1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * User-space Probes (UProbes) for x86
5 * Copyright (C) IBM Corporation, 2008-2011
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/ptrace.h>
13 #include <linux/uprobes.h>
14 #include <linux/uaccess.h>
15 #include <linux/syscalls.h>
17 #include <linux/kdebug.h>
18 #include <asm/processor.h>
20 #include <asm/mmu_context.h>
22 /* Post-execution fixups. */
24 /* Adjust IP back to vicinity of actual insn */
25 #define UPROBE_FIX_IP 0x01
27 /* Adjust the return address of a call insn */
28 #define UPROBE_FIX_CALL 0x02
30 /* Instruction will modify TF, don't change it */
31 #define UPROBE_FIX_SETF 0x04
33 #define UPROBE_FIX_RIP_SI 0x08
34 #define UPROBE_FIX_RIP_DI 0x10
35 #define UPROBE_FIX_RIP_BX 0x20
36 #define UPROBE_FIX_RIP_MASK \
37 (UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
39 #define UPROBE_TRAP_NR UINT_MAX
41 /* Adaptations for mhiramat x86 decoder v14. */
42 #define OPCODE1(insn) ((insn)->opcode.bytes[0])
43 #define OPCODE2(insn) ((insn)->opcode.bytes[1])
44 #define OPCODE3(insn) ((insn)->opcode.bytes[2])
45 #define MODRM_REG(insn) X86_MODRM_REG((insn)->modrm.value)
47 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
48 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
49 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
50 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
51 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
55 * Good-instruction tables for 32-bit apps. This is non-const and volatile
56 * to keep gcc from statically optimizing it out, as variable_test_bit makes
57 * some versions of gcc to think only *(unsigned long*) is used.
59 * Opcodes we'll probably never support:
60 * 6c-6f - ins,outs. SEGVs if used in userspace
61 * e4-e7 - in,out imm. SEGVs if used in userspace
62 * ec-ef - in,out acc. SEGVs if used in userspace
63 * cc - int3. SIGTRAP if used in userspace
64 * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
65 * (why we support bound (62) then? it's similar, and similarly unused...)
66 * f1 - int1. SIGTRAP if used in userspace
67 * f4 - hlt. SEGVs if used in userspace
68 * fa - cli. SEGVs if used in userspace
69 * fb - sti. SEGVs if used in userspace
71 * Opcodes which need some work to be supported:
72 * 07,17,1f - pop es/ss/ds
73 * Normally not used in userspace, but would execute if used.
74 * Can cause GP or stack exception if tries to load wrong segment descriptor.
75 * We hesitate to run them under single step since kernel's handling
76 * of userspace single-stepping (TF flag) is fragile.
77 * We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
78 * on the same grounds that they are never used.
80 * Used by userspace for "int 80" syscall entry. (Other "int N"
81 * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
82 * Not supported since kernel's handling of userspace single-stepping
83 * (TF flag) is fragile.
84 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
86 #if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
87 static volatile u32 good_insns_32
[256 / 32] = {
88 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
89 /* ---------------------------------------------- */
90 W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
91 W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
92 W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
93 W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
94 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
95 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
96 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
97 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
98 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
99 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
100 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
101 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
102 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
103 W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
104 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
105 W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
106 /* ---------------------------------------------- */
107 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
110 #define good_insns_32 NULL
113 /* Good-instruction tables for 64-bit apps.
115 * Genuinely invalid opcodes:
116 * 06,07 - formerly push/pop es
117 * 0e - formerly push cs
118 * 16,17 - formerly push/pop ss
119 * 1e,1f - formerly push/pop ds
120 * 27,2f,37,3f - formerly daa/das/aaa/aas
121 * 60,61 - formerly pusha/popa
122 * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
123 * 82 - formerly redundant encoding of Group1
124 * 9a - formerly call seg:ofs
126 * d4,d5 - formerly aam/aad
127 * d6 - formerly undocumented salc
128 * ea - formerly jmp seg:ofs
130 * Opcodes we'll probably never support:
131 * 6c-6f - ins,outs. SEGVs if used in userspace
132 * e4-e7 - in,out imm. SEGVs if used in userspace
133 * ec-ef - in,out acc. SEGVs if used in userspace
134 * cc - int3. SIGTRAP if used in userspace
135 * f1 - int1. SIGTRAP if used in userspace
136 * f4 - hlt. SEGVs if used in userspace
137 * fa - cli. SEGVs if used in userspace
138 * fb - sti. SEGVs if used in userspace
140 * Opcodes which need some work to be supported:
142 * Used by userspace for "int 80" syscall entry. (Other "int N"
143 * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
144 * Not supported since kernel's handling of userspace single-stepping
145 * (TF flag) is fragile.
