drm/panthor: Don't add write fences to the shared BOs
[drm/drm-misc.git] / arch / x86 / kernel / setup.c
blobf1fea506e20f417bdb6d27c98f7f9919c87533b2
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1995 Linus Torvalds
5 * This file contains the setup_arch() code, which handles the architecture-dependent
6 * parts of early kernel initialization.
7 */
8 #include <linux/acpi.h>
9 #include <linux/console.h>
10 #include <linux/cpu.h>
11 #include <linux/crash_dump.h>
12 #include <linux/dma-map-ops.h>
13 #include <linux/efi.h>
14 #include <linux/ima.h>
15 #include <linux/init_ohci1394_dma.h>
16 #include <linux/initrd.h>
17 #include <linux/iscsi_ibft.h>
18 #include <linux/memblock.h>
19 #include <linux/panic_notifier.h>
20 #include <linux/pci.h>
21 #include <linux/root_dev.h>
22 #include <linux/hugetlb.h>
23 #include <linux/tboot.h>
24 #include <linux/usb/xhci-dbgp.h>
25 #include <linux/static_call.h>
26 #include <linux/swiotlb.h>
27 #include <linux/random.h>
29 #include <uapi/linux/mount.h>
31 #include <xen/xen.h>
33 #include <asm/apic.h>
34 #include <asm/efi.h>
35 #include <asm/numa.h>
36 #include <asm/bios_ebda.h>
37 #include <asm/bugs.h>
38 #include <asm/cacheinfo.h>
39 #include <asm/coco.h>
40 #include <asm/cpu.h>
41 #include <asm/efi.h>
42 #include <asm/gart.h>
43 #include <asm/hypervisor.h>
44 #include <asm/io_apic.h>
45 #include <asm/kasan.h>
46 #include <asm/kaslr.h>
47 #include <asm/mce.h>
48 #include <asm/memtype.h>
49 #include <asm/mtrr.h>
50 #include <asm/realmode.h>
51 #include <asm/olpc_ofw.h>
52 #include <asm/pci-direct.h>
53 #include <asm/prom.h>
54 #include <asm/proto.h>
55 #include <asm/thermal.h>
56 #include <asm/unwind.h>
57 #include <asm/vsyscall.h>
58 #include <linux/vmalloc.h>
61 * max_low_pfn_mapped: highest directly mapped pfn < 4 GB
62 * max_pfn_mapped: highest directly mapped pfn > 4 GB
64 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
65 * represented by pfn_mapped[].
67 unsigned long max_low_pfn_mapped;
68 unsigned long max_pfn_mapped;
70 #ifdef CONFIG_DMI
71 RESERVE_BRK(dmi_alloc, 65536);
72 #endif
75 unsigned long _brk_start = (unsigned long)__brk_base;
76 unsigned long _brk_end = (unsigned long)__brk_base;
78 struct boot_params boot_params;
81 * These are the four main kernel memory regions, we put them into
82 * the resource tree so that kdump tools and other debugging tools
83 * recover it:
86 static struct resource rodata_resource = {
87 .name = "Kernel rodata",
88 .start = 0,
89 .end = 0,
90 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
93 static struct resource data_resource = {
94 .name = "Kernel data",
95 .start = 0,
96 .end = 0,
97 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
100 static struct resource code_resource = {
101 .name = "Kernel code",
102 .start = 0,
103 .end = 0,
104 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
107 static struct resource bss_resource = {
108 .name = "Kernel bss",
109 .start = 0,
110 .end = 0,
111 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
115 #ifdef CONFIG_X86_32
116 /* CPU data as detected by the assembly code in head_32.S */
117 struct cpuinfo_x86 new_cpu_data;
119 struct apm_info apm_info;
120 EXPORT_SYMBOL(apm_info);
122 #if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
123 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
124 struct ist_info ist_info;
125 EXPORT_SYMBOL(ist_info);
126 #else
127 struct ist_info ist_info;
128 #endif
130 #endif
132 struct cpuinfo_x86 boot_cpu_data __read_mostly;
133 EXPORT_SYMBOL(boot_cpu_data);
135 #if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
136 __visible unsigned long mmu_cr4_features __ro_after_init;
137 #else
138 __visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
139 #endif
141 #ifdef CONFIG_IMA
142 static phys_addr_t ima_kexec_buffer_phys;
143 static size_t ima_kexec_buffer_size;
144 #endif
146 /* Boot loader ID and version as integers, for the benefit of proc_dointvec */
147 int bootloader_type, bootloader_version;
150 * Setup options
152 struct screen_info screen_info;
153 EXPORT_SYMBOL(screen_info);
154 struct edid_info edid_info;
155 EXPORT_SYMBOL_GPL(edid_info);
157 extern int root_mountflags;
159 unsigned long saved_video_mode;
161 #define RAMDISK_IMAGE_START_MASK 0x07FF
162 #define RAMDISK_PROMPT_FLAG 0x8000
163 #define RAMDISK_LOAD_FLAG 0x4000
165 static char __initdata command_line[COMMAND_LINE_SIZE];
166 #ifdef CONFIG_CMDLINE_BOOL
167 char builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
168 bool builtin_cmdline_added __ro_after_init;
169 #endif
171 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
172 struct edd edd;
173 #ifdef CONFIG_EDD_MODULE
174 EXPORT_SYMBOL(edd);
175 #endif
177 * copy_edd() - Copy the BIOS EDD information
178 * from boot_params into a safe place.
