1 // SPDX-License-Identifier: GPL-2.0-only
3 * KVM Microsoft Hyper-V emulation
5 * derived from arch/x86/kvm/x86.c
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com>
14 * Avi Kivity <avi@qumranet.com>
15 * Yaniv Kamay <yaniv@qumranet.com>
16 * Amit Shah <amit.shah@qumranet.com>
17 * Ben-Ami Yassour <benami@il.ibm.com>
18 * Andrey Smetanin <asmetanin@virtuozzo.com>
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 #include <linux/cpu.h>
31 #include <linux/kvm_host.h>
32 #include <linux/highmem.h>
33 #include <linux/sched/cputime.h>
34 #include <linux/spinlock.h>
35 #include <linux/eventfd.h>
37 #include <asm/apicdef.h>
38 #include <asm/mshyperv.h>
39 #include <trace/events/kvm.h>
45 #define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, HV_VCPUS_PER_SPARSE_BANK)
48 * As per Hyper-V TLFS, extended hypercalls start from 0x8001
49 * (HvExtCallQueryCapabilities). Response of this hypercalls is a 64 bit value
50 * where each bit tells which extended hypercall is available besides
51 * HvExtCallQueryCapabilities.
53 * 0x8001 - First extended hypercall, HvExtCallQueryCapabilities, no bit
61 * Therefore, HV_EXT_CALL_MAX = 0x8001 + 64
63 #define HV_EXT_CALL_MAX (HV_EXT_CALL_QUERY_CAPABILITIES + 64)
65 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer
*stimer
,
68 static inline u64
synic_read_sint(struct kvm_vcpu_hv_synic
*synic
, int sint
)
70 return atomic64_read(&synic
->sint
[sint
]);
73 static inline int synic_get_sint_vector(u64 sint_value
)
75 if (sint_value
& HV_SYNIC_SINT_MASKED
)
77 return sint_value
& HV_SYNIC_SINT_VECTOR_MASK
;
80 static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic
*synic
,
85 for (i
= 0; i
< ARRAY_SIZE(synic
->sint
); i
++) {
86 if (synic_get_sint_vector(synic_read_sint(synic
, i
)) == vector
)
92 static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic
*synic
,
98 for (i
= 0; i
< ARRAY_SIZE(synic
->sint
); i
++) {
99 sint_value
= synic_read_sint(synic
, i
);
100 if (synic_get_sint_vector(sint_value
) == vector
&&
101 sint_value
& HV_SYNIC_SINT_AUTO_EOI
)
107 static void synic_update_vector(struct kvm_vcpu_hv_synic
*synic
,
110 struct kvm_vcpu
*vcpu
= hv_synic_to_vcpu(synic
);
111 struct kvm_hv
*hv
= to_kvm_hv(vcpu
->kvm
);
112 bool auto_eoi_old
, auto_eoi_new
;
114 if (vector
< HV_SYNIC_FIRST_VALID_VECTOR
)
117 if (synic_has_vector_connected(synic
, vector
))
118 __set_bit(vector
, synic
->vec_bitmap
);
120 __clear_bit(vector
, synic
->vec_bitmap
);
122 auto_eoi_old
= !bitmap_empty(synic
->auto_eoi_bitmap
, 256);
124 if (synic_has_vector_auto_eoi(synic
, vector
))
125 __set_bit(vector
, synic
->auto_eoi_bitmap
);
127 __clear_bit(vector
, synic
->auto_eoi_bitmap
);
129 auto_eoi_new
= !bitmap_empty(synic
->auto_eoi_bitmap
, 256);
131 if (auto_eoi_old
== auto_eoi_new
)
137 down_write(&vcpu
->kvm
->arch
.apicv_update_lock
);
140 hv
->synic_auto_eoi_used
++;
142 hv
->synic_auto_eoi_used
--;
145 * Inhibit APICv if any vCPU is using SynIC's AutoEOI, which relies on
146 * the hypervisor to manually inject IRQs.
148 __kvm_set_or_clear_apicv_inhibit(vcpu
->kvm
,
149 APICV_INHIBIT_REASON_HYPERV
,
150 !!hv
->synic_auto_eoi_used
);
152 up_write(&vcpu
->kvm
->arch
.apicv_update_lock
);
155 static int synic_set_sint(struct kvm_vcpu_hv_synic
*synic
, int sint
,
158 int vector
, old_vector
;
161 vector
= data
& HV_SYNIC_SINT_VECTOR_MASK
;
162 masked
= data
& HV_SYNIC_SINT_MASKED
;
165 * Valid vectors are 16-255, however, nested Hyper-V attempts to write
166 * default '0x10000' value on boot and this should not #GP. We need to
167 * allow zero-initing the register from host as well.
169 if (vector
< HV_SYNIC_FIRST_VALID_VECTOR
&& !host
&& !masked
)
172 * Guest may configure multiple SINTs to use the same vector, so
173 * we maintain a bitmap of vectors handled by synic, and a
174 * bitmap of vectors with auto-eoi behavior. The bitmaps are
175 * updated here, and atomically queried on fast paths.
177 old_vector
= synic_read_sint(synic
, sint
) & HV_SYNIC_SINT_VECTOR_MASK
;
179 atomic64_set(&synic
->sint
[sint
], data
);
181 synic_update_vector(synic
, old_vector
);
183 synic_update_vector(synic
, vector
);
185 /* Load SynIC vectors into EOI exit bitmap */
186 kvm_make_request(KVM_REQ_SCAN_IOAPIC
, hv_synic_to_vcpu(synic
));
190 static struct kvm_vcpu
*get_vcpu_by_vpidx(struct kvm
*kvm
, u32 vpidx
)
192 struct kvm_vcpu
*vcpu
= NULL
;
195 if (vpidx
>= KVM_MAX_VCPUS
)
198 vcpu
= kvm_get_vcpu(kvm
, vpidx
);
199 if (vcpu
&& kvm_hv_get_vpindex(vcpu
) == vpidx
)
201 kvm_for_each_vcpu(i
, vcpu
, kvm
)
202 if (kvm_hv_get_vpindex(vcpu
) == vpidx
)
207 static struct kvm_vcpu_hv_synic
*synic_get(struct kvm
*kvm
, u32 vpidx
)
209 struct kvm_vcpu
*vcpu
;
210 struct kvm_vcpu_hv_synic
*synic
;
212 vcpu
= get_vcpu_by_vpidx(kvm
, vpidx
);
213 if (!vcpu
|| !to_hv_vcpu(vcpu
))
215 synic
= to_hv_synic(vcpu
);
216 return (synic
->active
) ? synic
: NULL
;
219 static void kvm_hv_notify_acked_sint(struct kvm_vcpu
*vcpu
, u32 sint
)
221 struct kvm
*kvm
= vcpu
->kvm
;
222 struct kvm_vcpu_hv_synic
*synic
= to_hv_synic(vcpu
);
223 struct kvm_vcpu_hv
*hv_vcpu
= to_hv_vcpu(vcpu
);
224 struct kvm_vcpu_hv_stimer
*stimer
;
227 trace_kvm_hv_notify_acked_sint(vcpu
->vcpu_id
, sint
);
229 /* Try to deliver pending Hyper-V SynIC timers messages */
230 for (idx
= 0; idx
< ARRAY_SIZE(hv_vcpu
->stimer
); idx
++) {
231 stimer
= &hv_vcpu
->stimer
[idx
];
232 if (stimer
->msg_pending
&& stimer
->config
.enable
&&
233 !stimer
->config
.direct_mode
&&
234 stimer
->config
.sintx
== sint
)
235 stimer_mark_pending(stimer
, false);
238 idx
= srcu_read_lock(&kvm
->irq_srcu
);
239 gsi
= atomic_read(&synic
->sint_to_gsi
[sint
]);
241 kvm_notify_acked_gsi(kvm
, gsi
);
242 srcu_read_unlock(&kvm
->irq_srcu
, idx
);
245 static void synic_exit(struct kvm_vcpu_hv_synic
*synic
, u32 msr
)
247 struct kvm_vcpu
*vcpu
= hv_synic_to_vcpu(synic
);
248 struct kvm_vcpu_hv
*hv_vcpu
= to_hv_vcpu(vcpu
);
250 hv_vcpu
->exit
.type
= KVM_EXIT_HYPERV_SYNIC
;
251 hv_vcpu
->exit
.u
.synic
.msr
= msr
;
252 hv_vcpu
->exit
.u
.synic
.control
= synic
->control
;
253 hv_vcpu
->exit
.u
.synic
.evt_page
= synic
->evt_page
;
254 hv_vcpu
->exit
.u
.synic
.msg_page
= synic
->msg_page
;
256 kvm_make_request(KVM_REQ_HV_EXIT
, vcpu
);
259 static int synic_set_msr(struct kvm_vcpu_hv_synic
*synic
,
260 u32 msr
, u64 data
, bool host
)
262 struct kvm_vcpu
*vcpu
= hv_synic_to_vcpu(synic
);
265 if (!synic
->active
&& (!host
|| data
))
268 trace_kvm_hv_synic_set_msr(vcpu
->vcpu_id
, msr
, data
, host
);
272 case HV_X64_MSR_SCONTROL
:
273 synic
->control
= data
;
275 synic_exit(synic
, msr
);
277 case HV_X64_MSR_SVERSION
:
282 synic
->version
= data
;
284 case HV_X64_MSR_SIEFP
:
285 if ((data
& HV_SYNIC_SIEFP_ENABLE
) && !host
&&
286 !synic
->dont_zero_synic_pages
)
287 if (kvm_clear_guest(vcpu
->kvm
,
288 data
& PAGE_MASK
, PAGE_SIZE
)) {
292 synic
->evt_page
= data
;
294 synic_exit(synic
, msr
);
296 case HV_X64_MSR_SIMP
:
297 if ((data
& HV_SYNIC_SIMP_ENABLE
) && !host
&&
298 !synic
->dont_zero_synic_pages
)
299 if (kvm_clear_guest(vcpu
->kvm
,
300 data
& PAGE_MASK
, PAGE_SIZE
)) {
304 synic
->msg_page
= data
;
306 synic_exit(synic
, msr
);
308 case HV_X64_MSR_EOM
: {
314 for (i
= 0; i
< ARRAY_SIZE(synic
->sint
); i
++)
315 kvm_hv_notify_acked_sint(vcpu
, i
);
318 case HV_X64_MSR_SINT0
... HV_X64_MSR_SINT15
:
319 ret
= synic_set_sint(synic
, msr
- HV_X64_MSR_SINT0
, data
, host
);
328 static bool kvm_hv_is_syndbg_enabled(struct kvm_vcpu
*vcpu
)
330 struct kvm_vcpu_hv
*hv_vcpu
= to_hv_vcpu(vcpu
);
332 return hv_vcpu
->cpuid_cache
.syndbg_cap_eax
&
333 HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING
;
336 static int kvm_hv_syndbg_complete_userspace(struct kvm_vcpu
*vcpu
)
338 struct kvm_hv
*hv
= to_kvm_hv(vcpu
->kvm
);
340 if (vcpu
->run
->hyperv
.u
.syndbg
.msr
== HV_X64_MSR_SYNDBG_CONTROL
)
341 hv
->hv_syndbg
.control
.status
=
342 vcpu
->run
->hyperv
.u
.syndbg
.status
;
346 static void syndbg_exit(struct kvm_vcpu
*vcpu
, u32 msr
)
348 struct kvm_hv_syndbg
*syndbg
= to_hv_syndbg(vcpu
);
349 struct kvm_vcpu_hv
*hv_vcpu
= to_hv_vcpu(vcpu
);
351 hv_vcpu
->exit
.type
= KVM_EXIT_HYPERV_SYNDBG
;
352 hv_vcpu
->exit
.u
.syndbg
.msr
= msr
;
353 hv_vcpu
->exit
.u
.syndbg
.control
= syndbg
->control
.control
;
354 hv_vcpu
->exit
.u
.syndbg
.send_page
= syndbg
->control
.send_page
;
355 hv_vcpu
->exit
.u
.syndbg
.recv_page
= syndbg
->control
.recv_page
;
356 hv_vcpu
->exit
.u
.syndbg
.pending_page
= syndbg
->control
.pending_page
;
357 vcpu
->arch
.complete_userspace_io
=
358 kvm_hv_syndbg_complete_userspace
;
360 kvm_make_request(KVM_REQ_HV_EXIT
, vcpu
);
363 static int syndbg_set_msr(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
, bool host
)
365 struct kvm_hv_syndbg
*syndbg
= to_hv_syndbg(vcpu
);
367 if (!kvm_hv_is_syndbg_enabled(vcpu
) && !host
)
370 trace_kvm_hv_syndbg_set_msr(vcpu
->vcpu_id
,
371 to_hv_vcpu(vcpu
)->vp_index
, msr
, data
);
373 case HV_X64_MSR_SYNDBG_CONTROL
:
374 syndbg
->control
.control
= data
;
376 syndbg_exit(vcpu
, msr
);
378 case HV_X64_MSR_SYNDBG_STATUS
:
379 syndbg
->control
.status
= data
;
381 case HV_X64_MSR_SYNDBG_SEND_BUFFER
:
382 syndbg
->control
.send_page
= data
;
384 case HV_X64_MSR_SYNDBG_RECV_BUFFER
:
385 syndbg
->control
.recv_page
= data
;
387 case HV_X64_MSR_SYNDBG_PENDING_BUFFER
:
388 syndbg
->control
.pending_page
= data
;
390 syndbg_exit(vcpu
, msr
);
392 case HV_X64_MSR_SYNDBG_OPTIONS
:
393 syndbg
->options
= data
;
402 static int syndbg_get_msr(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
, bool host
)
404 struct kvm_hv_syndbg
*syndbg
= to_hv_syndbg(vcpu
);
406 if (!kvm_hv_is_syndbg_enabled(vcpu
) && !host
)
410 case HV_X64_MSR_SYNDBG_CONTROL