146 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
148 #if defined(CONFIG_X86_64)
149 static volatile u32 good_insns_64
[256 / 32] = {
150 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
151 /* ---------------------------------------------- */
152 W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
153 W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
154 W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
155 W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
156 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
157 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
158 W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
159 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
160 W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
161 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
162 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
163 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
164 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
165 W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
166 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
167 W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
168 /* ---------------------------------------------- */
169 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
172 #define good_insns_64 NULL
175 /* Using this for both 64-bit and 32-bit apps.
176 * Opcodes we don't support:
177 * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
178 * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
179 * Also encodes tons of other system insns if mod=11.
180 * Some are in fact non-system: xend, xtest, rdtscp, maybe more
182 * 0f 06 - clts (CPL0 insn)
184 * 0f 08 - invd (CPL0 insn)
185 * 0f 09 - wbinvd (CPL0 insn)
187 * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
191 * 0f 78 - vmread (Intel VMX. CPL0 insn)
192 * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
193 * Note: with prefixes, these two opcodes are
194 * extrq/insertq/AVX512 convert vector ops.
195 * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
196 * {rd,wr}{fs,gs}base,{s,l,m}fence.
197 * Why? They are all user-executable.
199 static volatile u32 good_2byte_insns
[256 / 32] = {
200 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
201 /* ---------------------------------------------- */
202 W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
203 W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
204 W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
205 W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
206 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
207 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
208 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
209 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
210 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
211 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
212 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
213 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
214 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
215 W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
216 W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
217 W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /* f0 */
218 /* ---------------------------------------------- */
219 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
224 * opcodes we may need to refine support for:
226 * 0f - 2-byte instructions: For many of these instructions, the validity
227 * depends on the prefix and/or the reg field. On such instructions, we
228 * just consider the opcode combination valid if it corresponds to any
231 * 8f - Group 1 - only reg = 0 is OK
232 * c6-c7 - Group 11 - only reg = 0 is OK
233 * d9-df - fpu insns with some illegal encodings
234 * f2, f3 - repnz, repz prefixes. These are also the first byte for
235 * certain floating-point instructions, such as addsd.
237 * fe - Group 4 - only reg = 0 or 1 is OK
238 * ff - Group 5 - only reg = 0-6 is OK
240 * others -- Do we need to support these?
242 * 0f - (floating-point?) prefetch instructions
243 * 07, 17, 1f - pop es, pop ss, pop ds
244 * 26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
245 * but 64 and 65 (fs: and gs:) seem to be used, so we support them
253 * - Where necessary, examine the modrm byte and allow only valid instructions
254 * in the different Groups and fpu instructions.
257 static bool is_prefix_bad(struct insn
*insn
)
262 for_each_insn_prefix(insn
, i
, p
) {
265 attr
= inat_get_opcode_attribute(p
);
267 case INAT_MAKE_PREFIX(INAT_PFX_ES
):
268 case INAT_MAKE_PREFIX(INAT_PFX_CS
):
269 case INAT_MAKE_PREFIX(INAT_PFX_DS
):
270 case INAT_MAKE_PREFIX(INAT_PFX_SS
):
271 case INAT_MAKE_PREFIX(INAT_PFX_LOCK
):
278 static int uprobe_init_insn(struct arch_uprobe
*auprobe
, struct insn
*insn
, bool x86_64
)
280 enum insn_mode m
= x86_64
? INSN_MODE_64
: INSN_MODE_32
;
281 u32
volatile *good_insns
;
284 ret
= insn_decode(insn
, auprobe
->insn
, sizeof(auprobe
->insn
), m
);
288 if (is_prefix_bad(insn
))
291 /* We should not singlestep on the exception masking instructions */
292 if (insn_masking_exception(insn
))
296 good_insns
= good_insns_64
;
298 good_insns
= good_insns_32
;
300 if (test_bit(OPCODE1(insn
), (unsigned long *)good_insns
))
303 if (insn
->opcode
.nbytes
== 2) {
304 if (test_bit(OPCODE2(insn
), (unsigned long *)good_2byte_insns
))
314 ".pushsection .rodata\n"
315 ".global uretprobe_trampoline_entry\n"
316 "uretprobe_trampoline_entry:\n"
320 "movq $" __stringify(__NR_uretprobe
) ", %rax\n"
322 ".global uretprobe_syscall_check\n"
323 "uretprobe_syscall_check:\n"
327 /* The uretprobe syscall replaces stored %rax value with final
328 * return address, so we don't restore %rax in here and just
332 ".global uretprobe_trampoline_end\n"
333 "uretprobe_trampoline_end:\n"
337 extern u8 uretprobe_trampoline_entry
[];
338 extern u8 uretprobe_trampoline_end
[];
339 extern u8 uretprobe_syscall_check
[];
341 void *arch_uprobe_trampoline(unsigned long *psize
)
343 static uprobe_opcode_t insn
= UPROBE_SWBP_INSN
;
344 struct pt_regs
*regs
= task_pt_regs(current
);
347 * At the moment the uretprobe syscall trampoline is supported
348 * only for native 64-bit process, the compat process still uses
349 * standard breakpoint.
