
))
556 static bool allow_16bit_segments(void)
558 if (!IS_ENABLED(CONFIG_X86_16BIT
))
563 * Xen PV does not implement ESPFIX64, which means that 16-bit
564 * segments will not work correctly. Until either Xen PV implements
565 * ESPFIX64 and can signal this fact to the guest or unless someone
566 * provides compelling evidence that allowing broken 16-bit segments
567 * is worthwhile, disallow 16-bit segments under Xen PV.
569 if (xen_pv_domain()) {
570 pr_info_once("Warning: 16-bit segments do not work correctly in a Xen PV guest\n");
578 static int write_ldt(void __user
*ptr
, unsigned long bytecount
, int oldmode
)
580 struct mm_struct
*mm
= current
->mm
;
581 struct ldt_struct
*new_ldt
, *old_ldt
;
582 unsigned int old_nr_entries
, new_nr_entries
;
583 struct user_desc ldt_info
;
584 struct desc_struct ldt
;
588 if (bytecount
!= sizeof(ldt_info
))
591 if (copy_from_user(&ldt_info
, ptr
, sizeof(ldt_info
)))
595 if (ldt_info
.entry_number
>= LDT_ENTRIES
)
597 if (ldt_info
.contents
== 3) {
600 if (ldt_info
.seg_not_present
== 0)
604 if ((oldmode
&& !ldt_info
.base_addr
&& !ldt_info
.limit
) ||
605 LDT_empty(&ldt_info
)) {
606 /* The user wants to clear the entry. */
607 memset(&ldt
, 0, sizeof(ldt
));
609 if (!ldt_info
.seg_32bit
&& !allow_16bit_segments()) {
614 fill_ldt(&ldt
, &ldt_info
);
619 if (down_write_killable(&mm
->context
.ldt_usr_sem
))
622 old_ldt
= mm
->context
.ldt
;
623 old_nr_entries
= old_ldt
? old_ldt
->nr_entries
: 0;
624 new_nr_entries
= max(ldt_info
.entry_number
+ 1, old_nr_entries
);
627 new_ldt
= alloc_ldt_struct(new_nr_entries
);
632 memcpy(new_ldt
->entries
, old_ldt
->entries
, old_nr_entries
* LDT_ENTRY_SIZE
);
634 new_ldt
->entries
[ldt_info
.entry_number
] = ldt
;
635 finalize_ldt_struct(new_ldt
);
638 * If we are using PTI, map the new LDT into the userspace pagetables.
639 * If there is already an LDT, use the other slot so that other CPUs
640 * will continue to use the old LDT until install_ldt() switches
641 * them over to the new LDT.
643 error
= map_ldt_struct(mm
, new_ldt
, old_ldt
? !old_ldt
->slot
: 0);
646 * This only can fail for the first LDT setup. If an LDT is
647 * already installed then the PTE page is already
648 * populated. Mop up a half populated page table.
650 if (!WARN_ON_ONCE(old_ldt
))
651 free_ldt_pgtables(mm
);
652 free_ldt_struct(new_ldt
);
656 install_ldt(mm
, new_ldt
);
657 unmap_ldt_struct(mm
, old_ldt
);
658 free_ldt_struct(old_ldt
);
662 up_write(&mm
->context
.ldt_usr_sem
);
667 SYSCALL_DEFINE3(modify_ldt
, int , func
, void __user
* , ptr
,
668 unsigned long , bytecount
)
674 ret
= read_ldt(ptr
, bytecount
);
677 ret
= write_ldt(ptr
, bytecount
, 1);
680 ret
= read_default_ldt(ptr
, bytecount
);
683 ret
= write_ldt(ptr
, bytecount
, 0);
687 * The SYSCALL_DEFINE() macros give us an 'unsigned long'
688 * return type, but the ABI for sys_modify_ldt() expects
689 * 'int'. This cast gives us an int-sized value in %rax
690 * for the return code. The 'unsigned' is necessary so
691 * the compiler does not try to sign-extend the negative
692 * return codes into the high half of the register when
693 * taking the value from int->long.
695 return (unsigned int)ret
;