:
411 *pdata
= syndbg
->control
.control
;
413 case HV_X64_MSR_SYNDBG_STATUS
:
414 *pdata
= syndbg
->control
.status
;
416 case HV_X64_MSR_SYNDBG_SEND_BUFFER
:
417 *pdata
= syndbg
->control
.send_page
;
419 case HV_X64_MSR_SYNDBG_RECV_BUFFER
:
420 *pdata
= syndbg
->control
.recv_page
;
422 case HV_X64_MSR_SYNDBG_PENDING_BUFFER
:
423 *pdata
= syndbg
->control
.pending_page
;
425 case HV_X64_MSR_SYNDBG_OPTIONS
:
426 *pdata
= syndbg
->options
;
432 trace_kvm_hv_syndbg_get_msr(vcpu
->vcpu_id
, kvm_hv_get_vpindex(vcpu
), msr
, *pdata
);
437 static int synic_get_msr(struct kvm_vcpu_hv_synic
*synic
, u32 msr
, u64
*pdata
,
442 if (!synic
->active
&& !host
)
447 case HV_X64_MSR_SCONTROL
:
448 *pdata
= synic
->control
;
450 case HV_X64_MSR_SVERSION
:
451 *pdata
= synic
->version
;
453 case HV_X64_MSR_SIEFP
:
454 *pdata
= synic
->evt_page
;
456 case HV_X64_MSR_SIMP
:
457 *pdata
= synic
->msg_page
;
462 case HV_X64_MSR_SINT0
... HV_X64_MSR_SINT15
:
463 *pdata
= atomic64_read(&synic
->sint
[msr
- HV_X64_MSR_SINT0
]);
472 static int synic_set_irq(struct kvm_vcpu_hv_synic
*synic
, u32 sint
)
474 struct kvm_vcpu
*vcpu
= hv_synic_to_vcpu(synic
);
475 struct kvm_lapic_irq irq
;
478 if (KVM_BUG_ON(!lapic_in_kernel(vcpu
), vcpu
->kvm
))
481 if (sint
>= ARRAY_SIZE(synic
->sint
))
484 vector
= synic_get_sint_vector(synic_read_sint(synic
, sint
));
488 memset(&irq
, 0, sizeof(irq
));
489 irq
.shorthand
= APIC_DEST_SELF
;
490 irq
.dest_mode
= APIC_DEST_PHYSICAL
;
491 irq
.delivery_mode
= APIC_DM_FIXED
;
495 ret
= kvm_irq_delivery_to_apic(vcpu
->kvm
, vcpu
->arch
.apic
, &irq
, NULL
);
496 trace_kvm_hv_synic_set_irq(vcpu
->vcpu_id
, sint
, irq
.vector
, ret
);
500 int kvm_hv_synic_set_irq(struct kvm
*kvm
, u32 vpidx
, u32 sint
)
502 struct kvm_vcpu_hv_synic
*synic
;
504 synic
= synic_get(kvm
, vpidx
);
508 return synic_set_irq(synic
, sint
);
511 void kvm_hv_synic_send_eoi(struct kvm_vcpu
*vcpu
, int vector
)
513 struct kvm_vcpu_hv_synic
*synic
= to_hv_synic(vcpu
);
516 trace_kvm_hv_synic_send_eoi(vcpu
->vcpu_id
, vector
);
518 for (i
= 0; i
< ARRAY_SIZE(synic
->sint
); i
++)
519 if (synic_get_sint_vector(synic_read_sint(synic
, i
)) == vector
)
520 kvm_hv_notify_acked_sint(vcpu
, i
);
523 static int kvm_hv_set_sint_gsi(struct kvm
*kvm
, u32 vpidx
, u32 sint
, int gsi
)
525 struct kvm_vcpu_hv_synic
*synic
;
527 synic
= synic_get(kvm
, vpidx
);
531 if (sint
>= ARRAY_SIZE(synic
->sint_to_gsi
))
534 atomic_set(&synic
->sint_to_gsi
[sint
], gsi
);
538 void kvm_hv_irq_routing_update(struct kvm
*kvm
)
540 struct kvm_irq_routing_table
*irq_rt
;
541 struct kvm_kernel_irq_routing_entry
*e
;
544 irq_rt
= srcu_dereference_check(kvm
->irq_routing
, &kvm
->irq_srcu
,
545 lockdep_is_held(&kvm
->irq_lock
));
547 for (gsi
= 0; gsi
< irq_rt
->nr_rt_entries
; gsi
++) {
548 hlist_for_each_entry(e
, &irq_rt
->map
[gsi
], link
) {
549 if (e
->type
== KVM_IRQ_ROUTING_HV_SINT
)
550 kvm_hv_set_sint_gsi(kvm
, e
->hv_sint
.vcpu
,
551 e
->hv_sint
.sint
, gsi
);
556 static void synic_init(struct kvm_vcpu_hv_synic
*synic
)
560 memset(synic
, 0, sizeof(*synic
));
561 synic
->version
= HV_SYNIC_VERSION_1
;
562 for (i
= 0; i
< ARRAY_SIZE(synic
->sint
); i
++) {
563 atomic64_set(&synic
->sint
[i
], HV_SYNIC_SINT_MASKED
);
564 atomic_set(&synic
->sint_to_gsi
[i
], -1);
568 static u64
get_time_ref_counter(struct kvm
*kvm
)
570 struct kvm_hv
*hv
= to_kvm_hv(kvm
);
571 struct kvm_vcpu
*vcpu
;
575 * Fall back to get_kvmclock_ns() when TSC page hasn't been set up,
576 * is broken, disabled or being updated.
578 if (hv
->hv_tsc_page_status
!= HV_TSC_PAGE_SET
)
579 return div_u64(get_kvmclock_ns(kvm
), 100);
581 vcpu
= kvm_get_vcpu(kvm
, 0);
582 tsc
= kvm_read_l1_tsc(vcpu
, rdtsc());
583 return mul_u64_u64_shr(tsc
, hv
->tsc_ref
.tsc_scale
, 64)
584 + hv
->tsc_ref
.tsc_offset
;
587 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer
*stimer
,
590 struct kvm_vcpu
*vcpu
= hv_stimer_to_vcpu(stimer
);
592 set_bit(stimer
->index
,
593 to_hv_vcpu(vcpu
)->stimer_pending_bitmap
);
594 kvm_make_request(KVM_REQ_HV_STIMER
, vcpu
);
599 static void stimer_cleanup(struct kvm_vcpu_hv_stimer
*stimer
)
601 struct kvm_vcpu
*vcpu
= hv_stimer_to_vcpu(stimer
);
603 trace_kvm_hv_stimer_cleanup(hv_stimer_to_vcpu(stimer
)->vcpu_id
,
606 hrtimer_cancel(&stimer
->timer
);
607 clear_bit(stimer
->index
,
608 to_hv_vcpu(vcpu
)->stimer_pending_bitmap
);
609 stimer
->msg_pending
= false;
610 stimer
->exp_time
= 0;
613 static enum hrtimer_restart
stimer_timer_callback(struct hrtimer
*timer
)
615 struct kvm_vcpu_hv_stimer
*stimer
;
617 stimer
= container_of(timer
, struct kvm_vcpu_hv_stimer
, timer
);
618 trace_kvm_hv_stimer_callback(hv_stimer_to_vcpu(stimer
)->vcpu_id
,
620 stimer_mark_pending(stimer
, true);
622 return HRTIMER_NORESTART
;
626 * stimer_start() assumptions:
627 * a) stimer->count is not equal to 0
628 * b) stimer->config has HV_STIMER_ENABLE flag
630 static int stimer_start(struct kvm_vcpu_hv_stimer
*stimer
)
635 time_now
= get_time_ref_counter(hv_stimer_to_vcpu(stimer
)->kvm
);
636 ktime_now
= ktime_get();
638 if (stimer
->config
.periodic
) {
639 if (stimer
->exp_time
) {
640 if (time_now
>= stimer
->exp_time
) {
643 div64_u64_rem(time_now
- stimer
->exp_time
,
644 stimer
->count
, &remainder
);
646 time_now
+ (stimer
->count
- remainder
);
649 stimer
->exp_time
= time_now
+ stimer
->count
;
651 trace_kvm_hv_stimer_start_periodic(
652 hv_stimer_to_vcpu(stimer
)->vcpu_id
,
654 time_now
, stimer
->exp_time
);
656 hrtimer_start(&stimer
->timer
,
657 ktime_add_ns(ktime_now
,
658 100 * (stimer
->exp_time
- time_now
)),
662 stimer
->exp_time
= stimer
->count
;
663 if (time_now
>= stimer
->count
) {
665 * Expire timer according to Hypervisor Top-Level Functional
666 * specification v4(15.3.1):
667 * "If a one shot is enabled and the specified count is in
668 * the past, it will expire immediately."
670 stimer_mark_pending(stimer
, false);
674 trace_kvm_hv_stimer_start_one_shot(hv_stimer_to_vcpu(stimer
)->vcpu_id
,
676 time_now
, stimer
->count
);
678 hrtimer_start(&stimer
->timer
,
679 ktime_add_ns(ktime_now
, 100 * (stimer
->count
- time_now
)),
684 static int stimer_set_config(struct kvm_vcpu_hv_stimer
*stimer
, u64 config
,
687 union hv_stimer_config new_config
= {.as_uint64
= config
},
688 old_config
= {.as_uint64
= stimer
->config
.as_uint64
};
689 struct kvm_vcpu
*vcpu
= hv_stimer_to_vcpu(stimer
);
690 struct kvm_vcpu_hv
*hv_vcpu
= to_hv_vcpu(vcpu
);
691 struct kvm_vcpu_hv_synic
*synic
= to_hv_synic(vcpu
);
693 if (!synic
->active
&& (!host
|| config
))
696 if (unlikely(!host
&& hv_vcpu
->enforce_cpuid
&& new_config
.direct_mode
&&
697 !(hv_vcpu
->cpuid_cache
.features_edx
&
698 HV_STIMER_DIRECT_MODE_AVAILABLE
)))
701 trace_kvm_hv_stimer_set_config(hv_stimer_to_vcpu(stimer
)->vcpu_id
,
702 stimer
->index
, config
, host
);
704 stimer_cleanup(stimer
);
705 if (old_config
.enable
&&
706 !new_config
.direct_mode
&& new_config
.sintx
== 0)
707 new_config
.enable
= 0;
708 stimer
->config
.as_uint64
= new_config
.as_uint64
;
710 if (stimer
->config
.enable
)
711 stimer_mark_pending(stimer
, false);
716 static int stimer_set_count(struct kvm_vcpu_hv_stimer
*stimer
, u64 count
,
719 struct kvm_vcpu
*vcpu
= hv_stimer_to_vcpu(stimer
);
720 struct kvm_vcpu_hv_synic
*synic
= to_hv_synic(vcpu
);
722 if (!synic
->active
&& (!host
|| count
))
725 trace_kvm_hv_stimer_set_count(hv_stimer_to_vcpu(stimer
)->vcpu_id
,
726 stimer
->index
, count
, host
);
728 stimer_cleanup(stimer
);
729 stimer
->count
= count
;
731 if (stimer
->count
== 0)
732 stimer
->config
.enable
= 0;
733 else if (stimer
->config
.auto_enable
)
734 stimer
->config
.enable
= 1;
737 if (stimer
->config
.enable
)
738 stimer_mark_pending(stimer
, false);
743 static int stimer_get_config(struct kvm_vcpu_hv_stimer
*stimer
, u64
*pconfig
)
745 *pconfig
= stimer
->config
.as_uint64
;
749 static int stimer_get_count(struct kvm_vcpu_hv_stimer
*stimer
, u64
*pcount
)
751 *pcount
= stimer
->count
;
755 static int synic_deliver_msg(struct kvm_vcpu_hv_synic
*synic
, u32 sint
,
756 struct hv_message
*src_msg
, bool no_retry
)
758 struct kvm_vcpu
*vcpu
= hv_synic_to_vcpu(synic
);
759 int msg_off
= offsetof(struct hv_message_page
, sint_message
[sint
]);
761 struct hv_message_header hv_hdr
;
764 if (!(synic
->msg_page
& HV_SYNIC_SIMP_ENABLE
))
767 msg_page_gfn
= synic
->msg_page
>> PAGE_SHIFT
;
770 * Strictly following the spec-mandated ordering would assume setting
771 * .msg_pending before checking .message_type. However, this function
772 * is only called in vcpu context so the entire update is atomic from
773 * guest POV and thus the exact order here doesn't matter.
775 r
= kvm_vcpu_read_guest_page(vcpu
, msg_page_gfn
, &hv_hdr
.message_type
,
776 msg_off
+ offsetof(struct hv_message
,
777 header
.message_type
),
778 sizeof(hv_hdr
.message_type
));
782 if (hv_hdr
.message_type
!= HVMSG_NONE
) {
786 hv_hdr
.message_flags
.msg_pending
= 1;
787 r
= kvm_vcpu_write_guest_page(vcpu
, msg_page_gfn
,
788 &hv_hdr
.message_flags
,
790 offsetof(struct hv_message
,
791 header
.message_flags
),
792 sizeof(hv_hdr
.message_flags
));
798 r
= kvm_vcpu_write_guest_page(vcpu
, msg_page_gfn
, src_msg
, msg_off
,
799 sizeof(src_msg
->header
) +
800 src_msg
->header
.payload_size
);
804 r
= synic_set_irq(synic
, sint
);
812 static int stimer_send_msg(struct kvm_vcpu_hv_stimer
*stimer
)
814 struct kvm_vcpu
*vcpu
= hv_stimer_to_vcpu(stimer
);
815 struct hv_message
*msg
= &stimer
->msg
;
816 struct hv_timer_message_payload
*payload
=
817 (struct hv_timer_message_payload
*)&msg
->u
.payload
;
820 * To avoid piling up periodic ticks, don't retry message
821 * delivery for them (within "lazy" lost ticks policy).