351 if (user_64bit_mode(regs
)) {
352 *psize
= uretprobe_trampoline_end
- uretprobe_trampoline_entry
;
353 return uretprobe_trampoline_entry
;
356 *psize
= UPROBE_SWBP_INSN_SIZE
;
360 static unsigned long trampoline_check_ip(void)
362 unsigned long tramp
= uprobe_get_trampoline_vaddr();
364 return tramp
+ (uretprobe_syscall_check
- uretprobe_trampoline_entry
);
367 SYSCALL_DEFINE0(uretprobe
)
369 struct pt_regs
*regs
= task_pt_regs(current
);
370 unsigned long err
, ip
, sp
, r11_cx_ax
[3];
372 if (regs
->ip
!= trampoline_check_ip())
375 err
= copy_from_user(r11_cx_ax
, (void __user
*)regs
->sp
, sizeof(r11_cx_ax
));
379 /* expose the "right" values of r11/cx/ax/sp to uprobe_consumer/s */
380 regs
->r11
= r11_cx_ax
[0];
381 regs
->cx
= r11_cx_ax
[1];
382 regs
->ax
= r11_cx_ax
[2];
383 regs
->sp
+= sizeof(r11_cx_ax
);
389 uprobe_handle_trampoline(regs
);
392 * Some of the uprobe consumers has changed sp, we can do nothing,
393 * just return via iret.
394 * .. or shadow stack is enabled, in which case we need to skip
395 * return through the user space stack address.
397 if (regs
->sp
!= sp
|| shstk_is_enabled())
399 regs
->sp
-= sizeof(r11_cx_ax
);
401 /* for the case uprobe_consumer has changed r11/cx */
402 r11_cx_ax
[0] = regs
->r11
;
403 r11_cx_ax
[1] = regs
->cx
;
406 * ax register is passed through as return value, so we can use
407 * its space on stack for ip value and jump to it through the
408 * trampoline's ret instruction
410 r11_cx_ax
[2] = regs
->ip
;
413 err
= copy_to_user((void __user
*)regs
->sp
, r11_cx_ax
, sizeof(r11_cx_ax
));
417 /* ensure sysret, see do_syscall_64() */
418 regs
->r11
= regs
->flags
;
429 * If arch_uprobe->insn doesn't use rip-relative addressing, return
430 * immediately. Otherwise, rewrite the instruction so that it accesses
431 * its memory operand indirectly through a scratch register. Set
432 * defparam->fixups accordingly. (The contents of the scratch register
433 * will be saved before we single-step the modified instruction,
434 * and restored afterward).
436 * We do this because a rip-relative instruction can access only a
437 * relatively small area (+/- 2 GB from the instruction), and the XOL
438 * area typically lies beyond that area. At least for instructions
439 * that store to memory, we can't execute the original instruction
440 * and "fix things up" later, because the misdirected store could be
443 * Some useful facts about rip-relative instructions:
445 * - There's always a modrm byte with bit layout "00 reg 101".
446 * - There's never a SIB byte.
447 * - The displacement is always 4 bytes.
448 * - REX.B=1 bit in REX prefix, which normally extends r/m field,
449 * has no effect on rip-relative mode. It doesn't make modrm byte
450 * with r/m=101 refer to register 1101 = R13.
452 static void riprel_analyze(struct arch_uprobe
*auprobe
, struct insn
*insn
)
458 if (!insn_rip_relative(insn
))
462 * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
463 * Clear REX.b bit (extension of MODRM.rm field):
464 * we want to encode low numbered reg, not r8+.
466 if (insn
->rex_prefix
.nbytes
) {
467 cursor
= auprobe
->insn
+ insn_offset_rex_prefix(insn
);
468 /* REX byte has 0100wrxb layout, clearing REX.b bit */
472 * Similar treatment for VEX3/EVEX prefix.
