1 // SPDX-License-Identifier: GPL-2.0
3 * TSC frequency enumeration via MSR
5 * Copyright (C) 2013, 2018 Intel Corporation
6 * Author: Bin Gao <bin.gao@intel.com>
9 #include <linux/kernel.h>
10 #include <linux/thread_info.h>
13 #include <asm/cpu_device_id.h>
14 #include <asm/intel-family.h>
16 #include <asm/param.h>
19 #define MAX_NUM_FREQS 16 /* 4 bits to select the frequency */
22 * The frequency numbers in the SDM are e.g. 83.3 MHz, which does not contain a
23 * lot of accuracy which leads to clock drift. As far as we know Bay Trail SoCs
24 * use a 25 MHz crystal and Cherry Trail uses a 19.2 MHz crystal, the crystal
25 * is the source clk for a root PLL which outputs 1600 and 100 MHz. It is
26 * unclear if the root PLL outputs are used directly by the CPU clock PLL or
27 * if there is another PLL in between.
28 * This does not matter though, we can model the chain of PLLs as a single PLL
29 * with a quotient equal to the quotients of all PLLs in the chain multiplied.
30 * So we can create a simplified model of the CPU clock setup using a reference
31 * clock of 100 MHz plus a quotient which gets us as close to the frequency
32 * from the SDM as possible.
33 * For the 83.3 MHz example from above this would give us 100 MHz * 5 / 6 =
34 * 83 and 1/3 MHz, which matches exactly what has been measured on actual hw.
36 #define TSC_REFERENCE_KHZ 100000
44 * If MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be
45 * read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40].
46 * Unfortunately some Intel Atom SoCs aren't quite compliant to this,
47 * so we need manually differentiate SoC families. This is what the
48 * field use_msr_plat does.
52 struct muldiv muldiv
[MAX_NUM_FREQS
];
54 * Some CPU frequencies in the SDM do not map to known PLL freqs, in
55 * that case the muldiv array is empty and the freqs array is used.
57 u32 freqs
[MAX_NUM_FREQS
];
62 * Penwell and Clovertrail use spread spectrum clock,
63 * so the freq number is not exactly the same as reported
64 * by MSR based on SDM.
66 static const struct freq_desc freq_desc_pnw
= {
67 .use_msr_plat
= false,
68 .freqs
= { 0, 0, 0, 0, 0, 99840, 0, 83200 },
72 static const struct freq_desc freq_desc_clv
= {
73 .use_msr_plat
= false,
74 .freqs
= { 0, 133200, 0, 0, 0, 99840, 0, 83200 },
79 * Bay Trail SDM MSR_FSB_FREQ frequencies simplified PLL model:
80 * 000: 100 * 5 / 6 = 83.3333 MHz
81 * 001: 100 * 1 / 1 = 100.0000 MHz
82 * 010: 100 * 4 / 3 = 133.3333 MHz
83 * 011: 100 * 7 / 6 = 116.6667 MHz
84 * 100: 100 * 4 / 5 = 80.0000 MHz
86 static const struct freq_desc freq_desc_byt
= {
88 .muldiv
= { { 5, 6 }, { 1, 1 }, { 4, 3 }, { 7, 6 },
94 * Cherry Trail SDM MSR_FSB_FREQ frequencies simplified PLL model:
95 * 0000: 100 * 5 / 6 = 83.3333 MHz
96 * 0001: 100 * 1 / 1 = 100.0000 MHz
97 * 0010: 100 * 4 / 3 = 133.3333 MHz
98 * 0011: 100 * 7 / 6 = 116.6667 MHz
99 * 0100: 100 * 4 / 5 = 80.0000 MHz
100 * 0101: 100 * 14 / 15 = 93.3333 MHz
101 * 0110: 100 * 9 / 10 = 90.0000 MHz
102 * 0111: 100 * 8 / 9 = 88.8889 MHz
103 * 1000: 100 * 7 / 8 = 87.5000 MHz
105 static const struct freq_desc freq_desc_cht
= {
106 .use_msr_plat
= true,
107 .muldiv
= { { 5, 6 }, { 1, 1 }, { 4, 3 }, { 7, 6 },
108 { 4, 5 }, { 14, 15 }, { 9, 10 }, { 8, 9 },
114 * Merriefield SDM MSR_FSB_FREQ frequencies simplified PLL model:
115 * 0001: 100 * 1 / 1 = 100.0000 MHz
116 * 0010: 100 * 4 / 3 = 133.3333 MHz
118 static const struct freq_desc freq_desc_tng
= {
119 .use_msr_plat
= true,
120 .muldiv
= { { 0, 0 }, { 1, 1 }, { 4, 3 } },
125 * Moorefield SDM MSR_FSB_FREQ frequencies simplified PLL model:
126 * 0000: 100 * 5 / 6 = 83.3333 MHz
127 * 0001: 100 * 1 / 1 = 100.0000 MHz
128 * 0010: 100 * 4 / 3 = 133.3333 MHz
129 * 0011: 100 * 1 / 1 = 100.0000 MHz
131 static const struct freq_desc freq_desc_ann
= {
132 .use_msr_plat
= true,
133 .muldiv
= { { 5, 6 }, { 1, 1 }, { 4, 3 }, { 1, 1 } },
138 * 24 MHz crystal? : 24 * 13 / 4 = 78 MHz
139 * Frequency step for Lightning Mountain SoC is fixed to 78 MHz,
140 * so all the frequency entries are 78000.