823 bool no_retry
= stimer
->config
.periodic
;
825 payload
->expiration_time
= stimer
->exp_time
;
826 payload
->delivery_time
= get_time_ref_counter(vcpu
->kvm
);
827 return synic_deliver_msg(to_hv_synic(vcpu
),
828 stimer
->config
.sintx
, msg
,
832 static int stimer_notify_direct(struct kvm_vcpu_hv_stimer
*stimer
)
834 struct kvm_vcpu
*vcpu
= hv_stimer_to_vcpu(stimer
);
835 struct kvm_lapic_irq irq
= {
836 .delivery_mode
= APIC_DM_FIXED
,
837 .vector
= stimer
->config
.apic_vector
840 if (lapic_in_kernel(vcpu
))
841 return !kvm_apic_set_irq(vcpu
, &irq
, NULL
);
845 static void stimer_expiration(struct kvm_vcpu_hv_stimer
*stimer
)
847 int r
, direct
= stimer
->config
.direct_mode
;
849 stimer
->msg_pending
= true;
851 r
= stimer_send_msg(stimer
);
853 r
= stimer_notify_direct(stimer
);
854 trace_kvm_hv_stimer_expiration(hv_stimer_to_vcpu(stimer
)->vcpu_id
,
855 stimer
->index
, direct
, r
);
857 stimer
->msg_pending
= false;
858 if (!(stimer
->config
.periodic
))
859 stimer
->config
.enable
= 0;
863 void kvm_hv_process_stimers(struct kvm_vcpu
*vcpu
)
865 struct kvm_vcpu_hv
*hv_vcpu
= to_hv_vcpu(vcpu
);
866 struct kvm_vcpu_hv_stimer
*stimer
;
867 u64 time_now
, exp_time
;
873 for (i
= 0; i
< ARRAY_SIZE(hv_vcpu
->stimer
); i
++)
874 if (test_and_clear_bit(i
, hv_vcpu
->stimer_pending_bitmap
)) {
875 stimer
= &hv_vcpu
->stimer
[i
];
876 if (stimer
->config
.enable
) {
877 exp_time
= stimer
->exp_time
;
881 get_time_ref_counter(vcpu
->kvm
);
882 if (time_now
>= exp_time
)
883 stimer_expiration(stimer
);
886 if ((stimer
->config
.enable
) &&
888 if (!stimer
->msg_pending
)
889 stimer_start(stimer
);
891 stimer_cleanup(stimer
);
896 void kvm_hv_vcpu_uninit(struct kvm_vcpu
*vcpu
)
898 struct kvm_vcpu_hv
*hv_vcpu
= to_hv_vcpu(vcpu
);
904 for (i
= 0; i
< ARRAY_SIZE(hv_vcpu
->stimer
); i
++)
905 stimer_cleanup(&hv_vcpu
->stimer
[i
]);
908 vcpu
->arch
.hyperv
= NULL
;
911 bool kvm_hv_assist_page_enabled(struct kvm_vcpu
*vcpu
)
913 struct kvm_vcpu_hv
*hv_vcpu
= to_hv_vcpu(vcpu
);
918 if (!(hv_vcpu
->hv_vapic
& HV_X64_MSR_VP_ASSIST_PAGE_ENABLE
))
920 return vcpu
->arch
.pv_eoi
.msr_val
& KVM_MSR_ENABLED
;
922 EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled
);
924 int kvm_hv_get_assist_page(struct kvm_vcpu
*vcpu
)
926 struct kvm_vcpu_hv
*hv_vcpu
= to_hv_vcpu(vcpu
);
928 if (!hv_vcpu
|| !kvm_hv_assist_page_enabled(vcpu
))
931 return kvm_read_guest_cached(vcpu
->kvm
, &vcpu
->arch
.pv_eoi
.data
,
932 &hv_vcpu
->vp_assist_page
, sizeof(struct hv_vp_assist_page
));
934 EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page
);
936 static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer
*stimer
)
938 struct hv_message
*msg
= &stimer
->msg
;
939 struct hv_timer_message_payload
*payload
=
940 (struct hv_timer_message_payload
*)&msg
->u
.payload
;
942 memset(&msg
->header
, 0, sizeof(msg
->header
));
943 msg
->header
.message_type
= HVMSG_TIMER_EXPIRED
;
944 msg
->header
.payload_size
= sizeof(*payload
);
946 payload
->timer_index
= stimer
->index
;
947 payload
->expiration_time
= 0;
948 payload
->delivery_time
= 0;
951 static void stimer_init(struct kvm_vcpu_hv_stimer
*stimer
, int timer_index
)
953 memset(stimer
, 0, sizeof(*stimer
));
954 stimer
->index
= timer_index
;
955 hrtimer_init(&stimer
->timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
956 stimer
->timer
.function
= stimer_timer_callback
;
957 stimer_prepare_msg(stimer
);
960 int kvm_hv_vcpu_init(struct kvm_vcpu
*vcpu
)
962 struct kvm_vcpu_hv
*hv_vcpu
= to_hv_vcpu(vcpu
);
968 hv_vcpu
= kzalloc(sizeof(struct kvm_vcpu_hv
), GFP_KERNEL_ACCOUNT
);
972 vcpu
->arch
.hyperv
= hv_vcpu
;
973 hv_vcpu
->vcpu
= vcpu
;
975 synic_init(&hv_vcpu
->synic
);
977 bitmap_zero(hv_vcpu
->stimer_pending_bitmap
, HV_SYNIC_STIMER_COUNT
);
978 for (i
= 0; i
< ARRAY_SIZE(hv_vcpu
->stimer
); i
++)
979 stimer_init(&hv_vcpu
->stimer
[i
], i
);
981 hv_vcpu
->vp_index
= vcpu
->vcpu_idx
;
983 for (i
= 0; i
< HV_NR_TLB_FLUSH_FIFOS
; i
++) {
984 INIT_KFIFO(hv_vcpu
->tlb_flush_fifo
[i
].entries
);
985 spin_lock_init(&hv_vcpu
->tlb_flush_fifo
[i
].write_lock
);
991 int kvm_hv_activate_synic(struct kvm_vcpu
*vcpu
, bool dont_zero_synic_pages
)
993 struct kvm_vcpu_hv_synic
*synic
;
996 r
= kvm_hv_vcpu_init(vcpu
);
1000 synic
= to_hv_synic(vcpu
);
1002 synic
->active
= true;
1003 synic
->dont_zero_synic_pages
= dont_zero_synic_pages
;
1004 synic
->control
= HV_SYNIC_CONTROL_ENABLE
;
1008 static bool kvm_hv_msr_partition_wide(u32 msr
)
1013 case HV_X64_MSR_GUEST_OS_ID
:
1014 case HV_X64_MSR_HYPERCALL
:
1015 case HV_X64_MSR_REFERENCE_TSC
:
1016 case HV_X64_MSR_TIME_REF_COUNT
:
1017 case HV_X64_MSR_CRASH_CTL
:
1018 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
1019 case HV_X64_MSR_RESET
:
1020 case HV_X64_MSR_REENLIGHTENMENT_CONTROL
:
1021 case HV_X64_MSR_TSC_EMULATION_CONTROL
:
1022 case HV_X64_MSR_TSC_EMULATION_STATUS
:
1023 case HV_X64_MSR_TSC_INVARIANT_CONTROL
:
1024 case HV_X64_MSR_SYNDBG_OPTIONS
:
1025 case HV_X64_MSR_SYNDBG_CONTROL
... HV_X64_MSR_SYNDBG_PENDING_BUFFER
:
1033 static int kvm_hv_msr_get_crash_data(struct kvm
*kvm
, u32 index
, u64
*pdata
)
1035 struct kvm_hv
*hv
= to_kvm_hv(kvm
);
1036 size_t size
= ARRAY_SIZE(hv
->hv_crash_param
);
1038 if (WARN_ON_ONCE(index
>= size
))
1041 *pdata
= hv
->hv_crash_param
[array_index_nospec(index
, size
)];
1045 static int kvm_hv_msr_get_crash_ctl(struct kvm
*kvm
, u64
*pdata
)
1047 struct kvm_hv
*hv
= to_kvm_hv(kvm
);
1049 *pdata
= hv
->hv_crash_ctl
;
1053 static int kvm_hv_msr_set_crash_ctl(struct kvm
*kvm
, u64 data
)
1055 struct kvm_hv
*hv
= to_kvm_hv(kvm
);
1057 hv
->hv_crash_ctl
= data
& HV_CRASH_CTL_CRASH_NOTIFY
;
1062 static int kvm_hv_msr_set_crash_data(struct kvm
*kvm
, u32 index
, u64 data
)
1064 struct kvm_hv
*hv
= to_kvm_hv(kvm
);
1065 size_t size
= ARRAY_SIZE(hv
->hv_crash_param
);
1067 if (WARN_ON_ONCE(index
>= size
))
1070 hv
->hv_crash_param
[array_index_nospec(index
, size
)] = data
;
1075 * The kvmclock and Hyper-V TSC page use similar formulas, and converting
1076 * between them is possible:
1079 * nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32)
1083 * nsec/100 = ticks * scale / 2^64 + offset
1085 * When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula.
1086 * By dividing the kvmclock formula by 100 and equating what's left we get:
1087 * ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1088 * scale / 2^64 = tsc_to_system_mul * 2^(tsc_shift-32) / 100
1089 * scale = tsc_to_system_mul * 2^(32+tsc_shift) / 100
1091 * Now expand the kvmclock formula and divide by 100:
1092 * nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32)
1093 * - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32)
1095 * nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1096 * - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1097 * + system_time / 100
1099 * Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64:
1100 * nsec/100 = ticks * scale / 2^64
1101 * - tsc_timestamp * scale / 2^64
1102 * + system_time / 100
1104 * Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out:
1105 * offset = system_time / 100 - tsc_timestamp * scale / 2^64
1107 * These two equivalencies are implemented in this function.
1109 static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info
*hv_clock
,
1110 struct ms_hyperv_tsc_page
*tsc_ref
)
1114 if (!(hv_clock
->flags
& PVCLOCK_TSC_STABLE_BIT
))
1118 * check if scale would overflow, if so we use the time ref counter
1119 * tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64
1120 * tsc_to_system_mul / 100 >= 2^(32-tsc_shift)
1121 * tsc_to_system_mul >= 100 * 2^(32-tsc_shift)
1123 max_mul
= 100ull << (32 - hv_clock
->tsc_shift
);
1124 if (hv_clock
->tsc_to_system_mul
>= max_mul
)
1128 * Otherwise compute the scale and offset according to the formulas
1131 tsc_ref
->tsc_scale
=
1132 mul_u64_u32_div(1ULL << (32 + hv_clock
->tsc_shift
),
1133 hv_clock
->tsc_to_system_mul
,
1136 tsc_ref
->tsc_offset
= hv_clock
->system_time
;
1137 do_div(tsc_ref
->tsc_offset
, 100);
1138 tsc_ref
->tsc_offset
-=
1139 mul_u64_u64_shr(hv_clock
->tsc_timestamp
, tsc_ref
->tsc_scale
, 64);
1144 * Don't touch TSC page values if the guest has opted for TSC emulation after
1145 * migration. KVM doesn't fully support reenlightenment notifications and TSC
1146 * access emulation and Hyper-V is known to expect the values in TSC page to
1147 * stay constant before TSC access emulation is disabled from guest side
1148 * (HV_X64_MSR_TSC_EMULATION_STATUS). KVM userspace is expected to preserve TSC
1149 * frequency and guest visible TSC value across migration (and prevent it when
1150 * TSC scaling is unsupported).
1152 static inline bool tsc_page_update_unsafe(struct kvm_hv
*hv
)
1154 return (hv
->hv_tsc_page_status
!= HV_TSC_PAGE_GUEST_CHANGED
) &&
1155 hv
->hv_tsc_emulation_control
;
1158 void kvm_hv_setup_tsc_page(struct kvm
*kvm
,
1159 struct pvclock_vcpu_time_info
*hv_clock
)
1161 struct kvm_hv
*hv
= to_kvm_hv(kvm
);
1165 BUILD_BUG_ON(sizeof(tsc_seq
) != sizeof(hv
->tsc_ref
.tsc_sequence
));
1166 BUILD_BUG_ON(offsetof(struct ms_hyperv_tsc_page
, tsc_sequence
) != 0);
1168 mutex_lock(&hv
->hv_lock
);
1170 if (hv
->hv_tsc_page_status
== HV_TSC_PAGE_BROKEN
||
1171 hv
->hv_tsc_page_status
== HV_TSC_PAGE_SET
||
1172 hv
->hv_tsc_page_status
== HV_TSC_PAGE_UNSET
)
1175 if (!(hv
->hv_tsc_page
& HV_X64_MSR_TSC_REFERENCE_ENABLE
))
1178 gfn
= hv
->hv_tsc_page
>> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT
;
1180 * Because the TSC parameters only vary when there is a
1181 * change in the master clock, do not bother with caching.
1183 if (unlikely(kvm_read_guest(kvm
, gfn_to_gpa(gfn
),
1184 &tsc_seq
, sizeof(tsc_seq
))))
1187 if (tsc_seq
&& tsc_page_update_unsafe(hv
)) {
1188 if (kvm_read_guest(kvm
, gfn_to_gpa(gfn
), &hv
->tsc_ref
, sizeof(hv
->tsc_ref
)))
1191 hv
->hv_tsc_page_status
= HV_TSC_PAGE_SET
;
1196 * While we're computing and writing the parameters, force the
1197 * guest to use the time reference count MSR.
1199 hv
->tsc_ref
.tsc_sequence
= 0;
1200 if (kvm_write_guest(kvm
, gfn_to_gpa(gfn
),
1201 &hv
->tsc_ref
, sizeof(hv
->tsc_ref
.tsc_sequence
)))
1204 if (!compute_tsc_page_parameters(hv_clock
, &hv
->tsc_ref
))
1207 /* Ensure sequence is zero before writing the rest of the struct. */
1209 if (kvm_write_guest(kvm
, gfn_to_gpa(gfn
), &hv
->tsc_ref
, sizeof(hv
->tsc_ref
)))
1213 * Now switch to the TSC page mechanism by writing the sequence.