473 * TODO: add XOP treatment when insn decoder supports them
475 if (insn
->vex_prefix
.nbytes
>= 3) {
477 * vex2: c5 rvvvvLpp (has no b bit)
478 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
479 * evex: 62 rxbR00mm wvvvv1pp zllBVaaa
480 * Setting VEX3.b (setting because it has inverted meaning).
481 * Setting EVEX.x since (in non-SIB encoding) EVEX.x
482 * is the 4th bit of MODRM.rm, and needs the same treatment.
483 * For VEX3-encoded insns, VEX3.x value has no effect in
484 * non-SIB encoding, the change is superfluous but harmless.
486 cursor
= auprobe
->insn
+ insn_offset_vex_prefix(insn
) + 1;
491 * Convert from rip-relative addressing to register-relative addressing
492 * via a scratch register.
494 * This is tricky since there are insns with modrm byte
495 * which also use registers not encoded in modrm byte:
496 * [i]div/[i]mul: implicitly use dx:ax
497 * shift ops: implicitly use cx
498 * cmpxchg: implicitly uses ax
499 * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
500 * Encoding: 0f c7/1 modrm
501 * The code below thinks that reg=1 (cx), chooses si as scratch.
502 * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
503 * First appeared in Haswell (BMI2 insn). It is vex-encoded.
504 * Example where none of bx,cx,dx can be used as scratch reg:
505 * c4 e2 63 f6 0d disp32 mulx disp32(%rip),%ebx,%ecx
506 * [v]pcmpistri: implicitly uses cx, xmm0
507 * [v]pcmpistrm: implicitly uses xmm0
508 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
509 * [v]pcmpestrm: implicitly uses ax, dx, xmm0
510 * Evil SSE4.2 string comparison ops from hell.
511 * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
512 * Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
513 * Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
514 * AMD says it has no 3-operand form (vex.vvvv must be 1111)
515 * and that it can have only register operands, not mem
516 * (its modrm byte must have mode=11).
517 * If these restrictions will ever be lifted,
518 * we'll need code to prevent selection of di as scratch reg!
520 * Summary: I don't know any insns with modrm byte which
521 * use SI register implicitly. DI register is used only
522 * by one insn (maskmovq) and BX register is used
523 * only by one too (cmpxchg8b).
524 * BP is stack-segment based (may be a problem?).
525 * AX, DX, CX are off-limits (many implicit users).
526 * SP is unusable (it's stack pointer - think about "pop mem";
527 * also, rsp+disp32 needs sib encoding -> insn length change).
530 reg
= MODRM_REG(insn
); /* Fetch modrm.reg */
531 reg2
= 0xff; /* Fetch vex.vvvv */
532 if (insn
->vex_prefix
.nbytes
)
533 reg2
= insn
->vex_prefix
.bytes
[2];
535 * TODO: add XOP vvvv reading.
537 * vex.vvvv field is in bits 6-3, bits are inverted.
538 * But in 32-bit mode, high-order bit may be ignored.
539 * Therefore, let's consider only 3 low-order bits.
541 reg2
= ((reg2
>> 3) & 0x7) ^ 0x7;
543 * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
545 * Choose scratch reg. Order is important: must not select bx
546 * if we can use si (cmpxchg8b case!)
548 if (reg
!= 6 && reg2
!= 6) {
550 auprobe
->defparam
.fixups
|= UPROBE_FIX_RIP_SI
;
551 } else if (reg
!= 7 && reg2
!= 7) {
553 auprobe
->defparam
.fixups
|= UPROBE_FIX_RIP_DI
;
554 /* TODO (paranoia): force maskmovq to not use di */
557 auprobe
->defparam
.fixups
|= UPROBE_FIX_RIP_BX
;
560 * Point cursor at the modrm byte. The next 4 bytes are the
561 * displacement. Beyond the displacement, for some instructions,
562 * is the immediate operand.
564 cursor
= auprobe
->insn
+ insn_offset_modrm(insn
);
566 * Change modrm from "00 reg 101" to "10 reg reg2". Example:
567 * 89 05 disp32 mov %eax,disp32(%rip) becomes
568 * 89 86 disp32 mov %eax,disp32(%rsi)
570 *cursor
= 0x80 | (reg
<< 3) | reg2
;
573 static inline unsigned long *
574 scratch_reg(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
576 if (auprobe
->defparam
.fixups
& UPROBE_FIX_RIP_SI
)
578 if (auprobe
->defparam
.fixups
& UPROBE_FIX_RIP_DI
)
584 * If we're emulating a rip-relative instruction, save the contents
585 * of the scratch register and store the target address in that register.