181 static inline void __init copy_edd(void)
183 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
184 sizeof(edd.mbr_signature));
185 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
186 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
187 edd.edd_info_nr = boot_params.eddbuf_entries;
189 #else
190 static inline void __init copy_edd(void)
193 #endif
195 void * __init extend_brk(size_t size, size_t align)
197 size_t mask = align - 1;
198 void *ret;
200 BUG_ON(_brk_start == 0);
201 BUG_ON(align & mask);
203 _brk_end = (_brk_end + mask) & ~mask;
204 BUG_ON((char *)(_brk_end + size) > __brk_limit);
206 ret = (void *)_brk_end;
207 _brk_end += size;
209 memset(ret, 0, size);
211 return ret;
214 #ifdef CONFIG_X86_32
215 static void __init cleanup_highmap(void)
218 #endif
220 static void __init reserve_brk(void)
222 if (_brk_end > _brk_start)
223 memblock_reserve(__pa_symbol(_brk_start),
224 _brk_end - _brk_start);
226 /* Mark brk area as locked down and no longer taking any
227 new allocations */
228 _brk_start = 0;
231 #ifdef CONFIG_BLK_DEV_INITRD
233 static u64 __init get_ramdisk_image(void)
235 u64 ramdisk_image = boot_params.hdr.ramdisk_image;
237 ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
239 if (ramdisk_image == 0)
240 ramdisk_image = phys_initrd_start;
242 return ramdisk_image;
244 static u64 __init get_ramdisk_size(void)
246 u64 ramdisk_size = boot_params.hdr.ramdisk_size;
248 ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
250 if (ramdisk_size == 0)
251 ramdisk_size = phys_initrd_size;
253 return ramdisk_size;
256 static void __init relocate_initrd(void)
258 /* Assume only end is not page aligned */
259 u64 ramdisk_image = get_ramdisk_image();
260 u64 ramdisk_size = get_ramdisk_size();
261 u64 area_size = PAGE_ALIGN(ramdisk_size);
263 /* We need to move the initrd down into directly mapped mem */
264 u64 relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0,
265 PFN_PHYS(max_pfn_mapped));
266 if (!relocated_ramdisk)
267 panic("Cannot find place for new RAMDISK of size %lld\n",
268 ramdisk_size);
270 initrd_start = relocated_ramdisk + PAGE_OFFSET;
271 initrd_end = initrd_start + ramdisk_size;
272 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
273 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
275 copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
277 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
278 " [mem %#010llx-%#010llx]\n",
279 ramdisk_image, ramdisk_image + ramdisk_size - 1,
280 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
283 static void __init early_reserve_initrd(void)
285 /* Assume only end is not page aligned */
286 u64 ramdisk_image = get_ramdisk_image();
287 u64 ramdisk_size = get_ramdisk_size();
288 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
290 if (!boot_params.hdr.type_of_loader ||
291 !ramdisk_image || !ramdisk_size)
292 return; /* No initrd provided by bootloader */
294 memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
297 static void __init reserve_initrd(void)
299 /* Assume only end is not page aligned */
300 u64 ramdisk_image = get_ramdisk_image();
301 u64 ramdisk_size = get_ramdisk_size();
302 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
304 if (!boot_params.hdr.type_of_loader ||
305 !ramdisk_image || !ramdisk_size)
306 return; /* No initrd provided by bootloader */
308 initrd_start = 0;
310 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
311 ramdisk_end - 1);
313 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
314 PFN_DOWN(ramdisk_end))) {
315 /* All are mapped, easy case */
316 initrd_start = ramdisk_image + PAGE_OFFSET;
317 initrd_end = initrd_start + ramdisk_size;
318 return;
321 relocate_initrd();
323 memblock_phys_free(ramdisk_image, ramdisk_end - ramdisk_image);
326 #else
327 static void __init early_reserve_initrd(void)
330 static void __init reserve_initrd(void)
333 #endif /* CONFIG_BLK_DEV_INITRD */
335 static void __init add_early_ima_buffer(u64 phys_addr)