1216 if (tsc_seq
== 0xFFFFFFFF || tsc_seq
== 0)
1219 /* Write the struct entirely before the non-zero sequence. */
1222 hv
->tsc_ref
.tsc_sequence
= tsc_seq
;
1223 if (kvm_write_guest(kvm
, gfn_to_gpa(gfn
),
1224 &hv
->tsc_ref
, sizeof(hv
->tsc_ref
.tsc_sequence
)))
1227 hv
->hv_tsc_page_status
= HV_TSC_PAGE_SET
;
1231 hv
->hv_tsc_page_status
= HV_TSC_PAGE_BROKEN
;
1233 mutex_unlock(&hv
->hv_lock
);
1236 void kvm_hv_request_tsc_page_update(struct kvm
*kvm
)
1238 struct kvm_hv
*hv
= to_kvm_hv(kvm
);
1240 mutex_lock(&hv
->hv_lock
);
1242 if (hv
->hv_tsc_page_status
== HV_TSC_PAGE_SET
&&
1243 !tsc_page_update_unsafe(hv
))
1244 hv
->hv_tsc_page_status
= HV_TSC_PAGE_HOST_CHANGED
;
1246 mutex_unlock(&hv
->hv_lock
);
1249 static bool hv_check_msr_access(struct kvm_vcpu_hv
*hv_vcpu
, u32 msr
)
1251 if (!hv_vcpu
->enforce_cpuid
)
1255 case HV_X64_MSR_GUEST_OS_ID
:
1256 case HV_X64_MSR_HYPERCALL
:
1257 return hv_vcpu
->cpuid_cache
.features_eax
&
1258 HV_MSR_HYPERCALL_AVAILABLE
;
1259 case HV_X64_MSR_VP_RUNTIME
:
1260 return hv_vcpu
->cpuid_cache
.features_eax
&
1261 HV_MSR_VP_RUNTIME_AVAILABLE
;
1262 case HV_X64_MSR_TIME_REF_COUNT
:
1263 return hv_vcpu
->cpuid_cache
.features_eax
&
1264 HV_MSR_TIME_REF_COUNT_AVAILABLE
;
1265 case HV_X64_MSR_VP_INDEX
:
1266 return hv_vcpu
->cpuid_cache
.features_eax
&
1267 HV_MSR_VP_INDEX_AVAILABLE
;
1268 case HV_X64_MSR_RESET
:
1269 return hv_vcpu
->cpuid_cache
.features_eax
&
1270 HV_MSR_RESET_AVAILABLE
;
1271 case HV_X64_MSR_REFERENCE_TSC
:
1272 return hv_vcpu
->cpuid_cache
.features_eax
&
1273 HV_MSR_REFERENCE_TSC_AVAILABLE
;
1274 case HV_X64_MSR_SCONTROL
:
1275 case HV_X64_MSR_SVERSION
:
1276 case HV_X64_MSR_SIEFP
:
1277 case HV_X64_MSR_SIMP
:
1278 case HV_X64_MSR_EOM
:
1279 case HV_X64_MSR_SINT0
... HV_X64_MSR_SINT15
:
1280 return hv_vcpu
->cpuid_cache
.features_eax
&
1281 HV_MSR_SYNIC_AVAILABLE
;
1282 case HV_X64_MSR_STIMER0_CONFIG
:
1283 case HV_X64_MSR_STIMER1_CONFIG
:
1284 case HV_X64_MSR_STIMER2_CONFIG
:
1285 case HV_X64_MSR_STIMER3_CONFIG
:
1286 case HV_X64_MSR_STIMER0_COUNT
:
1287 case HV_X64_MSR_STIMER1_COUNT
:
1288 case HV_X64_MSR_STIMER2_COUNT
:
1289 case HV_X64_MSR_STIMER3_COUNT
:
1290 return hv_vcpu
->cpuid_cache
.features_eax
&
1291 HV_MSR_SYNTIMER_AVAILABLE
;
1292 case HV_X64_MSR_EOI
:
1293 case HV_X64_MSR_ICR
:
1294 case HV_X64_MSR_TPR
:
1295 case HV_X64_MSR_VP_ASSIST_PAGE
:
1296 return hv_vcpu
->cpuid_cache
.features_eax
&
1297 HV_MSR_APIC_ACCESS_AVAILABLE
;
1298 case HV_X64_MSR_TSC_FREQUENCY
:
1299 case HV_X64_MSR_APIC_FREQUENCY
:
1300 return hv_vcpu
->cpuid_cache
.features_eax
&
1301 HV_ACCESS_FREQUENCY_MSRS
;
1302 case HV_X64_MSR_REENLIGHTENMENT_CONTROL
:
1303 case HV_X64_MSR_TSC_EMULATION_CONTROL
:
1304 case HV_X64_MSR_TSC_EMULATION_STATUS
:
1305 return hv_vcpu
->cpuid_cache
.features_eax
&
1306 HV_ACCESS_REENLIGHTENMENT
;
1307 case HV_X64_MSR_TSC_INVARIANT_CONTROL
:
1308 return hv_vcpu
->cpuid_cache
.features_eax
&
1309 HV_ACCESS_TSC_INVARIANT
;
1310 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
1311 case HV_X64_MSR_CRASH_CTL
:
1312 return hv_vcpu
->cpuid_cache
.features_edx
&
1313 HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE
;
1314 case HV_X64_MSR_SYNDBG_OPTIONS
:
1315 case HV_X64_MSR_SYNDBG_CONTROL
... HV_X64_MSR_SYNDBG_PENDING_BUFFER
:
1316 return hv_vcpu
->cpuid_cache
.features_edx
&
1317 HV_FEATURE_DEBUG_MSRS_AVAILABLE
;
1325 #define KVM_HV_WIN2016_GUEST_ID 0x1040a00003839
1326 #define KVM_HV_WIN2016_GUEST_ID_MASK (~GENMASK_ULL(23, 16)) /* mask out the service version */
1329 * Hyper-V enabled Windows Server 2016 SMP VMs fail to boot in !XSAVES && XSAVEC
1331 * Such configuration can result from, for example, AMD Erratum 1386 workaround.
1333 * Print a notice so users aren't left wondering what's suddenly gone wrong.
1335 static void __kvm_hv_xsaves_xsavec_maybe_warn(struct kvm_vcpu
*vcpu
)
1337 struct kvm
*kvm
= vcpu
->kvm
;
1338 struct kvm_hv
*hv
= to_kvm_hv(kvm
);
1340 /* Check again under the hv_lock. */
1341 if (hv
->xsaves_xsavec_checked
)
1344 if ((hv
->hv_guest_os_id
& KVM_HV_WIN2016_GUEST_ID_MASK
) !=
1345 KVM_HV_WIN2016_GUEST_ID
)
1348 hv
->xsaves_xsavec_checked
= true;
1350 /* UP configurations aren't affected */
1351 if (atomic_read(&kvm
->online_vcpus
) < 2)
1354 if (guest_cpuid_has(vcpu
, X86_FEATURE_XSAVES
) ||
1355 !guest_cpuid_has(vcpu
, X86_FEATURE_XSAVEC
))
1358 pr_notice_ratelimited("Booting SMP Windows KVM VM with !XSAVES && XSAVEC. "
1359 "If it fails to boot try disabling XSAVEC in the VM config.\n");
1362 void kvm_hv_xsaves_xsavec_maybe_warn(struct kvm_vcpu
*vcpu
)
1364 struct kvm_hv
*hv
= to_kvm_hv(vcpu
->kvm
);
1366 if (!vcpu
->arch
.hyperv_enabled
||
1367 hv
->xsaves_xsavec_checked
)
1370 mutex_lock(&hv
->hv_lock
);
1371 __kvm_hv_xsaves_xsavec_maybe_warn(vcpu
);
1372 mutex_unlock(&hv
->hv_lock
);
1375 static int kvm_hv_set_msr_pw(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
,
1378 struct kvm
*kvm
= vcpu
->kvm
;
1379 struct kvm_hv
*hv
= to_kvm_hv(kvm
);
1381 if (unlikely(!host
&& !hv_check_msr_access(to_hv_vcpu(vcpu
), msr
)))
1385 case HV_X64_MSR_GUEST_OS_ID
:
1386 hv
->hv_guest_os_id
= data
;
1387 /* setting guest os id to zero disables hypercall page */
1388 if (!hv
->hv_guest_os_id
)
1389 hv
->hv_hypercall
&= ~HV_X64_MSR_HYPERCALL_ENABLE
;
1391 case HV_X64_MSR_HYPERCALL
: {
1396 /* if guest os id is not set hypercall should remain disabled */
1397 if (!hv
->hv_guest_os_id
)
1399 if (!(data
& HV_X64_MSR_HYPERCALL_ENABLE
)) {
1400 hv
->hv_hypercall
= data
;
1405 * If Xen and Hyper-V hypercalls are both enabled, disambiguate
1406 * the same way Xen itself does, by setting the bit 31 of EAX
1407 * which is RsvdZ in the 32-bit Hyper-V hypercall ABI and just
1408 * going to be clobbered on 64-bit.
1410 if (kvm_xen_hypercall_enabled(kvm
)) {
1411 /* orl $0x80000000, %eax */
1412 instructions
[i
++] = 0x0d;
1413 instructions
[i
++] = 0x00;
1414 instructions
[i
++] = 0x00;
1415 instructions
[i
++] = 0x00;
1416 instructions
[i
++] = 0x80;
1419 /* vmcall/vmmcall */
1420 kvm_x86_call(patch_hypercall
)(vcpu
, instructions
+ i
);
1424 ((unsigned char *)instructions
)[i
++] = 0xc3;
1426 addr
= data
& HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_MASK
;
1427 if (kvm_vcpu_write_guest(vcpu
, addr
, instructions
, i
))
1429 hv
->hv_hypercall
= data
;
1432 case HV_X64_MSR_REFERENCE_TSC
:
1433 hv
->hv_tsc_page
= data
;
1434 if (hv
->hv_tsc_page
& HV_X64_MSR_TSC_REFERENCE_ENABLE
) {
1436 hv
->hv_tsc_page_status
= HV_TSC_PAGE_GUEST_CHANGED
;
1438 hv
->hv_tsc_page_status
= HV_TSC_PAGE_HOST_CHANGED
;
1439 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
1441 hv
->hv_tsc_page_status
= HV_TSC_PAGE_UNSET
;
1444 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
1445 return kvm_hv_msr_set_crash_data(kvm
,
1446 msr
- HV_X64_MSR_CRASH_P0
,
1448 case HV_X64_MSR_CRASH_CTL
:
1450 return kvm_hv_msr_set_crash_ctl(kvm
, data
);
1452 if (data
& HV_CRASH_CTL_CRASH_NOTIFY
) {
1453 vcpu_debug(vcpu
, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n",
1454 hv
->hv_crash_param
[0],
1455 hv
->hv_crash_param
[1],
1456 hv
->hv_crash_param
[2],
1457 hv
->hv_crash_param
[3],
1458 hv
->hv_crash_param
[4]);
1460 /* Send notification about crash to user space */
1461 kvm_make_request(KVM_REQ_HV_CRASH
, vcpu
);
1464 case HV_X64_MSR_RESET
:
1466 vcpu_debug(vcpu
, "hyper-v reset requested\n");
1467 kvm_make_request(KVM_REQ_HV_RESET
, vcpu
);
1470 case HV_X64_MSR_REENLIGHTENMENT_CONTROL
:
1471 hv
->hv_reenlightenment_control
= data
;
1473 case HV_X64_MSR_TSC_EMULATION_CONTROL
:
1474 hv
->hv_tsc_emulation_control
= data
;
1476 case HV_X64_MSR_TSC_EMULATION_STATUS
:
1480 hv
->hv_tsc_emulation_status
= data
;
1482 case HV_X64_MSR_TIME_REF_COUNT
:
1483 /* read-only, but still ignore it if host-initiated */
1487 case HV_X64_MSR_TSC_INVARIANT_CONTROL
:
1488 /* Only bit 0 is supported */
1489 if (data
& ~HV_EXPOSE_INVARIANT_TSC
)
1492 /* The feature can't be disabled from the guest */
1493 if (!host
&& hv
->hv_invtsc_control
&& !data
)
1496 hv
->hv_invtsc_control
= data
;
1498 case HV_X64_MSR_SYNDBG_OPTIONS
:
1499 case HV_X64_MSR_SYNDBG_CONTROL
... HV_X64_MSR_SYNDBG_PENDING_BUFFER
:
1500 return syndbg_set_msr(vcpu
, msr
, data
, host
);
1502 kvm_pr_unimpl_wrmsr(vcpu
, msr
, data
);
1508 /* Calculate cpu time spent by current task in 100ns units */
1509 static u64
current_task_runtime_100ns(void)
1513 task_cputime_adjusted(current
, &utime
, &stime
);
1515 return div_u64(utime
+ stime
, 100);
1518 static int kvm_hv_set_msr(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
, bool host
)
1520 struct kvm_vcpu_hv
*hv_vcpu
= to_hv_vcpu(vcpu
);
1522 if (unlikely(!host
&& !hv_check_msr_access(hv_vcpu
, msr
)))
1526 case HV_X64_MSR_VP_INDEX
: {
1527 struct kvm_hv
*hv
= to_kvm_hv(vcpu
->kvm
);
1528 u32 new_vp_index
= (u32
)data
;
1530 if (!host
|| new_vp_index
>= KVM_MAX_VCPUS
)
1533 if (new_vp_index
== hv_vcpu
->vp_index
)
1537 * The VP index is initialized to vcpu_index by
1538 * kvm_hv_vcpu_postcreate so they initially match. Now the
1539 * VP index is changing, adjust num_mismatched_vp_indexes if
1540 * it now matches or no longer matches vcpu_idx.