587 static void riprel_pre_xol(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
589 if (auprobe
->defparam
.fixups
& UPROBE_FIX_RIP_MASK
) {
590 struct uprobe_task
*utask
= current
->utask
;
591 unsigned long *sr
= scratch_reg(auprobe
, regs
);
593 utask
->autask
.saved_scratch_register
= *sr
;
594 *sr
= utask
->vaddr
+ auprobe
->defparam
.ilen
;
598 static void riprel_post_xol(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
600 if (auprobe
->defparam
.fixups
& UPROBE_FIX_RIP_MASK
) {
601 struct uprobe_task
*utask
= current
->utask
;
602 unsigned long *sr
= scratch_reg(auprobe
, regs
);
604 *sr
= utask
->autask
.saved_scratch_register
;
609 * No RIP-relative addressing on 32-bit
611 static void riprel_analyze(struct arch_uprobe
*auprobe
, struct insn
*insn
)
614 static void riprel_pre_xol(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
617 static void riprel_post_xol(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
620 #endif /* CONFIG_X86_64 */
622 struct uprobe_xol_ops
{
623 bool (*emulate
)(struct arch_uprobe
*, struct pt_regs
*);
624 int (*pre_xol
)(struct arch_uprobe
*, struct pt_regs
*);
625 int (*post_xol
)(struct arch_uprobe
*, struct pt_regs
*);
626 void (*abort
)(struct arch_uprobe
*, struct pt_regs
*);
629 static inline int sizeof_long(struct pt_regs
*regs
)
632 * Check registers for mode as in_xxx_syscall() does not apply here.
634 return user_64bit_mode(regs
) ? 8 : 4;
637 static int default_pre_xol_op(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
639 riprel_pre_xol(auprobe
, regs
);
643 static int emulate_push_stack(struct pt_regs
*regs
, unsigned long val
)
645 unsigned long new_sp
= regs
->sp
- sizeof_long(regs
);
647 if (copy_to_user((void __user
*)new_sp
, &val
, sizeof_long(regs
)))
655 * We have to fix things up as follows:
657 * Typically, the new ip is relative to the copied instruction. We need
658 * to make it relative to the original instruction (FIX_IP). Exceptions
659 * are return instructions and absolute or indirect jump or call instructions.
661 * If the single-stepped instruction was a call, the return address that
662 * is atop the stack is the address following the copied instruction. We
663 * need to make it the address following the original instruction (FIX_CALL).
665 * If the original instruction was a rip-relative instruction such as
666 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
667 * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
668 * We need to restore the contents of the scratch register
671 static int default_post_xol_op(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
673 struct uprobe_task
*utask
= current
->utask
;
675 riprel_post_xol(auprobe
, regs
);
676 if (auprobe
->defparam
.fixups
& UPROBE_FIX_IP
) {
677 long correction
= utask
->vaddr
- utask
->xol_vaddr
;
678 regs
->ip
+= correction
;
679 } else if (auprobe
->defparam
.fixups
& UPROBE_FIX_CALL
) {
680 regs
->sp
+= sizeof_long(regs
); /* Pop incorrect return address */
681 if (emulate_push_stack(regs
, utask
->vaddr
+ auprobe
->defparam
.ilen
))
684 /* popf; tell the caller to not touch TF */
685 if (auprobe
->defparam
.fixups
& UPROBE_FIX_SETF
)
686 utask
->autask
.saved_tf
= true;
691 static void default_abort_op(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
693 riprel_post_xol(auprobe
, regs
);
696 static const struct uprobe_xol_ops default_xol_ops
= {
697 .pre_xol
= default_pre_xol_op
,
698 .post_xol
= default_post_xol_op
,
699 .abort
= default_abort_op
,
702 static bool branch_is_call(struct arch_uprobe
*auprobe
)
704 return auprobe
->branch
.opc1
== 0xe8;
708 COND(70, 71, XF(OF)) \
709 COND(72, 73, XF(CF)) \
710 COND(74, 75, XF(ZF)) \
711 COND(78, 79, XF(SF)) \
712 COND(7a, 7b, XF(PF)) \
713 COND(76, 77, XF(CF) || XF(ZF)) \
714 COND(7c, 7d, XF(SF) != XF(OF)) \
715 COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
717 #define COND(op_y, op_n, expr) \
718 case 0x ## op_y: DO((expr) != 0) \
719 case 0x ## op_n: DO((expr) == 0)
721 #define XF(xf) (!!(flags & X86_EFLAGS_ ## xf))
723 static bool is_cond_jmp_opcode(u8 opcode
)
736 static bool check_jmp_cond(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
738 unsigned long flags
= regs
->flags
;
740 switch (auprobe
->branch
.opc1
) {
746 default: /* not a conditional jmp */
755 static bool branch_emulate_op(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
757 unsigned long new_ip
= regs
->ip
+= auprobe
->branch
.ilen
;
758 unsigned long offs
= (long)auprobe
->branch
.offs
;
760 if (branch_is_call(auprobe
)) {
762 * If it fails we execute this (mangled, see the comment in
763 * branch_clear_offset) insn out-of-line. In the likely case
764 * this should trigger the trap, and the probed application
765 * should die or restart the same insn after it handles the
766 * signal, arch_uprobe_post_xol() won't be even called.