337 #ifdef CONFIG_IMA
338 struct ima_setup_data *data;
340 data = early_memremap(phys_addr + sizeof(struct setup_data), sizeof(*data));
341 if (!data) {
342 pr_warn("setup: failed to memremap ima_setup_data entry\n");
343 return;
346 if (data->size) {
347 memblock_reserve(data->addr, data->size);
348 ima_kexec_buffer_phys = data->addr;
349 ima_kexec_buffer_size = data->size;
352 early_memunmap(data, sizeof(*data));
353 #else
354 pr_warn("Passed IMA kexec data, but CONFIG_IMA not set. Ignoring.\n");
355 #endif
358 #if defined(CONFIG_HAVE_IMA_KEXEC) && !defined(CONFIG_OF_FLATTREE)
359 int __init ima_free_kexec_buffer(void)
361 if (!ima_kexec_buffer_size)
362 return -ENOENT;
364 memblock_free_late(ima_kexec_buffer_phys,
365 ima_kexec_buffer_size);
367 ima_kexec_buffer_phys = 0;
368 ima_kexec_buffer_size = 0;
370 return 0;
373 int __init ima_get_kexec_buffer(void **addr, size_t *size)
375 if (!ima_kexec_buffer_size)
376 return -ENOENT;
378 *addr = __va(ima_kexec_buffer_phys);
379 *size = ima_kexec_buffer_size;
381 return 0;
383 #endif
385 static void __init parse_setup_data(void)
387 struct setup_data *data;
388 u64 pa_data, pa_next;
390 pa_data = boot_params.hdr.setup_data;
391 while (pa_data) {
392 u32 data_len, data_type;
394 data = early_memremap(pa_data, sizeof(*data));
395 data_len = data->len + sizeof(struct setup_data);
396 data_type = data->type;
397 pa_next = data->next;
398 early_memunmap(data, sizeof(*data));
400 switch (data_type) {
401 case SETUP_E820_EXT:
402 e820__memory_setup_extended(pa_data, data_len);
403 break;
404 case SETUP_DTB:
405 add_dtb(pa_data);
406 break;
407 case SETUP_EFI:
408 parse_efi_setup(pa_data, data_len);
409 break;
410 case SETUP_IMA:
411 add_early_ima_buffer(pa_data);
412 break;
413 case SETUP_RNG_SEED:
414 data = early_memremap(pa_data, data_len);
415 add_bootloader_randomness(data->data, data->len);
416 /* Zero seed for forward secrecy. */
417 memzero_explicit(data->data, data->len);
418 /* Zero length in case we find ourselves back here by accident. */
419 memzero_explicit(&data->len, sizeof(data->len));
420 early_memunmap(data, data_len);
421 break;
422 default:
423 break;
425 pa_data = pa_next;
429 static void __init memblock_x86_reserve_range_setup_data(void)
431 struct setup_indirect *indirect;
432 struct setup_data *data;
433 u64 pa_data, pa_next;
434 u32 len;
436 pa_data = boot_params.hdr.setup_data;
437 while (pa_data) {
438 data = early_memremap(pa_data, sizeof(*data));
439 if (!data) {
440 pr_warn("setup: failed to memremap setup_data entry\n");
441 return;
444 len = sizeof(*data);
445 pa_next = data->next;
447 memblock_reserve(pa_data, sizeof(*data) + data->len);
449 if (data->type == SETUP_INDIRECT) {
450 len += data->len;
451 early_memunmap(data, sizeof(*data));
452 data = early_memremap(pa_data, len);
453 if (!data) {
454 pr_warn("setup: failed to memremap indirect setup_data\n");
455 return;
458 indirect = (struct setup_indirect *)data->data;
460 if (indirect->type != SETUP_INDIRECT)
461 memblock_reserve(indirect->addr, indirect->len);
464 pa_data = pa_next;
465 early_memunmap(data, len);
469 static void __init arch_reserve_crashkernel(void)
471 unsigned long long crash_base, crash_size, low_size = 0;
472 char *cmdline = boot_command_line;
473 bool high = false;
474 int ret;
476 if (!IS_ENABLED(CONFIG_CRASH_RESERVE))
477 return;
479 ret = parse_crashkernel(cmdline, memblock_phys_mem_size(),
480 &crash_size, &crash_base,
481 &low_size, &high);
482 if (ret)
483 return;
485 if (xen_pv_domain()) {
486 pr_info("Ignoring crashkernel for a Xen PV domain\n");
487 return;
490 reserve_crashkernel_generic(cmdline, crash_size, crash_base,
491 low_size, high);
494 static struct resource standard_io_resources[] = {
495 { .name = "dma1", .start = 0x00, .end = 0x1f,
496 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
497 { .name = "pic1", .start = 0x20, .end = 0x21,
498 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