142 static const struct freq_desc freq_desc_lgm
= {
143 .use_msr_plat
= true,
144 .freqs
= { 78000, 78000, 78000, 78000, 78000, 78000, 78000, 78000,
145 78000, 78000, 78000, 78000, 78000, 78000, 78000, 78000 },
149 static const struct x86_cpu_id tsc_msr_cpu_ids
[] = {
150 X86_MATCH_VFM(INTEL_ATOM_SALTWELL_MID
, &freq_desc_pnw
),
151 X86_MATCH_VFM(INTEL_ATOM_SALTWELL_TABLET
, &freq_desc_clv
),
152 X86_MATCH_VFM(INTEL_ATOM_SILVERMONT
, &freq_desc_byt
),
153 X86_MATCH_VFM(INTEL_ATOM_SILVERMONT_MID
, &freq_desc_tng
),
154 X86_MATCH_VFM(INTEL_ATOM_AIRMONT
, &freq_desc_cht
),
155 X86_MATCH_VFM(INTEL_ATOM_AIRMONT_MID
, &freq_desc_ann
),
156 X86_MATCH_VFM(INTEL_ATOM_AIRMONT_NP
, &freq_desc_lgm
),
161 * MSR-based CPU/TSC frequency discovery for certain CPUs.
163 * Set global "lapic_timer_period" to bus_clock_cycles/jiffy
164 * Return processor base frequency in KHz, or 0 on failure.
166 unsigned long cpu_khz_from_msr(void)
168 u32 lo
, hi
, ratio
, freq
, tscref
;
169 const struct freq_desc
*freq_desc
;
170 const struct x86_cpu_id
*id
;
171 const struct muldiv
*md
;
175 id
= x86_match_cpu(tsc_msr_cpu_ids
);
179 freq_desc
= (struct freq_desc
*)id
->driver_data
;
180 if (freq_desc
->use_msr_plat
) {
181 rdmsr(MSR_PLATFORM_INFO
, lo
, hi
);
182 ratio
= (lo
>> 8) & 0xff;
184 rdmsr(MSR_IA32_PERF_STATUS
, lo
, hi
);
185 ratio
= (hi
>> 8) & 0x1f;
188 /* Get FSB FREQ ID */
189 rdmsr(MSR_FSB_FREQ
, lo
, hi
);
190 index
= lo
& freq_desc
->mask
;
191 md
= &freq_desc
->muldiv
[index
];
194 * Note this also catches cases where the index points to an unpopulated
195 * part of muldiv, in that case the else will set freq and res to 0.
198 tscref
= TSC_REFERENCE_KHZ
* md
->multiplier
;
199 freq
= DIV_ROUND_CLOSEST(tscref
, md
->divider
);
201 * Multiplying by ratio before the division has better
202 * accuracy than just calculating freq * ratio.
204 res
= DIV_ROUND_CLOSEST(tscref
* ratio
, md
->divider
);
206 freq
= freq_desc
->freqs
[index
];
211 pr_err("Error MSR_FSB_FREQ index %d is unknown\n", index
);
213 #ifdef CONFIG_X86_LOCAL_APIC
214 lapic_timer_period
= (freq
* 1000) / HZ
;
218 * TSC frequency determined by MSR is always considered "known"
219 * because it is reported by HW.
220 * Another fact is that on MSR capable platforms, PIT/HPET is
221 * generally not available so calibration won't work at all.
223 setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ
);
226 * Unfortunately there is no way for hardware to tell whether the
227 * TSC is reliable. We were told by silicon design team that TSC
228 * on Atom SoCs are always "reliable". TSC is also the only
229 * reliable clocksource on these SoCs (HPET is either not present
230 * or not functional) so mark TSC reliable which removes the
231 * requirement for a watchdog clocksource.
233 setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE
);