768 * But there is corner case, see the comment in ->post_xol().
770 if (emulate_push_stack(regs
, new_ip
))
772 } else if (!check_jmp_cond(auprobe
, regs
)) {
776 regs
->ip
= new_ip
+ offs
;
780 static bool push_emulate_op(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
782 unsigned long *src_ptr
= (void *)regs
+ auprobe
->push
.reg_offset
;
784 if (emulate_push_stack(regs
, *src_ptr
))
786 regs
->ip
+= auprobe
->push
.ilen
;
790 static int branch_post_xol_op(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
792 BUG_ON(!branch_is_call(auprobe
));
794 * We can only get here if branch_emulate_op() failed to push the ret
795 * address _and_ another thread expanded our stack before the (mangled)
796 * "call" insn was executed out-of-line. Just restore ->sp and restart.
797 * We could also restore ->ip and try to call branch_emulate_op() again.
799 regs
->sp
+= sizeof_long(regs
);
803 static void branch_clear_offset(struct arch_uprobe
*auprobe
, struct insn
*insn
)
806 * Turn this insn into "call 1f; 1:", this is what we will execute
807 * out-of-line if ->emulate() fails. We only need this to generate
808 * a trap, so that the probed task receives the correct signal with
809 * the properly filled siginfo.
811 * But see the comment in ->post_xol(), in the unlikely case it can
812 * succeed. So we need to ensure that the new ->ip can not fall into
813 * the non-canonical area and trigger #GP.
815 * We could turn it into (say) "pushf", but then we would need to
816 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
817 * of ->insn[] for set_orig_insn().
819 memset(auprobe
->insn
+ insn_offset_immediate(insn
),
820 0, insn
->immediate
.nbytes
);
823 static const struct uprobe_xol_ops branch_xol_ops
= {
824 .emulate
= branch_emulate_op
,
825 .post_xol
= branch_post_xol_op
,
828 static const struct uprobe_xol_ops push_xol_ops
= {
829 .emulate
= push_emulate_op
,
832 /* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
833 static int branch_setup_xol_ops(struct arch_uprobe
*auprobe
, struct insn
*insn
)
835 u8 opc1
= OPCODE1(insn
);
840 case 0xeb: /* jmp 8 */
841 case 0xe9: /* jmp 32 */
843 case 0x90: /* prefix* + nop; same as jmp with .offs = 0 */
846 case 0xe8: /* call relative */
847 branch_clear_offset(auprobe
, insn
);
851 if (insn
->opcode
.nbytes
!= 2)
854 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
855 * OPCODE1() of the "short" jmp which checks the same condition.
857 opc1
= OPCODE2(insn
) - 0x10;
860 if (!is_cond_jmp_opcode(opc1
))
865 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
866 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
867 * No one uses these insns, reject any branch insns with such prefix.