499 { .name = "timer0", .start = 0x40, .end = 0x43,
500 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
501 { .name = "timer1", .start = 0x50, .end = 0x53,
502 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
503 { .name = "keyboard", .start = 0x60, .end = 0x60,
504 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
505 { .name = "keyboard", .start = 0x64, .end = 0x64,
506 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
507 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
508 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
509 { .name = "pic2", .start = 0xa0, .end = 0xa1,
510 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
511 { .name = "dma2", .start = 0xc0, .end = 0xdf,
512 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
513 { .name = "fpu", .start = 0xf0, .end = 0xff,
514 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
517 void __init reserve_standard_io_resources(void)
519 int i;
521 /* request I/O space for devices used on all i[345]86 PCs */
522 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
523 request_resource(&ioport_resource, &standard_io_resources[i]);
527 static bool __init snb_gfx_workaround_needed(void)
529 #ifdef CONFIG_PCI
530 int i;
531 u16 vendor, devid;
532 static const __initconst u16 snb_ids[] = {
533 0x0102,
534 0x0112,
535 0x0122,
536 0x0106,
537 0x0116,
538 0x0126,
539 0x010a,
542 /* Assume no if something weird is going on with PCI */
543 if (!early_pci_allowed())
544 return false;
546 vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
547 if (vendor != 0x8086)
548 return false;
550 devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
551 for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
552 if (devid == snb_ids[i])
553 return true;
554 #endif
556 return false;
560 * Sandy Bridge graphics has trouble with certain ranges, exclude
561 * them from allocation.
563 static void __init trim_snb_memory(void)
565 static const __initconst unsigned long bad_pages[] = {
566 0x20050000,
567 0x20110000,
568 0x20130000,
569 0x20138000,
570 0x40004000,
572 int i;
574 if (!snb_gfx_workaround_needed())
575 return;
577 printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
580 * SandyBridge integrated graphics devices have a bug that prevents
581 * them from accessing certain memory ranges, namely anything below
582 * 1M and in the pages listed in bad_pages[] above.
584 * To avoid these pages being ever accessed by SNB gfx devices reserve
585 * bad_pages that have not already been reserved at boot time.
586 * All memory below the 1 MB mark is anyway reserved later during
587 * setup_arch(), so there is no need to reserve it here.
590 for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
591 if (memblock_reserve(bad_pages[i], PAGE_SIZE))
592 printk(KERN_WARNING "failed to reserve 0x%08lx\n",
593 bad_pages[i]);
597 static void __init trim_bios_range(void)
600 * A special case is the first 4Kb of memory;
601 * This is a BIOS owned area, not kernel ram, but generally
602 * not listed as such in the E820 table.
604 * This typically reserves additional memory (64KiB by default)
605 * since some BIOSes are known to corrupt low memory. See the
606 * Kconfig help text for X86_RESERVE_LOW.
608 e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
611 * special case: Some BIOSes report the PC BIOS
612 * area (640Kb -> 1Mb) as RAM even though it is not.
613 * take them out.
615 e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
617 e820__update_table(e820_table);
620 /* called before trim_bios_range() to spare extra sanitize */
621 static void __init e820_add_kernel_range(void)
623 u64 start = __pa_symbol(_text);
624 u64 size = __pa_symbol(_end) - start;
627 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
628 * attempt to fix it by adding the range. We may have a confused BIOS,
629 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
630 * exclude kernel range. If we really are running on top non-RAM,
631 * we will crash later anyways.
