1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Intel SMP support routines.
5 * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6 * (c) 1998-99, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7 * (c) 2002,2003 Andi Kleen, SuSE Labs.
9 * i386 and x86_64 integration by Glauber Costa <gcosta@redhat.com>
12 #include <linux/init.h>
15 #include <linux/delay.h>
16 #include <linux/spinlock.h>
17 #include <linux/export.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/mc146818rtc.h>
20 #include <linux/cache.h>
21 #include <linux/interrupt.h>
22 #include <linux/cpu.h>
23 #include <linux/gfp.h>
24 #include <linux/kexec.h>
27 #include <asm/tlbflush.h>
28 #include <asm/mmu_context.h>
29 #include <asm/proto.h>
32 #include <asm/idtentry.h>
35 #include <asm/trace/irq_vectors.h>
36 #include <asm/kexec.h>
37 #include <asm/reboot.h>
40 * Some notes on x86 processor bugs affecting SMP operation:
42 * Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
43 * The Linux implications for SMP are handled as follows:
45 * Pentium III / [Xeon]
46 * None of the E1AP-E3AP errata are visible to the user.
53 * None of the A1AP-A3AP errata are visible to the user.
60 * None of 1AP-9AP errata are visible to the normal user,
61 * except occasional delivery of 'spurious interrupt' as trap #15.
62 * This is very rare and a non-problem.
64 * 1AP. Linux maps APIC as non-cacheable
65 * 2AP. worked around in hardware
66 * 3AP. fixed in C0 and above steppings microcode update.
67 * Linux does not use excessive STARTUP_IPIs.
68 * 4AP. worked around in hardware
69 * 5AP. symmetric IO mode (normal Linux operation) not affected.
70 * 'noapic' mode has vector 0xf filled out properly.
71 * 6AP. 'noapic' mode might be affected - fixed in later steppings
72 * 7AP. We do not assume writes to the LVT deasserting IRQs
73 * 8AP. We do not enable low power mode (deep sleep) during MP bootup
74 * 9AP. We do not use mixed mode
77 * There is a marginal case where REP MOVS on 100MHz SMP
78 * machines with B stepping processors can fail. XXX should provide
79 * an L1cache=Writethrough or L1cache=off option.
81 * B stepping CPUs may hang. There are hardware work arounds
82 * for this. We warn about it in case your board doesn't have the work
83 * arounds. Basically that's so I can tell anyone with a B stepping
84 * CPU and SMP problems "tough".
86 * Specific items [From Pentium Processor Specification Update]
88 * 1AP. Linux doesn't use remote read
89 * 2AP. Linux doesn't trust APIC errors
90 * 3AP. We work around this
91 * 4AP. Linux never generated 3 interrupts of the same priority
92 * to cause a lost local interrupt.
93 * 5AP. Remote read is never used
94 * 6AP. not affected - worked around in hardware
95 * 7AP. not affected - worked around in hardware
96 * 8AP. worked around in hardware - we get explicit CS errors if not
97 * 9AP. only 'noapic' mode affected. Might generate spurious
98 * interrupts, we log only the first one and count the
100 * 10AP. not affected - worked around in hardware
101 * 11AP. Linux reads the APIC between writes to avoid this, as per
102 * the documentation. Make sure you preserve this as it affects
103 * the C stepping chips too.
104 * 12AP. not affected - worked around in hardware
105 * 13AP. not affected - worked around in hardware
106 * 14AP. we always deassert INIT during bootup
107 * 15AP. not affected - worked around in hardware
108 * 16AP. not affected - worked around in hardware
109 * 17AP. not affected - worked around in hardware
110 * 18AP. not affected - worked around in hardware
111 * 19AP. not affected - worked around in BIOS
113 * If this sounds worrying believe me these bugs are either ___RARE___,
114 * or are signal timing bugs worked around in hardware and there's
115 * about nothing of note with C stepping upwards.
118 static atomic_t stopping_cpu
= ATOMIC_INIT(-1);
119 static bool smp_no_nmi_ipi
= false;
121 static int smp_stop_nmi_callback(unsigned int val
, struct pt_regs
*regs
)
123 /* We are registered on stopping cpu too, avoid spurious NMI */
124 if (raw_smp_processor_id() == atomic_read(&stopping_cpu
))
127 cpu_emergency_disable_virtualization();
134 * this function calls the 'stop' function on all other CPUs in the system.
136 DEFINE_IDTENTRY_SYSVEC(sysvec_reboot
)
139 cpu_emergency_disable_virtualization();
143 static int register_stop_handler(void)
145 return register_nmi_handler(NMI_LOCAL
, smp_stop_nmi_callback
,
146 NMI_FLAG_FIRST
, "smp_stop");
149 static void native_stop_other_cpus(int wait
)
151 unsigned int old_cpu
, this_cpu
;
152 unsigned long flags
, timeout
;
157 /* Only proceed if this is the first CPU to reach this code */
159 this_cpu
= smp_processor_id();
160 if (!atomic_try_cmpxchg(&stopping_cpu
, &old_cpu
, this_cpu
))
163 /* For kexec, ensure that offline CPUs are out of MWAIT and in HLT */
164 if (kexec_in_progress
)
165 smp_kick_mwait_play_dead();
168 * 1) Send an IPI on the reboot vector to all other CPUs.