869 for_each_insn_prefix(insn
, i
, p
) {
875 auprobe
->branch
.opc1
= opc1
;
876 auprobe
->branch
.ilen
= insn
->length
;
877 auprobe
->branch
.offs
= insn
->immediate
.value
;
879 auprobe
->ops
= &branch_xol_ops
;
883 /* Returns -ENOSYS if push_xol_ops doesn't handle this insn */
884 static int push_setup_xol_ops(struct arch_uprobe
*auprobe
, struct insn
*insn
)
886 u8 opc1
= OPCODE1(insn
), reg_offset
= 0;
888 if (opc1
< 0x50 || opc1
> 0x57)
891 if (insn
->length
> 2)
893 if (insn
->length
== 2) {
894 /* only support rex_prefix 0x41 (x64 only) */
896 if (insn
->rex_prefix
.nbytes
!= 1 ||
897 insn
->rex_prefix
.bytes
[0] != 0x41)
902 reg_offset
= offsetof(struct pt_regs
, r8
);
905 reg_offset
= offsetof(struct pt_regs
, r9
);
908 reg_offset
= offsetof(struct pt_regs
, r10
);
911 reg_offset
= offsetof(struct pt_regs
, r11
);
914 reg_offset
= offsetof(struct pt_regs
, r12
);
917 reg_offset
= offsetof(struct pt_regs
, r13
);
920 reg_offset
= offsetof(struct pt_regs
, r14
);
923 reg_offset
= offsetof(struct pt_regs
, r15
);
932 reg_offset
= offsetof(struct pt_regs
, ax
);
935 reg_offset
= offsetof(struct pt_regs
, cx
);
938 reg_offset
= offsetof(struct pt_regs
, dx
);
941 reg_offset
= offsetof(struct pt_regs
, bx
);
944 reg_offset
= offsetof(struct pt_regs
, sp
);
947 reg_offset
= offsetof(struct pt_regs
, bp
);
950 reg_offset
= offsetof(struct pt_regs
, si
);
953 reg_offset
= offsetof(struct pt_regs
, di
);
958 auprobe
->push
.reg_offset
= reg_offset
;
959 auprobe
->push
.ilen
= insn
->length
;
960 auprobe
->ops
= &push_xol_ops
;
965 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
966 * @auprobe: the probepoint information.
967 * @mm: the probed address space.
968 * @addr: virtual address at which to install the probepoint
969 * Return 0 on success or a -ve number on error.
971 int arch_uprobe_analyze_insn(struct arch_uprobe
*auprobe
, struct mm_struct
*mm
, unsigned long addr
)
974 u8 fix_ip_or_call
= UPROBE_FIX_IP
;
977 ret
= uprobe_init_insn(auprobe
, &insn
, is_64bit_mm(mm
));
981 ret
= branch_setup_xol_ops(auprobe
, &insn
);
985 ret
= push_setup_xol_ops(auprobe
, &insn
);
990 * Figure out which fixups default_post_xol_op() will need to perform,
991 * and annotate defparam->fixups accordingly.
993 switch (OPCODE1(&insn
)) {
994 case 0x9d: /* popf */
995 auprobe
->defparam
.fixups
|= UPROBE_FIX_SETF
;
997 case 0xc3: /* ret or lret -- ip is correct */
1001 case 0xea: /* jmp absolute -- ip is correct */
1004 case 0x9a: /* call absolute - Fix return addr, not ip */
1005 fix_ip_or_call
= UPROBE_FIX_CALL
;
1008 switch (MODRM_REG(&insn
)) {
1009 case 2: case 3: /* call or lcall, indirect */
1010 fix_ip_or_call
= UPROBE_FIX_CALL
;
1012 case 4: case 5: /* jmp or ljmp, indirect */
1018 riprel_analyze(auprobe
, &insn
);
1021 auprobe
->defparam
.ilen
= insn
.length
;
1022 auprobe
->defparam
.fixups
|= fix_ip_or_call
;
1024 auprobe
->ops
= &default_xol_ops
;
1029 * arch_uprobe_pre_xol - prepare to execute out of line.
1030 * @auprobe: the probepoint information.
1031 * @regs: reflects the saved user state of current task.
1033 int arch_uprobe_pre_xol(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
1035 struct uprobe_task
*utask
= current
->utask
;
1037 if (auprobe
->ops
->pre_xol
) {
1038 int err
= auprobe
->ops
->pre_xol(auprobe
, regs
);
1043 regs
->ip
= utask
->xol_vaddr
;
1044 utask
->autask
.saved_trap_nr
= current
->thread
.trap_nr
;
1045 current
->thread
.trap_nr
= UPROBE_TRAP_NR
;
1047 utask
->autask
.saved_tf
= !!(regs
->flags
& X86_EFLAGS_TF
);
1048 regs
->flags
|= X86_EFLAGS_TF
;
1049 if (test_tsk_thread_flag(current
, TIF_BLOCKSTEP
))
1050 set_task_blockstep(current
, false);
1056 * If xol insn itself traps and generates a signal(Say,
1057 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
1058 * instruction jumps back to its own address. It is assumed that anything
1059 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
1061 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
1062 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
1063 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
1065 bool arch_uprobe_xol_was_trapped(struct task_struct
*t
)
1067 if (t
->thread
.trap_nr
!= UPROBE_TRAP_NR
)
1074 * Called after single-stepping. To avoid the SMP problems that can
1075 * occur when we temporarily put back the original opcode to
1076 * single-step, we single-stepped a copy of the instruction.