633 if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
634 return;
636 pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
637 e820__range_remove(start, size, E820_TYPE_RAM, 0);
638 e820__range_add(start, size, E820_TYPE_RAM);
641 static void __init early_reserve_memory(void)
644 * Reserve the memory occupied by the kernel between _text and
645 * __end_of_kernel_reserve symbols. Any kernel sections after the
646 * __end_of_kernel_reserve symbol must be explicitly reserved with a
647 * separate memblock_reserve() or they will be discarded.
649 memblock_reserve(__pa_symbol(_text),
650 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
653 * The first 4Kb of memory is a BIOS owned area, but generally it is
654 * not listed as such in the E820 table.
656 * Reserve the first 64K of memory since some BIOSes are known to
657 * corrupt low memory. After the real mode trampoline is allocated the
658 * rest of the memory below 640k is reserved.
660 * In addition, make sure page 0 is always reserved because on
661 * systems with L1TF its contents can be leaked to user processes.
663 memblock_reserve(0, SZ_64K);
665 early_reserve_initrd();
667 memblock_x86_reserve_range_setup_data();
669 reserve_bios_regions();
670 trim_snb_memory();
674 * Dump out kernel offset information on panic.
676 static int
677 dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
679 if (kaslr_enabled()) {
680 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
681 kaslr_offset(),
682 __START_KERNEL,
683 __START_KERNEL_map,
684 MODULES_VADDR-1);
685 } else {
686 pr_emerg("Kernel Offset: disabled\n");
689 return 0;
692 void x86_configure_nx(void)
694 if (boot_cpu_has(X86_FEATURE_NX))
695 __supported_pte_mask |= _PAGE_NX;
696 else
697 __supported_pte_mask &= ~_PAGE_NX;
700 static void __init x86_report_nx(void)
702 if (!boot_cpu_has(X86_FEATURE_NX)) {
703 printk(KERN_NOTICE "Notice: NX (Execute Disable) protection "
704 "missing in CPU!\n");
705 } else {
706 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
707 printk(KERN_INFO "NX (Execute Disable) protection: active\n");
708 #else
709 /* 32bit non-PAE kernel, NX cannot be used */
710 printk(KERN_NOTICE "Notice: NX (Execute Disable) protection "
711 "cannot be enabled: non-PAE kernel!\n");
712 #endif
717 * Determine if we were loaded by an EFI loader. If so, then we have also been
718 * passed the efi memmap, systab, etc., so we should use these data structures
719 * for initialization. Note, the efi init code path is determined by the
720 * global efi_enabled. This allows the same kernel image to be used on existing
721 * systems (with a traditional BIOS) as well as on EFI systems.
724 * setup_arch - architecture-specific boot-time initializations
726 * Note: On x86_64, fixmaps are ready for use even before this is called.
729 void __init setup_arch(char **cmdline_p)
731 #ifdef CONFIG_X86_32
732 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
735 * copy kernel address range established so far and switch
736 * to the proper swapper page table
738 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY,
739 initial_page_table + KERNEL_PGD_BOUNDARY,
740 KERNEL_PGD_PTRS);
742 load_cr3(swapper_pg_dir);
744 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
745 * a cr3 based tlb flush, so the following __flush_tlb_all()
746 * will not flush anything because the CPU quirk which clears
747 * X86_FEATURE_PGE has not been invoked yet. Though due to the
748 * load_cr3() above the TLB has been flushed already. The
749 * quirk is invoked before subsequent calls to __flush_tlb_all()
750 * so proper operation is guaranteed.
752 __flush_tlb_all();
753 #else
754 printk(KERN_INFO "Command line: %s\n", boot_command_line);
755 boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
756 #endif
758 #ifdef CONFIG_CMDLINE_BOOL
759 #ifdef CONFIG_CMDLINE_OVERRIDE
760 strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
761 #else
762 if (builtin_cmdline[0]) {
763 /* append boot loader cmdline to builtin */
764 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
765 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
766 strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
768 #endif
769 builtin_cmdline_added = true;
770 #endif
772 strscpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
773 *cmdline_p = command_line;
776 * If we have OLPC OFW, we might end up relocating the fixmap due to
777 * reserve_top(), so do this before touching the ioremap area.