1542 if (hv_vcpu
->vp_index
== vcpu
->vcpu_idx
)
1543 atomic_inc(&hv
->num_mismatched_vp_indexes
);
1544 else if (new_vp_index
== vcpu
->vcpu_idx
)
1545 atomic_dec(&hv
->num_mismatched_vp_indexes
);
1547 hv_vcpu
->vp_index
= new_vp_index
;
1550 case HV_X64_MSR_VP_ASSIST_PAGE
: {
1554 if (!(data
& HV_X64_MSR_VP_ASSIST_PAGE_ENABLE
)) {
1555 hv_vcpu
->hv_vapic
= data
;
1556 if (kvm_lapic_set_pv_eoi(vcpu
, 0, 0))
1560 gfn
= data
>> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT
;
1561 addr
= kvm_vcpu_gfn_to_hva(vcpu
, gfn
);
1562 if (kvm_is_error_hva(addr
))
1566 * Clear apic_assist portion of struct hv_vp_assist_page
1567 * only, there can be valuable data in the rest which needs
1568 * to be preserved e.g. on migration.
1570 if (__put_user(0, (u32 __user
*)addr
))
1572 hv_vcpu
->hv_vapic
= data
;
1573 kvm_vcpu_mark_page_dirty(vcpu
, gfn
);
1574 if (kvm_lapic_set_pv_eoi(vcpu
,
1575 gfn_to_gpa(gfn
) | KVM_MSR_ENABLED
,
1576 sizeof(struct hv_vp_assist_page
)))
1580 case HV_X64_MSR_EOI
:
1581 return kvm_hv_vapic_msr_write(vcpu
, APIC_EOI
, data
);
1582 case HV_X64_MSR_ICR
:
1583 return kvm_hv_vapic_msr_write(vcpu
, APIC_ICR
, data
);
1584 case HV_X64_MSR_TPR
:
1585 return kvm_hv_vapic_msr_write(vcpu
, APIC_TASKPRI
, data
);
1586 case HV_X64_MSR_VP_RUNTIME
:
1589 hv_vcpu
->runtime_offset
= data
- current_task_runtime_100ns();
1591 case HV_X64_MSR_SCONTROL
:
1592 case HV_X64_MSR_SVERSION
:
1593 case HV_X64_MSR_SIEFP
:
1594 case HV_X64_MSR_SIMP
:
1595 case HV_X64_MSR_EOM
:
1596 case HV_X64_MSR_SINT0
... HV_X64_MSR_SINT15
:
1597 return synic_set_msr(to_hv_synic(vcpu
), msr
, data
, host
);
1598 case HV_X64_MSR_STIMER0_CONFIG
:
1599 case HV_X64_MSR_STIMER1_CONFIG
:
1600 case HV_X64_MSR_STIMER2_CONFIG
:
1601 case HV_X64_MSR_STIMER3_CONFIG
: {
1602 int timer_index
= (msr
- HV_X64_MSR_STIMER0_CONFIG
)/2;
1604 return stimer_set_config(to_hv_stimer(vcpu
, timer_index
),
1607 case HV_X64_MSR_STIMER0_COUNT
:
1608 case HV_X64_MSR_STIMER1_COUNT
:
1609 case HV_X64_MSR_STIMER2_COUNT
:
1610 case HV_X64_MSR_STIMER3_COUNT
: {
1611 int timer_index
= (msr
- HV_X64_MSR_STIMER0_COUNT
)/2;
1613 return stimer_set_count(to_hv_stimer(vcpu
, timer_index
),
1616 case HV_X64_MSR_TSC_FREQUENCY
:
1617 case HV_X64_MSR_APIC_FREQUENCY
:
1618 /* read-only, but still ignore it if host-initiated */
1623 kvm_pr_unimpl_wrmsr(vcpu
, msr
, data
);
1630 static int kvm_hv_get_msr_pw(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
,
1634 struct kvm
*kvm
= vcpu
->kvm
;
1635 struct kvm_hv
*hv
= to_kvm_hv(kvm
);
1637 if (unlikely(!host
&& !hv_check_msr_access(to_hv_vcpu(vcpu
), msr
)))
1641 case HV_X64_MSR_GUEST_OS_ID
:
1642 data
= hv
->hv_guest_os_id
;
1644 case HV_X64_MSR_HYPERCALL
:
1645 data
= hv
->hv_hypercall
;
1647 case HV_X64_MSR_TIME_REF_COUNT
:
1648 data
= get_time_ref_counter(kvm
);
1650 case HV_X64_MSR_REFERENCE_TSC
:
1651 data
= hv
->hv_tsc_page
;
1653 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
1654 return kvm_hv_msr_get_crash_data(kvm
,
1655 msr
- HV_X64_MSR_CRASH_P0
,
1657 case HV_X64_MSR_CRASH_CTL
:
1658 return kvm_hv_msr_get_crash_ctl(kvm
, pdata
);
1659 case HV_X64_MSR_RESET
:
1662 case HV_X64_MSR_REENLIGHTENMENT_CONTROL
:
1663 data
= hv
->hv_reenlightenment_control
;
1665 case HV_X64_MSR_TSC_EMULATION_CONTROL
:
1666 data
= hv
->hv_tsc_emulation_control
;
1668 case HV_X64_MSR_TSC_EMULATION_STATUS
:
1669 data
= hv
->hv_tsc_emulation_status
;
1671 case HV_X64_MSR_TSC_INVARIANT_CONTROL
:
1672 data
= hv
->hv_invtsc_control
;
1674 case HV_X64_MSR_SYNDBG_OPTIONS
:
1675 case HV_X64_MSR_SYNDBG_CONTROL
... HV_X64_MSR_SYNDBG_PENDING_BUFFER
:
1676 return syndbg_get_msr(vcpu
, msr
, pdata
, host
);
1678 kvm_pr_unimpl_rdmsr(vcpu
, msr
);
1686 static int kvm_hv_get_msr(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
,
1690 struct kvm_vcpu_hv
*hv_vcpu
= to_hv_vcpu(vcpu
);
1692 if (unlikely(!host
&& !hv_check_msr_access(hv_vcpu
, msr
)))
1696 case HV_X64_MSR_VP_INDEX
:
1697 data
= hv_vcpu
->vp_index
;
1699 case HV_X64_MSR_EOI
:
1700 return kvm_hv_vapic_msr_read(vcpu
, APIC_EOI
, pdata
);
1701 case HV_X64_MSR_ICR
:
1702 return kvm_hv_vapic_msr_read(vcpu
, APIC_ICR
, pdata
);
1703 case HV_X64_MSR_TPR
:
1704 return kvm_hv_vapic_msr_read(vcpu
, APIC_TASKPRI
, pdata
);
1705 case HV_X64_MSR_VP_ASSIST_PAGE
:
1706 data
= hv_vcpu
->hv_vapic
;
1708 case HV_X64_MSR_VP_RUNTIME
:
1709 data
= current_task_runtime_100ns() + hv_vcpu
->runtime_offset
;
1711 case HV_X64_MSR_SCONTROL
:
1712 case HV_X64_MSR_SVERSION
:
1713 case HV_X64_MSR_SIEFP
:
1714 case HV_X64_MSR_SIMP
:
1715 case HV_X64_MSR_EOM
:
1716 case HV_X64_MSR_SINT0
... HV_X64_MSR_SINT15
:
1717 return synic_get_msr(to_hv_synic(vcpu
), msr
, pdata
, host
);
1718 case HV_X64_MSR_STIMER0_CONFIG
:
1719 case HV_X64_MSR_STIMER1_CONFIG
:
1720 case HV_X64_MSR_STIMER2_CONFIG
:
1721 case HV_X64_MSR_STIMER3_CONFIG
: {
1722 int timer_index
= (msr
- HV_X64_MSR_STIMER0_CONFIG
)/2;
1724 return stimer_get_config(to_hv_stimer(vcpu
, timer_index
),
1727 case HV_X64_MSR_STIMER0_COUNT
:
1728 case HV_X64_MSR_STIMER1_COUNT
:
1729 case HV_X64_MSR_STIMER2_COUNT
:
1730 case HV_X64_MSR_STIMER3_COUNT
: {
1731 int timer_index
= (msr
- HV_X64_MSR_STIMER0_COUNT
)/2;
1733 return stimer_get_count(to_hv_stimer(vcpu
, timer_index
),
1736 case HV_X64_MSR_TSC_FREQUENCY
:
1737 data
= (u64
)vcpu
->arch
.virtual_tsc_khz
* 1000;
1739 case HV_X64_MSR_APIC_FREQUENCY
:
1740 data
= div64_u64(1000000000ULL,
1741 vcpu
->kvm
->arch
.apic_bus_cycle_ns
);
1744 kvm_pr_unimpl_rdmsr(vcpu
, msr
);
1751 int kvm_hv_set_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
, bool host
)
1753 struct kvm_hv
*hv
= to_kvm_hv(vcpu
->kvm
);
1755 if (!host
&& !vcpu
->arch
.hyperv_enabled
)
1758 if (kvm_hv_vcpu_init(vcpu
))
1761 if (kvm_hv_msr_partition_wide(msr
)) {
1764 mutex_lock(&hv
->hv_lock
);
1765 r
= kvm_hv_set_msr_pw(vcpu
, msr
, data
, host
);
1766 mutex_unlock(&hv
->hv_lock
);
1769 return kvm_hv_set_msr(vcpu
, msr
, data
, host
);
1772 int kvm_hv_get_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
, bool host
)
1774 struct kvm_hv
*hv
= to_kvm_hv(vcpu
->kvm
);
1776 if (!host
&& !vcpu
->arch
.hyperv_enabled
)
1779 if (kvm_hv_vcpu_init(vcpu
))
1782 if (kvm_hv_msr_partition_wide(msr
)) {
1785 mutex_lock(&hv
->hv_lock
);
1786 r
= kvm_hv_get_msr_pw(vcpu
, msr
, pdata
, host
);
1787 mutex_unlock(&hv
->hv_lock
);
1790 return kvm_hv_get_msr(vcpu
, msr
, pdata
, host
);
1793 static void sparse_set_to_vcpu_mask(struct kvm
*kvm
, u64
*sparse_banks
,
1794 u64 valid_bank_mask
, unsigned long *vcpu_mask
)
1796 struct kvm_hv
*hv
= to_kvm_hv(kvm
);
1797 bool has_mismatch
= atomic_read(&hv
->num_mismatched_vp_indexes
);
1798 u64 vp_bitmap
[KVM_HV_MAX_SPARSE_VCPU_SET_BITS
];
1799 struct kvm_vcpu
*vcpu
;
1800 int bank
, sbank
= 0;
1804 BUILD_BUG_ON(sizeof(vp_bitmap
) >
1805 sizeof(*vcpu_mask
) * BITS_TO_LONGS(KVM_MAX_VCPUS
));
1808 * If vp_index == vcpu_idx for all vCPUs, fill vcpu_mask directly, else
1809 * fill a temporary buffer and manually test each vCPU's VP index.
1811 if (likely(!has_mismatch
))
1812 bitmap
= (u64
*)vcpu_mask
;
1817 * Each set of 64 VPs is packed into sparse_banks, with valid_bank_mask
1818 * having a '1' for each bank that exists in sparse_banks. Sets must
1819 * be in ascending order, i.e. bank0..bankN.
1821 memset(bitmap
, 0, sizeof(vp_bitmap
));
1822 for_each_set_bit(bank
, (unsigned long *)&valid_bank_mask
,
1823 KVM_HV_MAX_SPARSE_VCPU_SET_BITS
)
1824 bitmap
[bank
] = sparse_banks
[sbank
++];
1826 if (likely(!has_mismatch
))
1829 bitmap_zero(vcpu_mask
, KVM_MAX_VCPUS
);
1830 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1831 if (test_bit(kvm_hv_get_vpindex(vcpu
), (unsigned long *)vp_bitmap
))
1832 __set_bit(i
, vcpu_mask
);
1836 static bool hv_is_vp_in_sparse_set(u32 vp_id
, u64 valid_bank_mask
, u64 sparse_banks
[])
1838 int valid_bit_nr
= vp_id
/ HV_VCPUS_PER_SPARSE_BANK
;
1839 unsigned long sbank
;
1841 if (!test_bit(valid_bit_nr
, (unsigned long *)&valid_bank_mask
))
1845 * The index into the sparse bank is the number of preceding bits in
1846 * the valid mask. Optimize for VMs with <64 vCPUs by skipping the
1847 * fancy math if there can't possibly be preceding bits.
1850 sbank
= hweight64(valid_bank_mask
& GENMASK_ULL(valid_bit_nr
- 1, 0));
1854 return test_bit(vp_id
% HV_VCPUS_PER_SPARSE_BANK
,
1855 (unsigned long *)&sparse_banks
[sbank
]);
1858 struct kvm_hv_hcall
{
1859 /* Hypercall input data */
1869 sse128_t xmm
[HV_HYPERCALL_MAX_XMM_REGISTERS
];
1872 * Current read offset when KVM reads hypercall input data gradually,
1873 * either offset in bytes from 'ingpa' for regular hypercalls or the
1874 * number of already consumed 'XMM halves' for 'fast' hypercalls.
1878 int consumed_xmm_halves
;
1883 static int kvm_hv_get_hc_data(struct kvm
*kvm
, struct kvm_hv_hcall
*hc
,
1884 u16 orig_cnt
, u16 cnt_cap
, u64
*data
)
1887 * Preserve the original count when ignoring entries via a "cap", KVM
1888 * still needs to validate the guest input (though the non-XMM path
1889 * punts on the checks).
1891 u16 cnt
= min(orig_cnt
, cnt_cap
);
1896 * Each XMM holds two sparse banks, but do not count halves that
1897 * have already been consumed for hypercall parameters.