1078 * This function prepares to resume execution after the single-step.
1080 int arch_uprobe_post_xol(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
1082 struct uprobe_task
*utask
= current
->utask
;
1083 bool send_sigtrap
= utask
->autask
.saved_tf
;
1086 WARN_ON_ONCE(current
->thread
.trap_nr
!= UPROBE_TRAP_NR
);
1087 current
->thread
.trap_nr
= utask
->autask
.saved_trap_nr
;
1089 if (auprobe
->ops
->post_xol
) {
1090 err
= auprobe
->ops
->post_xol(auprobe
, regs
);
1093 * Restore ->ip for restart or post mortem analysis.
1094 * ->post_xol() must not return -ERESTART unless this
1095 * is really possible.
1097 regs
->ip
= utask
->vaddr
;
1098 if (err
== -ERESTART
)
1100 send_sigtrap
= false;
1104 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
1105 * so we can get an extra SIGTRAP if we do not clear TF. We need
1106 * to examine the opcode to make it right.
1109 send_sig(SIGTRAP
, current
, 0);
1111 if (!utask
->autask
.saved_tf
)
1112 regs
->flags
&= ~X86_EFLAGS_TF
;
1117 /* callback routine for handling exceptions. */
1118 int arch_uprobe_exception_notify(struct notifier_block
*self
, unsigned long val
, void *data
)
1120 struct die_args
*args
= data
;
1121 struct pt_regs
*regs
= args
->regs
;
1122 int ret
= NOTIFY_DONE
;
1124 /* We are only interested in userspace traps */
1125 if (regs
&& !user_mode(regs
))
1130 if (uprobe_pre_sstep_notifier(regs
))
1136 if (uprobe_post_sstep_notifier(regs
))
1149 * This function gets called when XOL instruction either gets trapped or
1150 * the thread has a fatal signal. Reset the instruction pointer to its
1151 * probed address for the potential restart or for post mortem analysis.
1153 void arch_uprobe_abort_xol(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
1155 struct uprobe_task
*utask
= current
->utask
;
1157 if (auprobe
->ops
->abort
)
1158 auprobe
->ops
->abort(auprobe
, regs
);
1160 current
->thread
.trap_nr
= utask
->autask
.saved_trap_nr
;
1161 regs
->ip
= utask
->vaddr
;
1162 /* clear TF if it was set by us in arch_uprobe_pre_xol() */
1163 if (!utask
->autask
.saved_tf
)
1164 regs
->flags
&= ~X86_EFLAGS_TF
;
1167 static bool __skip_sstep(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
1169 if (auprobe
->ops
->emulate
)
1170 return auprobe
->ops
->emulate(auprobe
, regs
);
1174 bool arch_uprobe_skip_sstep(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
1176 bool ret
= __skip_sstep(auprobe
, regs
);
1177 if (ret
&& (regs
->flags
& X86_EFLAGS_TF
))
1178 send_sig(SIGTRAP
, current
, 0);
1183 arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr
, struct pt_regs
*regs
)
1185 int rasize
= sizeof_long(regs
), nleft
;
1186 unsigned long orig_ret_vaddr
= 0; /* clear high bits for 32-bit apps */
1188 if (copy_from_user(&orig_ret_vaddr
, (void __user
*)regs
->sp
, rasize
))
1191 /* check whether address has been already hijacked */
1192 if (orig_ret_vaddr
== trampoline_vaddr
)
1193 return orig_ret_vaddr
;
1195 nleft
= copy_to_user((void __user
*)regs
->sp
, &trampoline_vaddr
, rasize
);
1196 if (likely(!nleft
)) {
1197 if (shstk_update_last_frame(trampoline_vaddr
)) {
1201 return orig_ret_vaddr
;
1204 if (nleft
!= rasize
) {
1205 pr_err("return address clobbered: pid=%d, %%sp=%#lx, %%ip=%#lx\n",
1206 current
->pid
, regs
->sp
, regs
->ip
);
1214 bool arch_uretprobe_is_alive(struct return_instance
*ret
, enum rp_check ctx
,
1215 struct pt_regs
*regs
)
1217 if (ctx
== RP_CHECK_CALL
) /* sp was just decremented by "call" insn */
1218 return regs
->sp
< ret
->stack
;
1220 return regs
->sp
<= ret
->stack
;