779 olpc_ofw_detect();
781 idt_setup_early_traps();
782 early_cpu_init();
783 jump_label_init();
784 static_call_init();
785 early_ioremap_init();
787 setup_olpc_ofw_pgd();
789 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
790 screen_info = boot_params.screen_info;
791 edid_info = boot_params.edid_info;
792 #ifdef CONFIG_X86_32
793 apm_info.bios = boot_params.apm_bios_info;
794 ist_info = boot_params.ist_info;
795 #endif
796 saved_video_mode = boot_params.hdr.vid_mode;
797 bootloader_type = boot_params.hdr.type_of_loader;
798 if ((bootloader_type >> 4) == 0xe) {
799 bootloader_type &= 0xf;
800 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
802 bootloader_version = bootloader_type & 0xf;
803 bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
805 #ifdef CONFIG_BLK_DEV_RAM
806 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
807 #endif
808 #ifdef CONFIG_EFI
809 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
810 EFI32_LOADER_SIGNATURE, 4)) {
811 set_bit(EFI_BOOT, &efi.flags);
812 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
813 EFI64_LOADER_SIGNATURE, 4)) {
814 set_bit(EFI_BOOT, &efi.flags);
815 set_bit(EFI_64BIT, &efi.flags);
817 #endif
819 x86_init.oem.arch_setup();
822 * Do some memory reservations *before* memory is added to memblock, so
823 * memblock allocations won't overwrite it.
825 * After this point, everything still needed from the boot loader or
826 * firmware or kernel text should be early reserved or marked not RAM in
827 * e820. All other memory is free game.
829 * This call needs to happen before e820__memory_setup() which calls the
830 * xen_memory_setup() on Xen dom0 which relies on the fact that those
831 * early reservations have happened already.
833 early_reserve_memory();
835 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
836 e820__memory_setup();
837 parse_setup_data();
839 copy_edd();
841 if (!boot_params.hdr.root_flags)
842 root_mountflags &= ~MS_RDONLY;
843 setup_initial_init_mm(_text, _etext, _edata, (void *)_brk_end);
845 code_resource.start = __pa_symbol(_text);
846 code_resource.end = __pa_symbol(_etext)-1;
847 rodata_resource.start = __pa_symbol(__start_rodata);
848 rodata_resource.end = __pa_symbol(__end_rodata)-1;
849 data_resource.start = __pa_symbol(_sdata);
850 data_resource.end = __pa_symbol(_edata)-1;
851 bss_resource.start = __pa_symbol(__bss_start);
852 bss_resource.end = __pa_symbol(__bss_stop)-1;
855 * x86_configure_nx() is called before parse_early_param() to detect
856 * whether hardware doesn't support NX (so that the early EHCI debug
857 * console setup can safely call set_fixmap()).
859 x86_configure_nx();
861 parse_early_param();
863 if (efi_enabled(EFI_BOOT))
864 efi_memblock_x86_reserve_range();
866 #ifdef CONFIG_MEMORY_HOTPLUG
868 * Memory used by the kernel cannot be hot-removed because Linux
869 * cannot migrate the kernel pages. When memory hotplug is
870 * enabled, we should prevent memblock from allocating memory
871 * for the kernel.
873 * ACPI SRAT records all hotpluggable memory ranges. But before
874 * SRAT is parsed, we don't know about it.
876 * The kernel image is loaded into memory at very early time. We
877 * cannot prevent this anyway. So on NUMA system, we set any
878 * node the kernel resides in as un-hotpluggable.
880 * Since on modern servers, one node could have double-digit
881 * gigabytes memory, we can assume the memory around the kernel
882 * image is also un-hotpluggable. So before SRAT is parsed, just
883 * allocate memory near the kernel image to try the best to keep
884 * the kernel away from hotpluggable memory.
886 if (movable_node_is_enabled())
887 memblock_set_bottom_up(true);
888 #endif
890 x86_report_nx();
892 apic_setup_apic_calls();
894 if (acpi_mps_check()) {
895 #ifdef CONFIG_X86_LOCAL_APIC
896 apic_is_disabled = true;
897 #endif
898 setup_clear_cpu_cap(X86_FEATURE_APIC);
901 e820__reserve_setup_data();
902 e820__finish_early_params();
904 if (efi_enabled(EFI_BOOT))
905 efi_init();
907 reserve_ibft_region();
908 x86_init.resources.dmi_setup();
911 * VMware detection requires dmi to be available, so this
912 * needs to be done after dmi_setup(), for the boot CPU.