1899 if (orig_cnt
> 2 * HV_HYPERCALL_MAX_XMM_REGISTERS
- hc
->consumed_xmm_halves
)
1900 return HV_STATUS_INVALID_HYPERCALL_INPUT
;
1902 for (i
= 0; i
< cnt
; i
++) {
1903 j
= i
+ hc
->consumed_xmm_halves
;
1905 data
[i
] = sse128_hi(hc
->xmm
[j
/ 2]);
1907 data
[i
] = sse128_lo(hc
->xmm
[j
/ 2]);
1912 return kvm_read_guest(kvm
, hc
->ingpa
+ hc
->data_offset
, data
,
1913 cnt
* sizeof(*data
));
1916 static u64
kvm_get_sparse_vp_set(struct kvm
*kvm
, struct kvm_hv_hcall
*hc
,
1919 if (hc
->var_cnt
> HV_MAX_SPARSE_VCPU_BANKS
)
1922 /* Cap var_cnt to ignore banks that cannot contain a legal VP index. */
1923 return kvm_hv_get_hc_data(kvm
, hc
, hc
->var_cnt
, KVM_HV_MAX_SPARSE_VCPU_SET_BITS
,
1927 static int kvm_hv_get_tlb_flush_entries(struct kvm
*kvm
, struct kvm_hv_hcall
*hc
, u64 entries
[])
1929 return kvm_hv_get_hc_data(kvm
, hc
, hc
->rep_cnt
, hc
->rep_cnt
, entries
);
1932 static void hv_tlb_flush_enqueue(struct kvm_vcpu
*vcpu
,
1933 struct kvm_vcpu_hv_tlb_flush_fifo
*tlb_flush_fifo
,
1934 u64
*entries
, int count
)
1936 struct kvm_vcpu_hv
*hv_vcpu
= to_hv_vcpu(vcpu
);
1937 u64 flush_all_entry
= KVM_HV_TLB_FLUSHALL_ENTRY
;
1942 spin_lock(&tlb_flush_fifo
->write_lock
);
1945 * All entries should fit on the fifo leaving one free for 'flush all'
1946 * entry in case another request comes in. In case there's not enough
1947 * space, just put 'flush all' entry there.
1949 if (count
&& entries
&& count
< kfifo_avail(&tlb_flush_fifo
->entries
)) {
1950 WARN_ON(kfifo_in(&tlb_flush_fifo
->entries
, entries
, count
) != count
);
1955 * Note: full fifo always contains 'flush all' entry, no need to check the
1958 kfifo_in(&tlb_flush_fifo
->entries
, &flush_all_entry
, 1);
1961 spin_unlock(&tlb_flush_fifo
->write_lock
);
1964 int kvm_hv_vcpu_flush_tlb(struct kvm_vcpu
*vcpu
)
1966 struct kvm_vcpu_hv_tlb_flush_fifo
*tlb_flush_fifo
;
1967 struct kvm_vcpu_hv
*hv_vcpu
= to_hv_vcpu(vcpu
);
1968 u64 entries
[KVM_HV_TLB_FLUSH_FIFO_SIZE
];
1972 if (!tdp_enabled
|| !hv_vcpu
)
1975 tlb_flush_fifo
= kvm_hv_get_tlb_flush_fifo(vcpu
, is_guest_mode(vcpu
));
1977 count
= kfifo_out(&tlb_flush_fifo
->entries
, entries
, KVM_HV_TLB_FLUSH_FIFO_SIZE
);
1979 for (i
= 0; i
< count
; i
++) {
1980 if (entries
[i
] == KVM_HV_TLB_FLUSHALL_ENTRY
)
1984 * Lower 12 bits of 'address' encode the number of additional
1987 gva
= entries
[i
] & PAGE_MASK
;
1988 for (j
= 0; j
< (entries
[i
] & ~PAGE_MASK
) + 1; j
++)
1989 kvm_x86_call(flush_tlb_gva
)(vcpu
, gva
+ j
* PAGE_SIZE
);
1991 ++vcpu
->stat
.tlb_flush
;
1996 kfifo_reset_out(&tlb_flush_fifo
->entries
);
1998 /* Fall back to full flush. */
2002 static u64
kvm_hv_flush_tlb(struct kvm_vcpu
*vcpu
, struct kvm_hv_hcall
*hc
)
2004 struct kvm_vcpu_hv
*hv_vcpu
= to_hv_vcpu(vcpu
);
2005 u64
*sparse_banks
= hv_vcpu
->sparse_banks
;
2006 struct kvm
*kvm
= vcpu
->kvm
;
2007 struct hv_tlb_flush_ex flush_ex
;
2008 struct hv_tlb_flush flush
;
2009 DECLARE_BITMAP(vcpu_mask
, KVM_MAX_VCPUS
);
2010 struct kvm_vcpu_hv_tlb_flush_fifo
*tlb_flush_fifo
;
2012 * Normally, there can be no more than 'KVM_HV_TLB_FLUSH_FIFO_SIZE'
2013 * entries on the TLB flush fifo. The last entry, however, needs to be
2014 * always left free for 'flush all' entry which gets placed when
2015 * there is not enough space to put all the requested entries.
2017 u64 __tlb_flush_entries
[KVM_HV_TLB_FLUSH_FIFO_SIZE
- 1];
2018 u64
*tlb_flush_entries
;
2019 u64 valid_bank_mask
;
2025 * The Hyper-V TLFS doesn't allow more than HV_MAX_SPARSE_VCPU_BANKS
2026 * sparse banks. Fail the build if KVM's max allowed number of
2027 * vCPUs (>4096) exceeds this limit.
2029 BUILD_BUG_ON(KVM_HV_MAX_SPARSE_VCPU_SET_BITS
> HV_MAX_SPARSE_VCPU_BANKS
);
2032 * 'Slow' hypercall's first parameter is the address in guest's memory
2033 * where hypercall parameters are placed. This is either a GPA or a
2034 * nested GPA when KVM is handling the call from L2 ('direct' TLB
2035 * flush). Translate the address here so the memory can be uniformly
2036 * read with kvm_read_guest().
2038 if (!hc
->fast
&& is_guest_mode(vcpu
)) {
2039 hc
->ingpa
= translate_nested_gpa(vcpu
, hc
->ingpa
, 0, NULL
);
2040 if (unlikely(hc
->ingpa
== INVALID_GPA
))
2041 return HV_STATUS_INVALID_HYPERCALL_INPUT
;
2044 if (hc
->code
== HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST
||
2045 hc
->code
== HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE
) {
2047 flush
.address_space
= hc
->ingpa
;
2048 flush
.flags
= hc
->outgpa
;
2049 flush
.processor_mask
= sse128_lo(hc
->xmm
[0]);
2050 hc
->consumed_xmm_halves
= 1;
2052 if (unlikely(kvm_read_guest(kvm
, hc
->ingpa
,
2053 &flush
, sizeof(flush
))))
2054 return HV_STATUS_INVALID_HYPERCALL_INPUT
;
2055 hc
->data_offset
= sizeof(flush
);
2058 trace_kvm_hv_flush_tlb(flush
.processor_mask
,
2059 flush
.address_space
, flush
.flags
,
2060 is_guest_mode(vcpu
));
2062 valid_bank_mask
= BIT_ULL(0);
2063 sparse_banks
[0] = flush
.processor_mask
;
2066 * Work around possible WS2012 bug: it sends hypercalls
2067 * with processor_mask = 0x0 and HV_FLUSH_ALL_PROCESSORS clear,
2068 * while also expecting us to flush something and crashing if
2069 * we don't. Let's treat processor_mask == 0 same as
2070 * HV_FLUSH_ALL_PROCESSORS.
2072 all_cpus
= (flush
.flags
& HV_FLUSH_ALL_PROCESSORS
) ||
2073 flush
.processor_mask
== 0;
2076 flush_ex
.address_space
= hc
->ingpa
;
2077 flush_ex
.flags
= hc
->outgpa
;
2078 memcpy(&flush_ex
.hv_vp_set
,
2079 &hc
->xmm
[0], sizeof(hc
->xmm
[0]));
2080 hc
->consumed_xmm_halves
= 2;
2082 if (unlikely(kvm_read_guest(kvm
, hc
->ingpa
, &flush_ex
,
2084 return HV_STATUS_INVALID_HYPERCALL_INPUT
;
2085 hc
->data_offset
= sizeof(flush_ex
);
2088 trace_kvm_hv_flush_tlb_ex(flush_ex
.hv_vp_set
.valid_bank_mask
,
2089 flush_ex
.hv_vp_set
.format
,
2090 flush_ex
.address_space
,
2091 flush_ex
.flags
, is_guest_mode(vcpu
));
2093 valid_bank_mask
= flush_ex
.hv_vp_set
.valid_bank_mask
;
2094 all_cpus
= flush_ex
.hv_vp_set
.format
!=
2095 HV_GENERIC_SET_SPARSE_4K
;
2097 if (hc
->var_cnt
!= hweight64(valid_bank_mask
))
2098 return HV_STATUS_INVALID_HYPERCALL_INPUT
;
2104 if (kvm_get_sparse_vp_set(kvm
, hc
, sparse_banks
))
2105 return HV_STATUS_INVALID_HYPERCALL_INPUT
;
2109 * Hyper-V TLFS doesn't explicitly forbid non-empty sparse vCPU
2110 * banks (and, thus, non-zero 'var_cnt') for the 'all vCPUs'
2111 * case (HV_GENERIC_SET_ALL). Always adjust data_offset and
2112 * consumed_xmm_halves to make sure TLB flush entries are read
2113 * from the correct offset.
2116 hc
->consumed_xmm_halves
+= hc
->var_cnt
;
2118 hc
->data_offset
+= hc
->var_cnt
* sizeof(sparse_banks
[0]);
2121 if (hc
->code
== HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE
||
2122 hc
->code
== HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX
||
2123 hc
->rep_cnt
> ARRAY_SIZE(__tlb_flush_entries
)) {
2124 tlb_flush_entries
= NULL
;
2126 if (kvm_hv_get_tlb_flush_entries(kvm
, hc
, __tlb_flush_entries
))
2127 return HV_STATUS_INVALID_HYPERCALL_INPUT
;
2128 tlb_flush_entries
= __tlb_flush_entries
;
2132 * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't
2133 * analyze it here, flush TLB regardless of the specified address space.
2135 if (all_cpus
&& !is_guest_mode(vcpu
)) {
2136 kvm_for_each_vcpu(i
, v
, kvm
) {
2137 tlb_flush_fifo
= kvm_hv_get_tlb_flush_fifo(v
, false);
2138 hv_tlb_flush_enqueue(v
, tlb_flush_fifo
,
2139 tlb_flush_entries
, hc
->rep_cnt
);
2142 kvm_make_all_cpus_request(kvm
, KVM_REQ_HV_TLB_FLUSH
);
2143 } else if (!is_guest_mode(vcpu
)) {
2144 sparse_set_to_vcpu_mask(kvm
, sparse_banks
, valid_bank_mask
, vcpu_mask
);
2146 for_each_set_bit(i
, vcpu_mask
, KVM_MAX_VCPUS
) {
2147 v
= kvm_get_vcpu(kvm
, i
);
2150 tlb_flush_fifo
= kvm_hv_get_tlb_flush_fifo(v
, false);
2151 hv_tlb_flush_enqueue(v
, tlb_flush_fifo
,
2152 tlb_flush_entries
, hc
->rep_cnt
);
2155 kvm_make_vcpus_request_mask(kvm
, KVM_REQ_HV_TLB_FLUSH
, vcpu_mask
);
2157 struct kvm_vcpu_hv
*hv_v
;
2159 bitmap_zero(vcpu_mask
, KVM_MAX_VCPUS
);
2161 kvm_for_each_vcpu(i
, v
, kvm
) {
2162 hv_v
= to_hv_vcpu(v
);
2165 * The following check races with nested vCPUs entering/exiting
2166 * and/or migrating between L1's vCPUs, however the only case when
2167 * KVM *must* flush the TLB is when the target L2 vCPU keeps
2168 * running on the same L1 vCPU from the moment of the request until
2169 * kvm_hv_flush_tlb() returns. TLB is fully flushed in all other
2170 * cases, e.g. when the target L2 vCPU migrates to a different L1
2171 * vCPU or when the corresponding L1 vCPU temporary switches to a
2172 * different L2 vCPU while the request is being processed.