170 * The other CPUs should react on it after leaving critical
171 * sections and re-enabling interrupts. They might still hold
172 * locks, but there is nothing which can be done about that.
174 * 2) Wait for all other CPUs to report that they reached the
175 * HLT loop in stop_this_cpu()
177 * 3) If #2 timed out send an NMI to the CPUs which did not
180 * 4) Wait for all other CPUs to report that they reached the
181 * HLT loop in stop_this_cpu()
183 * #3 can obviously race against a CPU reaching the HLT loop late.
184 * That CPU will have reported already and the "have all CPUs
185 * reached HLT" condition will be true despite the fact that the
186 * other CPU is still handling the NMI. Again, there is no
187 * protection against that as "disabled" APICs still respond to
190 cpumask_copy(&cpus_stop_mask
, cpu_online_mask
);
191 cpumask_clear_cpu(this_cpu
, &cpus_stop_mask
);
193 if (!cpumask_empty(&cpus_stop_mask
)) {
194 apic_send_IPI_allbutself(REBOOT_VECTOR
);
197 * Don't wait longer than a second for IPI completion. The
198 * wait request is not checked here because that would
199 * prevent an NMI shutdown attempt in case that not all
200 * CPUs reach shutdown state.
202 timeout
= USEC_PER_SEC
;
203 while (!cpumask_empty(&cpus_stop_mask
) && timeout
--)
207 /* if the REBOOT_VECTOR didn't work, try with the NMI */
208 if (!cpumask_empty(&cpus_stop_mask
)) {
210 * If NMI IPI is enabled, try to register the stop handler
211 * and send the IPI. In any case try to wait for the other
214 if (!smp_no_nmi_ipi
&& !register_stop_handler()) {
217 pr_emerg("Shutting down cpus with NMI\n");
219 for_each_cpu(cpu
, &cpus_stop_mask
)
220 __apic_send_IPI(cpu
, NMI_VECTOR
);
223 * Don't wait longer than 10 ms if the caller didn't
224 * request it. If wait is true, the machine hangs here if
225 * one or more CPUs do not reach shutdown state.
227 timeout
= USEC_PER_MSEC
* 10;
228 while (!cpumask_empty(&cpus_stop_mask
) && (wait
|| timeout
--))
232 local_irq_save(flags
);
233 disable_local_APIC();
234 mcheck_cpu_clear(this_cpu_ptr(&cpu_info
));
235 local_irq_restore(flags
);
238 * Ensure that the cpus_stop_mask cache lines are invalidated on
239 * the other CPUs. See comment vs. SME in stop_this_cpu().
241 cpumask_clear(&cpus_stop_mask
);
245 * Reschedule call back. KVM uses this interrupt to force a cpu out of
248 DEFINE_IDTENTRY_SYSVEC_SIMPLE(sysvec_reschedule_ipi
)
251 trace_reschedule_entry(RESCHEDULE_VECTOR
);
252 inc_irq_stat(irq_resched_count
);
254 trace_reschedule_exit(RESCHEDULE_VECTOR
);
257 DEFINE_IDTENTRY_SYSVEC(sysvec_call_function
)
260 trace_call_function_entry(CALL_FUNCTION_VECTOR
);
261 inc_irq_stat(irq_call_count
);
262 generic_smp_call_function_interrupt();
263 trace_call_function_exit(CALL_FUNCTION_VECTOR
);
266 DEFINE_IDTENTRY_SYSVEC(sysvec_call_function_single
)
269 trace_call_function_single_entry(CALL_FUNCTION_SINGLE_VECTOR
);
270 inc_irq_stat(irq_call_count
);
271 generic_smp_call_function_single_interrupt();
272 trace_call_function_single_exit(CALL_FUNCTION_SINGLE_VECTOR
);
275 static int __init
nonmi_ipi_setup(char *str
)
277 smp_no_nmi_ipi
= true;
281 __setup("nonmi_ipi", nonmi_ipi_setup
);
283 struct smp_ops smp_ops
= {
284 .smp_prepare_boot_cpu
= native_smp_prepare_boot_cpu
,
285 .smp_prepare_cpus
= native_smp_prepare_cpus
,
286 .smp_cpus_done
= native_smp_cpus_done
,
288 .stop_other_cpus
= native_stop_other_cpus
,
289 #if defined(CONFIG_CRASH_DUMP)
290 .crash_stop_other_cpus
= kdump_nmi_shootdown_cpus
,
292 .smp_send_reschedule
= native_smp_send_reschedule
,
294 .kick_ap_alive
= native_kick_ap
,
295 .cpu_disable
= native_cpu_disable
,
296 .play_dead
= native_play_dead
,
298 .send_call_func_ipi
= native_send_call_func_ipi
,
299 .send_call_func_single_ipi
= native_send_call_func_single_ipi
,
301 EXPORT_SYMBOL_GPL(smp_ops
);