913 * For some guest types (Xen PV, SEV-SNP, TDX) it is required to be
914 * called before cache_bp_init() for setting up MTRR state.
916 init_hypervisor_platform();
918 tsc_early_init();
919 x86_init.resources.probe_roms();
921 /* after parse_early_param, so could debug it */
922 insert_resource(&iomem_resource, &code_resource);
923 insert_resource(&iomem_resource, &rodata_resource);
924 insert_resource(&iomem_resource, &data_resource);
925 insert_resource(&iomem_resource, &bss_resource);
927 e820_add_kernel_range();
928 trim_bios_range();
929 #ifdef CONFIG_X86_32
930 if (ppro_with_ram_bug()) {
931 e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
932 E820_TYPE_RESERVED);
933 e820__update_table(e820_table);
934 printk(KERN_INFO "fixed physical RAM map:\n");
935 e820__print_table("bad_ppro");
937 #else
938 early_gart_iommu_check();
939 #endif
942 * partially used pages are not usable - thus
943 * we are rounding upwards:
945 max_pfn = e820__end_of_ram_pfn();
947 /* update e820 for memory not covered by WB MTRRs */
948 cache_bp_init();
949 if (mtrr_trim_uncached_memory(max_pfn))
950 max_pfn = e820__end_of_ram_pfn();
952 max_possible_pfn = max_pfn;
955 * Define random base addresses for memory sections after max_pfn is
956 * defined and before each memory section base is used.
958 kernel_randomize_memory();
960 #ifdef CONFIG_X86_32
961 /* max_low_pfn get updated here */
962 find_low_pfn_range();
963 #else
964 check_x2apic();
966 /* How many end-of-memory variables you have, grandma! */
967 /* need this before calling reserve_initrd */
968 if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
969 max_low_pfn = e820__end_of_low_ram_pfn();
970 else
971 max_low_pfn = max_pfn;
973 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
974 #endif
976 /* Find and reserve MPTABLE area */
977 x86_init.mpparse.find_mptable();
979 early_alloc_pgt_buf();
982 * Need to conclude brk, before e820__memblock_setup()
983 * it could use memblock_find_in_range, could overlap with
984 * brk area.
986 reserve_brk();
988 cleanup_highmap();
990 memblock_set_current_limit(ISA_END_ADDRESS);
991 e820__memblock_setup();
994 * Needs to run after memblock setup because it needs the physical
995 * memory size.
997 mem_encrypt_setup_arch();
998 cc_random_init();
1000 efi_find_mirror();
1001 efi_esrt_init();
1002 efi_mokvar_table_init();
1005 * The EFI specification says that boot service code won't be
1006 * called after ExitBootServices(). This is, in fact, a lie.
1008 efi_reserve_boot_services();
1010 /* preallocate 4k for mptable mpc */
1011 e820__memblock_alloc_reserved_mpc_new();
1013 #ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1014 setup_bios_corruption_check();
1015 #endif
1017 #ifdef CONFIG_X86_32
1018 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1019 (max_pfn_mapped<<PAGE_SHIFT) - 1);
1020 #endif
1023 * Find free memory for the real mode trampoline and place it there. If
1024 * there is not enough free memory under 1M, on EFI-enabled systems
1025 * there will be additional attempt to reclaim the memory for the real
1026 * mode trampoline at efi_free_boot_services().
1028 * Unconditionally reserve the entire first 1M of RAM because BIOSes
1029 * are known to corrupt low memory and several hundred kilobytes are not
1030 * worth complex detection what memory gets clobbered. Windows does the
1031 * same thing for very similar reasons.
1033 * Moreover, on machines with SandyBridge graphics or in setups that use
1034 * crashkernel the entire 1M is reserved anyway.
1036 * Note the host kernel TDX also requires the first 1MB being reserved.
1038 x86_platform.realmode_reserve();
1040 init_mem_mapping();
1043 * init_mem_mapping() relies on the early IDT page fault handling.
1044 * Now either enable FRED or install the real page fault handler
1045 * for 64-bit in the IDT.
1047 cpu_init_replace_early_idt();
1050 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1051 * with the current CR4 value. This may not be necessary, but
1052 * auditing all the early-boot CR4 manipulation would be needed to
1053 * rule it out.
1055 * Mask off features that don't work outside long mode (just
1056 * PCIDE for now).