2174 if (!hv_v
|| hv_v
->nested
.vm_id
!= hv_vcpu
->nested
.vm_id
)
2178 !hv_is_vp_in_sparse_set(hv_v
->nested
.vp_id
, valid_bank_mask
,
2182 __set_bit(i
, vcpu_mask
);
2183 tlb_flush_fifo
= kvm_hv_get_tlb_flush_fifo(v
, true);
2184 hv_tlb_flush_enqueue(v
, tlb_flush_fifo
,
2185 tlb_flush_entries
, hc
->rep_cnt
);
2188 kvm_make_vcpus_request_mask(kvm
, KVM_REQ_HV_TLB_FLUSH
, vcpu_mask
);
2192 /* We always do full TLB flush, set 'Reps completed' = 'Rep Count' */
2193 return (u64
)HV_STATUS_SUCCESS
|
2194 ((u64
)hc
->rep_cnt
<< HV_HYPERCALL_REP_COMP_OFFSET
);
2197 static void kvm_hv_send_ipi_to_many(struct kvm
*kvm
, u32 vector
,
2198 u64
*sparse_banks
, u64 valid_bank_mask
)
2200 struct kvm_lapic_irq irq
= {
2201 .delivery_mode
= APIC_DM_FIXED
,
2204 struct kvm_vcpu
*vcpu
;
2207 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
2209 !hv_is_vp_in_sparse_set(kvm_hv_get_vpindex(vcpu
),
2210 valid_bank_mask
, sparse_banks
))
2213 /* We fail only when APIC is disabled */
2214 kvm_apic_set_irq(vcpu
, &irq
, NULL
);
2218 static u64
kvm_hv_send_ipi(struct kvm_vcpu
*vcpu
, struct kvm_hv_hcall
*hc
)
2220 struct kvm_vcpu_hv
*hv_vcpu
= to_hv_vcpu(vcpu
);
2221 u64
*sparse_banks
= hv_vcpu
->sparse_banks
;
2222 struct kvm
*kvm
= vcpu
->kvm
;
2223 struct hv_send_ipi_ex send_ipi_ex
;
2224 struct hv_send_ipi send_ipi
;
2225 u64 valid_bank_mask
;
2229 if (hc
->code
== HVCALL_SEND_IPI
) {
2231 if (unlikely(kvm_read_guest(kvm
, hc
->ingpa
, &send_ipi
,
2233 return HV_STATUS_INVALID_HYPERCALL_INPUT
;
2234 sparse_banks
[0] = send_ipi
.cpu_mask
;
2235 vector
= send_ipi
.vector
;
2237 /* 'reserved' part of hv_send_ipi should be 0 */
2238 if (unlikely(hc
->ingpa
>> 32 != 0))
2239 return HV_STATUS_INVALID_HYPERCALL_INPUT
;
2240 sparse_banks
[0] = hc
->outgpa
;
2241 vector
= (u32
)hc
->ingpa
;
2244 valid_bank_mask
= BIT_ULL(0);
2246 trace_kvm_hv_send_ipi(vector
, sparse_banks
[0]);
2249 if (unlikely(kvm_read_guest(kvm
, hc
->ingpa
, &send_ipi_ex
,
2250 sizeof(send_ipi_ex
))))
2251 return HV_STATUS_INVALID_HYPERCALL_INPUT
;
2253 send_ipi_ex
.vector
= (u32
)hc
->ingpa
;
2254 send_ipi_ex
.vp_set
.format
= hc
->outgpa
;
2255 send_ipi_ex
.vp_set
.valid_bank_mask
= sse128_lo(hc
->xmm
[0]);
2258 trace_kvm_hv_send_ipi_ex(send_ipi_ex
.vector
,
2259 send_ipi_ex
.vp_set
.format
,
2260 send_ipi_ex
.vp_set
.valid_bank_mask
);
2262 vector
= send_ipi_ex
.vector
;
2263 valid_bank_mask
= send_ipi_ex
.vp_set
.valid_bank_mask
;
2264 all_cpus
= send_ipi_ex
.vp_set
.format
== HV_GENERIC_SET_ALL
;
2266 if (hc
->var_cnt
!= hweight64(valid_bank_mask
))
2267 return HV_STATUS_INVALID_HYPERCALL_INPUT
;
2270 goto check_and_send_ipi
;
2276 hc
->data_offset
= offsetof(struct hv_send_ipi_ex
,
2277 vp_set
.bank_contents
);
2279 hc
->consumed_xmm_halves
= 1;
2281 if (kvm_get_sparse_vp_set(kvm
, hc
, sparse_banks
))
2282 return HV_STATUS_INVALID_HYPERCALL_INPUT
;
2286 if ((vector
< HV_IPI_LOW_VECTOR
) || (vector
> HV_IPI_HIGH_VECTOR
))
2287 return HV_STATUS_INVALID_HYPERCALL_INPUT
;
2290 kvm_hv_send_ipi_to_many(kvm
, vector
, NULL
, 0);
2292 kvm_hv_send_ipi_to_many(kvm
, vector
, sparse_banks
, valid_bank_mask
);
2295 return HV_STATUS_SUCCESS
;
2298 void kvm_hv_set_cpuid(struct kvm_vcpu
*vcpu
, bool hyperv_enabled
)
2300 struct kvm_vcpu_hv
*hv_vcpu
= to_hv_vcpu(vcpu
);
2301 struct kvm_cpuid_entry2
*entry
;
2303 vcpu
->arch
.hyperv_enabled
= hyperv_enabled
;
2307 * KVM should have already allocated kvm_vcpu_hv if Hyper-V is
2310 WARN_ON_ONCE(vcpu
->arch
.hyperv_enabled
);
2314 memset(&hv_vcpu
->cpuid_cache
, 0, sizeof(hv_vcpu
->cpuid_cache
));
2316 if (!vcpu
->arch
.hyperv_enabled
)
2319 entry
= kvm_find_cpuid_entry(vcpu
, HYPERV_CPUID_FEATURES
);
2321 hv_vcpu
->cpuid_cache
.features_eax
= entry
->eax
;
2322 hv_vcpu
->cpuid_cache
.features_ebx
= entry
->ebx
;
2323 hv_vcpu
->cpuid_cache
.features_edx
= entry
->edx
;
2326 entry
= kvm_find_cpuid_entry(vcpu
, HYPERV_CPUID_ENLIGHTMENT_INFO
);
2328 hv_vcpu
->cpuid_cache
.enlightenments_eax
= entry
->eax
;
2329 hv_vcpu
->cpuid_cache
.enlightenments_ebx
= entry
->ebx
;
2332 entry
= kvm_find_cpuid_entry(vcpu
, HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES
);
2334 hv_vcpu
->cpuid_cache
.syndbg_cap_eax
= entry
->eax
;
2336 entry
= kvm_find_cpuid_entry(vcpu
, HYPERV_CPUID_NESTED_FEATURES
);
2338 hv_vcpu
->cpuid_cache
.nested_eax
= entry
->eax
;
2339 hv_vcpu
->cpuid_cache
.nested_ebx
= entry
->ebx
;
2343 int kvm_hv_set_enforce_cpuid(struct kvm_vcpu
*vcpu
, bool enforce
)
2345 struct kvm_vcpu_hv
*hv_vcpu
;
2348 if (!to_hv_vcpu(vcpu
)) {
2350 ret
= kvm_hv_vcpu_init(vcpu
);
2358 hv_vcpu
= to_hv_vcpu(vcpu
);
2359 hv_vcpu
->enforce_cpuid
= enforce
;
2364 static void kvm_hv_hypercall_set_result(struct kvm_vcpu
*vcpu
, u64 result
)
2368 longmode
= is_64_bit_hypercall(vcpu
);
2370 kvm_rax_write(vcpu
, result
);
2372 kvm_rdx_write(vcpu
, result
>> 32);
2373 kvm_rax_write(vcpu
, result
& 0xffffffff);
2377 static int kvm_hv_hypercall_complete(struct kvm_vcpu
*vcpu
, u64 result
)
2379 u32 tlb_lock_count
= 0;
2382 if (hv_result_success(result
) && is_guest_mode(vcpu
) &&
2383 kvm_hv_is_tlb_flush_hcall(vcpu
) &&
2384 kvm_read_guest(vcpu
->kvm
, to_hv_vcpu(vcpu
)->nested
.pa_page_gpa
,
2385 &tlb_lock_count
, sizeof(tlb_lock_count
)))
2386 result
= HV_STATUS_INVALID_HYPERCALL_INPUT
;
2388 trace_kvm_hv_hypercall_done(result
);
2389 kvm_hv_hypercall_set_result(vcpu
, result
);
2390 ++vcpu
->stat
.hypercalls
;
2392 ret
= kvm_skip_emulated_instruction(vcpu
);
2395 kvm_x86_ops
.nested_ops
->hv_inject_synthetic_vmexit_post_tlb_flush(vcpu
);
2400 static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu
*vcpu
)
2402 return kvm_hv_hypercall_complete(vcpu
, vcpu
->run
->hyperv
.u
.hcall
.result
);
2405 static u16
kvm_hvcall_signal_event(struct kvm_vcpu
*vcpu
, struct kvm_hv_hcall
*hc
)
2407 struct kvm_hv
*hv
= to_kvm_hv(vcpu
->kvm
);
2408 struct eventfd_ctx
*eventfd
;
2410 if (unlikely(!hc
->fast
)) {
2412 gpa_t gpa
= hc
->ingpa
;
2414 if ((gpa
& (__alignof__(hc
->ingpa
) - 1)) ||
2415 offset_in_page(gpa
) + sizeof(hc
->ingpa
) > PAGE_SIZE
)
2416 return HV_STATUS_INVALID_ALIGNMENT
;
2418 ret
= kvm_vcpu_read_guest(vcpu
, gpa
,
2419 &hc
->ingpa
, sizeof(hc
->ingpa
));
2421 return HV_STATUS_INVALID_ALIGNMENT
;
2425 * Per spec, bits 32-47 contain the extra "flag number". However, we
2426 * have no use for it, and in all known usecases it is zero, so just
2427 * report lookup failure if it isn't.
2429 if (hc
->ingpa
& 0xffff00000000ULL
)
2430 return HV_STATUS_INVALID_PORT_ID
;
2431 /* remaining bits are reserved-zero */
2432 if (hc
->ingpa
& ~KVM_HYPERV_CONN_ID_MASK
)
2433 return HV_STATUS_INVALID_HYPERCALL_INPUT
;
2435 /* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */
2437 eventfd
= idr_find(&hv
->conn_to_evt
, hc
->ingpa
);
2440 return HV_STATUS_INVALID_PORT_ID
;
2442 eventfd_signal(eventfd
);
2443 return HV_STATUS_SUCCESS
;
2446 static bool is_xmm_fast_hypercall(struct kvm_hv_hcall
*hc
)
2449 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST
:
2450 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE
:
2451 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX
:
2452 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX
:
2453 case HVCALL_SEND_IPI_EX
:
2460 static void kvm_hv_hypercall_read_xmm(struct kvm_hv_hcall
*hc
)
2465 for (reg
= 0; reg
< HV_HYPERCALL_MAX_XMM_REGISTERS
; reg
++)
2466 _kvm_read_sse_reg(reg
, &hc
->xmm
[reg
]);
2470 static bool hv_check_hypercall_access(struct kvm_vcpu_hv
*hv_vcpu
, u16 code
)
2472 if (!hv_vcpu
->enforce_cpuid
)
2476 case HVCALL_NOTIFY_LONG_SPIN_WAIT
:
2477 return hv_vcpu
->cpuid_cache
.enlightenments_ebx
&&
2478 hv_vcpu
->cpuid_cache
.enlightenments_ebx
!= U32_MAX
;
2479 case HVCALL_POST_MESSAGE
:
2480 return hv_vcpu
->cpuid_cache
.features_ebx
& HV_POST_MESSAGES
;
2481 case HVCALL_SIGNAL_EVENT
:
2482 return hv_vcpu
->cpuid_cache
.features_ebx
& HV_SIGNAL_EVENTS
;
2483 case HVCALL_POST_DEBUG_DATA
:
2484 case HVCALL_RETRIEVE_DEBUG_DATA
:
2485 case HVCALL_RESET_DEBUG_SESSION
:
2487 * Return 'true' when SynDBG is disabled so the resulting code
2488 * will be HV_STATUS_INVALID_HYPERCALL_CODE.