1058 mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1060 memblock_set_current_limit(get_max_mapped());
1063 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1066 #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1067 if (init_ohci1394_dma_early)
1068 init_ohci1394_dma_on_all_controllers();
1069 #endif
1070 /* Allocate bigger log buffer */
1071 setup_log_buf(1);
1073 if (efi_enabled(EFI_BOOT)) {
1074 switch (boot_params.secure_boot) {
1075 case efi_secureboot_mode_disabled:
1076 pr_info("Secure boot disabled\n");
1077 break;
1078 case efi_secureboot_mode_enabled:
1079 pr_info("Secure boot enabled\n");
1080 break;
1081 default:
1082 pr_info("Secure boot could not be determined\n");
1083 break;
1087 reserve_initrd();
1089 acpi_table_upgrade();
1090 /* Look for ACPI tables and reserve memory occupied by them. */
1091 acpi_boot_table_init();
1093 vsmp_init();
1095 io_delay_init();
1097 early_platform_quirks();
1099 /* Some platforms need the APIC registered for NUMA configuration */
1100 early_acpi_boot_init();
1101 x86_init.mpparse.early_parse_smp_cfg();
1103 x86_flattree_get_config();
1105 initmem_init();
1106 dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1108 if (boot_cpu_has(X86_FEATURE_GBPAGES))
1109 hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
1112 * Reserve memory for crash kernel after SRAT is parsed so that it
1113 * won't consume hotpluggable memory.
1115 arch_reserve_crashkernel();
1117 if (!early_xdbc_setup_hardware())
1118 early_xdbc_register_console();
1120 x86_init.paging.pagetable_init();
1122 kasan_init();
1125 * Sync back kernel address range.
1127 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1128 * this call?
1130 sync_initial_page_table();
1132 tboot_probe();
1134 map_vsyscall();
1136 x86_32_probe_apic();
1138 early_quirks();
1140 topology_apply_cmdline_limits_early();
1143 * Parse SMP configuration. Try ACPI first and then the platform
1144 * specific parser.
1146 acpi_boot_init();
1147 x86_init.mpparse.parse_smp_cfg();
1149 /* Last opportunity to detect and map the local APIC */
1150 init_apic_mappings();
1152 topology_init_possible_cpus();
1154 init_cpu_to_node();
1155 init_gi_nodes();
1157 io_apic_init_mappings();
1159 x86_init.hyper.guest_late_init();
1161 e820__reserve_resources();
1162 e820__register_nosave_regions(max_pfn);
1164 x86_init.resources.reserve_resources();
1166 e820__setup_pci_gap();
1168 #ifdef CONFIG_VT
1169 #if defined(CONFIG_VGA_CONSOLE)
1170 if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1171 vgacon_register_screen(&screen_info);
1172 #endif
1173 #endif
1174 x86_init.oem.banner();
1176 x86_init.timers.wallclock_init();
1179 * This needs to run before setup_local_APIC() which soft-disables the
1180 * local APIC temporarily and that masks the thermal LVT interrupt,
1181 * leading to softlockups on machines which have configured SMI
1182 * interrupt delivery.
1184 therm_lvt_init();
1186 mcheck_init();
1188 register_refined_jiffies(CLOCK_TICK_RATE);
1190 #ifdef CONFIG_EFI
1191 if (efi_enabled(EFI_BOOT))
1192 efi_apply_memmap_quirks();
1193 #endif
1195 unwind_init();
1198 #ifdef CONFIG_X86_32
1200 static struct resource video_ram_resource = {
1201 .name = "Video RAM area",
1202 .start = 0xa0000,
1203 .end = 0xbffff,
1204 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1207 void __init i386_reserve_resources(void)
1209 request_resource(&iomem_resource, &video_ram_resource);
1210 reserve_standard_io_resources();
1213 #endif /* CONFIG_X86_32 */
1215 static struct notifier_block kernel_offset_notifier = {
1216 .notifier_call = dump_kernel_offset
1219 static int __init register_kernel_offset_dumper(void)
1221 atomic_notifier_chain_register(&panic_notifier_list,
1222 &kernel_offset_notifier);
1223 return 0;
1225 __initcall(register_kernel_offset_dumper);
1227 #ifdef CONFIG_HOTPLUG_CPU
1228 bool arch_cpu_is_hotpluggable(int cpu)
1230 return cpu > 0;
1232 #endif /* CONFIG_HOTPLUG_CPU */