2490 return !kvm_hv_is_syndbg_enabled(hv_vcpu
->vcpu
) ||
2491 hv_vcpu
->cpuid_cache
.features_ebx
& HV_DEBUGGING
;
2492 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX
:
2493 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX
:
2494 if (!(hv_vcpu
->cpuid_cache
.enlightenments_eax
&
2495 HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
))
2498 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST
:
2499 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE
:
2500 return hv_vcpu
->cpuid_cache
.enlightenments_eax
&
2501 HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED
;
2502 case HVCALL_SEND_IPI_EX
:
2503 if (!(hv_vcpu
->cpuid_cache
.enlightenments_eax
&
2504 HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
))
2507 case HVCALL_SEND_IPI
:
2508 return hv_vcpu
->cpuid_cache
.enlightenments_eax
&
2509 HV_X64_CLUSTER_IPI_RECOMMENDED
;
2510 case HV_EXT_CALL_QUERY_CAPABILITIES
... HV_EXT_CALL_MAX
:
2511 return hv_vcpu
->cpuid_cache
.features_ebx
&
2512 HV_ENABLE_EXTENDED_HYPERCALLS
;
2520 int kvm_hv_hypercall(struct kvm_vcpu
*vcpu
)
2522 struct kvm_vcpu_hv
*hv_vcpu
= to_hv_vcpu(vcpu
);
2523 struct kvm_hv_hcall hc
;
2524 u64 ret
= HV_STATUS_SUCCESS
;
2527 * hypercall generates UD from non zero cpl and real mode
2530 if (kvm_x86_call(get_cpl
)(vcpu
) != 0 || !is_protmode(vcpu
)) {
2531 kvm_queue_exception(vcpu
, UD_VECTOR
);
2535 #ifdef CONFIG_X86_64
2536 if (is_64_bit_hypercall(vcpu
)) {
2537 hc
.param
= kvm_rcx_read(vcpu
);
2538 hc
.ingpa
= kvm_rdx_read(vcpu
);
2539 hc
.outgpa
= kvm_r8_read(vcpu
);
2543 hc
.param
= ((u64
)kvm_rdx_read(vcpu
) << 32) |
2544 (kvm_rax_read(vcpu
) & 0xffffffff);
2545 hc
.ingpa
= ((u64
)kvm_rbx_read(vcpu
) << 32) |
2546 (kvm_rcx_read(vcpu
) & 0xffffffff);
2547 hc
.outgpa
= ((u64
)kvm_rdi_read(vcpu
) << 32) |
2548 (kvm_rsi_read(vcpu
) & 0xffffffff);
2551 hc
.code
= hc
.param
& 0xffff;
2552 hc
.var_cnt
= (hc
.param
& HV_HYPERCALL_VARHEAD_MASK
) >> HV_HYPERCALL_VARHEAD_OFFSET
;
2553 hc
.fast
= !!(hc
.param
& HV_HYPERCALL_FAST_BIT
);
2554 hc
.rep_cnt
= (hc
.param
>> HV_HYPERCALL_REP_COMP_OFFSET
) & 0xfff;
2555 hc
.rep_idx
= (hc
.param
>> HV_HYPERCALL_REP_START_OFFSET
) & 0xfff;
2556 hc
.rep
= !!(hc
.rep_cnt
|| hc
.rep_idx
);
2558 trace_kvm_hv_hypercall(hc
.code
, hc
.fast
, hc
.var_cnt
, hc
.rep_cnt
,
2559 hc
.rep_idx
, hc
.ingpa
, hc
.outgpa
);
2561 if (unlikely(!hv_check_hypercall_access(hv_vcpu
, hc
.code
))) {
2562 ret
= HV_STATUS_ACCESS_DENIED
;
2563 goto hypercall_complete
;
2566 if (unlikely(hc
.param
& HV_HYPERCALL_RSVD_MASK
)) {
2567 ret
= HV_STATUS_INVALID_HYPERCALL_INPUT
;
2568 goto hypercall_complete
;
2571 if (hc
.fast
&& is_xmm_fast_hypercall(&hc
)) {
2572 if (unlikely(hv_vcpu
->enforce_cpuid
&&
2573 !(hv_vcpu
->cpuid_cache
.features_edx
&
2574 HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE
))) {
2575 kvm_queue_exception(vcpu
, UD_VECTOR
);
2579 kvm_hv_hypercall_read_xmm(&hc
);
2583 case HVCALL_NOTIFY_LONG_SPIN_WAIT
:
2584 if (unlikely(hc
.rep
|| hc
.var_cnt
)) {
2585 ret
= HV_STATUS_INVALID_HYPERCALL_INPUT
;
2588 kvm_vcpu_on_spin(vcpu
, true);
2590 case HVCALL_SIGNAL_EVENT
:
2591 if (unlikely(hc
.rep
|| hc
.var_cnt
)) {
2592 ret
= HV_STATUS_INVALID_HYPERCALL_INPUT
;
2595 ret
= kvm_hvcall_signal_event(vcpu
, &hc
);
2596 if (ret
!= HV_STATUS_INVALID_PORT_ID
)
2598 fallthrough
; /* maybe userspace knows this conn_id */
2599 case HVCALL_POST_MESSAGE
:
2600 /* don't bother userspace if it has no way to handle it */
2601 if (unlikely(hc
.rep
|| hc
.var_cnt
|| !to_hv_synic(vcpu
)->active
)) {
2602 ret
= HV_STATUS_INVALID_HYPERCALL_INPUT
;
2605 goto hypercall_userspace_exit
;
2606 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST
:
2607 if (unlikely(hc
.var_cnt
)) {
2608 ret
= HV_STATUS_INVALID_HYPERCALL_INPUT
;
2612 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX
:
2613 if (unlikely(!hc
.rep_cnt
|| hc
.rep_idx
)) {
2614 ret
= HV_STATUS_INVALID_HYPERCALL_INPUT
;
2617 ret
= kvm_hv_flush_tlb(vcpu
, &hc
);
2619 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE
:
2620 if (unlikely(hc
.var_cnt
)) {
2621 ret
= HV_STATUS_INVALID_HYPERCALL_INPUT
;
2625 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX
:
2626 if (unlikely(hc
.rep
)) {
2627 ret
= HV_STATUS_INVALID_HYPERCALL_INPUT
;
2630 ret
= kvm_hv_flush_tlb(vcpu
, &hc
);
2632 case HVCALL_SEND_IPI
:
2633 if (unlikely(hc
.var_cnt
)) {
2634 ret
= HV_STATUS_INVALID_HYPERCALL_INPUT
;
2638 case HVCALL_SEND_IPI_EX
:
2639 if (unlikely(hc
.rep
)) {
2640 ret
= HV_STATUS_INVALID_HYPERCALL_INPUT
;
2643 ret
= kvm_hv_send_ipi(vcpu
, &hc
);
2645 case HVCALL_POST_DEBUG_DATA
:
2646 case HVCALL_RETRIEVE_DEBUG_DATA
:
2647 if (unlikely(hc
.fast
)) {
2648 ret
= HV_STATUS_INVALID_PARAMETER
;
2652 case HVCALL_RESET_DEBUG_SESSION
: {
2653 struct kvm_hv_syndbg
*syndbg
= to_hv_syndbg(vcpu
);
2655 if (!kvm_hv_is_syndbg_enabled(vcpu
)) {
2656 ret
= HV_STATUS_INVALID_HYPERCALL_CODE
;
2660 if (!(syndbg
->options
& HV_X64_SYNDBG_OPTION_USE_HCALLS
)) {
2661 ret
= HV_STATUS_OPERATION_DENIED
;
2664 goto hypercall_userspace_exit
;
2666 case HV_EXT_CALL_QUERY_CAPABILITIES
... HV_EXT_CALL_MAX
:
2667 if (unlikely(hc
.fast
)) {
2668 ret
= HV_STATUS_INVALID_PARAMETER
;
2671 goto hypercall_userspace_exit
;
2673 ret
= HV_STATUS_INVALID_HYPERCALL_CODE
;
2678 return kvm_hv_hypercall_complete(vcpu
, ret
);
2680 hypercall_userspace_exit
:
2681 vcpu
->run
->exit_reason
= KVM_EXIT_HYPERV
;
2682 vcpu
->run
->hyperv
.type
= KVM_EXIT_HYPERV_HCALL
;
2683 vcpu
->run
->hyperv
.u
.hcall
.input
= hc
.param
;
2684 vcpu
->run
->hyperv
.u
.hcall
.params
[0] = hc
.ingpa
;
2685 vcpu
->run
->hyperv
.u
.hcall
.params
[1] = hc
.outgpa
;
2686 vcpu
->arch
.complete_userspace_io
= kvm_hv_hypercall_complete_userspace
;
2690 void kvm_hv_init_vm(struct kvm
*kvm
)
2692 struct kvm_hv
*hv
= to_kvm_hv(kvm
);
2694 mutex_init(&hv
->hv_lock
);
2695 idr_init(&hv
->conn_to_evt
);
2698 void kvm_hv_destroy_vm(struct kvm
*kvm
)
2700 struct kvm_hv
*hv
= to_kvm_hv(kvm
);
2701 struct eventfd_ctx
*eventfd
;
2704 idr_for_each_entry(&hv
->conn_to_evt
, eventfd
, i
)
2705 eventfd_ctx_put(eventfd
);
2706 idr_destroy(&hv
->conn_to_evt
);
2709 static int kvm_hv_eventfd_assign(struct kvm
*kvm
, u32 conn_id
, int fd
)
2711 struct kvm_hv
*hv
= to_kvm_hv(kvm
);
2712 struct eventfd_ctx
*eventfd
;
2715 eventfd
= eventfd_ctx_fdget(fd
);
2716 if (IS_ERR(eventfd
))
2717 return PTR_ERR(eventfd
);
2719 mutex_lock(&hv
->hv_lock
);
2720 ret
= idr_alloc(&hv
->conn_to_evt
, eventfd
, conn_id
, conn_id
+ 1,
2721 GFP_KERNEL_ACCOUNT
);
2722 mutex_unlock(&hv
->hv_lock
);
2729 eventfd_ctx_put(eventfd
);
2733 static int kvm_hv_eventfd_deassign(struct kvm
*kvm
, u32 conn_id
)
2735 struct kvm_hv
*hv
= to_kvm_hv(kvm
);
2736 struct eventfd_ctx
*eventfd
;
2738 mutex_lock(&hv
->hv_lock
);
2739 eventfd
= idr_remove(&hv
->conn_to_evt
, conn_id
);
2740 mutex_unlock(&hv
->hv_lock
);
2745 synchronize_srcu(&kvm
->srcu
);
2746 eventfd_ctx_put(eventfd
);
2750 int kvm_vm_ioctl_hv_eventfd(struct kvm
*kvm
, struct kvm_hyperv_eventfd
*args
)
2752 if ((args
->flags
& ~KVM_HYPERV_EVENTFD_DEASSIGN
) ||
2753 (args
->conn_id
& ~KVM_HYPERV_CONN_ID_MASK
))
2756 if (args
->flags
== KVM_HYPERV_EVENTFD_DEASSIGN
)
2757 return kvm_hv_eventfd_deassign(kvm
, args
->conn_id
);
2758 return kvm_hv_eventfd_assign(kvm
, args
->conn_id
, args
->fd
);
2761 int kvm_get_hv_cpuid(struct kvm_vcpu
*vcpu
, struct kvm_cpuid2
*cpuid
,
2762 struct kvm_cpuid_entry2 __user
*entries
)
2764 uint16_t evmcs_ver
= 0;
2765 struct kvm_cpuid_entry2 cpuid_entries
[] = {
2766 { .function
= HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS
},
2767 { .function
= HYPERV_CPUID_INTERFACE
},
2768 { .function
= HYPERV_CPUID_VERSION
},
2769 { .function
= HYPERV_CPUID_FEATURES
},
2770 { .function
= HYPERV_CPUID_ENLIGHTMENT_INFO
},
2771 { .function
= HYPERV_CPUID_IMPLEMENT_LIMITS
},
2772 { .function
= HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS
},
2773 { .function
= HYPERV_CPUID_SYNDBG_INTERFACE
},
2774 { .function
= HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES
},
2775 { .function
= HYPERV_CPUID_NESTED_FEATURES
},
2777 int i
, nent
= ARRAY_SIZE(cpuid_entries
);
2779 if (kvm_x86_ops
.nested_ops
->get_evmcs_version
)
2780 evmcs_ver
= kvm_x86_ops
.nested_ops
->get_evmcs_version(vcpu
);
2782 if (cpuid
->nent
< nent
)
2785 if (cpuid
->nent
> nent
)
2788 for (i
= 0; i
< nent
; i
++) {
2789 struct kvm_cpuid_entry2
*ent
= &cpuid_entries
[i
];
2792 switch (ent
->function
) {
2793 case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS
:
2794 memcpy(signature
, "Linux KVM Hv", 12);
2796 ent
->eax
= HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES
;
2797 ent
->ebx
= signature
[0];
2798 ent
->ecx
= signature
[1];
2799 ent
->edx
= signature
[2];
2802 case HYPERV_CPUID_INTERFACE
:
2803 ent
->eax
= HYPERV_CPUID_SIGNATURE_EAX
;
2806 case HYPERV_CPUID_VERSION
:
2808 * We implement some Hyper-V 2016 functions so let's use
2811 ent
->eax
= 0x00003839;
2812 ent
->ebx
= 0x000A0000;
2815 case HYPERV_CPUID_FEATURES
:
2816 ent
->eax
|= HV_MSR_VP_RUNTIME_AVAILABLE
;
2817 ent
->eax
|= HV_MSR_TIME_REF_COUNT_AVAILABLE
;
2818 ent
->eax
|= HV_MSR_SYNIC_AVAILABLE
;
2819 ent
->eax
|= HV_MSR_SYNTIMER_AVAILABLE
;
2820 ent
->eax
|= HV_MSR_APIC_ACCESS_AVAILABLE
;
2821 ent
->eax
|= HV_MSR_HYPERCALL_AVAILABLE
;
2822 ent
->eax
|= HV_MSR_VP_INDEX_AVAILABLE
;
2823 ent
->eax
|= HV_MSR_RESET_AVAILABLE
;
2824 ent
->eax
|= HV_MSR_REFERENCE_TSC_AVAILABLE
;
2825 ent
->eax
|= HV_ACCESS_FREQUENCY_MSRS
;
2826 ent
->eax
|= HV_ACCESS_REENLIGHTENMENT
;
2827 ent
->eax
|= HV_ACCESS_TSC_INVARIANT
;
2829 ent
->ebx
|= HV_POST_MESSAGES
;
2830 ent
->ebx
|= HV_SIGNAL_EVENTS
;
2831 ent
->ebx
|= HV_ENABLE_EXTENDED_HYPERCALLS
;
2833 ent
->edx
|= HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE
;
2834 ent
->edx
|= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE
;
2835 ent
->edx
|= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE
;
2837 ent
->ebx
|= HV_DEBUGGING
;
2838 ent
->edx
|= HV_X64_GUEST_DEBUGGING_AVAILABLE
;
2839 ent
->edx
|= HV_FEATURE_DEBUG_MSRS_AVAILABLE
;
2840 ent
->edx
|= HV_FEATURE_EXT_GVA_RANGES_FLUSH
;
2843 * Direct Synthetic timers only make sense with in-kernel
2846 if (!vcpu
|| lapic_in_kernel(vcpu
))
2847 ent
->edx
|= HV_STIMER_DIRECT_MODE_AVAILABLE
;
2851 case HYPERV_CPUID_ENLIGHTMENT_INFO
:
2852 ent
->eax
|= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED
;
2853 ent
->eax
|= HV_X64_APIC_ACCESS_RECOMMENDED
;
2854 ent
->eax
|= HV_X64_RELAXED_TIMING_RECOMMENDED
;
2855 ent
->eax
|= HV_X64_CLUSTER_IPI_RECOMMENDED
;
2856 ent
->eax
|= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
;
2858 ent
->eax
|= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED
;
2859 if (!cpu_smt_possible())
2860 ent
->eax
|= HV_X64_NO_NONARCH_CORESHARING
;
2862 ent
->eax
|= HV_DEPRECATING_AEOI_RECOMMENDED
;
2864 * Default number of spinlock retry attempts, matches
2867 ent
->ebx
= 0x00000FFF;
2871 case HYPERV_CPUID_IMPLEMENT_LIMITS
:
2872 /* Maximum number of virtual processors */
2873 ent
->eax
= KVM_MAX_VCPUS
;
2875 * Maximum number of logical processors, matches
2882 case HYPERV_CPUID_NESTED_FEATURES
:
2883 ent
->eax
= evmcs_ver
;
2884 ent
->eax
|= HV_X64_NESTED_DIRECT_FLUSH
;
2885 ent
->eax
|= HV_X64_NESTED_MSR_BITMAP
;
2886 ent
->ebx
|= HV_X64_NESTED_EVMCS1_PERF_GLOBAL_CTRL
;
2889 case HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS
:
2890 memcpy(signature
, "Linux KVM Hv", 12);
2893 ent
->ebx
= signature
[0];
2894 ent
->ecx
= signature
[1];
2895 ent
->edx
= signature
[2];
2898 case HYPERV_CPUID_SYNDBG_INTERFACE
:
2899 memcpy(signature
, "VS#1\0\0\0\0\0\0\0\0", 12);
2900 ent
->eax
= signature
[0];
2903 case HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES
:
2904 ent
->eax
|= HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING
;
2912 if (copy_to_user(entries
, cpuid_entries
,
2913 nent
* sizeof(struct kvm_cpuid_entry2
)))